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1 Introduction

With the proliferation of the Internet comes the possibility of aggregating vast collections of computers into large-
scale computational platforms. Research driven by this realization has yielded a new software architecture, known
as The Computational Grid[16], for building high-performance distributed applications and systems. The vision
outlined by its architects is for applications to draw computational “power” from a distributed pool of resources in
an analogous way to the way in which household appliances draw electrical power from a power utility: seamlessly
and ubiquitously. More recent proof-of-concept work has demonstrated that the Grid paradigm is, indeed, a viable
model for high-performance, wide-scale distributed computing [14, 36], but these initial efforts have exposed many
significant research challenges.

In particular, the problem of allocating and managing system resources in a Computational Grid setting is a crit-
ical impediment to the development of a generalized Grid execution environment. Current Grid software infrastruc-
tures [7, 15, 19, 22, 24, 33] do not provide distributed and robust resource allocation and accounting mechanisms.
Grid application users must either appeal to a centralized resource allocation broker [11, 17, 4] or they simply contend
wantonly amongst themselves for shared resources. Centralized allocation systems will not scale in proportion to the
potential computational power that will become available as high-performance networking becomes pervasive. Un-
controlled resource acquisition and release by individualusers, conversely, can and will lead to large performance os-
cillations and potential system-wide failure, much as uncontrolled TCP/IP implementations led to congestion-induced
network collapse during the mid-1980s [21]. Moreover, the problem of maintaining Grid stability in the presence
of resource contention will be exacerbated by the deployment of automatic program schedulers such as AppLeS [5]
and Autopilot [29]. At present, there are no scalable resource allocation and control mechanisms or policies that
can ensure both high-performance and stability in Computational Grid settings. We believe that without them true
wide-scale distributed computing will not be realized.



Proposal Thesis:

We propose to study, develop, implement and deploy economically based systems
for allocating resources on the Computational Grid.

We term this researchg-Commercesince it relies on economic principles — the relationship among supply, de-
mand, and price — and the concept of resource purchase to control the allocation of Computational Grid resources.1

Our work will investigate economic policies based both on fixed and dynamically varying pricing strategies for re-
sources. The goal is to define a policy or set of policies that can be implemented efficiently without a centralized
allocation broker and that will ensure the stability of the overall Grid execution environment.

This work will be both theoretical and experimental. The theoretical component will consist of developing and
evaluating economic pricing models, relating them to the problem of Grid resource allocation, and proving properties
such as stability, optimal balance of supply versus demand,and robustness in the presence of inconsistent information,
incomplete information, and resource failures.

The experimental component will be to buildThe First Bank of G.This system will be a computational “exchange”
that supports scalable resource allocation in dynamicallyvarying distributed environments, and it will be modularized
so that it can implement a variety of economic policies. We will use The First Bank of G to study those policies
having the most attractive theoretical properties in real-world Grid settings. In particular, we will use the University
of Tennessee’s Scalabale Intracampus Research Grid (SInRG) [12] (recently funded by NSF) as a campus-wide Grid
testbed. This facility will allow us to test the effectiveness of our policies, refine them according to the requirements
of Grid software and resources, and perhaps influence the resource allocation, monitoring and scheduling components
of different Grid software components. We will later make the fruits of this project available to a larger community
through the National Partnership for Advanced Computational Infrastructure (NPACI), within which the PI is a partner.
As such, The First Bank of G will serve as a development vehicle for policy and scheduling research, and as a persistent
software artifact that we will make available to the Grid research community.

We believe that the unique application of economic policiesto decentralized resource allocation is a valuable
and necessary approach to make the Grid a viable architecture for large-scale computing using shared and federated
resources. The following sections describe our research plan in greater detail. In the next section (Section 2) we
describe resource allocation and some of the problems it poses in Computational Grid settings. Section 3 details the
technical approach we plan to pursue, and Section 4 describes the ways in which we plan to test, verify and deploy our
results.

2 Problem Statement: The Need for g-Commerce

Effective resource allocation strategies are difficult to design and implement for Grid environments. In this section,
we briefly describe grid computing environments, and then motivate the need for our work.

2.1 Grid Computing

The Computational Grid [16] is a software architecture for supporting high-performance distributed computing using
resources that are culled from multipleautonomous sites. Resources (machines, network connections, storage, etc.) are
committed to a virtual, shared pool by their owners. Applications (under the control of Grid users) draw the resources
they need from the resource pool automatically. The vision is analogous to the way electrical devices draw electricity
from a power utility. Power producers (resource owners in the Computational Grid model) link their production
facilities to an electrical grid (Computational Grid) managed by a power utility. Power consumers (applications in the
Computational Grid setting) interface to the grid via a welldefined interface and draw power without regard for how
it was produced.

Since resources arefederatedfrom different ownership domains, the architecture does not assume that a single,
authoritarian scheduling system will be implementable. Owners must maintain ultimate control over their resources.
It is not feasible for the Grid software system to insist thatthose resources be subjugated to a centralized scheduling

1The “g” in “g-Commerce” is intended to signify that we are focusing on solutions for the Grid in the same way that the “e” in “e-commerce”
indicates an Internet focus.
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authority that is responsible for allocating resources to applications. Rather, resource owners and application users are
expected to act independently, and largely in their own self-interests.

An important assumption made by the architects of the Computational Grid is that it will not be possible to force
resource providers to remove or replace elements of their existing software base. Resource owners are often reluctant
to replace their local system software for fear of destabilizing working systems, even if the software offers greater
potential functionality. Therefore, to gain acceptance, the Grid must accessible as a set of services layeredon top of
installed, extant software rather than as a replacement. This software veneer is often termedmiddlewareto indicate its
position between the application and the local system software.

Several software infrastructures are currently being developed to implement the Grid architecture [7, 15, 24, 19,
33]. Critical to their success is the availability of a resource allocation and control methodology that is stable, high-
performance, available as middleware, and does not requirea single over-arching authoritative system.

2.2 Resource Allocation and Accounting: Challenges

When designing a Grid resource allocation scheme, there aremany challenges that must be solved. We present these
challenges here, and then state our approach for solving them.

Problems with centralized approaches.Today, most Grid middleware includes the notion of a centralized re-
source “broker” that is responsible for fielding user or application requests for resources and making resource assign-
ments [7, 15, 19, 33]. Centralized resource brokers are convenient because they have one consistent view of their
domain, and thus can make informed resource allocation decisions quickly.

However, there are many inherent problems with centralizedresource brokers. First, they can be a performance
bottleneck if many resource requests are made simultaneously. As a result, centralized approaches, while initially
useful as prototypes, do not scale. Further, if a user requires resources from multiple administrative domains, it
may be impossible for those resources to be granted from a single, over-arching resource broker. And finally, the
centralized broker constitutes a single point of failure for the system. For a resource allocation to meet the needs of
the Computational Grid it must be decentralized and distributed.

Problems with decentralized approaches.Decentralized approaches are difficult to manage, leading to potential
system instability as resources are added to and removed from the Grid dynamically and as performance fluctuates due
to contention. Inconsistent information about resource availability may prompt bad resource allocation decisions that
are later retracted. If a retraction and subsequent reallocation of resources causes further retractions and reallocations,
the system will oscillate.

Low overhead. The speed with which resources can be allocated and deallocated is also an important consid-
eration. Any delay an application incurs while it waits for aresource assignment is perceived by the Grid user as
overhead. Therefore, there is a tradeoff between the benefitof using the best resources that are available (from a bot-
tleneck centralized broker, perhaps) and the benefit of using a suboptimal resource that can be located and allocated
quickly (using a loosely-consistent distributed allocation service).

Heterogeneity. Resource heterogeneity introduces additional complexity. At an abstract level, a Grid application
has a set of homogeneous resource requirements. That is, an application potentially requires:

1. a set of processing instructions to be executed;

2. a set of program data to be moved between application components to facilitate that execution; and

3. a set of data items to be read from and written to persistentstorage.

It is the purview of the Grid software (and not the application’s user) to meet these requirements using Grid resources.
The Grid must choose the resources that best match the application’s needs transparently, in the same way that a true
power grid routes electricity from the best producer to eachconsumer’s home. That is, a household appliance does not
“know” how the power it is consuming was generated (i.e. via hydro-electric, fossil fuel, geothermic, wind, etc.), nor
is it rendered non-functional if only a particular kind of power is available.

To make an assessment of how to meet an application’s resource needs, given a pool of heterogeneous and shared
resources, the Grid software must be able to assign a relative value to each resource. For example, if an application is
particularly well suited to execution on a workstation (e.g. it is a sequential algorithm with small to moderate memory
requirements and limited storage requirements) it will also likely run well on a single processor of a parallel machine
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such as an IBM SP2. If the processing is primarily floating-point, it may also be able to achieve a high absolute speed
on an expensive vector processor such as a Cray T90. It is up tothe Grid software to decide which of these resources
should best be assigned to execute the application.

Resource Cost vs. Performance.As part of the Application-Level Scheduler (AppLeS) project [2, 5, 32], we
have constructed scheduling agents that make allocation decisions based strictly on deliverable performance. The
AppLeS scheduling agent evaluates each resource that is available by considering how quickly it can execute the
application (measured in wall-clock time). That is, the agent uses the inverse of the turn-around time as a value metric,
and chooses the most valuable resource. If the Cray T90 is thefastest in absolute terms, it is chosen even if the the
code will use a small fraction of the T90s total absolute capability. While this scheduling approach has proved to be
effective [32], it relies on the assumption thatall resources available to the application may be used with the same
cost to the application’s user. The AppLeS agent only considers the benefit each resource provides to its application
- since the cost is fixed and uniform, it is not considered.

If the cost associated with resource use is not uniform, however, the value of a resource to an application can no
longer be determined strictly in terms of its benefit. The question of a resource’s cost and value is then inherently an
economic one, and motivates us to turn to solutions based in economics.

Non-independence of resources.Most applications need more than one resource from the Grid.As described
above, each application has needs in processing, storage and communication, and the performance of each of these
entities is dependent on the other. For example, a fast CPU inCalifornia may work better with a slow disk in California
than a fast disk in Tennessee. The resource broker and application scheduler must work in tandem to ensure that the
coupling of resources is considered in the resource allocation.

Stability. Particular care must be taken when resources are allocated to ensure overall system stability. Errors may
result in either an overestimation of the resource value or an overestimation of its cost. If an application (under the
control of a user or an automatic scheduler) corrects its resource allocation when it detects these errors, it may waste
time and resources oscillating between resources that appear to have the lowest cost-to-benefit ratio at any given time.

Accounting. The lack of credible cross-domain resource accounting for Grid environments poses a serious imped-
iment their success. The Grid model of resource aggregationis a federated one. Resource owners commit the usage
of their resources to the Grid but retain ultimate control and revocation rights. Without an effective computational
economy, however, it is not possible for resource owners to charge or account for the the resources they have com-
mitted to the Grid. For example, consider the possibility ofcombining resources from the National Partnership for
Computational Infrastructure (NPACI) and the National Computational Science Alliance (NCSA)- two infrastructure
partnerships maintained by the National Science Foundation. Currently, it is not possible for a user with an allocation
of IBM SP2 time at NPACI to “trade” some of that time for an equivalent amount of Origin 2000 time at NCSA even
if the Origin 2000 would execute the user’s job substantially more efficiently (both in terms of execution performance
and allocation cost).

2.3 A Solution Based on Economic Pricing Models

The reason the above trade is not possible it is that it is not possible to determine the relative worth of time on the SP2
to time on the Origin 2000. If dynamic pricing information for both the SP2 and the Origin 2000 were available, and
the prices reflected the true value to the Grid of each, it would be possible for the NPACI user to purchase some Origin
2000 time at a cost to his or her NPACI allocation.

Clearly, a computational economy for the Grid is a natural way to address many of the challenges posed by
its dynamically changing, heterogeneous, and federated structure. Distributed economic models can be evaluated
efficiently ensuring low resource allocation overhead. They allow resource producers and consumers to act in favor
of their self-interest with a minimal of prior agreement. Formal theories of pricing and practical experience with real-
world markets yield a variety of pricing strategies that arelikely to ensure stability ([3], [31]). With accurate resource
pricing comes the ability to realize credible accounting systems between federated resource owners.

For these reasons, we propose to study computational economies as a basis for a decentralized, distributed resource
allocation mechanism for the Grid. Note that other researchefforts [1, 6, 34, 26] have considered the use of auctions
as a methodology for controlling resources in agent-based systems. While these approaches may offer benefits with
respect to user-proxy agents, they do not address the performance or stability requirements that are essential to making
the Grid a success.
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3 Technical Approach

The goal of our technical approach is to develop both a solid theoretical understanding of Computational Grid resource
allocation strategies that are economically based, and to provide an implementation of a working “computational ex-
change” that will enable further computational economics research. Our plan is to identify promising economic for-
mulations for Computational Grid settings, and to study their stability characteristics and implementational feasibility
in for the Grid. We will then verify those models that prove most attractive using simulation. At the same time, we
will develop a software infrastructure for the Grid that canbe parameterized by different economic policies. ThisFirst
Bank of Gwill permit us to study different economic systems in “live”Grid settings and will serve as a useful devel-
opment environment for future Grid economic research. While a research plan that rests both on theoretical grounds
and on verification through implementation is ambitious, our research team will call upon expertise in mathematical
systems (Brevik) and Grid development (Wolski, Plank) to achieve success.

3.1 Theory: Defining A Computational Economy with Dynamic Pricing

To model resource usage in a Computational Grid setting according to a set of economic principles, we must� determine which computational resources will be treated ascommodities or traded goods,� specify units of supply and demand for each commodity, and� devise a system for setting prices that is based on the relationship between supply and demand.

Price changes cause changes in supply and demand levels, which may, in turn, cause price changes. If a stable
price for all commodities cannot be reached, the system willoscillate due to continuous adjustments to the price
and supply/demand levels. More seriously, if resource allocation decisions are based on these levels, it will not
be possible to determine a stable resource allocation for a given set of Grid resources. We must, therefore, design
computational economies, based on pricing systems and supply/demand measurements, that we can show will reach
equilibrium. This outlook differs from other approaches tocomputational economies (Millennium [1], Spawn [34],
D’Agents [6], Popcorn [26]), which have favored auctions asa means of price-setting and are not concerned with price
stability or equilibrium. Indeed, in [6], the idea of market-based price adjustments is described as “simple, ad hoc,
and information-poor.” On the other hand, in [34], it is demonstrated through trials that auctions lead to substantial
fluctuation in selling prices, and this is recognized as a considerable problem from the standpoint of producing a stable,
functioning economy.

Of special interest is work by Chun and Culler [9], where CPU timeshare allocations are governed by a market
economy that optimizesuser value. Their approach does not address the issue of market equilibrium; rather, as with
auctions, it sets prices locally, but prices are set based onpriority. Although the resource model and assumptions in
this work differ from ours, we share the same basic philosophy (that a market economy is best for distributed resource
allocation), and will try to leverage the relevant results that emerge from this research.

3.1.1 The Basic Approach

We can model our problem mathematically by regarding the prices of the commodities (e.g. CPU’s, storage, etc.)

as entries in aprice vectorp = 0BBB@ p1p2
...pn 1CCCA, wherepi stands for the price of theith commodity. For our purposes,

each pricepi is a function of time. For a given price vector, the supply anddemand calculated for each individual
commodity, based on each producer’s and consumer’s evaluation of price, may or may not balance. Define theexcess
demandzj for the jth commodity as the demand minus the supply. As defined,zj may be positive or negative;
negative excess demand can be interpreted simply as excess supply. Assuming that the markets for these commodities
are interrelated, eachzj is a function of all of the pricespi, that is, of the vectorp. Excess demand can again be written
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as a vectorz = z(p) = 0BBB@ z1z2
...zn 1CCCA. Now,economic equilibriumoccurs whenz = 0. Thus, bringing a particular market

to equilibrium is equivalent to finding a price vector for which each excess demand is0.
The method employed here is a generalization of Newton’s method. With this method, one iteratively constructs

approximate solutions to a system of equations by solving the linearizations of these equations at one approximate
solution to obtain the next approximate solution.

According to a theorem of Smale [31], given a market consisting ofn interrelated commodities with price vectorp and associated excess demand vectorz(p) = z = as above, anequilibrium point(that is,p� such thatz(p�) =0) exists; further, under a mild set of boundary hypotheses which, in our application, we are able to control, this
equilibrium is reached from any starting price vector as follows: For any value ofp, form then � n matrix of partial
derivatives Dz(p) = � @zi@pj� :
Then for any value of� which has the same sign as the determinant ofDz(p), we can obtain economic equilibrium
by always obeying the vector equation Dz(p)dpdt = ��z(p): (1)

Since the partial derivatives amount to local linearizations, Smale’s method can be thought of as a “continuous”
Newton’s method, where prices are being updated continuously. Since our problem involves discrete price updating,
our algorithmwill be based on the Euler discretization of the differential equation above. In our discretized application,
with all thed’s replaced by�s,� will have units of inverse time and its value will be chosen tocancel�t, so in practice� will be taken to be1 and the factors of�t omitted. (This is just to say that our price update will be independent
of how much time has elapsed since the last update, which is necessary within our framework since there is no time
derivative within the matrixDz(p) on which our calculations are based. See the example below.)Newton’s method is
particularly attractive in a Grid setting as many high-performance, distributed implementations have been developed.

Applying this to grid resource brokering, we partition our resource space into collections of commodities, where
each collection corresponds to an entryi in p andz. A very coarse example would be to have three commodities:
CPU’s, storage, and network bandwidth. A more realistic example would be to have a finer partitioning made, for
example, according to resource performance and network location. For each commodity collection, we must have a
function that determinesz from p. This function may be approximate and calculated, for example, from monitoring
resource availability, demand, and usage over time, and applying statistical models to the data [35, 39]. Alternatively,
it may be provided by resource producers and consumers as they specify what they are willing to charge or pay (respec-
tively) for resources. Using this function and the above algorithm, we calculate a newp such thatz is approximately
zero, and that determines the price for the resource collections. Users (and scheduling agents) may then use these
prices to allocate resources.

Smale’s approach is attractive from an algorithmic standpoint, because the price adjustments are based on local
behavior of the agents (buyers and sellers). This local quality is important for two reasons. First, it allows for simpler
calculations than does a more standard model of “Walrasian”equilibrium, which involves long-term optimization of
utility value for the agents (see [31]). Second, it relies only on local knowledge about supply and demand functions
rather than perfect knowledge on a global level of these functions. From a theoretical standpoint, it is at the same time
concise and general enough to guarantee convergence in a very general framework.

In sum, from an economic standpoint, our goal is to achieve convergence to market equilibrium. (If we were only
concerned with the more modest goal of clearing the market ateach available opportunity, then it would be appropriate
to use auctions to set price.) By structuring our g-Commerceeconomy so that the participants agree to buy and sell at
fair market value, we achieve a computational economy that is fair, robust,and stable.

3.1.2 An Example

Suppose that in our market there are three commodities, say (1) CPU, (2) live memory, and (3) disk, and that the current
market prices, in “Grid dollars” (G$), are G$3, G$4, and G$5 respectively. Suppose further that the current levels of
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excess demand are, again respectively, 1000, -2000, and 0, and that each price increase of G$1 in each commodity
has been measured, at prices near this level, to reduce the demand for this commodity by 500 and increase the supply
by 500, giving a decrease of 1000 in excess demand. Finally, suppose that each increase of G$1 in each commodity
results ina decrease of 50 in the demand of each of the other two commodities,resulting from budgetary constraints
of the users and also the fact that if, for instance, a user plans to use less CPU, then that user’s need for memory might
decrease as well. Note that this constraint reflects the above claim that the excess demand function of each commodity
is in fact a function of the entire price vector and not just the price associated to that commodity. We can calculate our
updated price as follows: Form the matrixDz(p) = 0@ �1000 �50 �50�50 �1000 �50�50 �50 �1000 1A
and solve the discretized equation coming from Equation 1 above, which is0@ �1000 �50 �50�50 �1000 �50�50 �50 �1000 1A0@ �p1�p2�p3 1A = 0@ 1000�20000 1A
to give us the approximate values �p1 = �:02;�p2 = 1:02;�p3 = �:55;
so our new pricing will bep1 =G$2.98,p2=G$5.02,p3 =G$4.45.

Note that our new prices are approximations of equilibrium prices based on linearizations of the various market
sensitivities, which we certainly cannot assume to be linear. Thus we say that our procedureconvergesto equilibrium
prices rather than finding them immediately and precisely.

3.1.3 Extending Further

While Smale’s result gives us a useful starting point for building a robust, stable computational economy, it is based on
the assumption that all quantities are continuous, and thatperfect data for the partial derivatives at any given moment.
What we are seeking is adiscreteprocess of price updates based onapproximationsfor the partial derivatives based on
previous data points. A further issue is that at different locations the most recent available price data may not match.
We wish to find a set of criteria which will guarantee the existence of a convergent process and which we will be able
to control in a distributed environment. In particular, we need to develop a convergent methodology that does not rely
on a centralized “omniscient” process. To be successful, our pricing strategy must converge (eventually) when it is
implemented by a set of distributed entities, each with an imperfect estimate of the global supply and demand state.

As part of this work, we will develop computational economicformulations that are provably stable in the pres-
ence of temporarily imperfect data. We believe that such formulations are possible based on an initial analysis of
Smale’s result although we plan to explore alternative strategies as well. For example, it is possible to model available
network performance not as a commodity, but as anassetthat affects the value of other commodities. For example,
a CPU may become more or less valuable based on some measure ofthe network performance that links it to the
Grid, but the network itself is not treated as a commodity. Generally, our approach to price adjustment will be quite
flexible both in terms ofhowcommodities are valued and alsowhat the commodities actually are, so we are free to
explore models which set network as a commodity as well as those which apply “value enhancement” to high-network
commodities. By the same token, “packages” in various combinations (for example, a cluster of CPU’s connected
by a high-performance network) could also be brought to market as commodities in themselves, distinct from but
related to all the other commodities in the market. A furtherdirection for exploration is to incorporate the ideas about
priority-based pricing in Chun and Culler [9] into the framework of market equilibrium.

In sum, we plan to study different economic formulations, both in terms of their dynamic properties and their
suitability for implementation in a Grid setting.
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3.2 Implementation: Building a Computational Exchange

To provide a system for setting prices dynamically and advertizing those prices to resource allocators and consumers,
we plan to build a computational exchange. ThisFirst Bank of Gwill:� Dynamically monitor resource supply and demand.� Set prices according to an economic model that ensures stability and can be evaluated efficiently.� Issue verifiable, time-stamped pricing information certificates.

Resource and application schedulers will thus be able to usepricing certificates to make dynamic scheduling
decisions. An application user or automatic scheduler willbe able to choose the cheapest set of resources that meet its
performance needs. We will also explore the possibility of interfacing the First Bank of G with local accounting and
allocation mechanisms as a way of linking resource supply and demand to actual user allocations.

Figure 1 depicts, in cartoon form, the structure of the system that we envision. Applications and resources from sep-

Branch
Off ice

Supply/Demand
 Data Repository

application

resource

Figure 1:First Bank of G Structure and Components

arate administrative domains (represented by the circles and squares in each corner of the the figure) are instrumented
so that aggregate demand and supply can be recorded. We will store time-stamped supply and demand measurements
in a distributed repository (cylinders in the figure) that can be accessed by a cooperating set of Branch Offices (shaded
circles). Branch Offices exchange supply and demand information, set prices, and publish price data via a well-defined
set of abstractions. We will implement a robust informationexchange protocol that will permit Branch Offices (and
other system components) to synchronize price, supply, anddemand data providing a consistent view to all Bank of G
clients.

3.2.1 Leveraging Previous Results

Our plan is to take advantage of other successful Grid tools and research results in building the First Bank of G. In
particular, we will use the following building blocks as a basis for our implementation:� The Network Weather Service (NWS) [35, 38] to serve as a repository for dynamic supply and demand infor-

mation.
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� The EveryWare gossip protocol [36, 37] to maintain loosely synchronized and replicated data.� The Internet Backplane Protocol (IBP) [28] to manage time-limited network buffer storage.� The Globus authentication protocol [18] to issue time-stamped, digitally signedprice certificates.

Each building block will be described below by the functionality that it implements.

3.2.2 Gauging Resource Supply and Demand

We will modify the Network Weather Service (NWS) [35, 38] to serve as a data repository for dynamic supply and
demand information. The NWS is a robust, distributed systemfor gathering dynamic resource and application perfor-
mance information and applying fast statistical forecasting models to the data. Both measurement data and statistical
forecasts are made available to automatic schedulers in near-real time. The NWS� operates a distributed set of performance sensors, from which it periodically collects performance measure-

ments,� applies a set of statistical forecasting techniques to individual performance histories, and� generates forecast reports for the resources being monitored, which it disseminates via a number of different
APIs.

The goal of the system is to apply forecasting methodologiesto “fresh” performance monitoring data gathered from
Grid resources to make forecasts of available performance in near-real time. The current implementation of the NWS is
fully distributed, robust, and compatible with a variety ofGrid infrastructures [38] including Globus [15], Legion [19],
NetSolve [7], Condor [33], and NINF [24] as well as MPICH [20], and native Unix sockets.

We will use the NWS data management subsystem as the basis forgathering, managing, and distributing instan-
taneous supply and demand readings (represented by the cylinders in Figure 1). To determine resource supply and
demand at any given time, we will distribute a set ofsupply sensorsamong the available Grid resources, and ademand
sensorlibrary that can be loaded with Grid applications. Supply sensors are analogous to NWS resource performance
sensors- they capture the quantity of resource that is available at any given moment either by probing the resource, or
by reading existing dynamic performance data (e.g. Unix load average). We will also develop a set of demand sensors
that capture an application’s resource needs in terms of theresources that are available. Almost all Grid middleware
systems such as Legion [19], Condor [33], NetSolve [7], Globus [15], etc. export a resource specification interface
to the user or application scheduler. Our library will be compatible, initially, with the Globus Resource Specification
Language (RSL) [10] as it is an emerging standard. By parsingthe RSL, the demand sensor will be able to deduce the
resource needs of the application, and to send those needs tothe First Bank of G. Both supply and demand information
will be time-stamped and stored in a distributed data repository using the existing NWS data management mecha-
nisms [38]. We will modify the current NWS APIs to allow supply and demand information to accessed efficiently.

3.2.3 Calculating and Distributing Price Information

To calculate and distribute pricing information, we will develop a system ofBranch Officesthat query the supply
and demand information base, calculate pricing information, and publish that information for Bank of G customers.
Branch Offices will be able to calculate pricing informationdynamically based on the economic models we find most
promising. They will query the supply and demand data repository to gauge current conditions, possibly synchronizing
with other Branch Offices, and they will circulate pricing information for publication (represented by the shaded circles
in Figure 1).

It is critical that this system be distributed and robust with respect to network and host failure in order for it to be
useful on a Computational Grid. At the same time, the pricinginformation must be consistent across Branch Offices
so that all customers “see” the same prices. We will leveragethe EveryWareGossip protocol[36] for synchronizing
replicated data structures in Grid settings (represented by the interconnected hexagon in Figure 1). EveryWare state-
exchange servers (calledGossips) allow application processes to register for state synchronization. The application
component must register a contact address, a unique messagetype, and a function that allows a Gossip to compare the
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“freshness” of two different messages having the same type.All application components wishing to use the Gossip
service must also export a state-update method for each message type they wish to synchronize. The Gossip servers tell
each application that has outdated data where to get the freshest copy. Based on the variance in network performance
between Gossips (available from the Network Weather Service) we can bound the synchronization time.

We will augment this research in two significant ways. First,we will improve the Gossip protocol using the Internet
Backplane Protocol (IBP) [28]. IBP is a software tool for managing and making use of privately owned storage as a
generic network resource. In the context of this research, IBP is a mechanism for allocating and managing time-limited
and failure-prone network storage buffers. IBP has severaldesign features that make it ideal for this purpose:� It uses capability-based naming. With IBP, a client allocates a storage buffer, and receivesa capability, or

name, in return. This name is then presented to the IBP serverfor each storage or management transaction. As
such, there may be no user-defined names in IBP. The elimination of user-defined names facilitates scalability,
since no global namespace needs to be maintained. Moreover,capabilities are not recycled, so when a buffer is
deleted, its capability becomes invalidated by default, again facilitating scalability.� Storage may be constrained to bevolatile or time-limited. An important issue when serving storage to Internet
applications is being able to reclaim the storage. IBP servers may be configured so that the storage allocated to
IBP clients isvolatile, meaning it can go away at any time, ortime-limited, meaning that it goes away after a
specified time period.� Failures are tolerated gracefully.Since failures are a fact of life in network applications, IBP has been designed
to help users tolerate failures gracefully. In particular,IBP has been designed to be robust to client failures,
network failures, and even processor failures at the storage servers.� Data can be placed in proximity to other resources.Since IBP allows clients to allocate network storage
buffers remotely, the clients can advantageously store or collect data near where the data is being either generated
or consumed [28, 13]. This in turn can improve performance over systems where the explicit management
of network storage is not performed. We call this form of networking, where network buffers are explicitly
managedlogistical networking.

By implementing the Gossip protocol over IBP, we allow our Branch Offices to gain all the advantages of IBP’s design
for use in networking applications: making use of storage with distributed ownership, employing time-limited storage
allocation, tolerating failures gracefully, and employing logistical networking for improved performance.

The second augmentation to the Gossip protocol will be to study the effect of bounding the time required for a set
of processes to synchronize replicants using our system. These time bounds may be required in order for our economic
pricing model to achieve stability. The effect of the time bounds on stability of the system and on overall resource
utilization will be something that we will attempt to quantify, either theoretically, experimentally, or both.

3.2.4 Issuing Price Certificates

Pricing information (generated by Branch Offices) will be available via published price certificates. Initially, we will
focus on publishing the prices via C-language and Java APIs,and via a graphical, web-based interface. The APIs will
be useful to automatic schedulers such as AppLeS [5, 32] and Autopilot [29], and the graphical interface will allow
users to “see” the computational market. Experience with the NWS leads us to believe that a graphical interface will
also serve as a useful debugging tool.

If application schedulers and application users agreed to use the cheapest resources whenever possible, resource
utilization will be maximized since resource price is a function of supply and demand. However, if resource prices
can be tied effectively to site accounting and allocation mechanisms, users and schedulers can make their allocation
decisions based on an actual resource cost. For example, a user with access to machines located at both NPACI and
NCSA resources has an allocation of local resource units assigned for each machine. If NPACI and NCSA agreed
to honor the resource price determined (at any given time) bythe First Bank of G for each of its machines, a user
could choose the machine(s) that reduced his or her combinedallocation by the least amount. Both NPACI and NCSA
would need to be able to convert a First Bank of G price into some number of resource allocation units so that the user
is effectively charged for his or her usage. That is, a user with SP2 time at NPACI could choose the Origin 2000 at
NCSA (because it was cheaper at the time) and have his or her SP2 allocation decremented by the current price.
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To make cross-domain accounting possible, price certificates must be reliably time-stamped and verifiable so that
local accounting systems can trust them. We plan to use standard clock-synchronization protocols such as NTP [23]
to provide a Grid-wide time stamp and the Globus authentication mechanism [18] to protect each certificate. There
are two potential protection strategies we will consider. Initially, we will publish price certificates in unprotectedIBP
buffers and we will implement a “redemption” interface through which an accounting system will be able to verify the
authenticity of a certificate. First, the accounting systemand a First Bank of G Branch Office will authenticate each
other (via the Globus authentication protocol) and then theaccounting system will be able to present a certificate so
that the Branch Office can check its validity. Validity checking can either be via encrypted MD5 [30] checksum or by
keeping protected shadow copies of each certificate under the Bank’s control. IBP’s time-limited buffer semantics can
automatically time out, and reclaim the space for certificates that have expired.

A more sophisticated strategy is to generate a set of Globus authentication credentials each price certificate so
that any holder of the certificate may check its validity using the authentication protocol. That is, any process may
authenticate a price certificate with the First Bank of G (which will serve as the certificate authority) to check its validity
via the Globus authentication mechanism itself. We will investigate the feasibility of using a user authentication
mechanism as a way of managing non-forgable and protected data structures as part of this project.

4 Testing Computational Economies

The First Bank of G will provide a vehicle for deploying different computational economies in a variety of Grid
settings. We plan to focus on experimental verification of our results in “live” Grid environments, although we will
explore simulation as an additional verification mechanism.

We will use the SInRG (Scalable Intracampus Research Grid) research infrastructure at the University of Ten-
nessee as the initial platform for g-Commerce research and verification. Recently funded by the National Science
Foundation2, the goal of SInRG is to deploy computational, network, and storage resources throughout the University
of Tennessee, Knoxville campus for use as dynamically allocatable resources. Initial SInRG users include computa-
tional ecologists, computational biologists, medical imaging researchers, researchers studying material science,and
researchers from electronic engineering. University of Tennessee Grid middleware (The NWS [38], IBP [27], Net-
Solve [7], EveryWare [36], and AppLeS [5, 32]) as well as other Grid infrastructures [15, 19, 33] will be deployed
across all SInRG resources to support both Grid system and applications research. We will use this unique combi-
nation of user and research communities to study the effectiveness of g-Commerce as a resource allocation strategy.
SInRG will provide our project both with a valuable source ofresource supply and demand data and a live testbed for
the First Bank of G. We will� deploy the First Bank of G in the SInRG environment,� instrument SInRG middleware and resources with demand and supply sensors (respectively),� modify NetSolve and AppLeS scheduling agents to use price certificates in making scheduling decisions for

application execution on SInRG, and� deploy this new g-Commerce enabled middleware throughout the campus Grid for access by SInRG users.

Thus, we will leverage SInRG as the experimental test apparatus for the project. At the same time, once operational,
the First Bank of G will provide an important service to the SInRG community.

The project will also take advantage of results generated bythe Grid Application Development Software3 (GrADS)
project, funded through the National Science Foundation’sNext Generation Software program. While the goal of
GrADS is to provide a comprehensive Grid software environment, and g-Commerce will certainly play an important
role in defining robust allocation and accounting strategies for GrADS, we plan to make use of the GrADS Mi-
croGrid [8] system to provide a simulation environment for our work. The MicroGrid is a simulation tool-kit that is
designed to enable repeatable simulation experiments using unmodified Grid applications and services. An application
run on the MicroGrid has all of its Grid service requests intercepted by the MicroGrid infrastructure. Artificial load

2Both Investigators for this grant are Co-Investigators forSInRG
3Dr. Wolski is a Co-investigator on the GrADS project.
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and performance response (based on either synthetic or performance trace data) can be induced and the application’s
behavior observed. We plan to make use of this powerful simulation environment to conduct repeatable experiments,
and to test our economic policies under a wide range of conceivable performance conditions.

Finally, we will make the software artifacts that result from this project available to the broader community via
the National Partnership for Advanced Computational Infrastructure (the PI is an NPACI partner). We will work
with operations personnel from NPACI and the National Computational Science Alliance (NCSA) to harden the First
Bank of G implementation, devise an appropriate economic policy, and integrate the First Bank of G with the extant
accounting systems. Feedback from the partnerships will serve to hone and solidify the g-Commerce concepts. At the
same time, g-Commerce will play an important role in helpingto achieve NPACI and NCSA usage goals.

5 Conclusion

The vision of ubiquitous and seamless computational power available from distributed, heterogeneous resources has
resulted in a new software architecture known as theComputational Grid[16]. Early research is fueling national-
scale infrastructure and deployment of nascent but ever-maturing Computational Grid technology. Proof-of-concept
applications and and suites of software demonstrate the promise of “the Grid,” but there remain several serious research
challenges that must be addressed before the vision becomesreal and tangible. One such challenge is the problem of
resource allocation.

Effective resource allocation strategies are problematicfor many reasons. The Grid is intended to draw power
from a resource collection that fluctuates dynamically. Resources are committed, either permanently or temporarily,
to a Grid-wide pool by individual resource owners or managing institutions. These “stake holders” must maintain
ultimate local control over the resources they manage, thusmaking a single, over-arching resource manager or resource
management policy infeasible. The Grid cannot dictate how resources should be managed locally. On the other hand,
there must be some structure placed on the allocation of resources in order to prevent Grid users from wantonly
contending with each other for resources as they become available, which would result in system oscillation and
instability.

The thesis of this proposal is that Grid resource allocationis best structured as amarket economy, where prices
are dynamically affixed to resources according to their supply and demand. We call term researchg-Commerce, since
we apply economic principles to Grid computing, as e-commerce applies economic principles to Internet computing.
Resource prices are determined by a distributedpricing entity that we termThe First Bank of G. This entity dynamically
monitors resource supply and demand, and sets prices based on current levels so that supply matches demand (prices
are fair)andthe overall allocation of resources is stable. This combination of fair price determination and system-wide
stability differentiates g-Commerce from auction-based approaches to the brokering of resources.

To restate: We propose to study, develop, implement and deploy economically based systems for allocating re-
sources on the Computational Grid. The economic policies will be efficient to evaluate in distributed environments
and will promote Grid-wide allocation stability. Our research plan to achieve these ambitious goals is as follows:
— Theory: We will study economic pricing models of market economies and apply them to the problem of Grid
resource allocation. We begin with a powerful result by Smale, and will derive results concerning market stability,
robustness in the presence of incomplete information, and tolerance to failure. We will then extend this research
to study alternative models based on subjective valuation of resources, and on strategies for resource “packaging.”
Again, our goal will be to apply these models to Grid systems and to prove results about their stability and efficiency
characteristics.
— Development: In the development phase, we start to buildThe First Bank of G. This Grid service is a distributed
pricing entity that collects information from resource suppliers and users in order to determine the price of resources.
We will build upon successful Grid tools for dynamic information collection and resource availability forecasting [35,
38, 25], and develop interfaces for suppliers and users to present their pricing parameters to the Bank. Once the
information is collected and prices are determined, they will be made available to suppliers and users in the form of
price certificates. These abstractions can be employed by automatic scheduling agents so that they may determine
optimal or near optimal resource selections for their respective tasks.
— Testing and Verification: We will test our theory and pricing policies in two ways. First is by simulation, based
on traces or on stochastic parameterization of resource supply and demand. We intend to employ Chien’s recent
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MicroGrid software [8] as a simulation engine. Second, we will test our principles on the University of Tennessee’s
Scalable Intracampus Research Grid (SInRG) [12]. SInRG is afederated collection of computing resources distributed
on the campus of the University of Tennessee. The intent of SInRG is to provide a campus infrastructure testbed and
computing platform that mirrors national Grid efforts. It,therefore, serves as a research infrastructure (complete with
a supportive user community) within which middleware for Grid computing may be developed and tested using actual,
real-world loads and resources. The g-Commerce effort willbe a research project which both benefits from SInRG
and, as our results emerge, ultimately contributes to it.
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