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Abstract

A contextual neural network permits its connections to function differently
in different behavioral contexts. This report presents an adaptation of the back-
propagation algorithm to training contextual neural networks. It also addresses
the special case of bilinear (sigma-pi) connections as well as the processing of
continuous temporal patterns (signals).

1 Introduction

MacLennan (1998) provides a theoretical framework for conteztual understanding for
autonomous robots based on biological models. Contextual understanding allows
expensive neural resources to be used for different purposes in different behavioral
contexts; thus the function of these resources is context-dependent.

This flexibility means, however, that learning and adaptation must also be context-
dependent. The basic idea is simple enough — hold the context constant while adjust-
ing the other parameters — but it’s convenient to have explicit learning equations.
MacLennan (1998) provides outer-product and convolutional learning rules for bi-
linear (“sigma-pi”) connections in one-layer networks for processing spatiotemporal
patterns. The present report extends these algorithms to contextual back-propagation
for multilayer networks processing spatial or spatiotemporal patterns; the algorithms
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are derived for general (differentiable) context dependencies and for the specific (com-
mon) case of bilinear dependencies.

I have tried to strike a balance in generality. On the one hand, this report goes
beyond the simple second-order dependences discussed in MacLennan (1998). On the
other, although the derivation is straight-forward and could be done in a very general
framework, that generality seems superfluous at this point, and so it is limited to
back-propagation.

2 Definitions

The context codes ¢ are drawn from some space, typically a vector space, but this
restriction is not necessary.

The effective weight W; of the connection to unit ¢ from unit j is determined by
the context ¢ and a vector of parameters Q;; associated with this connection. The
dependence is given by:

Wi < C(Qy. ). 1)

for some differentiable function C' on parameter vectors and contexts. In a simple
particular case considered below (section 3.2), C(Qy;, ¢) = Qjjc.
We will be dealing with an N-layer feed-forward network in which the [-th layer

has L; units (“neurons”). We use z! to represent the activity of the i-th unit of the

I-th layer, i = 1,...,L;. We often write the activities of a layer as a vector, x. The
output y of the net is the activity of its last layer, y def xV, and the input x to the
net determines the activity of its “zeroth layer,” x° Ly

The activity of a unit is the result of an activation function o applied to a linear
combination of the activities of the units in the preceding layer. The coefficients of
the linear combination are the effective weights. Thus the linear combination for unit

¢ of layer [ is given by
L1

st > what (2)
7=1
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That is, s' = W'x!~!. The activities are then given by
d o(sh,l=1,...,N,

which we may abbreviate x! = o(s'). The effective weights are given by Eq. 1.

We may then write the network as a function of the parameters and context,
y = N(Q, ¢)(x), and our goal is to choose the parameters Q to minimize an error
measure.

For training we have a set of T" triples (p?, ¢, t9), where p? is an input pattern, ¢?
is a context, and t? is a target pattern. The goal is to train the net so that pattern
p? maps to target t? in context ¢?, which we may abbreviate

pqlc—q>tq,q:1,...,T.



In effect, the context is additional input to the network, so we are attempting to map
(p?,¢?) — t9. Contextual back-propagation, however, is not simply conventional
back-propagation on the extended inputs (p?,¢?), since we must allow interactions
between the components of p? and 4.

Thus our goal is to find Q so that t7 is as nearly equal to N'(Q, ¢?)(p?) as possible.
Therefore we define a least-squares error function:

T T
E(Q) E Y It7— ¥ = > 167 = M(Q. ) (p")II*.
q=1 g=1

3 Contextual Back-Propagation

The basic equation of gradient descent is Q = —3nVE(Q). Therefore we begin by
computing the gradient of the error function, so far as we are able while remaining
independent of the specifics of the C' function:

VE = VIt -y
q

= Y VIt =y
q

= Zq: 2(tq _ yq)Td(tqu)yq)

= -9 ;(tq _ yq)T(jl_gI

d
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Hence, 1
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Q—n;(t y9) dQN(Q,C)(p )-

For online learning, omit the summation. Define the change resulting from the ¢-th
pattern:

dy?
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This is a matrix of derivatives,

a q
in] = (tq - yq)TaQy; 'ka
1)

where Q% is the k-th (scalar) component of Q/;.



3.1 General Form

Since 5
yq
£ — 4 — (49 _ 7
(£ —y9)" o (k7 —y9)" D5 3%;6

it will be convenient to name the quantity:

oL (87— y)

Thus,
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The partials with respect to the parameters are computed:
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Hence we may write,
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Therefore, the parameter update rule for arbitrary weights is:

9C(Qyy: )
0Q};

~

inj = 6590; !

(5)

which we may abbreviate A! = [§'(x'")1]x[0C(Q!, ¢)/0Q'], where X represents

component-wise multiplication [(uXv), & w,v,].

It remains to compute the delta values; we begin with the output layer [ = N.

Since the output units are independent, 8y J0sY =0 for j # i, we have

dy* dy;
N (47 — y) T2 — (49 — ) =L
67, (t y ) 8Siv (tl l)dS,fv

The derivative is simply,

dy! dzN B do(sM)
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Thus the delta values for the output layer are:
07 = (t] = yh)o'(s7), (6)
which we may abbreviate 6" = (t7 — y?)xo’'(s").
The computation for the hidden layers (0 < 1 < N) is very similar, but makes
use of the delta values for the subsequent layers.
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The latter partials are computed as follows:
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Hence the delta values for the hidden layers are computed by:

0; = 0"(s1) 22 0t Wit (7)

mi
which we may abbreviate 8' = o’(s!) X [(W1)T§'*!]. Combining all of the preceding
(Egs. 6, 7, 5), we get the following equations for contextual back-propagation
with arbitrary weights (showing here the updates for a single pattern ¢):

IR ®)
Liy
o = o(s) X oWt (for0 <1< N), ©)
m=1
o0 (QL., )
Al = gl T Y (10)
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3.2 Bilinear Connections

Next we consider the special case in which the context dependent weights are simply
bilinear interactions between unit activities and components of a context vector,

def
(QZJ7 ) ﬁ z]c

In this case the partial derivative is simply,

0C(Qj.¢)
1Cpr = C
an]k aQijk ;ka k k-

Hence, the parameter update rule for bilinear weights is,

quk_51l1 ) (11)

which we may abbreviate ?A! = §' A x!~! A ¢, where “A” represents outer product:
(WA VAW)ijk def UiV W

4 Spatiotemporal Patterns

Next, the preceding results will be extended to processing spatiotemporal patterns,
in particular, continuously varying vector signals. Thus, the outputs and targets will
be vector signals, y(t), t(t), as will the unit activities, x'(¢), and associated quantities
such as sk(t). The parameters Q will not be time-varying, except insofar as they are
modified by learning (i.e., they vary on the slow time-scale of learning as opposed to
the fast time-scale of the signals).

The simplest way to handle time-varying inputs is to make them discrete: y(t),
y(ta), ..., y(t,) etc.; then the time samples simply increase the dimension of all the
vectors, and the preceding methods may be used. Instead, in this section we will take
a signal-processing approach in which continuously-varying signals are processed in
real time.

To begin, the error measure must integrate the difference between the output and
target signals over time:

QUL [ o) -yt = eyl
The gradient is then easy to compute:
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Therefore, we can derive the change in a parameter quk
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The delta values are therefore time-varying:

51(1) < [t4(6) —y (0] 0y (1) /05 ().
Thus,
Al]k <5l 8Sl/an]k>
The connection I/Vzl] to unit ¢ from unit j will be modeled as a linear system, which

can be characterized by its impulse response Hf],

Wha(t) = Hj,(t) ® x;(t),

where “®” represents (temporal) convolution. The impulse response is dependent, on

the parameters and context, H}; = C(Qj;, ¢). Thus, multiplication in the static case

(Eq. 2) is replaced by convolution in the dynamic case:
) €S HL() @ ().
J

The derivative of st(t) with respect to the parameters is then given by:
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Therefore the spatiotemporal parameter update rule for arbitrary linear sys-

tems is given by
OH!.
il = (ot 2 g 4i- > (12)
ke < 8Qijk




Notice that the computation involves a temporal convolution (i.e., processing by linear
system with impulse response 0H};(t)/0Q%;).-

To see how this might be accomphshed we consider a special case analogous to the
bilinear weights considered in Sec. 3.2. Here we take the impulse response Hfj (t) to
be a linear superposition of component functions h, (1), which could be the impulse
responses of individual branches of a dendritic tree Let %k( ) be the output of one
of these component filters:

def —_
Uﬁjk( ) h’z]k( )®JI§ l(t)

The coefficients of the components of this superposition depend on the parameters
and context vector. Thus,
Z C; gkhzyk

where
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Thus, the change in the input to the activation function is given by

20 Zk = th’i’jk(t) ® ffé‘_l(t) = Cmvzlgk(t)
ijkm

The parameter update rule for a superposition of filters is then

Az]km - <617 z]k>cm (13)

Notice that this requires %k( ), the output from the component filters, to be saved,
so that an inner product can be formed with §(¢).

The delta values are computed as before (Egs. 8, 9), except that all the quantities
are time-varying. Nevertheless, it may be helpful to write out the derivation for
hidden layer deltas (keeping in mind that the W' are linear operators):

05, (t)
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mZI 'l

= W,ﬁ;glaxi( )/851'( )
= W'[s().

Thus we get the following delta values for spatiotemporal signals:

0 () = o'ls; W)t -yl (2], (14)
oi(t) = f&l“ YWHLG[sL ()] (for 0 <1 < N). (15)
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