
Contextual Bak-PropagationTehnial Report UT-CS-00-443Brue J. MaLennan�Computer Siene DepartmentUniversity of Tennessee, Knoxvillemalennan�s.utk.eduSeptember 12, 2000AbstratA ontextual neural network permits its onnetions to funtion di�erentlyin di�erent behavioral ontexts. This report presents an adaptation of the bak-propagation algorithm to training ontextual neural networks. It also addressesthe speial ase of bilinear (sigma-pi) onnetions as well as the proessing ofontinuous temporal patterns (signals).1 IntrodutionMaLennan (1998) provides a theoretial framework for ontextual understanding forautonomous robots based on biologial models. Contextual understanding allowsexpensive neural resoures to be used for di�erent purposes in di�erent behavioralontexts; thus the funtion of these resoures is ontext-dependent.This exibility means, however, that learning and adaptation must also be ontext-dependent. The basi idea is simple enough | hold the ontext onstant while adjust-ing the other parameters | but it's onvenient to have expliit learning equations.MaLennan (1998) provides outer-produt and onvolutional learning rules for bi-linear (\sigma-pi") onnetions in one-layer networks for proessing spatiotemporalpatterns. The present report extends these algorithms to ontextual bak-propagationfor multilayer networks proessing spatial or spatiotemporal patterns; the algorithms�This report may be used for any non-pro�t purpose provided that the soure is redited.
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are derived for general (di�erentiable) ontext dependenies and for the spei� (om-mon) ase of bilinear dependenies.I have tried to strike a balane in generality. On the one hand, this report goesbeyond the simple seond-order dependenes disussed in MaLennan (1998). On theother, although the derivation is straight-forward and ould be done in a very generalframework, that generality seems superuous at this point, and so it is limited tobak-propagation.2 De�nitionsThe ontext odes  are drawn from some spae, typially a vetor spae, but thisrestrition is not neessary.The e�etive weight Wij of the onnetion to unit i from unit j is determined bythe ontext  and a vetor of parameters Qij assoiated with this onnetion. Thedependene is given by: Wij def= C(Qij; ); (1)for some di�erentiable funtion C on parameter vetors and ontexts. In a simplepartiular ase onsidered below (setion 3.2), C(Qij; ) = QTij.We will be dealing with an N -layer feed-forward network in whih the l-th layerhas Ll units (\neurons"). We use xli to represent the ativity of the i-th unit of thel-th layer, i = 1; : : : ; Ll. We often write the ativities of a layer as a vetor, xl. Theoutput y of the net is the ativity of its last layer, y def= xN , and the input x to thenet determines the ativity of its \zeroth layer," x0 def= x.The ativity of a unit is the result of an ativation funtion � applied to a linearombination of the ativities of the units in the preeding layer. The oeÆients ofthe linear ombination are the e�etive weights. Thus the linear ombination for uniti of layer l is given by sli def= Ll�1Xj=1 W lijxl�1j : (2)That is, sl = W lxl�1. The ativities are then given byxli def= �(sli); l = 1; : : : ; N;whih we may abbreviate xl = �(sl). The e�etive weights are given by Eq. 1.We may then write the network as a funtion of the parameters and ontext,y = N (Q; )(x), and our goal is to hoose the parameters Q to minimize an errormeasure.For training we have a set of T triples (pq; q; tq), where pq is an input pattern, qis a ontext, and tq is a target pattern. The goal is to train the net so that patternpq maps to target tq in ontext q, whih we may abbreviatepq q7! tq; q = 1; : : : ; T:2



In e�et, the ontext is additional input to the network, so we are attempting to map(pq; q) 7! tq. Contextual bak-propagation, however, is not simply onventionalbak-propagation on the extended inputs (pq; q), sine we must allow interationsbetween the omponents of pq and q.Thus our goal is to �nd Q so that tq is as nearly equal to N (Q; q)(pq) as possible.Therefore we de�ne a least-squares error funtion:E(Q) def= TXq=1 ktq � yqk2 = TXq=1 ktq �N (Q; q)(pq)k2:3 Contextual Bak-PropagationThe basi equation of gradient desent is _Q = �12�rE(Q). Therefore we begin byomputing the gradient of the error funtion, so far as we are able while remainingindependent of the spei�s of the C funtion:rE = rXq ktq � yqk2= Xq rktq � yqk2= Xq 2(tq � yq)Td(tq � yq)dQ= �2Xq (tq � yq)TdyqdQ= �2Xq (tq � yq)T ddQN (Q; q)(pq):Hene, _Q = �Xq (tq � yq)T ddQN (Q; q)(pq):For online learning, omit the summation. De�ne the hange resulting from the q-thpattern: q� def= (tq � yq)TdyqdQ :This is a matrix of derivatives,q�lijk = (tq � yq)T �yq�Qlijk ;where Qlijk is the k-th (salar) omponent of Qlij.
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3.1 General FormSine (tq � yq)T �yq�Qlijk = (tq � yq)T�yq�sli �sli�Qlijk ;it will be onvenient to name the quantity:Æli def= (tq � yq)T�yq�sli : (3)Thus, q�lijk = Æli �sli�Qlijk : (4)The partials with respet to the parameters are omputed:�sli�Qlijk = ��Qlijk Xj0 W lij0xl�1j0= ��Qlijk Xj0 C(Qlij0; )xl�1j0= ��QlijkC(Qlij; )xl�1j= �C(Qlij; )�Qlijk xl�1j :Hene we may write, �sli�Qlij = �C(Qlij; )�Qlij xl�1j :Therefore, the parameter update rule for arbitrary weights is:q�lij = Ælixl�1j �C(Qlij; )�Qlij ; (5)whih we may abbreviate q�l = [Æl(xl�1)T℄�̂[�C(Ql; )=�Ql℄, where �̂ representsomponent-wise multipliation [(u�̂v)n def= unvn℄.It remains to ompute the delta values; we begin with the output layer l = N .Sine the output units are independent, �yqj=�sNi = 0 for j 6= i, we haveÆNi = (tq � yq)T �yq�sNi = (tqi � yqi ) dyqidsNiThe derivative is simply, dyqidsNi = dxNidsNi = d�(sNi )dsNi = �0(sNi ):4



Thus the delta values for the output layer are:ÆNi = (tqi � yqi )�0(sNi ); (6)whih we may abbreviate ÆN = (tq � yq)�̂�0(sN).The omputation for the hidden layers (0 � 1 < N) is very similar, but makesuse of the delta values for the subsequent layers.Æli = (tq � yq)T�yq�sli= (tq � yq)T Ll+1Xm=1 �yq�sl+1m �sl+1m�sli= Xm (tq � yq)T �yq�sl+1m �sl+1m�sli= Xm Æl+1m �sl+1m�sli :The latter partials are omputed as follows:�sl+1m�sli = ��sli Xi0 W l+1mi0 xli0= Xi0 W l+1mi0 �xli0�sli= W l+1mi dxlidsli= W l+1mi �0(sli):Hene the delta values for the hidden layers are omputed by:Æli = �0(sli)Xm Æl+1m W l+1mi ; (7)whih we may abbreviate Æl = �0(sl)�̂[(W l+1)TÆl+1℄. Combining all of the preeding(Eqs. 6, 7, 5), we get the following equations for ontextual bak-propagationwith arbitrary weights (showing here the updates for a single pattern q):ÆNi = �0(sNi )(tqi � yqi ); (8)Æli = �0(sli) Ll+1Xm=1 Æl+1m W l+1mi (for 0 � l < N); (9)q�lij = Ælixl�1j �C(Qlij; )�Qlij : (10)
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3.2 Bilinear ConnetionsNext we onsider the speial ase in whih the ontext dependent weights are simplybilinear interations between unit ativities and omponents of a ontext vetor,C(Qij; ) def= QTij:In this ase the partial derivative is simply,�C(Qlij; )�Qlijk = ��Qlijk Xk0 Qlijk0k0 = k:Hene, the parameter update rule for bilinear weights is,q�lijk = Ælixl�1j k; (11)whih we may abbreviate q�l = Æl ^ xl�1 ^ , where \^" represents outer produt:(u ^ v ^w)ijk def= uivjwk.4 Spatiotemporal PatternsNext, the preeding results will be extended to proessing spatiotemporal patterns,in partiular, ontinuously varying vetor signals. Thus, the outputs and targets willbe vetor signals, y(t), t(t), as will the unit ativities, xl(t), and assoiated quantitiessuh as sli(t). The parameters Q will not be time-varying, exept insofar as they aremodi�ed by learning (i.e., they vary on the slow time-sale of learning as opposed tothe fast time-sale of the signals).The simplest way to handle time-varying inputs is to make them disrete: y(t1),y(t2), . . . , y(tn) et.; then the time samples simply inrease the dimension of all thevetors, and the preeding methods may be used. Instead, in this setion we will takea signal-proessing approah in whih ontinuously-varying signals are proessed inreal time.To begin, the error measure must integrate the di�erene between the output andtarget signals over time:E(Q) def= Xq Z 0�1 ktq(t)� yq(t)k2dt =Xq ktq � yqk2:The gradient is then easy to ompute:rE = Xq Z 0�1rktq(t)� yq(t)k2dt= �2Xq Z 0�1[tq(t)� yq(t)℄T[�yq(t)=�Q℄dt= �2Xq h(tq � yq)T; �yq=�Qi:
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Therefore, we an derive the hange in a parameter q�lijk:q�lijk def= *(tq � yq)T; �yq�Qlijk+= *(tq � yq)T; �yq�sli �sli�Qlijk+= *(tq � yq)T�yq�sli ; �sli�Qlijk+ :The delta values are therefore time-varying:Æli(t) def= [tq(t)� yq(t)℄T�yq(t)=�sli(t):Thus, q�lijk = hÆli; �sli=�Qlijki:The onnetion W lij to unit i from unit j will be modeled as a linear system, whihan be haraterized by its impulse response H lij,W lijxj(t) = H lij(t)
 xj(t);where \
" represents (temporal) onvolution. The impulse response is dependent onthe parameters and ontext, H lij = C(Qlij; ). Thus, multipliation in the stati ase(Eq. 2) is replaed by onvolution in the dynami ase:sli(t) def= Xj H lij(t)
 xl�1j (t):The derivative of sli(t) with respet to the parameters is then given by:�sli(t)�Qlijk = ��QlijkH lij(t)
 xl�1j (t)= ��Qlijk Z +1�1 H lij(u)xl�1j (t� u)du= Z +1�1 �H lij(u)�Qlijk xl�1j (t� u)du= �H lij(t)�Qlijk 
 xl�1j (t):Therefore the spatiotemporal parameter update rule for arbitrary linear sys-tems is given by q�lijk = *Æli; �H lij�Qlijk 
 xl�1j + : (12)
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Notie that the omputation involves a temporal onvolution (i.e., proessing by linearsystem with impulse response �H lij(t)=�Qlijk).To see how this might be aomplished, we onsider a speial ase analogous to thebilinear weights onsidered in Se. 3.2. Here we take the impulse response H lij(t) tobe a linear superposition of omponent funtions hlijk(t), whih ould be the impulseresponses of individual branhes of a dendriti tree. Let vlijk(t) be the output of oneof these omponent �lters: vlijk(t) def= hlijk(t)
 xl�1j (t):The oeÆients of the omponents of this superposition depend on the parametersand ontext vetor. Thus, H lij(t) =Xk C lijkhlijk(t);where C lijk def= TQlijk =Xm mQlijkm:Therefore, �H lij(t)�Qlijkm = ��Qlijkm Xk;m mQlijkmhlijk(t) = mhlijk(t):Thus, the hange in the input to the ativation funtion is given by�sli�Qlijkm = mhlijk(t)
 xl�1j (t) = mvlijk(t):The parameter update rule for a superposition of �lters is thenq�lijkm = hÆli; vlijkim: (13)Notie that this requires vlijk(t), the output from the omponent �lters, to be saved,so that an inner produt an be formed with Æli(t).The delta values are omputed as before (Eqs. 8, 9), exept that all the quantitiesare time-varying. Nevertheless, it may be helpful to write out the derivation forhidden layer deltas (keeping in mind that the W l+1mi are linear operators):�sl+1m (t)�sli(t) = ��sli(t)Xi0 W l+1mi0 xli0(t)= W l+1mi �xli(t)=�sli(t)= W l+1mi �0[sli(t)℄:Thus we get the following delta values for spatiotemporal signals:ÆNi (t) = �0[sNi (t)℄[tqi (t)� yqi (t)℄; (14)Æli(t) = Ll+1Xm=1 Æl+1m (t)W l+1mi �0[sli(t)℄ (for 0 � l < N): (15)
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