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Abstract 
 

Metacomputing consists of the idea of connecting geographically distributed high performance computing 
resources in a seamless manner.  This allows a single user to access a disparate set of resources from a 
single machine, with little or no knowledge of the underlying connections and protocols.  The primary 
benefits of using a metacomputing system are attaining access to resources that would otherwise be 
unavailable, and allowing the system to hide the complexity of resource management from the user.  Two 
current metacomputing systems that are widely recognized as leaders in the metacomputing community are 
Globus and Legion.  This report evaluates Globus and Legion, covering a variety of criteria, including 
installation, maintenance, usability, functionality, and performance. 
 

1 Introduction 

 
The term metacomputer typically denotes a networked virtual computer, consisting of possibly 
geographically distributed resources connected by high-speed networks.  Metacomputing is motivated by a 
need to access computing resources not often located within a single computing system.  These resources 
are often not co-located for a variety of reasons ranging from the cost of supercomputers to the infrequency 
of needing certain configurations [1]. 
 
Metacomputing systems allow large-scale applications to make use of collections of high performance 
computing resources in a seamless manner [2].  These systems hide the complexity of managing such a 
system from the user, allowing the user to be more concerned with the science, and less concerned with 
implementation details.  That is to say, the user can be working from a desktop machine while the 
underlying system handles the details of accessing remote resources and coordinating the computation.  
Such a system provides many potential benefits to the user.  One very important such benefit is that the 
user need not learn the sometimes cryptic login and job submission protocols for each high-performance 
system to which he has access.   
 
Another benefit is that with a metacomputing system a single problem may execute on multiple 
supercomputers simultaneously.   This allows problems that are too large to execute on traditional high-
performance systems to execute in a larger metasystem.  A further benefit of this is that certain applications 
can take advantage of different architectures for different tasks in the problem.  An example might be a 
simulation problem that uses a particular architecture to perform the simulation, while another architecture 
is used to visualize the results.  This division of tasks on different architectures may even take place 
without the user�s knowledge.  This helps the user to make better use of the resources available.  A well 
designed metacomputing system will allow the user to submit a job once, and the software will select the 
appropriate resources on which to execute the different tasks.  This resource selection should be based on 
many factors, including current load of the resource and the appropriateness of the resource for the type of 
task.  
 
There are currently many metacomputing systems in various stages of development, and offering various 
capabilities.  Some of the more mature, in terms of stage of development, include Globus and Legion.  
Globus is a metacomputing toolkit being developed at Argonne National Laboratory and ISI USC.  Legion 
is being developed at the University of Virginia.  
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This report evaluates emerging metacomputing technology in general, but with particular emphasis on 
Globus and Legion.  Many criteria are used in this evaluation, including ease of installation and use, 
scalability, security, and others. 
 
The rest of this report is organized as follows.  The next section presents an overview of the two systems of 
particular interest.  This is followed by an evaluation of issues relating to users.  Section 4 covers usage 
factors with section 5 evaluating issues relating to site autonomy.  Section six discusses factors relating to 
the future growth of metacomputing systems with the final section presenting conclusions about 
metacomputing technology in general and the three systems of specific interest in particular. 
 

2 Overview  
 
This section gives an overview of the two systems of particular interest in this report.  These systems are 
Globus and Legion. 
 

2.1 Globus 
 
Globus is a joint project between Argonne National Laboratory (ANL) and the University of Southern 
California�s Information Sciences Institute (ISI).  �The Globus project is developing the fundamental 
technology that is needed to build computational grids, execution environments that enable an application 
to integrate geographically-distributed instruments, displays, and computational and information resources.  
Such computation may link tens or hundreds of these resources� [3].  A primary goal of Globus is to enable 
new methods of computation through a set of core services that change the manner in which resources are 
accessed [4].  The Globus project focuses on the development of low-level mechanisms used to implement 
high-level services, and techniques allowing these services to observe and guide the operation of said 
mechanisms [1].  
 
Globus grew out of the I-WAY project, which was conceived in early 1995.  The I-WAY project focused 
on developing a large-scale testbed for deploying high-performance and geographically distributed 
applications [5].  The I-WAY project was successful is demonstrating that large-scale geographically 
distributed computation was feasible, but at the same time showed that there was a lot of work needed 
before such systems could be used in a production code environment.  The Globus project was started to 
address the issues of resource location, automatic configuration, scalable trust management, and high-
performance distributed file systems. 
 
The Globus toolkit comprises a set of six modules defining interfaces used by higher-level services to 
invoke mechanisms.  These mechanisms are implemented in different environments by using appropriate 
low-level operations [1]. 
 
The resource location and allocation module provides mechanisms for expressing application resource 
requirements, identifying resources that meet these requirements, and for scheduling resources once they 
have been located.   Since resource load and availability can vary greatly in a large system, applications 
cannot be expected to know the exact location of required resources.  Resource allocation involves the 
scheduling of resources and performing any required initialization. 
 
The communication module provides basic communication mechanisms.  These mechanisms permit 
efficient implementation of a wide range of communication methods, including message passing, remote 
procedure call, distributed shared memory, stream-based, and multicast.  These mechanisms are also aware 
of network quality of service parameters.  This module is based on the Nexus communication library [6], 
which supports a single communication operation, asynchronous remote service request. 
 
The unified resource information service module provides a mechanism for obtaining real-time information 
about the system�s structure and status.  This mechanism allows components to both post and receive 
information.  This information includes configuration details such as memory, CPU speed, number of 
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nodes, and network information.  Instantaneous performance information and application-specific 
information are also included.  Globus uses what they call a Metacomputing Directory Service (MDS) as a 
single, unified access mechanism for all of this information.  The Globus MDS is built on the data 
representation and API defined by the Lightweight Directory Access Protocol (LDAP), defining a 
framework for representing information of interest to metacomputing applications. 
 
The authentication interface module provides basic authentication mechanisms.  These mechanisms are 
used to authenticate both users and resources, and are used as building blocks for other security related 
services such as authorization and data protection.  This module is built on the Generic Security System 
(GSS) API from the IETF, which defines a standard procedure and API for obtaining credentials, mutual 
authentication, and message encryption and decryption.  GSS is an independent system that can be layered 
on top of different security systems such as Kerberos and SSL. 
 
The process creation module initiates computation on a resource once the resource has been located and 
allocated.  This includes starting the executable and managing termination and process shutdown. 
 
The data access module provides high-speed remote access to persistent storage.  Data resources such as 
databases may be accessed via distributed database technology or CORBA.  This module addresses the 
problem of achieving high performance when accessing parallel file systems and network-enabled I/O 
devices.  Primitives are defined that provide remote access to parallel file systems.  These primitives make 
up the Remote I/O (RIO) interface [7], which is based on the Abstract I/O Device (ADIO) interface [8]. 
 
It is important to point out that the above mentioned modules are not intended for direct use by an 
application.  These modules are designed to be used by a middleware layer, which provides services to the 
application layer.  For example, a middleware layer would use the resource location and allocation module 
to find and allocate resources for an application.  This hides the details of location and allocation from both 
the applications programmer and the user.  Such higher-level services are developed to serve as 
application-level services. 
 
An example of such a middleware is the Globus implementation of MPI.  The Globus implementation of 
MPI provides a well-known standard interface to the applications programmer.  The MPI implementation 
makes use of the modules describe above, hiding the details from the programmer and user. 
 
The Globus metacomputing toolkit is currently being used as part of the Globus Ubiquitous Super-

Computing Testbed (GUSTO).  GUSTO is intended to be a computer science rather than an application 
testbed, focused on deploying and evaluating basic mechanisms, rather than testing application 
performance.  Globus is also part of the NASA Information Power Grid testbed, connecting a number of 
NASA high-performance resources across the country [9]. 
 

2.2 Legion 
 
�Legion is an object-based, meta-system software project at the University of Virginia.  From the project�s 
beginning in late 1993, the Legion Research Group�s goal has been a highly useable, efficient, and scalable 
system founded on solid principles� Legion is a work in progress: our team will not finish Legion but will 
create an �open� system that allows and actively encourages third -party development of applications, run-
time library implementations, and core system components� [10].  
 
Objects are the Legion building blocks for constructing a wide-area operating system.  Legion is structured 
as a system of distributed objects where all the entities are represented by independent, active objects that 
communicate using a remote method invocation service.  Object interfaces are described using an Interface 

Description Language (IDL), and are compiled and linked to implementations in a given language [11]. 
 
Legion runs on top of the operating system of each host in the system.  This means that Legion does not 
need to manage low-level resources on each host.  Instead, Legion�s resource base consists of processors 
and storage devices.  Both processor and storage resources are represented as objects in Legion.  This 
allows for a uniform interface to hosts and storage, regardless of the underlying architecture.  That is, while 
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the underlying implementation may be different, the interface remains the same.  This also allows local 
administrators to enforce local policy.  If an administrator wishes to restrict job creation to local users, the 
host objects at the site can enforce this policy. 
 
Tasks are managed in Legion by an arbitrary set of objects known as class managers.  A class manager is 
an otherwise normal Legion object, which is responsible for the management of a set of other Legion 
objects, known as instances of the class manager.  Class managers export an interface that supports 
standard task management operations, including creation, destruction, and queries.  Class managers also act 
as policy makers and active monitors for their instances.   
 
Class managers are themselves managed by higher-order class managers.  This creates a hierarchy known 
as the Legion domain.  There can be any number of these domains in a Legion system, making a Legion 
system a forest of class manager hierarchies. 
 
Legion objects are persistent, existing beyond the lifetime of their creating program.  When a Legion object 
is active, it can be deactivated.  This causes its state to be saved to persistent storage and its containing 
process deallocated.  If the object later must become active, its class manager automatically reactivates the 
object, making object deactivation and reactivation transparent to clients of the object. 
 
Legion objects are identified by a three-level naming mechanism.  The lowest level naming consists of an 
Object Address (OA) containing a list of network addresses.  The middle layer naming is called a Legion 

Object Identifier (LOID), which is a unique identifier and ports, assigned to an object at the time of its 
creation.  LOIDs are binary, variable length identifiers, which are inconvenient for user-level naming.  The 
highest level naming mechanism is called context space.  Context space is a hierarchical directory service, 
which uses Unix-like path strings assigned to objects.  Legion context space does not correspond to the 
physical location of the object.  Even though a Legion system may span multiple administrative domains, 
an object is identified with the same context space name regardless of its physical location. 
 
Since files in a Legion system are simply another type of object, the file system presented to a user has no 
concept of location.  Users are presented with the familiar concept of paths, directories, and files, with these 
files being globally accessible, regardless of physical location. 
 
Legion supports a variation of remote method invocation designed to address the needs of wide-area 
computing, including reduced interprocess communication and latency tolerance.  Legion combines a basic, 
low-level message-passing service, with a remote method invocation model known as macro-dataflow 
(MDF). This allows multiple concurrent method invocations, overlap of remote methods and 
communication, and the redirection of results to the objects that need them. 
 
Security is an important concern for any metacomputing system, for both resource providers and users.  
The basic security provided to users is user-selectable data privacy within the message-passing layer on a 
per object per invocation basis.  Messages can be fully encrypted, digested and signed, or sent in the clear 
for higher performance.  Users can dynamically adjust authentication requests on a per object basis as well 
change the key length in the RSA public key system used. 
 
Since all resources are represented as objects, access control and resource protection is specified at the 
object level.  Every object has an internal method, called MayI that is invoked automatically when an 
external method request arrives.  The MayI method can range from very simple to very complex, 
depending on the degree of security needed.  An object representing a resource would have a MayI method 
that controls access to said resource, which is dynamically configurable. 
 
Legion is currently deployed as part of the VANet Centurion testbed located at the University of Virginia.  
Centurion consists of 128 533 MHz Dec Alpha machines and 128 dual 400 MHz Pentium2 machines.  
Legion is also part of the NASA Information Power Grid testbed [9], as well as a resource at the NPACI 
SDSC site. 
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3 Human Factors 
 
An important part in any decision regarding whether or not to deploy any large system is the cost in terms 
of human factors.  This includes the amount of time that must be spent by an administrator in terms of 
installation and maintenance.  If a system requires too much effort on behalf of the administrator for 
maintenance, most organizations are going to tend to go in a different direction.  Similarly, if a system 
takes a significant amount of time for the users to learn it, or the users must put in significantly more effort 
with said system than with other, traditional systems, many places are going to opt to not pay the high price 
of deployment.  Related to these issues, places considering a significant investment in a new system want to 
feel confident that they can receive reasonable support from the developers of the proposed system.  This 
support includes assistance in matters of use and configuration, but also timely response to bug reports. 
 
This section evaluates these human factors as best as could be done with the resources available during the 
evaluation period. 
 

3.1 Installation and maintenance 
 
An important human factor is the cost of installation and maintenance.  This includes the time spent by a 
system administrator for the initial installation as well as time required to keep the system up. 
 

3.1.1 Globus 
 
The Globus software as downloaded from the Globus web site is not the whole system.   This is something 
you should understand from the outset.  The Globus System is intended to be worldwide.   It is built on the 
same concept as DNS, which means your resources will be maintained on some nodes of a tree.  You have 
a root, which is Globus.  Then leaf by leaf and node by node you add organizations, sub organizations, and 
resources.  For example, if you were part of ToBuildSomething Incorporated, you would look like the 
following on the Globus tree: C=US, O=Globus, O=ToBuildSomething Inc.  This could be further 
subdivided into smaller units.  If you were a university you might have another classification for 
department, and maybe even a research group within a department.  Might be something like C=US, 
O=Globus, O=Unknown University, O=Computer Science, OU=Research Group.  This can get 
complicated quickly.  It helped our system administrator to think of this along the lines of DNS.   
 
The Globus tree is referred to as the MDS tree, and is based on the Lightweight Directory Access Protocol 
(LDAP).  LDAP is not Globus.  LDAP is how the tree is built and maintained through directory service.   
SSL is also not Globus, but you have to install it as well to make Globus work.  SSL is used as an 
authentication protocol with its optional encryption mechanism.  Since Globus is something that is built 
with the idea of a global community, you need to understand that you have to go off-site for a number of 
your resources to work correctly.  Your Globus install is going to involve many people, some of whom you 
may have little interaction with. They will, however, be the ones to hand you the methods involved in 
keeping the Globus system secure.  While it is possible to make a system completely on your own, this is 
not within the design intentions of a global computer; thus it takes a lot more work.  This is covered in 
more detail below. 
 

Installation 
 
The following is a concise description of the installation procedure for Globus.  This should be thought of 
as an addendum to the Globus Installation Guide [27].  This reflects lessons learned from a system 
administrator with no previous experience with metacomputing systems.  The instructions from the Globus 
organization are very well written as long as you plan to make a basic install.  This section will cover the 
basic install.  While the installation of a basic system pretty much follows along step by step with Globus 
install notes, the Globus system is anything but basic.  It is important to note that being a global system it is 
a complicated overall picture. 
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Initial Pre-Installation Steps 

 
The first thing you must do is download a copy of Globus, LDAP, SSL, and perhaps MPICH, if you plan 
on using MPI.   Next, create a Globus user account on your system.  You can call the user anything you 
want, but for this document, we will call the Globus user account �globus�.  This will be the account that 
owns the Globus system executables. Select where you want your globus-src and your globus-build 
directories.  It has been observed that it is helpful if all machines involved in your Globus system have 
access to all of these binaries and directories during the install. Our system administrator opted to make 
them NFS mounted.  SSL and LDAP should also be accessible on each machine involved.  
 
Next you must send a request to the Globus organization to request your Organization�s node in the Globus 
tree.  This tree is also referred to as the Metacomputing Directory Service, or MDS.  This is covered in 
detail in the install manual [27]. 
 
All of the directories above can be the same on all of your machines; each machine is required to have 
unique Globus-Deploy directories.  This will be covered in more detail later.  In our case, we choose 
/usr/local/globus-src,  /usr/local/globus-build, and /usr/local/globus. 
 
Compilation and Installation of Binaries 

 
Compile SSL, LDAP, and Globus.   This is fairly straightforward, and listed in the install guide.  You can 
install SSL and LDAP as root, but you need to compile Globus as the user  �globus�.  In fact just about 
everything else you do from here on out is as the user �globus�.  Therefore all directories involved must be 
writeable by that user, including the SSL and LDAP directories. 
 
Globus-Deploy 
 
Here�s where it starts to get little more difficult.  This will be at least the second time you have to deal with 
the outside world.  You must run a script called �globus-setup� in the sbin directory of �globus -build�.  
This will query you for information about the MDS server; its LDAP port number, your distinguished 
name, the directory manager (filled in automatically), and the password that you set up when you requested 
your bit of the node.  After you enter this information, you run the �confirm� com mand and Globus will set 
up several files that you will need for subsequent steps.  If any mistakes were made in entering the above 
information, this command will not run successfully.  Note that you cannot successfully deploy until you 
run this command successfully.  You cannot run the setup command until you get your information back 
from requesting your node.  Basically, do your best to plan ahead.  Assuming you have gotten through the 
�confirm� command, you can deploy on any machine for which you have b uilt executables.  This puts 
executables in the globus-deploy directories that you specified in the pre-installation step. 
 
Getting a running system 

 
Globus authenticates users via a gatekeeper process.  The gatekeeper is a Globus executable that runs as a 
Unix service.  You will have to be root to change the files /etc/inetd.conf and /etc/services.  Most Unix 
system administrators are very familiar with these files.  This creates jobs that run as root, even though the 
Globus system will run as the user �globus�.  Globus includes an instruction list on what has to be put in 
these files and how to restart the necessary services.  You also have to send e-mail to a CA requesting your 
gatekeeper�s security certificate.  The CA (Certificate Authority) will send you back e-mail with a 
certificate for that node�s gatekeeper.  We found that we had to e -mail a certificate request for every node 
on which we deployed, as we aren�t using backend batch queuing software.  Once you get your gatekeeper 
certificate, you put it in the correct directory and you have a running system.  It will even restart on after a 
reboot since you have made changes to /etc/inetd.conf and /etc/services. 
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How does a user get access to all of this? 

 
For any user to be able to use Globus, he must first obtain a Globus certificate.  The steps taken to do this 
are covered in Section 3.2.1 below.   The system administrator must maintain a grid-mapfile on each 
machine in the Globus system.  This file contains mappings between Globus user certificates and local user 
names.  Only users in a machine�s grid -mapfile can access the machine via Globus. Once you have 
completed the above steps, you have a working Globus system that users who are in the grid-mapfiles can 
access. 
 

Installation Problems and warnings 
 
The Globus install tends to proceed cleanly and few problems were encountered.  However, there is a lot of 
outside intervention required.  For this reason, deploying Globus on a large number of machines is time 
consuming.  Also if you attempt anything but a basic install, expect headaches.  What follows is a 
discussion of the problems encountered and lessons learned by a novice Globus administrator.  
 
NFS 

 
In our case compiling NFS proved to be problematic.  The compile of the Globus system is a long one, and 
it is fairly intensive.   Our experience was with NFS on a 10Base-2 backbone.  Once we compiled on the 
local machine all of those errors disappeared.  This problem will probably not present itself for most 
institutions, but for those with slower networks that might be something they could look at. 
 
Outside intervention 
 
Since the Globus development team manages the security mechanism for you, you must obtain security 
certificate through the Globus organization, or some other third party certificate authority.  These 
certificates are encryption keys used for mutual authentication between users and resources.  These 
certificates are recognized system wide, allowing a user to obtain a single certificate, which can be used to 
access Globus systems worldwide.  This means that with your one certificate and key, you can use any 
Globus system on which you have been placed in the grid mapfile.  However, for this to work, all resources 
that are part of the Globus system must have a gatekeeper with a certificate of its own.  This means that 
EVERY machine on which you want to run a gatekeeper requires a separate certificate.  This requires 
tremendous effort for a large system consisting of individual machines as in a cluster.  For example if you 
have a 128 node cluster you have to send 128 e-mails for certificates, wait for 128 certificates to return, and 
then successfully put the 128 certificates on the 128 machines. While this provides for better security, it 
does require a lot of effort on the part of the administrator. If alternately you need to support an MPP with 
some type of single job submission point, you only need a single certificate for this system no matter how 
many nodes it consists of. 
 
Passwords 

 
Your site�s administrative password is stored in a p lain text file in the Globus-Build directory.  We 
discovered this by chance.  While it is only readable by root, the fact that it is plain-text and non-encrypted 
is a source of concern. 
 
Non-basic installation 

 
Initially, we attempted to install a freestanding Globus system.  That is, a system isolated from the rest of 
the Globus community.  We wanted to maintain our own local MDS and act as our own Certificate 
Authority.  This was found to be very difficult; in fact, we were unable to accomplish this.  This is outside 
the planning aspect of the Globus project, as it is not in the spirit of the project.  It is important to 
understand that your local system must access two outside entities to function correctly; the MDS and the 
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CA.  The MDS is the directory service that organizes the many sites and units that form a tree.  There are 
beta instructions on the Globus web-site to set up your own MDS tree.  This led us to believe that it would 
be possible to set up an isolated system.  That was definitely a wrong assumption.  We successfully got a 
MDS system up and running, although it was no easy task.  This involves downloading Netscape�s 
Directory server, installing it on a machine in your network, and gaining at least a rudimentary 
understanding of the LDAP protocol.  You must enter the correct LDAP control strings and it will control 
your system.  LDAP string are: Distinguished name C=US, O=Globus, O=Your University, OU=Your 
Department, etc.  It is extremely important that if you do decide to undertake building your own MDS tree, 
you have C=US, O=Globus in that order before you enter the rest of the string.  The Globus software is 
built only to understand distinguished names in that order.  However, even with your own MDS, you still 
don�t have a Certificate Autho rity.  This means you cannot create your own certificates.  In order to have a 
truly isolated Globus system, you must be able to act as a CA.  The Globus group does not encourage this 
and we received very little assistance in attempting to become a CA.  In fact, we were discouraged from 
doing so.  It has been reported that there are some sites acting as Certificate Authorities, so it is believed to 
be possible.  However, unless you are prepared to spend a lot of time setting up the MDS and CA for your 
site, you will need to be part of the entire Globus community.  This means relying on an outside 
organization for issuing security certificates and allowing your resources to be listed in a publicly viewable 
MDS tree. 
 
Notes 

 
After the initial draft of this report became available, the Globus Project members at ISI became more 
willing to discuss and support independent MDS and CA usage. We are currently actively testing methods 
of building such independent authorities with the Globus team. We also are aware now that the SCSD 
NPACI site is acting as an independent CA for their Globus users. This type of support is important as 
some sites may simply be unwilling to use a system that requires their resources to be publicly known and 
controlled. 
 

3.1.2 Legion 

 
Compilation of the Legion system under Linux has been found to be straightforward if your OS installation 
is standard. We have not testing compiling under Windows or other versions of Unix as yet. The only 
problems we encountered with compiling was the need to have the Korn Shell (ksh) available (in /bin), and 
having the Unix Tar utility not unpack all the source files correctly. This later problem can be solved by 
using the GNU version of Tar, which handles very long path names correctly. Earlier attempts at compiling 
failed due to non-standard OS features added to our systems and we were forced to download pre-compiled 
binaries.  These pre-compiled binaries could cause linking problems when compiling applications as is 
discussed in Section 3.3.2. 
 

Installation 
 
The following is a concise description of the installation procedure for Legion.  This should be thought of 
as an addendum to the Legion Installation Guide [12].  This reflects lessons learned from a system 
administrator with no previous experience with the Legion metacomputing system. 
 
Initial Pre-Installation Steps 

Create a legion user Unix account.  The home area for legion should be viewable by all machines involved 
in the Legion system.  It is highly recommended that you run all system Legion processes as this user.  In 
this example we will assume that the user login created was �legion�.  There should be either be a ssh 
mechanism or an .rhosts file in legion�s home area that contains machines 1 -4 so that legion can rsh from 
machine to machine with no password. Theoretically, all of the binaries would reside in your home area 
and you can make OPR directories on machines in /tmp or scratch areas.  However, it seems to make more 
sense for system administrators and be less confusing to make a separate �legion� user.  
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Obtain a copy of Legion.  You can get source files, as well as the binaries from the Legion web site after 
submitting a license agreement. This guide assumes you downloaded legion binaries.  Unpack the binaries 
into an exported partition on machine0. 
 
Choose LEGION and LEGION_OPR environment variables.  The LEGION environment variable is where 
the binaries from the previous step are located.  This should be a NFS�d (or other variant) file system.  It is 
convenient for users to use /usr/local/Legion.  This directory�s contents are architecture dependent. Note: 
multiple architectures can share this directory, they will each have folders off of $LEGION/bin.  Note: 
there is no apparent reason not to locate the legion binaries in the legion home area.  The LEGION_OPR 
directory is the working machine directory.  I.e. this is where all of the system files, machine state, etc is 
located once you start a machine.  It should NOT be the same directory as LEGION.  In our case we choose 
/usr/local/OPR.  Each machine maintains its own DISTINCT OPR directory that should not be NFS 
mounted if you want good performance. The legion account set-up above should own both directories, 
/usr/local/Legion and /usr/local/OPR.  Keep in mind the only information the general user will need is the 
setup* files that will be located in the OPR directory on the BootstrapHost.  This will be covered in more 
detail below. 
 
Installation 
Choose a �bootstrap� host.  This host is the ONLY machine you will run the following installation steps on.  
The bootstrap host is responsible for getting the appropriate OPR files to other machines.  You will get 
various questions on what parts you want to start up.  For our installation we answered a Y for yes to all. 
 
1. setenv LEGION /usr/local/Legion 
2. setenv LEGION_OPR /usr/local/OPR 
3. source $LEGION/bin/legion_env.csh 
4. legion_setup_state 
5. legion_startup 
6. legion_initialize 
7. source $LEGION_OPR/legion_context_env.csh 
8. legion_init_security (you will have to give a password for legion admin) 
9. legion_login /users/admin (give password as specified in step 8) 
 
You have a single working Legion machine on your bootstrap host with one user.  A little more about 
Legion: The user readable form of the Legion context space is viewed as a tree hierarchy.  At this point you 
can do a legion_ls and get the root of the legion machine.  As above, users are located in /users, so when 
they log on they log on as /user/USERNAME.  There will be a hosts directory etc.  You probably want to 
make a few users at this point.  This is done as follows: 
 
10. legion_create_user 
This will create a user instance in the /home area of the Legion machine.  You will also have to give each 
user an initial password.  You can add users at any point to a Legion system. 
 
11. legion_logout 
 
This completes the steps necessary to create a Legion system.  This system, however, only consists of a 
single machine.  The following details the steps necessary to add machines to the Legion system.  The first 
thing you need to be able to do is login as the Legion admin user. 
 
Logging on� 
You first should log onto the machine on which Legion was originally installed.  Login as you normally 
would, as yourself. Then copy ~Legion/setup.{sh/csh} to your home area.  This copies various files to your 
home area.  For csh users, simply  �source setup.csh�.  That�s it, all of your environment variables will be 
set, and you�ll have an OPR directory of your own.  This is where all of your personal files will be located.  
Now do a legion_login /users/USERNAME and you are on the legion system, where USERNAME is 
created in step 10 above.  You can run legion programs from this point on.   When you are done, run the 
command legion_logout. 
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Adding Machines 

You must then login to the bootstrap host (the machine where the initial Legion installation was performed) 
or any other once Legion has more than a single host, as the Unix legion user.  Source the setup.csh file you 
copied from above.  To add machines do the following: 
 
1. legion_login /users/admin 
2. legion_startvault machineX.yourdomain.com 
3. legion_starthost machineX.yourdomain.com /vaults/vault-machineX.yourdomain.com 
4. Repeat steps 2 and 3 for all machines you want to run Legion on besides your BootstrapHost.  In our 

case machineX was machine1, machine2, machine3, and machine4.  
 
These commands assume that you have some sort of rsh access to all machines and write permissions on 
the /usr/local/OPR directory on all of those machines. 
 
This completes the steps necessary for adding machines to your Legion system.  You have a working 
Legion system with multiple machines. 
 

Installation problems 
 
The following represents some of the problems (and solutions) encountered by a system administrator with 
no previous experience installing metacomputing systems.  No claims are made that other administrators 
will encounter these problems.  
 
More than just BootstrapHost at Install 

 
Another source of confusion in earlier documentation was the description of how to add machines to a 
Legion system. The documentation stated that any machine to be added should have a �Legion system 
already installed�.  This can be taken as meaning that each machine should have a complete installation as 
described above.  This is incorrect as it leads to a broken installation.  The main problem is that there is no 
indication from the system that this is incorrect.  Users will have problems working with the system and 
there will be no information given that will lead to a correct diagnosis of the problem.  Correct translation 
of each machine must have a �Legion system already installed� is each add itional machine must have 
working Legion binaries available. The Legion 1.6.4 documentation corrected this statement, and the 
Legion team has promised that an install validation suite will be developed to assist in testing if a given 
installation is correct. 
 
User�s environment  

 
Another source of confusion was the belief that the environment is set up the same for general use as it is 
for installation.  From above, the following steps should be taken to set up the environment. 
  
1. setenv LEGION /usr/local/Legion 
2. setenv LEGION_OPR /usr/local/OPR 
3. source $LEGION/bin/legion_env.csh 
4. source $LEGION_OPR/legion_context� 
 
These steps should not be performed by the general Legion user; only the Legion administrator should set 
the environment this way.  If all users perform step two, every user will share the same OPR directory.  
This is not the correct setup.  All setup files needed by the user are placed in LEGION_OPR on the 
BootstrapHost.  See the login description above for an example.  This sets up a separate OPR directory for 
each user, rather than every user attempting to share a single OPR directory. 
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Maintenance problems 
 
If your Legion bootstrap host should be shutdown in an unsafe manner (such as power loss), you must 
reinstall the full installation. But please note that user application compilation is performed under the Unix 
(or NT) file system and so all a user has to do is re-register his/her applications within Legions context 
space. As user data itself can be linked into Legion space from Unix, loss of any data is usually not a 
problem. This must be done from the bootstraphost: the machine on which Legion was originally installed. 
Individual host failures are automatically recovered from by the system as part of the Legion Host Object 
Recovery algorithm.  
 
Bootstraphost failure is not automatically recovered from, and thus this host should be a more reliable and 
controllable host. A good method for avoiding a complete reinstall under these conditions was taking a 
snapshot (zipped tar file) of the bootstraphost�s OPR directory once it had been started, and then just 
copying these files back after any kind of failure. 
 

3.2 Ease of use 
 
Another important human factor is the ease of use issue.  If a software system is difficult for users to learn 
and make use of, the chances are an organization is going to resist using it.  Ease of use includes learning 
the system in the first place as well as getting the system to perform once it has been learned.  This includes 
completeness and accuracy of user documentation.  Ease of use also involves understandable error 
messages and being able to debug programs.  This section focuses on issues pertaining to using these 
systems to run MPI programs.  
 

3.2.1 Globus 
 
In order to use Globus, a user must first obtain a Globus certificate.  A Globus certificate acts as a 
�passport�.  You go to the proper authorities to establish your identity, and they issue you a certificate and 
private key.  This means you do not need to reestablish your identity at each location accessed.  As a 
consequence, you need only enter your password once per Globus session [13]. 
 
To obtain a Globus certificate you must first log onto a machine with Globus installed.  Once logged on set 
the environment variable GLOBUS_INSTALL_PATH to the Globus build directory.  Your Globus 
administrator can tell you where this is.  An example is /usr/local/globus-build.  Once this variable is set, 
execute the grid-cert-request tool.  Your administrator can tell you where this is.  An example is: 
 
$GLOBUS_INSTALL_PATH/tools/x86-pc-linux-gnu/bin/grid-cert-request 
 
Running this command will print instructions for getting your Globus certificate.  The next step is to mail 
the request to the Globus organization.  In a Unix environment this can be done by entering 
 
%cat ~/.globus/usercert_request.per | mail ca@globus.org 
 
You will then receive your Globus certificate via email.  Save this email to the file �.globus� in your home 
directory and forward this certificate to your Globus administrator and you will be added to your local 
Globus system. 
 
Finally, change the permissions in your .globus directory. 
 
%chmod 400 ~/.globus/userkey.pem 
%chmod 444 ~/.globus/usercert.pem 
 
You are now ready to use Globus. 
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Using Globus 
 
After obtaining a Globus certificate, you can then log onto a machine that is part of your local Globus 
system (the system on which you obtained your certificate).  Next make sure that your environment is set 
up properly.  This can be done by first setting the environment variable GLOBUS_INSTALL_PATH as 
discussed above.  Once this variable is set, you can set up your environment using setup files provided.  For 
a csh shell you can enter the following: 
 
%source $GLOBUS_INSTALL_PATH/etc/globus-user-setup.csh 
 
Once this is done you are ready to use Globus.  Experience dictates that the first command you should run 
on any new Globus session is �globus-setup-test�.  This will ask for your password and will test the system.  
If any part of the system is not working, this command will let you know.  Failure to run this command 
may lead to great aggravation when you have trouble with other Globus commands and cannot determine 
why.  Once you have confirmed that the system is up and running you need to initialize a proxy.  Running 
the command �grid -proxy-init� does this.  This generates a proxy, which is valid for 12 hours by default.  
While the proxy is valid you will not need to enter your password on any of the grid machines.  You can 
check the status of your proxy by entering �grid-proxy-info �all�.  This command will tell you if you have 
a proxy and how much time is left before it expires.  You can also destroy your proxy before it expires by 
entering �grid-proxy-destroy�.  
 
From this point, there are several ways to execute Globus jobs.  Jobs can be run by explicitly identifying 
the resource on which to run the job, letting the Globus scheduler decide as under MPIRUN or  submitting 
jobs specified using the Resource Specification Language (RSL). 
 
Running MPI jobs using Globus 

 
Globus uses its own MPICH for MPI jobs, referred to as MPICH-G, although it does also support the use of 
a systems native vendor MPI implementation.  This is the MPICH implementation of MPI using the Globus 
device.  In order to run MPI jobs using Globus you need simply to recompile the application using the 
MPICH-G compilers, include files, and libraries.  This requires using mpicc and mpif77 as your C and 
Fortran compilers respectively.  These can be found in the bin directory of the MPICH-G installation.  The 
scripts mpicc and mpif77 automatically use the proper include files and MPI libraries.  Once your 
application has been recompiled, you are ready to run the job using Globus.  Make sure your path is set to 
use the mpirun command located in the bin directory of the MPICH-G installation. 
 
The first thing you need to be able to run your job is a file that identifies resources.  The simplest way to do 
this is have a file named �machine� in the same directory as your executable.  This file has the form:  
  

manager/resource-name [number of processes] 
 
Number of processes is only needed when running on multiple hosts.  An example file may look like this: 
 

torc1/jobmanager-fork 1 
torc2/jobmanager-fork 1 

 
At this point you can use mpirun to execute your program.  While there are many details hidden from the 
user, conceptually this works the same was as any other MPI programs you run.  It is also easy to run jobs 
on machines that do not share a file system or machines that use a batch queuing system.  See the Globus 
User�s Guide for mo re information [13]. 
 
The Globus user documentation seems to be both straightforward and accurate.  No problems were 
encountered using the documentation as a guide for compiling and running MPI programs under Globus.  
Most of the rest of the Globus documentation appears to be as helpful as that pertaining to MPI programs.  
The most difficult aspect of the Globus documentation appears to be dealing with the Resource 
Specification Language (RSL).  However, it appears that most users can avoid using the RSL directly due 
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to most of the Globus commands hiding the details of the RSL from the user.  The RSL was not directly 
used in the work performed for this evaluation since the Globus mpirun command generates a RSL script 
used by the scheduler.  At a later stage of testing, however, the GRAM was found to add a host that had 
once appeared in the Globus configuration, but had been removed by this point in the testing. The only way 
to remove this host from the scheduler was to edit the RSL and change this phantom host to a real host. 
Also, a standalone user�s manual and system administrator�s manual are not yet available.  
 
Perhaps the most difficult aspect of working with MPICH-G under Globus is in terms of debugging.  It 
seems that short of inserting flush statements, Globus does not print to standard out until after the program 
has terminated.  Moreover, it seems this output does not show up unless the program terminates gracefully.  
This makes it difficult to isolate where a job dies if it terminates abnormally.  Additionally, if a job hangs 
and must be terminated from the command line, there is no output to aid in determining in what part of the 
code the job hangs.  This can make debugging a large application much more problematic.   

 

3.2.2 Legion 
 
To be able to use Legion the administrator must first create a Legion (not Unix) user account for each new 
user by calling the legion_create_user scripts, which are very much like the more familiar add user scripts 
under Unix. 
 
Using Legion 

 
To use the Legion system you must first login to the Legion system using the legion_login script. The path 
to this script is normally stored in the OPR directory of the bootstraphost under setup.sh/csh etc. 
Once you have logged on, any sub-shells you call from the current shell are also logged on as the logon 
information is stored in the shell�s environment. This is different from Globus, which stores information in 
the user�s �.globus� directory.  
 
The user must also be cautious about either locating files in the correct filesystem so that running 
executables within Legion can see these files or importing them at run-time, as  normal application I/O 
calls use Unix services. Executables running under Legion change their working directory (CWD) to a 
temporary cached OPR directory, and so the application had to be changed to use either absolute paths or 
explicitly change its paths to correct for this unless files where imported. Two methods are available for 
importing files. In the first the user could export his/her Unix filesystem for a temporary period to Legion 
context space by using the legion_export_dir script or more permanently by using legion_import_dir. In the 
second method, the legion_run command arguments can specify files to move to and from the CWD during 
the execution. This second method is the simplest and most recommended. 
 
Each executable run within Legion must be of the form of a Legion object with its own unique LOID. 
Legion provides multiple methods to register sequential (legacy) and parallel executables as well as Mentat 
programs. 
 
The last difficulty for a user switching between context space and the host operating environment is the 
handling of standard or terminal I/O.  Output from a running Legion application is not automatically sent to 
the users host operating systems terminal, but rather to a terminal (TTY) within the Legion context space 
(/home/user/tty). For users to catch any output from this object, they have to monitor it using the legion_tty 
script. The administration user can potentially monitor any user�s Leg ion terminal if they have not 
explicitly changed permission on the TTY object. 
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Running MPI jobs under Legion 

 
Creating and running an application under the Legion version of MPI takes four stages: 

(1) Compile and link with the Legion MPI libraries 
(2) Register the executable with Legion 
(3) Import/Export files into context space if needed, as well as monitor the user�s Legion TTY if the 

user wants any console output! 
(4) Start the job (specifying any files to import/export during execution if needed). 

 
Compiling an application for MPI under Legion is straightforward, unless your using incompatible libraries 
as can happen with the Legion Precompiled binaries. Linking with the Legion libraries is performed by the 
legion_link script, which acts in much the same manner as MPICH's mpicc script by automatically setting 
up all required library paths etc. 
 
Before a MPI job can be run, a context object version of it must exist in a Legion vault/context space. The 
legion_mpi_register script performs this function, and takes three arguments. The first argument is the class 
name, or the user-friendly name within context space that is used to reference the LOID of the persistent 
state of this object, from which running instances can be created. The second argument is the full path to 
the executables so that it can be copied into context space. The last argument is the architecture type, such 
as linux or NT for example. This is used to select the correct object for each host on which the job runs. 
 
Once registered a MPI object can be invoked by calling the legion_mpi_run script that has an argument list 
very similar to that of most generic MPIRUN utilities. Commonly used arguments include number of 
processors, host file of target hosts, debug and fault tolerance levels and any files to import/export. One 
argument that was broken was the set working directory option, which we initially worked around until the 
Legion team fixed it during this evaluation. 
 
Once a user understands how the Legion context space works, using Legion to run MPI jobs is no more 
difficult or verbose than under Globus or even a PBS/LSF scheduler at a central computing facility. The 
problems associated with multiple filesystems are much the same as users already encounter when having 
to write batch job control scripts that move data files into and out of scratch and other temporary storage 
systems on currently used MPPs. Most of these aspects can be ignored by using the IN/OUT arguments to 
the Legion run scripts. 
 
Additional Features of Legion 

 
Under Legion 1.6.4 a new form of host object was introduced known as the Process Control Daemon 
(PCD) [38]. This daemon would run as root (started by inet) and would allow Legion jobs to be run under 
different Unix user ids much like how jobs under the GRAM in Globus run under the users Unix id. This 
was introduced to allow for better tracking and logging of user usage of resources at computer facilities 
such as those at SDSC NPACI. For the user this would be transparent and they would submit their MPI job 
as before. 
 

3.3 Assistance and support 
 
A final human factor that may have tremendous impact on an organization�s ultimate decision whether or 
not to deploy a large software system is assistance and support.  Assistance and support pertains to 
response to questions and attention to bug reports.  An organization wants to feel confident that their 
questions will be answered promptly and that bug reports they generate will receive reasonable attention.  
This is also often times the most difficult criteria to evaluate.  This is because it is often impossible to know 
how much time people at a remote location are putting towards your concerns.  It is often impossible to 
judge the difficulty of an issue.  An issue that seems fairly simple may in fact turn out to be very difficult.  
In situations like this it may seem you are not receiving the attention you feel you deserve.  Similarly, an 
issue that seems extremely complex may be an issue the developers have dealt with before.  In this 
situation, what seems like a quick answer may in fact have sat around for a while before someone decided 
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to let you know what the problem was.  With this in mind, the rest of this section only reflects experiences 
from the work performed for this evaluation.  There is no way to say that others would have similar 
experiences. 
 

3.3.1 Globus 
 
One of the first things we wanted to do in terms of Globus was to set up a local Globus system in isolation 
from the rest of the Globus community.  It was believed that many organizations considering the use of a 
metacomputing system would prefer, if not demand, that they be able to maintain it locally.  This was not 
possible with the typical Globus installation at the time of this evaluation. This is because, to be able to use 
Globus, all your resources must be registered with the central MDS tree located at Argonne.  This is true 
even if you are not supplying resources outside of your own organization or using resources from outside 
your organization.  It was felt that this would be unacceptable to many organizations. 
 
When the Globus development team was first contacted about the possibility of setting up a locally 
maintained MDS, they were very attentive and very helpful.  However, there was a bit of 
miscommunication.  They thought we wanted a local MDS that pointed to the MDS tree located at 
Argonne.  This would mean our resources would still need to be registered with the Argonne MDS, and 
publicly visible.  Additionally, Certificates would still need to be generated at Argonne.  Once we 
explained that we wished to have a Globus system isolated from the rest of the Globus community, the 
cooperation lessened considerably.  The Globus developers insisted that that was not the way Globus was 
supposed to be used and preferred not to help us to get our system set up in such a way.  They were still 
very helpful in many other ways, and were very helpful in getting our system up and running, but we were 
never able to get the system running in isolation. As indicated earlier, we are now co-operating in 
developing methods to do this independent installation, which includes producing documentation for 
general release.  
 
Once a typical Globus system was up and running, we tried to get a large MPI program running under 
Globus.  At first it did not run, though it worked fine under MPICH-ch_p4.  This strongly suggested it was 
a bug in the communication system, namely MPICH-G, the Globus implementation for MPICH.  Since 
there was strong evidence that the bug was with Globus, email was sent to the Globus development team.  
After a week with no response, a follow-up email was sent regarding the problem.  This finally resulted in a 
response where the Globus people were willing to assist us.  However, the MPICH-G bug was eventually 
discovered on our own and we supplied a work around.  Two additional Globus bugs were discovered in 
the process of our testing. 
 
Bug reports were sent in for all bugs discovered several weeks prior to this writing.  At the time of this 
writing, no response has been received. 
 

3.3.2 Legion 
 
When downloading Legion you have the option of downloading the source code and compiling the system 
or downloading pre-compiled binaries.  It had been suggested that it is difficult to get the Legion source 
code to compile, although we found this to be to the contrary since.  For this reason we initially 
downloaded and installed Legion using the pre-compiled binaries.   
 
Shortly after installing Legion, problems were encountered getting simple programs to compile.  After 
considerable effort, email was sent to the Legion developers requesting assistance.  Response time was 
excellent and it was explained that the primary problem seemed to be an incompatibility between the 
compiler used to build the Legion binaries and the compiler being used to link to the Legion libraries.  This 
initiated a series of emails where we attempted to discover what compiler had been used to build the 
Legion libraries.  It was decided by both parties that we were not going to be able to get programs to 
compile with the installation in use.  It was requested that the Legion developers re-build the binaries using 
a compiler to which we had access.  The Legion team was more than happy to oblige and within twelve 
hours of the request we were supplied with a newly built Legion system. 
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Subsequent efforts to get assistance from the Legion development team met with mixed results. Simple 
Legion commands were failing and email requesting assistance went unanswered.  However, our situation 
was explained, we received enthusiastic support from the Legion team.  This even extended to a temporary 
account to our site being granted to the Legion developers.  They vigorously investigated our Legion setup 
and discovered several major mistakes in our installation.  After several days of working with the Legion 
developers we were able to get Legion properly installed on our system.  It is believed that without their 
assistance we would still not have a properly installed system. 
 
 

3.4 Summary 
 
The cost of installation and maintenance tends to increase with the size and complexity of the software 
system.  Globus and Legion are both considerably large and complex systems.  This size and complexity 
are reflected in their relative costs of installation and maintenance.  While Globus showed to be very 
difficult (undoable even) to install in an isolated environment, once it was accepted that a typical 
installation was necessary, the installation was fairly straightforward.  The only maintenance concerns that 
arose involved adding new users to the system and maintaining grid mapfiles.   The Legion software, on the 
other hand, was trivially simple to install since it was downloaded as tarred binaries.  This ease of software 
installation was offset by the system installation and maintenance costs.  The documentation for system 
installation was somewhat vague, although this has been rectified in Legion 1.6.4.  However, by following 
the instructions in this report few problems should be encountered.  These system installation instructions 
were written with the knowledge gained from our various mistakes.  Maintenance costs include the need to 
maintain a compiler compatible with that used to build the pre-compiled binaries and the need the reinstall 
of the OPR directory  during a non-graceful shutdown of the bootstrap host.   
 
Ease of use really depends on what you want to do. This report focuses on running MPI jobs in a 
metacomputing environment, so ease of use pertains mostly to this end.  Globus is fairly simple to use.  
Users need only to obtain a Globus certificate a single time, and then are ready to go.  In terms of MPI 
programs, a basic drop- in approach is sufficient.  No alteration to the actual code is necessary.  Legion is 
only slightly more difficult to use.  Other than the need to use �legion� commands, such as legion_ls, it is 
not that difficult to run simple MPI programs. Porting ordinary programs to use Legion features or the 
Mentat directives for parallelism takes much more effort due to the object-oriented design of the system. If 
a simple execution of a job is required, the executable only needs to be wrapped up and placed in context 
space with the legion_register_program / legion_mpi_register calls, with no code modifications necessary. 
 
If the user needs only to access remote data via Unix IO calls, Legion applications have the advantage in 
that files can be imported and exported at run-time using arguments to the Legion run scripts. Globus 
applications would need to be modified to make explicit GASS requests instead. 
 

4 Site Autonomy 
 

4.1 Security 
 
Security is perhaps the most important aspect of a metacomputing system, for both resource providers and 
users.  Resource providers must be confident that their systems will not be compromised by rogue users.  
While this may include having control over who has access to their computational resources, it most 
certainly includes protecting the integrity of their systems.  Resource providers will most likely reject a 
system that increases the possibility of a site coming under attack. 
 
Users are also concerned with the issue of security.  Some users may insist on guarantees that data can be 
transferred in a secure manner.  Users must also feel that their data is secure from other users, both on their 
local system and on remote systems.  Just as resources must be safe from rogue users, data must be 
protected from rogue hosts. 
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4.1.1 Globus  
 
The primary security goal of the Globus project is to provide security at least as good as that at 
participating sites.  Additionally, the Globus developers feel that they must �provide a precise definition of 
what it means for the system in question to be secure� [22].  
 
The Globus Security Infrastructure (GSI) focuses just on authentication and is steered by two problems not 
commonly addressed by standard authentication technologies.  These are local heterogeneity and a need to 
support N-way security contexts.  That is, the GSI cannot change domain specific security protocols and 
must enable the establishment of a security relationship between any two processes in a computation [22].   
 
Local heterogeneity is handled by mapping a user�s Globus identity into local user identities at each site.  
This requires users to have accounts on all resources they utilize, which complicates system administration.  
These local user identities can then be used for local security protocols, such as Kerberos.  N-way security 
contexts are supported by users needing to authenticate once per computation.  This authentication 
generates a credential that allows processes created on behalf of the user to access resources with no 
additional user intervention [22].  
 
All GSI security algorithms are coded in terms of the Generic Security Services (GSS) standard.  GSS 
defines a standard procedure and API for obtaining credentials, mutual authentication, and message-
oriented signature encryption and decryption.    GSS is independent of particular security mechanisms and 
can be layered on top of different security methods, such as Kerberos and SSL [22, 23].  
 
The current GSI implementation supports both a plain-text password system (similar to Unix rlogin type 
authentication) and public key cryptography based on SSL.  GSS supports a negotiation mechanism 
allowing GSI to support both mechanisms simultaneously in the Globus environment [22]. 
 
The GSI is based on a certificate system.  Users must have a X509 certificate that is assigned by a 
Certificate Authority (CA).  This certificate contains the RSA public key and the signature of the certified 
CA. The user�s private key is saved in a separate file and encrypted using the user�s pass -phrase 
(password).  The user must also have a copy of the trusted certificate of the CA.  Each resource also has a 
copy of the trusted certificate of the CA as well as a certificate of its own.  These two certificates are used 
for mutual authentication.  When a user submits a job request to a resource, the user and resource exchange 
certificates and perform the SSL protocol. Each checks the CA signature contained in the other�s certificate 
against the signature on the locally stored CA certificate.  The resource also checks the user�s globusid 
against a list of permitted clients.  This means the client must be in the Globus mapfile on the system being 
used.  If everything checks out, the job request proceeds [23]. 
 
The GSI also supports the use of proxies.  If a user creates a proxy, this proxy can be used to run multiple 
Globus jobs without needing to re-enter a pass-phrase.  Proxies essentially allow job submission without 
pass-phrase protection, so proxies must be kept secure at all costs.  This aids in ease of use, but can 
potentially compromise the security of the system [23]. 
 
As mentioned in Section 3.1.1, your site�s administrative password is stored in a plain text file in the 
Globus-Build directory.  While it is only readable by root, the fact that it is plain-text and non-encrypted is 
a source of concern. 
 
Authorization is performed locally.  A Globus user must have an account on any system accessed.  This 
allows local authorization policies to be strictly adhered to even in a Globus environment.  Once a user�s 
identity has been authenticated, the globusid is mapped to a local user id, which is used for local 
authorization. 
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4.1.2 Legion 
 
Legion is designed to run across multiple administrative domains.  This implies many things from a 
security standpoint. 
 

• Legion cannot control security at a participating site. 

• There may be malicious users in the system. 

• There may be sites �pretending� to be Legion sites.  

• Different users and sites have different security requirements. 
 
The Legion security model offers no guarantee of security.  The model stresses the following points: 
 

• Be as precise as possible about the degree of confidence a user can have. 

• Make that confidence �good enough� and �cheap enough� for an interestingly large selection of users.  

• Provide a context that allows the user to gain the additional confidence they require, with a cost that is 
proportional to the added confidence they get. 

• Some users will not gain the necessary confidence and will simply opt not to use Legion. 
 
There are three basic principles to the Legion security model.  These are: do no harm, buyer beware, and 
small is beautiful.  �Do no harm� has two impacts.  First: minimize the possibility that Legion will provide 
an avenue via which an intruder can do mischief to a remote system.  Second: minimize the possibility that 
a user�s data may be compromised by a rogue Legion host.  �Buyer beware� suggests that the remote 
system is responsible for ensuring that they are running a valid copy of Legion, and users are responsible 
for their own security.  This can be inexpensive in the default case, but the user has the ultimate 
responsibility to decide what policy to enforce and how vigorously to enforce it.  �Small is beautiful� 
comes from the fact that one cannot absolutely, unconditionally depend on Legion to enforce security.  
Thus, there is no reason to invest it with elaborate mechanisms.  The simpler the model, the less likely a 
corrupted version can do harm [20, 24, 25]. 
 
Legion is an object-based system where all resources, including processes, files, and hosts, are represented 
as objects.  For this reason, the unit of protection in Legion is the object.  Every Legion object is 
responsible for its own security and protection.  The primary feature that supports this is that every class 
must define the member function MayI.  Legion automatically calls MayI before every member function 
invocation.  A user may allow this MayI function to default to �always ok�, inherit a MayI from a trusted 
class, or write a new mechanism if the situation warrants it.  This allows the user to decide on the amount 
of protection desired.  Additionally, an object can include code in every method to determine the identity of 
the caller and whether or not the caller has a right to make the call [20, 24, 25]. 
 
For performance reasons the MayI function need not be called on every member function invocation.  The 
default case of �always ok� can be optimized for zero overhead.  Additionally, MayI returns a license, 
which can be used to determine when MayI needs to be called again.  These licenses are cached in the 
stored object�s address space, protecting against augmentation by the caller [20, 24, 25].  
 
Security policies can also be enforced externally, although this is not done often in practice.  The user can 
define an object called a Security Agent (SA).  If the security agent field of the environment is not NIL, 
then the user defined SA is used for external security enforcement.  This means A invoking a method in B 
is converted to A invoking the SA member function �pass�.  This  member function of the SA decides if the 
method invocation is allowed.  The member function �pass� is written by the user and can enforce very 
light to very rigid security measures [20, 24, 25]. 
 
This is all good provided objects can identify other objects (remembering that users are objects in Legion). 
This is done by the use of Legion Object Identifiers (LOIDs).  LOIDs include a security field that is 
actually a X509 certificate.  By default, each user has a signed X509 certificate.  These LOIDs are used to 
authenticate objects and to control access to resources.  Legion also provides what are called �credentials�.  
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Credentials are a list of rights granted by the credentials maker.  A credential specifies the period of time it 
is valid, who is allowed to use it, and the rights associated with it (which methods may be called on which 
methods or classes of methods).  Basically, a credential passes rights to objects that don�t naturally posses 
these rights.  An example might be, object A uses a credential to grant object B the right to call object C�s 
method M.  As long as object A has a right to call objects C�s method M, object B now has the right to call 
object C�s method M, for as long as the credential is valid [24]. The current Legion X509 security forma t is 
experimental and is not currently included as part of the public release. 
 
Legion also provides for communication security.  Legion provides the following security modes: 
 

• None: encrypted credentials, but no message encryption or digest. 

• Protected: Message digest to ensure message integrity and encrypted credentials 

• Private: Encrypt the entire message. 
 
 

4.2 Resource management 
 
Resource management in a metacomputing system has two aspects.  The first is, how does the 
metacomputing system select and manage the available resources?  The second is, how much control does a 
local system administrator have over his or her own resources? 
 
For a metacomputing system to be successful, it must have the ability to manage resources in an efficient 
manner.  Additionally, there must be mechanisms for selecting resources to use in an intelligent manner.  
These resources should be selected in a manner that attempts to minimize the total execution time of the 
application. 
 
Local system administrators are going to be unwilling to deploy a metacomputing system if it means losing 
control of their resources.  There must be simple mechanisms for sites to maintain autonomy.  This 
autonomy must be in regards to controlling who has access to the system as well as the ability to enforce all 
local policies in terms of resource use. 
 

4.2.1 Globus  
 
Globus uses an extensible Resource Specification Language (RSL) to communicate requests for resources 
between components.  This architecture uses resource brokers, resource co-allocators, and resource 
managers.  Resource brokers take high-level RSL specifications and refine them into more concrete 
specifications.  These refined specifications completely specify the location of the required resources.  The 
resource broker then passes these refined specifications to resource co-allocators. 
 
Resource co-allocators coordinate and manage the resources at multiple sites.  A resource co-allocator 
breaks a multi-request into its constituent elements and passes each component to the appropriate resource 
manager.  The resource manager is responsible for translating the request into a form recognizable by the 
local, site-specific resource management system. 
 
The resource manager in Globus is called a Globus Resource Allocation Manager, or GRAM.  The GRAM 
is responsible for processing RSL requests, and either denying the request or creating the appropriate 
processes on the local resource.  Process creation is often performed by GRAM interfacing with a local 
scheduler or resource allocator, such as Condor, LoadLeveler, or others.  The GRAM also enables remote 
monitoring and management of jobs and periodically updates the MDS information service with 
information about the status and capabilities of the resources that it manages. 
 
More information about the Globus resource management architecture and implementation can be found in 
the documentation [2, 22]. 
 



 20

Site autonomy is preserved in a Globus system by a number of mechanisms.  The interface between GRAM 
and local schedulers, discussed above, provides a way for local administrators to maintain control over their 
resources.  Policies that are enforced by these systems are automatically enforced within Globus.  An 
additional feature that supports site autonomy, but also restricts flexibility is the need for users to have 
accounts on all resources that they access.  This gives a local administrator control over the resources used 
by Globus users in the same way they have control in regards to their local users.   Finally, in order for a 
user to access a given resource, that user must be in the mapfile maintained for that resource.  This allows 
administrators to limit the resources available to individual users. In the case of large numbers of users, this 
can lead to considerable effort to maintain. 
 

4.2.2 Legion 
 
Resource management in Legion is completely decentralized.  A Legion system is made up of domains, 
which are often defined in terms of administrative boundaries.  The resources maintained at a particular site 
often make up a single domain Domains are managed by collections, schedulers, enactors and individual 
resource objects such as host and vault objects [39]. By controlling the interaction of these objects site 
autonomy is maintained. An organization may decide to implement its own objects, giving the organization 
complete control of all its resources.  Alternatively, an organization may trust another organization�s object 
classes, and choose an instance of that class to manage its resources.  Organizations can even choose to put 
their resources under the control of another set of objects.  The use of objects and collections gives 
participating organizations as much control as they want [14]. 
  
Legion uses a basic philosophy that scheduling is a negotiation between autonomous agents, a consumer 
and a provider.  Legion provides simple, generic schedulers, but also allows applications to provide 
application specific user level schedulers.  The components of the Legion scheduling model are the basic 
resources, information database, schedule implementor, and execution monitor.  These components interact 
with the scheduler to manage the resources.  More detailed information on resource management in Legion 
can be found in [26]. 
 

4.3 Summary 
 
Security is perhaps the most important aspect of any metacomputing system.  Before organizations are 
going to be willing to use metacomputing systems, especially in terms of allowing outside use of their 
resources, they must be confident that they will not be compromised.  Users are also concerned with 
security since they must feel confident that their computations will be secure.  This includes the integrity of 
their data as well as privacy. 
 
The Globus and Legion projects have fundamental philosophical differences concerning security.  While 
the Globus developers preach a need for a rigid definition of what it means for a system to be secure, the 
Legion project is based on the idea that users should be able to choose between the cost of different levels 
of security. 
 
The Globus Security Infrastructure focuses on authentication, not authorization.  For the most part, 
authorization is left as a local concern.  The GSI is a certificate-based system making use of X509 
certificates assigned by the Globus team itself.  All GSI algorithms are coded in terms of the Generic 
Security Services standard, which defines a standard procedure and API for obtaining credentials, 
authentication, and message oriented encryption and decryption.  Authorization is performed locally and 
users must have local accounts on all systems that they access via Globus. 
 
Legion provides a framework, within which a variety of security mechanisms can be implemented.  Based 
on X509 certificates, Legion objects provide methods for authentication and authorization.  Legion 
provides some simple default implementations of these methods but gives the user free rein to implement 
customized methods.  This allows the users to choose between the high cost of rigid security and the low 
cost of light security, or anything in between.  Legion also provides a mechanism allowing security policies 
to be enforced externally.  This external enforcement can range from very light to very rigid. 
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Resource management is a complicated issue in a metacomputing environment.  One of the goals of 
metacomputing is to hide this complexity from the user.  This is accomplished by each of these systems to 
varying degrees.  Additionally, resource management should afford local administrators full control over 
their systems. 
 
Globus provides the Globus Security Infrastructure, which focuses on authentication.  Authorization is left 
mostly to the user and local administrator.  The GSI is based on mutual authentication and is built on the 
Generic Security System (GSS).  This allows Globus to interface with various security mechanisms such as 
SSL and Kerberos.  This architecture allows Globus to provide a choice between simple security and very 
rigid security protocols.  Since Globus requires users to have local accounts on all resources accessed, it is 
easy for administrators to protect their resources in the same way they do without running a Globus system. 
 
Globus provides various mechanisms for managing the resources in the system.  These include mechanisms 
for selecting resources as well as mechanisms for allocating resources and starting processes on the 
allocated resources.  Globus also provides interfaces to several schedulers and batch queuing systems, 
allowing sites to maintain local resource usage policies.  However, the user is still required to learn and 
understand a resource specification language to help the system to select appropriate resources.   
 
Globus provides strong support for sites controlling their resources and for maintaining local policy.  
Globus sites have complete control over what users have access to what resources.  Globus also provides a 
mapping between a globusid and local userid, giving Globus sites additional methods for controlling user 
access to resources.  This includes quotas and limits on time spent on particular resources.  Additionally, 
Globus security can be built on other security systems, such as Kerberos, giving local sites more control 
over local security policy. Currently a new version of GSI under development that directly calls the 
Kerberos API (avoiding the need to use the GSS binding to Kerberos), and so it will be possible to have a 
Globus system that works only within a Kerberos realm and does not use certificates. 
 
While Legion provides basic mechanisms to support security in a distributed, cross-domain environment, 
much of the enforcement is left to the users and local administrators, including support for Kerberos 
authentication if available. Legion provides a means for achieving a level of confidence acceptable to the 
individual.  In this spirit, Legion implements some simple default security policies, but gives users and 
local administrators the ability to implement other, possibly more stringent, policies, and seamlessly 
integrate them into a Legion system. 
 
Like Globus, Legion also provides mechanisms for resource management, in the form of collections, 
schedulers, PCDs and enactors. These mechanisms (and object classes) are fully extensible with Legion 
providing a number of default implementations, but giving the user and local administrators the ability to 
substitute custom implementations.  Provided with the appropriate scheduler, the user need not supply any 
additional information to assist the system in resource selection.  However, the default schedulers are 
simple, and will not provide optimal performance.  In order to achieve better performance, schedulers must 
be provided which understand the resources required by the objects to be scheduled usually from within 
their own class object creation implementations. 
 
Legion also supplies mechanisms by which local administrators can control their systems.  This is mostly 
the configuration of HostObjects, collections, enactors and the Legion Schedulers. These objects allow the 
local administrator to select resource management and usage policies that meets his needs.  This control can 
range from simple to very complex, depending on the objects used.  If there are no existing objects that 
enforce local policy as needed, administrators have the ability to implement new object classes that will 
meet their needs.  Like Globus, Legion security can be built on top of an existing security mechanism such 
as Kerberos. 
.  
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5 System Functionality 
 
Even if a system is easy enough to install and maintain, easy enough to learn and use, provides acceptable 
levels of security, and provides sufficient levels of site autonomy, it is not going to be used if it does not 
provide sufficient functionality.  Areas of functionality of special concern in a metacomputing environment 
include the file system, language support, and fault tolerance.  The most important, perhaps, is 
performance.  If users cannot get at least as good of performance from a new system as they do from 
existing systems there is reduced motivation to move to the new system unless there is some other greater 
value or capability added elsewhere. MetaComputing systems do promise extra value in the form of global 
transparent file access or the ability to run much larger jobs that currently possible under individual MPP 
systems for example. Thus outright performance of such systems may not be as good as optimized vendor 
software but it should allow for still reasonable performance if it is to be used for High Performance 
Computing applications. 
 

5.1 The file system 
 
The metacomputing concept requires access to hosts running in different administrative domains.  This 
cause four main problems in regards to the file system; application binaries may not be present at all sites, 
applications may not be able to read and write needed files, sharing of data between collaborators is 
difficult, and access to remote databases is difficult [19].  Two requirements of a metacomputing system 
are to provide a file system with a single namespace and provide mechanisms for I/O. 
 

5.1.1 Globus  
 
Globus does not present a file system with a single namespace.  This is a conscious design decision 
intended to provide increased performance and simpler implementation.  However, Globus does provide 
mechanisms for automatically staging executables and copying data files.  This solves all the above 
mentioned problems except access to remote databases.  Remote database access is not addressed by the 
Globus system. 
 
Executables can be automatically staged by including the �-stage� flag to the �globus -job-run� command.  
This causes the executable to be automatically staged for execution, and automatically removed once the 
execution terminates [13].  This may be necessary if quota limitations on the remote resource preclude 
storing the executable on a persistent basis.  It also allows the maintenance of a single executable with the 
ability to execute it on multiple hosts, which reduces complexity for the user. The automatic removal policy 
may cause problems in the case of multiple executions at the same site by performing more copies than 
required, a situation the caching mechanism in Legion avoids. 
 
Sharing of resources can be accomplished by use of the �globus-url-copy� and �globus -rcp� commands.  
These commands are used for transferring data between hosts.  These commands use the Global Access to 

Secondary Storage (GASS) service [13].  GASS and Globus are cooperating services.  That is, GASS 
makes use of Globus services for security and communication, while Globus uses GASS services for 
executable staging and real-time remote monitoring [28]. 
 
Globus makes use of GASS to provide the user with simplified mechanisms for performing remote I/O.  
GASS is designed to minimize the number of changes needed to execute existing applications.  A user need 
only change the calls for opening and closing files. GASS provides the following commands for 
performing these operations:  �globus-gass-open�, �globus -gass-close�,  �globus -gass-fopen�, and �globus -
gass-fclose�.  These routines take a URL in place of a file name.  Only the open and close calls need to be 
modified in application code.  All other I/O calls remain unchanged. 
 
More information on the use of the Globus file system can be found in [13] and [28].  More detailed 
information on the GASS design and implementation can be found in [28]. 
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5.1.2 Legion 
 
The Legion system focuses on file system support, rather than database support.  Legion has constructed a 
federated file system using the host file systems as component elements.  The Legion file system maintains 
what they call a �context space�.  A Legion context space is globally named and globally accessible.  A file 
in the Legion file system is identified by a globally recognizable path name, say  �/users/person/myfile�.  A 
Legion user accesses this file with the same name, regardless of their location.  In fact, the physical location 
of the file is hidden from the user.  The file itself may reside anywhere in the system, and may even be 
physically stored in different locations at different times.  All the complexity involved in locating and 
accessing the file is hidden from the user.  This presents a true single namespace view to the user. Although 
this single name space is only valid for a single Legion Domain, and if multiple Domains are combined, 
then the non-local domain is prepended to the context names as in  
�/domain/domain.XXX/users/otherperson/theirfile�.  
 
Legion also provides a set of library routines supporting the management of files.  When a user opens a file, 
the Legion system examines the call to determine if the file is a Legion file or a local file.  Local file 
operations are handed to the host operating system.  Legion file operations are trapped and handed to an 
object that handles the file operation.  There is also a set of routines for manipulating the Legion 
namespace.  These routines are analogous to the Unix routines mkdir, rm, mv, etc.  Files enter the Legion 
namespace by either being created in the Legion namespace, moved into the Legion namespace, or linked 
into the Legion namespace [17, 19]. 
 
For detailed information on how to import Unix files and directories into the Legion context space, please 
see [29] and [30]. 
 
Before a program can be executed in the Legion system, it must be registered.  This is done with the 
�legion_register_program� or �legion_register_runnable� command, depending on if the program is Legion 
compatible or Legion incompatible.   One of the parameters to these commands is the architecture under 
which the program runs.  Legion uses the �legion_run� command for executing programs on resources 
remote to the program executable.  The user may specify a host on which to run the executable, otherwise 
Legion will select a resource by random, ensuring it is of the architecture specified during the registration 
step. 
 
The �legion_run� command is also used to specify input and output files that should be used by the 
program.  This may include either Legion context files or local Unix files.  This allows Legion programs to 
access input and output files that are not co-located with the program execution.  More detailed information 
on executing jobs in the Legion environment can be found in [29] and [30].  
 

5.2 Language support 
 
Language support is important in any high-performance computing system.  Since scientists are typically 
unwilling to learn a new programming language, if a system does not support the language of their choice 
they simply will not use it.  The most common language for scientific code is Fortran, so there is a 
particular need for any system to support Fortran, including F77 and F90.  For a system to be truly 
successful, however, it should support a wide range of languages, possibly including C, C++, HPF and 
ADA. 
 

5.2.1 Globus  
 
Globus provides very strong language support.  Since Globus does not require any special compilers, any 
executable that runs on a particular architecture will also run on that architecture under Globus.  Thus, by 
default, Globus has language support for any sequential language.  Globus also provides interfaces to a 
number of parallel programming interfaces.  These include MPI, Compositional C++, Fortran M, nPerl, and 
NexusJava.  Since Globus supplies a complete implementation of MPI, it also supports tools layered on top 
of MPI, such as many HPF systems [1]. 
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5.2.2 Legion 
 
Legion also provides strong language support.  Like Globus, Legion does not require programs to be 
compiled with any specialized compilers (though this is possible).  This results in Legion being able to run 
any executable that can run on a particular architecture.  However, high-performance computing is really 
interested in running parallel programs.  Legion originated from work on the Mentat programming 
language, and thus Legion has supported Mentat from the very beginning.  Legion also supplies Legion 
versions of the MPI and PVM libraries.  Legion also provides basic Fortran support for parallelizing 
Fortran code.  This support allows Legion directives to be added to Fortran programs, enabling a Legion 
compiler to convert the program into a Mentat program.  See [31] for details on Legion�s Fortran support.  
 

5.3 Fault tolerance 
 
Fault tolerance is important in a large-scale distributed system.  This is because in a system as large as 
those envisioned by metacomputing systems, it is a certainty that at any given moment many hosts, 
communication links, and/or disks will have failed [17, 19].  This has implications both in terms of the 
overall system and in terms of individual applications.  For a large system, such as those described here, to 
be used, users must be confident that resources will be available when needed.  Application level fault 
tolerance is also important.  Many applications that may make use of these large systems have execution 
runs that may last for days, or even months.  It is important that such applications have a means for 
detecting and recovering from resource failures.  It is unacceptable to have to totally restart such an 
application after it has already been running for an extended period of time. 
 
This section discusses the fault tolerance mechanisms built into the two systems being evaluated for this 
report. 
 

5.3.1 Globus  
 
Early experiences with the Globus system helped the Globus developers to identify one serious issue in 
terms of fault tolerance.  This issue involves the failure or unavailability of resources selected for a 
computation.  Early implementations of Globus resource management provided for selecting a set of 
resources and then sequentially allocating and beginning execution on these resources.  The problem that 
arose was when one of these resources was found to be unavailable, the jobs previously started on other 
resources had to be terminated, and the whole process of allocation restarted.  This was seen as a major 
deficiency since resource failure was frequent [5, 35]. 
 
This deficiency was addressed by the design of the Globus Architecture for Reservation and Allocation  
(GARA).  The primary goal of the GARA work was to support advanced reservations and co-allocation in 
a distributed environment.  In this design, reservation and allocation are separated.  This results in a 
resource needing to be reserved before resource allocation.  As a result, the system can be confident that all 
selected resources are available before beginning to start execution on the desired resources.  This prevents 
the problem of a resource being found unavailable after execution has begun on other resources.  Detailed 
information on the design and implementation of the GARA layer can be found in [36]. 
 
The Globus developers also recognize the problem of application level fault tolerance.  To this end they 
have designed and implemented the Globus HeartBeat Monitor (HBM).  The Globus HBM provides an 
API for client applications.  This API provides mechanisms for registering with the HBM either internally 
or externally.  That is, an application can explicitly register with the HBM or another process can cause a 
process to be registered.  The HBM provides a mechanism for monitoring the health of registered processes 
and reporting failure to the appropriate process [16, 22].  Details on the design and implementation of the 
Globus HBM can be found in [16]. 
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It is important to note that Globus does not provide application-level fault tolerance.  Instead, what it 
provides is a mechanism for a Globus application to detect application failures.  It is expected that Globus 
applications will use this fault detection mechanism to implement application-specific fault tolerance and 
response mechanisms. 
 

5.3.2 Legion 
 
The Legion developers recognized early in the design phase that fault tolerance was a key design issue in a 
metacomputing system [10, 18, 21, 26, 32, 33, 34].  They identi fied two types of fault tolerance, fault 
tolerance with the Legion system, and application-level fault tolerance.  The Legion team first addressed 
the issue of fault tolerance within the Legion system.  That is, the Legion system itself handles hardware 
and network faults [17, 19]. 
 
The Legion philosophy with respect to fault tolerance is based on two fundamental observations: 
(1) fault tolerance algorithms require redundancy in space or in time. Thus, users should be able to select 
the level of fault tolerance that they need. The cost in terms of resource consumption will be proportional to 
the level of fault tolerance selected. 
(2) fault tolerance algorithms are in general difficult to design and implement correctly. Thus, fault 
tolerance experts should be the ones designing and implementing algorithms, not programmers. 
 
Based on these observations, Legion provides developers with a reflective model for extending the 
functionality of objects "Enabling Flexibility in the Legion Run-Time Library". In particular, these 
extension mechanisms provide fault-tolerance developers with the ability of transparently integrating fault-
tolerance techniques into grid applications.  
 
To date, application-level fault tolerance consists of rollback/recovery of MPI SPMD applications and 
replication for bag-of-tasks applications. Future release of Legion will incorporate additional mechanisms 
and will enable the transparent integration of message logging and replication techniques for user 
applications "Using Reflection for Incorporating Fault-Tolerance". 
 

5.4 Performance 
 
From a user�s perspective, performance is perhaps the most important factor in judging a large software 
system.  If a system does not provide performance, users will simply not use it unless other features either 
make it attractive or that it is the only method available to run very large jobs spread across multiple 
systems and sites etc.  This section presents various performance results under MPICH with the ch_p4 
device, Globus, and Legion.   
 
These tests were run using a cluster of machines with dual Pentium III 550 MHz processors running the 
RedHat 6.1 version of Linux.  Tests were run with a single process per machine. 
 
Performance Test Notes. 
 
These tests were run on a cluster of machines, not on multiple MPP systems under multiple batch control 
systems as is envisaged as the true use of MetaComputing Environments such as Legion and Globus. Thus 
it may be construed that these results are unfair when compared to those obtained from an optimized MPI 
implementation on a tightly coupled LAN1. That is why the authors chose to compare the results of Legion 
and Globus to the ch_p4 over IP implementation of MPICH, as this most closely mimic the type of 
interconnection most commonly found between multiple systems at multiple sites.  
  

                                                        
1 The Torc cluster at ICL, University of Tennessee, Knoxville, is a multi-interface system supporting 
simultaneously both fast and gigabit Ethernet as well as a range of Myrinet devices. Multiple tuned MPICH 
implementations based on both GM and BIP are installed. 
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The authors of this report believe that the performance of these implementations can be used to gauge how 
well such implementations will scale when distributed across multiple sites. This is mostly from experience 
gained with using MPI interconnection software such as MPI_Connect [37] and PACX-MPI [40] which 
both allow vendor MPI implementation speeds within MPPs and use TCP/IP between MPPs. 
 
In defense of both Globus and Legion, they both allow vendor (or native) MPI jobs to be started on a target 
system. But how they allow this for a multi-machine heterogeneous distributed single MPI application is 
unclear. This is discussed briefly in section 5.4.2. 
 
Bandwidth test 

 
The first test is a bandwidth test.  This test simply bounces a message back and forth between two 
processes.  This test runs with two processes, each on a different machine.  This means there is no shared 
memory communication.  Table 5.4.1 presents the results of running this test with each of the different MPI 
implementations. Figure 5.4.1a is a graphical representation of this data, and Figure 5.4.1b shows the 
bandwidth achieved.  
 
By studying these results, we see that Globus has a much higher overhead for non-zero length small 
messages when compared to MPICH using the p4 device. As messages get larger, Globus performance gets 
within around 10% that of MPICH/p4. Additionally, we see that Legion is outperformed by the other two 
implementations. We conclude that Legions object oriented design must introduce considerable 
communication overhead, which as can be seen is constant for most small message sizes. The step at 800 
bytes for Legion was consistent for our measurements. While the Globus and MPICH/p4 performance 
approaches that expected of standard TCP/IP sockets for large messages, Legion does not, and its large 
message performance falls behind by around 50% compared to the other systems. 
 
 
Message size in bytes MPICH/ch_p4 

Time (ms) - Mbytes/sec 
MPICH-G 

Time (ms) - Mbytes/sec 
Legion MPI 

Time (ms) - Mbytes/sec 
0 0.178  0.187  2.01 
8 0.180 � 0.042 0.416 � 0.018 2.10 � 0.004 
80 0.195 � 0.389 0.342 � 0.222 2.07 � 0.037 
800 0.279 � 2.733 0.347 � 2.198 2.26 � 0.338 
8000 1.03   � 7.406 1.09   � 6.981 37.1 � 0.206 
80000 7.47   � 10.212 8.00   � 9.534 17.6 � 4.332 
800000 73.4   � 10.388 82.3   � 9.259 178 � 4.280 

Table 5.4.1 Round trip message passing times 

 
Collective operations 

 
We also tested collective operations under the three systems.  These collective operations include 
broadcast, barrier, and a max reduce operation.  Broadcasts were performed for 2, 4, and 8 processors with 
message sizes of 1 Kbytes and 1 Mbytes.  Barrier and reduce operations were also done on 2, 4, and 8 
processors.  The reduce operations used 128 doubles per processor for one test and 131072 doubles for 
another test.  The results for these tests are presented in Table 5.4.2, and graphically in figures 5.4.2.1-5. 
 
We see from these results that MPICH-G performs slightly worse than MPICH/ch_p4 for these collective 
operations.  Legion MPI, on the other hand, performs significantly worse than MPICH-G for all cases.  
These results are similar to those for point-to-point messages where we concluded that Legion MPI 
introduces significant overhead in terms of message passing performance. 
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Figure 5.4.1a one way message passing times 
 
 

 
Figure 5.4.1b bandwidth achieved for various message sizes 
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Operation # Processors Size (bytes) MPICH/ch_p4 MPICH-G Legion MPI 
Broadcast 2 1024 0.374 ms 0.426 ms 3.816 ms 
Broadcast 2 1048576 97.82 ms 106.1 ms 273.6 ms 
Broadcast 4 1024 0.618 ms 0.733 ms 30.23 ms 
Broadcast 4 1048576 194.2 ms 309.5 ms 398.2 ms 
Broadcast 8 1024 1.022 ms 0.862 ms 49.59 ms 
Broadcast 8 1048576 291.4 ms 607.8 ms 785.9 ms 
Barrier 2 ----------------- 0.210 ms 0.232 ms 4.12 ms 
Barrier 4 ----------------- 0.405 ms 0.439 ms 7.67 ms 
Barrier 8 ----------------- 0.741 ms 0.706 ms 16.2 ms 
Reduce 2 128 doubles 0.123 ms 0.153 ms 23.34 ms 
Reduce 2 131072doubles 117.0 ms 134.1 ms 171.4 ms 
Reduce 4 128 doubles 0.237 ms 0.299 ms 30.96 ms 
Reduce 4 131072doubles 224.9 ms 232.1 ms 298.1 ms 
Reduce 8 128 doubles 0.346 ms 0.532 ms 43.80 ms 
Reduce 8 131072doubles 333.1 ms 320.8 ms 645.0 ms 

Table 5.4.2 times for collective operations 

 

 

 
Figure 5.4.2.1 times for small broadcast message 
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Figure 5.4.2.2 times for large message broadcast 
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Figure 5.4.2.3 times for barrier operation 
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 Figure 5.4.2.4 times for small collective reduce operation  
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Figure 5.4.2.5 times for large collective reduce operation  

 

 
LU factorization 

 
Another test we ran solves the equation Ax=B using LU factorization with row partial pivoting.  This test 
program comes from the ScaLAPACK numerical library.  For larger matrices, this test is dominated by 
computation, with little communication cost relative to computation.  Table 5.4.3 presents the results of 
running this test program on 4 processors using a 2x2 processor grid and a block factor of 40. This data is 
also shown graphically in figure 5.4.3. 
 
 
Size of matrix A MPICH/ch_p4 

Time (s) - Mflops 
MPICH-G 

Time (s) � Mflops 
Legion MPI 

Time (s) - Mflops 
1000 x 1000 2.39 � 255.50 3.58 � 168.11  
2000 x 2000 9.52 � 543.61 18.20 � 280.92  
4000 x 4000 50.14 � 840.04 115.74 � 363.68  
5000 x 5000 89.25 � 925.31 216.37 � 381.67  
6000 x 6000 145.84 � 980.68 363.45 � 393.65  

 
Table 5.4.3 LU factorization on a 2 x 2 processor grid 
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Figure 5.4.3 LU factorization on a 2 x 2 processor grid 

 
 
As can be seen from the results, this test runs considerably slower under Globus than it does using MPICH-
ch_p4.  Since this application is dominated by computation, as opposed to communication, we must 
conclude that the use of Globus contributes significant overhead.  We initially believed this overhead is 
introduced by the Globus job-manager (which runs on all processors running a Globus application) stealing 
CPU cycles from the application, but we later disproved this as is discussed in section YYYY . 
 
Due to hardware problems as we were completing work for this report, we were unable to get consistent 
results for LU factorization running under Legion. This is not seen as a significant problem as we were able 
to run the Linpack benchmark as described below. 
 
Linpack 

 
The final application test we ran is based on Linpack and solves a general linear system.  We note that for 
these tests, smaller matrices lead to the execution being dominated by communication, while larger 
matrices lead to the execution being dominated by computation.  These tests were run on 4 processors with 
a 2x2 process grid and a block factor of 40.  Table 5.4.4 and figure 5.4.4 represents these results. 
 
These results are consistent with those presented above.  We note that MPICH/ch_p4 outperforms both 
MPICH-G and Legion MPI.  More interesting is a comparison between MPICH-G and Legion MPI.  As 
noted above, this test is dominated by communication cost for smaller matrices.  This explains why 
MPICH-G outperforms Legion MPI in the first couple of rows.  Since Legion MPI has a lower peak 
bandwidth for large message communication, we expect MPICH-G to perform better for the larger matrix 



 34

sizes. However, for larger matrices, Legion MPI outperforms MPICH-G.  These executions are dominated 
by computation.  The poor relative performance of MPICH-G for these executions was some cause for 
concern and was investigated as shown below in section 5.4.1. 
 
 
 
Size of Matrix MPICH/ch_p4 

Time (s) - Mflops 
MPICH-G 

Time (s) � Mflops 
Legion MPI 

Time (s) - Mflops 
1000 x 1000 1.47 � 455.2 2.49 � 268.4 13.30 � 50.23 
2000 x 2000 7.09 � 753.2 15.45 � 345.6 33.19 � 160.9 
4000 x 4000 42.56 � 1003 107.45 � 397.3 98.66 � 432.7 
5000 x 5000 77.97 � 1069 202.98 � 410.7 151.06 � 551.9 
6000 x 6000 128.79 - 1119 343.36 � 419.5 214.68 � 671.0 
8000 x 8000 288.30 -- 1184 789.87 --  432.1 415.56 � 821.6 
10000 x 10000 546.30 -- 1221 1529.4 � 436.0 722.75 � 922.6 

 
Table 5.4.4 Linpack on a 2x2 processor grid with block size 40 

 

 
Figure 5.4.4 Linpack on a 2x2 processor grid with block size 40 

 
One might expect Legion MPI and MPICH/ch_p4 to perform similarly for executions dominated by 
computation.  However, the communication performance of Legion MPI is less optimal than that for 
MPICH/ch_p4 on a local network and thus it only achieved 75% the peak performance of MPICH on this 
test. Section 5.4.2 discusses this point further. 
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5.4.1 Investigating Globus MPI performance 

 
The question arose as to how a point to point and collective operation bandwidth test suite could give good 
results but actual multi-process applications did not. This was investigated by the authors in an attempt to 
locate if this was a computation problem as in Globus was cycle stealing via the Globus daemons or rather 
a feature of the communication software. 
 
Experimentation was performed by developing a completely controllable, instrumented application. The 
application took the form of a ring of processes which compute for a configurable time, and then all pass a 
variable length message around the ring and then compute again and so on. The timing within the 
application was switch-able from MPI_Wtime() to gettimeofday() to avoid any synchronization issue that 
could arise with the MPI call. 
The results of the tests were dumped to file so individual messages could be examined to check for rouge 
messages that take excessive time but do not show up in averages. Also MPE clog files were produced 
using the �mpilog MPICC option and then examined using the MPICH Jumpshot application. 
 
Tests of Legion and MPICH/ch_p4 appeared similar and are shown in figure 5.4.5. But the tests for Globus 
depended very much on the both the computation time and message sizes. In the worst case individual 
Globus message passing times defaulted to the same time as computation step. 
 

 
 

Figure 5.4.5 MPICH/ch_p4 execution of a test ring application.  

 
 
Figure 5.4.6 shows Globus for the same application test with but using only small messages. This result is 
almost identical to the MPICH version. 
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Figure 5.4.6 Globus execution with small messages within a ring. 

 
Figure 5.4.7 Shows what happens to the Globus execution of the ring with larger messages. Figure 5.4.8 
gives this in greater detail zoomed in image. 
 

 
Figure 5.4.7 Globus ring execution for larger messages. 

 
 

 
Figure 5.4.8 Globus execution in detail for larger message ring.  
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The difference in message size required to trigger these events was from 3000 to 4000 doubles or as the 
message size (with internal headers etc) approached a 32Kbyte limit. What appears to be happening is that 
during a send-receive pair of operations, if not all the message can be sent immediately, the sending process 
waits until the next MPI call to complete the operation (i.e. does not make progress between calls as it is 
defined in the MPI specification). Thus if the receive starts too late and the sender has already continued 
into some computation, the receive operation will not complete until the sender reaches another MPI call. 
An effect similar to this is when pairs of communicators always send additional acknowledgements 
messages to let each other known when to free message buffers. It is worth noting that we tested Globus 
with both the single and multithread versions of its MPI device library. 
 
The overall effect of this is to serialize the complete computation, i.e. only a single process is active at once 
depending on the communication pattern used. Thus returning to our HPC test, the flattening of the Globus 
performance relates to achieving almost peak performance on a pair processes, depending on the shape of 
the computation. In this case a 2x2 thus the expected performance would probably be more than twice 436 
Mflops, putting it in the 870+ Mflop range. 
 
We believe this problem to be a fixable bug, but we were advised against changing to MPICH 1.2.0 with 
the Globus device due to possible compatibility problems. So as yet we do not know if this problem as been 
rectified. 
 
5.4.2 MetaComputing with MPI 
 
We attempted to run MPI jobs across multiple sites using both Legion and Globus. We were unable to test 
Globus in this way as we did not have user account at other sites where Globus was installed. Our problems 
with running Legion were different, and caused by firewall restrictions between different sites, including 
Oak Ridge National Laboratory and the Computer Center (HRLS) at the University of Stuttgart Germany. 
The former site restricted IP ports and the later restricted ports as well a s enforced strict access via SSH 
only. 
 
We were however able to merge two separately running Legion Domains and allow them to share their 
context spaces using the legion_combine_domains call. So we understand that by creating a hostfile of the 
following structure that a multi -site MPI application run is possible: 
 
/hosts/machine1 1 

/hosts/machine2 1 

/domain/domain.XXX/hosts/machine3 1 

/domain/domain.XXX/hosts/machine4 1 
 
Both the Legion and Globus teams have informed us that they regularly perform Meta-Computing multi-
machine and multi -site runs for a number of projects. These projects are listed in Appendices C and D. 
Currently we are unsure as to how many of these are continuously running projects, which regularly 
execute over multiple sites or are just demonstrations or examples used for feasibility studies and HPC 
challenges. 
 

5.5 Summary 
 
Globus provides the user with mechanisms for automatically staging executables, copying data files to and 
from remote hosts, and performing remote I/O.  This is all han dled by the GASS server, which supplies a 
simple interface and requires very little code modification on the part of the user.  While Globus does not 
attempt to implement a full file system, features important to the targeted users (the high -performance 
community) are present. 
 
Legion provides full file system support and presents the user with a view of a single namespace.  Legion 
users can access files from anywhere in the system, with no knowledge of the physical location of the file.  
This includes a full API for opening, closing, and manipulating files.  This does require significant code 
modification for file access.  This also requires the user to register executables so the system will be able to 
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locate them when they are to be run.  Finally, Legion provides for specifying input and output at the 
command line, giving executables access to remote files. 
 
Both systems provide strong language support.  Globus includes full implementations of interfaces for 
MPI, Compositional C++, Fortran M, nPerl, and Ne xusJava.  The inclusion of a complete MPI 
implementation provides support for many HPF systems.  Legion provides interfaces to MPI and PVM as 
well as support for the Mentat parallel programming language.  Additionally, Legion provides support for 
converting Fortran programs into Mentat via programmer included Legion directives.  
 
Both Globus and Legion provide some degree of system-level fault tolerance.  Globus supports fault 
tolerance in the resource allocation stage, allowing the system to select only available resources for 
allocation.  Globus does not, however, support recovery from resource failures once the computation has 
begun.  While Globus does not support application-level fault tolerance, it does provide a mechanism for 
fault detection.  The Globus HeartBeat Monitor provides a means for applications to detect faults and react 
accordingly.  Legion supports system-level fault tolerance both prior to resource allocation and after 
execution has begun.  Legion removes failed resources from its system view and also restarts objects 
executing on a resource if that resource fails. 
 
While Globus seems to have comparable message passing performance in relation to MPICH/ch_p4, there 
is a bug that affects real computational applications. Legion, on the other hand, does not provide the same 
level of performance in message passing, at least for local area networks.  This is probably due to its object 
based design.  However, it is possible to use either Globus or Legion simply for resource management and 
use native implementations of MPI on MPPs.  In fact, this is the way both these systems seem to be being 
used in several current test environments.  That is to say, the metacomputing system is used only to allocate 
a MPP and MPI jobs are executed using the native MPI implementation.  This means that a primary use of 
metacomputing systems is not being taken advantage of regularly. 
 

6 Future Growth 
 
A final criteria important when deciding whether or not to deploy a large software system is the potential 
for future growth.  In terms of metacomputing systems, future growth pertains mostly to scalability and 
extensibility. 
 

6.1 Scalability 
 
Scalability in metacomputing systems refers to the ability to add physical resources and participating sites 
without affecting the performance of the systems.  This includes access to the system as well as the 
performance of applications using the system.  The �Distributed System Principle� states: The number of 
requests to any particular system component must not be an increasing function of the number of hosts in 
the system [14]. 
 

6.1.1 Globus  
 
The Globus developers recognize the need for a metacomputing system to be scalable.  To that end they 
have made efforts to build scalability into the system.  One deficiency to this end comes from the fact that 
users must have an account on every machine that they may access.  This is unacceptable if the system is 
ever going to grow to hundreds of site with possibly thousands of users.  Not only are users going to be 
unwilling to go through the effort of requesting an account at hundreds of sites, administrators are going to 
be unwilling to maintain thousands of users on their systems.  Not only would this open up vast security 
holes, but it would require an unacceptably large amount of time on the part of the administrator.  This is 
only a problem, however, if the dream of hundreds of sites being connected is to be realized.  For users who 
wish to use Globus �in house�, this does not present a problem.  This is supported by the fact that Globus  
has been shown to be reasonably efficient for deployments consisting of only tens of sites [5]. 
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For Globus to be truly scalable, however, the MDS must be scalable, since it is a centralized point of 
contact.  This is the reason that Globus supports a decentralized directory service.  This is essential to 
scalability.  By allowing individual locations to maintain their own MDS tree, traffic to the centralized 
MDS located at Argonne is reduced.  This is accomplished by allowing local sites to contact the centralized 
MDS and then serve local users [15]. 
 
Globus developers have also built scalability into their fault detection mechanism.  The Globus HeartBeat 
Monitor is an unreliable fault detection mechanism, which aids in scalability.  This is accomplished b y 
using unreliable UDP, which has the added benefit of lower overhead when compared to TCP [16]. The 
only concern with using UDP is that some sites, for security reasons, block all UDP packets by default and 
so, special arrangements would have to be made to allow the Globus HBM to work.  
 

6.1.2 Legion 
 
Scalability was one of the key design objectives of Legion from the very conception of the project [17, 18, 
20].  This has resulted in a design that has a certain amount of scalability built in.  While there are a few 
single logical Legion objects, Legion makes use of heavy caching and a hierarchical organization of lower 
level objects.  This leads to limited access to the single logical objects, increasing scalability.  Additionally, 
Legion objects can be replicated to further reduce contention.  All of this leads to the conclusion that an 
increase in the number of Legion computing resources will not impact contention for the few centralized 
Legion objects [14].  
 
Legion also makes use of the concept of domains with local collections to increase scalability. A Legion 
installation at a particular site may constitute a domain. Local objects such as collections, schedulers and 
enactors are responsible for managing domains.  This means that no single object is resp onsible for 
managing the entire Legion system.  That is, control is completely decentralized [14].  
 
The Legion developers claim that Legion is fully scalable, accepting two assumptions about the Legion 
system.  One assumption is that most accesses will be local.  That is, the majority of method invocations 
will be on objects local to the caller.  If this assumption is not held then the scalability of the system is 
dependant on the scalability of the inter-connect network, which is not scalable.  The second assumption is 
that class objects will not migrate frequently, and further, they will tend to stay active for a long period of 
time relative to instance objects [14].  It seems that these are pretty strong assumptions.  
 
Legion attempts to implement a scalable distributed file system.  A federated file system is used, which 
uses the local host file system as component objects. Initial implementations of this file system were not 
scalable[19] but this has been rectified in all current releases and performance due to caching is now good. 
 

6.2 Extensibility 
 
�No single policy or set of policies will satisfy every user, so users must be allowed to determine their own 
priorities and implement their own solutions as much as possible� [21].  
 
Extensibility refers to the ability of a system to add functionality as the system matures and as new needs 
and protocols arise.  Since it is impossible to predict what functionality and protocols will be required in the 
future, it is important for any system that is to survive long term to have the ability to adapt to changing 
needs.  Additionally, even today different users have different needs.  For this reason, it is a mistake for 
systems to force specific policies on its users.  Users need the ability to select what policies should be used. 
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6.2.1 Globus  
 
Globus has several characteristics that aid in its extensibility.  For starters, the directory service (MDS) is 
built upon LDAP, which has been shown to be extensible.  This is combined with an extensible Resource 
Specification Language (RSL) based on LDAP and the Globus MDS.  This RSL uses a set of parameter-
name terminal symbols which is itself extensible [15, 2].  This will allow Globus resource management to 
adapt to changing needs. 
 
In addition to this extensible resource management architecture, Globus has an incomplete data model.  
This allows users to incorporate additional information as new needs arise [15].  
 

6.2.2 Legion 
 
One of the main design objectives of the Legion project was to provide an extensible system [17, 18, 20, 
21].   Legion supports this philosophy by providing the mechanisms for system-level services such as 
object creation, naming, binding, and migration, and by not mandating these services� policies or 
implementations [21]. This philosophy has resu lted in a system that is extensible by its very nature and 
design.    The system consists of a layered design and implementation with a standard mechanism of 
interlayer communication [18].  Additionally, Legion specifies functionality, not implementation of the 
system�s core objects [14]. This architecture makes it easy to replace system components while maintaining 
a consistent interface. 
 
Legion�s file system is built upon the Extensible File System (ELFS) which allows user specification of 
caching and pre-fetch strategies.  ELFS provides the following file abstractions, asynchronous I/O, multiple 
outstanding I/O requests, and data format heterogeneity.  These file abstractions are structured as a user -
extensible class hierarchy [17]. 
 
The Legion object core consists of extensible, replaceable objects.  The Legion event mechanism is a good 
example of this.  Event handlers can be added to or replaced, allowing user applications to respond to 
events in a manner appropriate to the specific application [18].  
 
The Legion security mechanism discussed above provides another good example of Legion�s inherent 
flexibility.  The user is allowed to choose between speed and functionality.  While some users may opt to 
sacrifice speed for additional security, other users may elect to forgo strict security for the benefit of better 
performance [20]. Even so, in the lowest level of security all credentials are still encrypted and never 
passed in the plain. 
 

6.3 Summary 
 
The ability for a large software system to evolve and grow is of utmost importance if the system is to 
survive, as user�s needs change, and the use of the system changes.  For metacomputing systems, 
scalability is an important factor in a system�s ability to survive.  If a metacomputing system cannot grow 
in size as more people turn to metacomputing, it will never survive. 
 
Scalability seems to be the most difficult of these problems to solve.  While both systems possess aspects 
that address scalability, none seems to have conquered this problem.  Both systems still has serious 
deficiencies in terms of scalability. 
 
Globus suffers from the fact that users need accounts on every machine they are to use in the system.  
Additionally, the MDS located at Argonne presents a potential bottleneck if the number of users and sites 
grow to very large numbers. Although this is being offset by the current practice of sites running their own 
MDS and potentially their own CAs in the future.  
 
In rating the extensibility of the two systems, Legion appears to be ahead of Globus at least in terms of 
system design. The Legion design philosophy centers on the idea that users should be able to select levels 
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of functionality.  This has been accomplished by providing an architecture that lends itself to users 
replacing key components. Under Globus individual users have far less control over the system components 
that they utilize. 
 

7 Conclusions 
 
This section presents conclusions about the two systems evaluated in this report.  These conclusions are 
based on our experiences with the systems as well as experiences of others.  At the end, we provide a basic 
summary of the state of MetaComputing, as we see it. 
 

7.1 Globus 
 
Globus is a rapidly maturing metacomputing system being developed at Argonne National Laboratory.  
While Globus was found to be relatively easy to install and maintain, this was provided the system was 
maintained as part of the overall Globus system.  This requires getting security certificates from the Globus 
organization and having resources registered with and publicly viewable from the main Globus site.  
Efforts to set up an isolated Globus system were a general failure, with little assistance being offered by the 
Globus development team.  Once the system was set up, however, few problems were encountered.  Using 
Globus to execute MPI programs was found to be straightforward, with no code alteration necessary, 
provided no I/O was being performed. 
 
Security and site autonomy is very strong in Globus.  Globus security is built on the concept that a system 
must define precisely what is means for a resource to be secure.  Globus provides a X509 certificate based 
infrastructure focusing on mutual authentication.  Trusting the authentication mechanism, local sites are 
largely responsibly for authorization concerns.  Users must have local accounts on all systems that they 
access via Globus.  Additionally, a user must be entered in a Globus mapfile on a resource to be able to use 
the resource.  The Globus Resource Allocation Manager (GRAM) uses this mapfile to determine if a user 
has permission to use a resource.  Not only does this provide authorization to the resources, it grants full 
site autonomy to the participating sites.  Local administrators have full control over what users have access 
to what resources.  The local account also allows local administrators to enforce local policy such as 
quotas.  The GRAM also has interfaces to local scheduler or batch queuing systems, providing local 
administrator with additional control over their resources.   This removes much of the comple xity of 
resource management from the user, making it easier to access multiple, possibly distributed, resources. 
 
The GRAM and Globus Access to Secondary Storage (GASS) services simplify the job of remote 
execution for the user.  While the GRAM handles resource allocation, GASS allows the user to 
automatically stage executables, copy data files to and from remote resources, and perform remote I/O.  
Remote I/O can be performed with very little code modification. 
 
Globus provides strong language support and reasonable fault tolerance.  Globus has implemented 
interfaces to MPI, Compositional C++, Fortran M, nPerl, and NexusJava.  Providing a MPI implementation 
allows it to support tools built on MPI, such as many HPF systems.  While Globus does not provide true 
fault tolerance, it does provide strong support for fault detection.  Use of the Globus HeartBeat Monitor 
allows applications to detect component faults and users can implement their own recovery scheme. 
 
The Globus implementation of MPI is known as MPICH-G.  The performance of MPICH-G is less than to 
native MPI implementations, but this is to be expected.  The real problem with using MPICH-G currently 
however is a bug that causes send/receive operations to delayed by not allowing message passing progress 
while out of an MPI call.  This currently introduces significant overheads into computational applications. 
This will hopefully be rectified shortly by the Globus team. Some Globus users who are running MPI codes 
are simply using Globus for resource management and using native MPI for their actual applications and so 
are unaffected. 
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7.2 Legion 
 
Legion is more of a metacomputing framework, and is being developed at the University of Virginia.  
While the core Legion system provides full functionality, most default implementations are simple and not 
very effective. 
 
Legion is simple to install from both pre-compiled binaries and source code. Installation consists simply of 
untarring the binaries and or sources and typing make.  If using pre -compiled binaries it may be necessary 
to also install the same compiler used to compile the pre-built binaries.  This is due to some 
incompatibilities between different versions of compilers that cause difficulties at link time.  Once the 
binaries are in place, Legion set up and maintenance is quite simple.  Difficulty in validating that the 
Legion install is in it-self correct was a problem that we only solved with direct help from the Legion 
development team. If Legion is to prosper a self-validation/proving suite of some kind is required. Most 
problems we experienced have now been covered by changes to the administration guide for Legion. 
 
One significant maintenance concern is the need to completely re-install the system if Legion bootstrap 
host terminates ungracefully, although more experienced Legion users can �repair� the context space and 
OPR directories from snapshot tar files made after installation. 
 
The day-to-day use of Legion for the average user is quite simple once he understands that he has two 
environments with which to work. The swapping from Legion context space and the host-operating 
environment such as Unix can be confusing at first but is easy to get accustomed to. Unlike Globus, which 
provides run-time support tools to hide remote access etc, under Legion this is all taken care of once the 
application and data are within context space. Other than access to Legion context space via the �legion_� 
scripts being noticeably slower than the local hosts Unix calls, Legion works well for a user. 
 
Security and site autonomy are open concerns with Legion.  This is by design.  The Legion developers feel 
that users should be able to choose levels of functionality.  For this reason, Legion comes with very simple 
default implementations of security and resource management mechanisms.  It is expected that third party 
developers will develop more complicated mechanisms.  Legion provides easy ways for these more 
complicated mechanisms to be added to the system.  The major problem with this approach is, very few 
people have taken the time to develop such mechanisms.  In order for Legion to be successful, there must 
be development of more stringent security and resource management mechanisms. Having said that, Legion 
support for Kerberos does exist. 
 
One of Legion�s strong po ints, in terms of users, is its file system.  Legion presents a file system with a 
single namespace, allowing users to access remote files with no knowledge of where the files are physically 
located.  There is also an interface for file creation and manipu lation.  From a user�s point of view, a 
distributed execution need look no different than a local execution.  Input and output files can even be 
specified on the command line, enabling applications to access these files even if they are not co-located 
with the executing binary. 
 
Legion provides fairly strong language support and adequate fault tolerance.  There is a provided interface 
to MPI and PVM, and Legion provides basic Fortran support.  While there is no support for application 
level fault tolerance, Legion does have strong system level fault tolerance.  Failed components are removed 
from the system view and any objects executing on a failed resource are restarted on other available 
resources.  There are plans to provide some level of application level fault tolerance in the future. 
 
Our experiences show the weakest aspect of Legion is its message passing performance.  Legion MPI 
demonstrates high overheads, although it did outperform our broken Globus MPI under certain conditions.  
As with Globus, Legion can be used to execute programs using native MPI on a MPP.  In fact, the 
developers suggest this for MPI programs targeted towards single MPP execution. 
 
Legion was designed with scalability and extensibility as key issues.  This has led to a system that is very 
strong in these areas.  In fact, Legion is more of a framework than a fully functional system.  From the very 
beginning the developers envisioned others adding functionality to the system, and this ability is built right 
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into Legion.  This should make it easy for Legion to continue to evolve and grow.  This is dependent, 
however, on others developing sophisticated components.  It is not clear that this is going to happen.  
 

7.3 Summary for DoD MSRC Users 
 
This summary is based on how either of these Metacomputing systems could and might be used at DoD 
MSRC sites. 
 
Both Legion and Globus alter the everyday running of systems in a direct manner. The real question to ask, 
is why use Globus or Legion and what would the benefits be? To answer this, we have to remember what 
already exists at the time of writing at the MSRC sites.  This includes:  
 
(1) Across site authentication via across realm Kerberos tickets. I.e. logon to your home site and then 
transparently authenticate with any other MSRC machine on  which you have a valid account. 
 
(2) The Meta-queuing system that allows MPI jobs to be scheduled at either the ASC or ERDC MSRC, i.e. 
across site scheduling. 
 
Both Legion and Globus provide the first feature, in fact if they were adopted by the MSRCs they would 
use the current in place Kerberos infrastructure, although additional effort in adding Globus gridmap 
resource/account files and Legion host/user objects would be required. In fact Legion applications are 
currently run across shared NAVO and ARL MSRCs using Kerberos authentication. 
 
The second issue of across site scheduling is a different matter. Both Legion and Globus can provide very 
efficient schedules that then filter down to the individual site and machine queuing systems. Thus both 
Legion and Globus may be better suited to running jobs across the MSRCs than a �Global� version of 
NASA's PBS system for example. In fact Legion program graph analysis is very powerful as is the Globus 
reservation and allocation system.  The only question to ask here is what happened to the notion of running 
a single parallel application across multiple systems at multiple sites rather than choosing which individual 
MPP system is the best to use, i.e. true MetaComputing. NEXUS, and thus MPICH-G was clearly designed 
to fulfill this need but it is unclear if this is happening every day in production environments. Other tools 
that are much lighter already exist such as PACX[40], Meta -MPI and MPI_Connect [37] that can perform 
this functionality without affecting the internal performance of each MPP, unlike MPICH-G.  
 
The one issue that is not currently supported across the MSRCs, but is very well supported in different 
ways by both Legion and Globus is that of global file access. Each user at each site must maintain multiple 
file systems at the different sites. If a user submits a job to the meta-queuing system they must ensure that 
no matter where the job runs that it has access to any required data files. Once the job has finished the user 
is again responsible for collecting these result files from where ever they are stored. Using either Legion or 
Globus would simplify this, but with different tradeoffs and costs. Both require changes to the application 
source code, which is not always possible or available. Users of the Globus GASS system, where the 
application passes data from application to application in a pipeline fashion, have found that the �available 
to the next only when the current has closed the file� model that it uses affects performance, especially as it 
moves the data back to the original site before allowing the next to re-open it. This lack of logistical 
scheduling is less of a problem with the Legion system, which can allow multiple copies of data files 
(objects) in distributed vaults and has extensive caching built in to improve performance. These advantages 
are offset by the need for a user to move data files via importing or exporting them into Context space as 
well as the source code changes required. 
 
The bottom line is that both systems offer benefits in terms of file/data management, and some extra job 
scheduling functionality. This alone may be enough motivation to adopt one system or the other, but they 
both come with additional costs. Globus needs a lot of system administration support, but the changes to 
the user are less obvious.  Legion needs less system administration support, but the user has to learn to live 
with the context space model that is not difficult to adjust to. It will be more advantageous when the two 
systems provide better support for multiple platforms, single job processing.  
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Which system the MSRCs should adopt depends on which system they feel meets their needs better. The 
purpose of this report was to review the systems, not recommend one. To this end, Legion is already being 
used and reviewed by the ARL and NAVO  MSRC sites and Globus is currently in use at numerous sites, 
including a number of national laboratories, NPACI, NCSA and NASA sites. The reports of these 
individual sites are the best indication as to when either Legion or Globus, if ever, is truly ready for prime 
time on 24 by 7, 365 days a year, production systems as is required by the MSRCs. 
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Appendix A 
 
SCALAPACK Input parameter file for the LU solver (LU.dat) 
 
'MPICH-G' 
'LU.out'        output file name (if any) 
25           device out 
5             number of problems sizes 
1000 2000 4000 5000 6000    values of M 
1000 2000 4000 5000 6000    values of N 
1             number of NB's 
40           values of NB 
1             number of NRHS's 
1             values of NRHS 
1             Number of NBRHS's 
1             values of NBRHS 
1             number of process grids (ordered pairs of P & Q) 
2 1 4            values of P 
2 4 1            values of Q 
1.0          threshold 
F             (T or F) Test Cond. Est. and Iter. Ref. Routines 
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Appendix B 
 
Input parameter data file for the HPC tester (HPC.dat) 
 
HPC Version 1.0, Linpack benchmark input file 
Innovative Computing Laboratory, University of Tennessee, 1999 
HPC.out          output file name (if any) 
6                device out (6=stdout,7=stderr,output file otherwise) 
15               number of problems sizes 
1000 1000 1500 1500 2000 2000 2500 3000 4000 5000 6000 7000 8000 9000 10000 values of N 
1                number of NB's 
40               values of NB 
1                number of process grids (ordered pairs of P & Q) 
2                values of P 
2                values of Q 
-16.0            threshold 
1                number of panel fact. (PFACT) 
2                values of PFACT (0=left looking, 1=crout, 2=right looking) 
1                number of recursive stopping criterium (NBMIN >= 1) 
4                values of NBMIN 
1                number of panels in recursion (NDIV >= 2) 
2                values of NDIV 
1                number of recursive panel fact. (RFACT) 
1                values of RFACT (0=left looking, 1=crout, 2=right looking) 
1                number of broadcast (BCAST) 
2                values of BCAST (0=I-rg, 1=I-2rg, 2=I-rg', 3=I-2rg', 4=S-rg) 
1                number of lookahead depth (DEPTH) 
0                values of DEPTH (>=0 - 0 = no lookahead) 
4                memory alignment in double precision words (> 0) 
 



 49

 

Appendix C Globus MetaApplications and Projects 
 
SF-Express 

Very large distributed interactive simulation.  This program holds the record for largest ModSA F 
run ever done.  This was actually run across a number of DoD MSRC sites. 

 
NEPH 

Remote retrieval and processing of DMSP satellite data to determine cloud position and elevation.  
This is of direct consequence to DoD mission. 

 
SpaceJunk 

Remote retrieval and trajectory determination of objects in space and rockets being launched.  Of 
direct consequence to DoD mission. 

 
Cactus (Various groups) 

Solves Einstein equations to simulation black hole collisions.  Largest runs have spanned multiple 
large-scale supercomputers. 

 
Overflow (NASA Ames: Djomehri) 

Large CFD calculation that is used for aeronautic design. 
 
PTOMO 

Online tomographic reconstruction and display of instrumentation data.  
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Appendix D Legion MetaApplications and Projects 
 
Aerospace 
Overflow (Boeing: Kerlick) 

Large CFD calculation that is used for aeronautic design. 
Design Explorer  (Boeing)  

A heuristic parameter-space tool. 
flapper (UVa - Lewin) 

 A study of the aerodynamics of flapping flight, using numerical models to simulate insect flight.  
 
Biochemistry & molecular science 
complib (UVa - Pearson/Grimshaw)  

A comparison of protein DNA sequences, developed by William Pearson at the University of 
Virginia Biochemistry Department. 

FASTA 
Smith-Waterman 

These two are DNA sequence comparison codes, used w/complib. 
gnomad (Stanford - Altman/Williams)  

 A C code that compiles 3 input files to find the optimal configuration of a molecule. 
feature (Stanford - Altman)  

A C++ code that matches characteristics of proteins to determine probability that unknown protein 
will bind to DNA, what functions it has, etc. 

CHARMM (Scripps - Brooks)  
Chemistry at Harvard Molecular Mechanics (CHARMM). A program for macromolecular 
dynamics and mechanics, designed to investigate the structure and dynamics of large molecules. 
The software in this particular application was developed by Charles Brooks at the Scripps 
Research Institute. 

 
Astronomy 
Hydro code (Hawley/Holcomb) 

An astronomical code used for simulating gas accretion disks. 
 
Materials Science 
DSMC - Direct Simulation Monte Carlo (UVa - Wadley/Beekwilder)  

Developed by G.A. Bird and modified for the Directed Vapor Deposition research at the 
University of Virginia's Intelligent Processing of Materials Laboratory.  

Large scale molecular dynamic (NAVO-LSU) 
 
Information Retrieval  
PIE: Personalized Information Environments (French & Viles)  

A tool to create user-customized collections of information resources based on distributed search 
over restricted search spaces; virtual information repositories; and a novel system architecture. It 
also provides for user anonymity and secure access to resources.   

 
Climate, Weather, Ocean 
BT-MED (NAVO - Piechezk)  

Code provided by Northrop-Grumman(NAVO) 
MM5 (NCAR)  

A mesoscale weather modeling code used for both research into weather prediction programs and 
for operational predictions for organizations such as the United States Air Force.  

NLOM-COAMPS - (NAVO - Bettencourt)  
A coupled application project: NLOM is Navy Layered Ocean Model and COAMPS is Coupled 
Ocean/Atmosphere Mesoscale Prediction  System. 
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Neuroscience 
Biological scale simulations of a mammalian neural network (UVa - Levy) 


