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Related Work. The standard divide-and-onquer method for omputing eigen-values and eigenvetors of a tridiagonal symmetri matrix has been developed byCuppen [7℄. The ore of this algorithm is a method for eÆiently omputing thespetral deomposition of a rank-one modi�ation of a diagonal matrix whih hasbeen given in [12, 6℄. Over time numerially stable and eÆient implementations ofCuppen's method were developed [9, 19, 14, 15, 18℄.The divide-and-onquer approah not only has attrative parallelization proper-ties [21, 11℄, in ombination with tridiagonalization it is even sequentially one of thefastest methods urrently available if all eigenvalues and eigenvetors of a large denseor banded symmetri matrix are to be omputed [8℄.Several variants of generalizing the divide-and-onquer approah to banded ma-tries have been investigated ([2℄ based on [4, 3℄; more reently [10℄). One of theentral questions remains numerial stability and although promising advanes havebeen made no �nal method has been established (yet).2. Mathematial Conept. The algorithm presented here is an extension ofCuppen's tridiagonal divide-and-onquer method for omputing eigenvalues and eigen-vetors of the symmetri blok-tridiagonal matrix (1.1). Three phases an be distin-guished: (i) subdivision, (ii) solution of subproblems, and (iii) synthesis of the solu-tions of the subproblems. These phases are illustrated in more detail in Setions 2.1to 2.3. In order to simplify the presentation of the basi onepts, the speial asep = 2 (two diagonal bloks) is onsidered �rst. The general ase p > 2 is disussed inSetion 2.4.2.1. Subdivision. Firstly, the matrixM2 := � B1 E>1E1 B2 � = � B1 �1v1u>1�1u1v>1 B2 �is represented as a rank-one modi�ation of a blok diagonal matrix ~M2:M2 = � B1 � �1v1v>1 00 B2 � �1u1u>1 �+ �1� v1u1 �� v>1 u>1 �(2.1) = ~M2 + �1� v1u1 �� v>1 u>1 � :2.2. Solution of Subproblems. Seondly, the spetral deompositions of thedeoupled diagonal bloks~B1 := B1 � �1v1v>1 ; ~B2 := B2 � �1v1v>1of ~M2 an be omputed independently:~B1 = Q1D1Q>1 and ~B2 = Q2D2Q>2 :(2.2)Substituting (2.2) into (2.1) yieldsM2 = � Q1 Q2 ��� D1 D2 �+ �1zz>�� Q>1 Q>2 �(2.3)where z := � Q>1 Q>2 �� v1u1 � :(2.4) 2



(2.3) shows thatM2 is orthogonally similar to a rank-one modi�ation of the diagonalmatrix D := � D1 D2 � :2.3. Synthesis of the Solution of the Subproblems. In the third phase ofthe algorithm, the spetral deompositionD + �1zz> = Q�Q>(2.5)is omputed (i. e., the orresponding diagonal bloks D1 and D2 are \merged"). Themethod used is idential to the one in the standard divide-and-onquer algorithm fora tridiagonal matrix.2.3.1. Eigenvalues of the Synthesis Problem. After deation [6, 7, 9℄ itis guaranteed that the vetor z has k � n nonzero omponents �i and that theorresponding k entries di of the diagonal matrix D are all distint. The eigenvalues�i in (2.5) an now be omputed as the solutions of the seular equation [12℄f(�) := 1 + �1 kXi=1 �2idi � � = 0:(2.6)Just like in the tridiagonal divide-and-onquer method, the di are poles of f(�), andf(�) is stritly inreasing between these poles. Moreover, its zeros, the eigenvalues �i,interlae the di. Equation (2.6) is solved with a usually very fast onverging versionof Newton's method whih uses a rational approximation of f(�) between two polesdi and di+1 ([16, 6℄, also see the routine LAPACK/*laed4).2.3.2. Eigenvetors of the Synthesis Problem. As shown in [6℄, the eigen-vetor qi of (2.5) orresponding to the eigenvalue �i is given byqi = (D � �iI)�1 z:(2.7)However, using (2.7) for omputing the eigenvetors of (2.5) is not numerially stableand an lead to a loss of numerial orthogonality if the orresponding eigenvalues �iand �j are very lose to eah other [7, 9, 19℄. Therefore, a slightly modi�ed, numeri-ally stable method introdued by Gu and Eisenstat [14℄ has to be used, exatly as inthe tridiagonal divide-and-onquer method. The entral idea is to apply formula (2.7)to a nearby problem D + �z�z> with a modi�ation vetor �z whih an be omputedeÆiently to omponentwise high relative auray and for whih the omputed eigen-values are \exat". A theorem by L�owner [17℄ shows how to ompute the vetor �zfrom the di and the �i.Substituting the spetral deomposition (2.5) into (2.3) reveals that the diagonalmatrix � ontains the desired eigenvalues of M2 and that its eigenvetors V an beomputed aording to V = � Q1 Q2 �Q:(2.8)2.4. The General Case. The main di�erenes between the algorithm for p = 2illustrated in Setions 2.1 to 2.3 and the general ase p > 2 lie in the subdivision andsynthesis phases. After a disussion of the three phases for the general ase, the om-plete blok-tridiagonal divide-and-onquer method is summarized in Algorithm 2.1.3



2.4.1. Subdivision. With the orretions~B1 := B1 � �1v1v>1~Bi := Bi � �i�1ui�1u>i�1 � �iviv>i ; i = 2; 3; : : : ; p� 1~Bp := Bp � �p�1up�1u>p�1;Mp an be represented as a series of p� 1 rank-one modi�ations of a blok-diagonalmatrix ~Mp, with the ~Bi (i = 1; 2; : : : ; p) along its diagonal.2.4.2. Solution of Subproblems. The spetral deompositions~Bi = QiDiQ>i ; i = 1; 2; : : : ; p;of the p diagonal bloks of ~Mp make it possible to onstrut a diagonal matrixD := 0B� D1 . . . Dp 1CAand a blok-diagonal matrix X := 0B� Q1 . . . Qp 1CAsuh thatD + �1X>0� v1u10 1A� v>1 u>1 0 �X + : : :+ �iX>0BB� 0viui0 1CCA� 0 v>i u>i 0 �X +: : :: : :+ �p�1X>0� 0vp�1up�1 1A� 0 v>p�1 u>p�1 �Xis orthogonally similar to Mp.2.4.3. Synthesis of the Solution of the Subproblems. The eigenvalues andeigenvetors of D + p�1Xi=1 �iX>0BB� 0viui0 1CCA� 0 v>i u>i 0 �X;(2.9)where the norm of eah modi�ation vetor equals p2, have to be omputed. Thisan be done by suessively performing rank-one modi�ations, whih orrespondsto merging neighboring diagonal bloks of D. In total, p � 1 merging operationsare required. Eah of them ombines two diagonal bloks of D, aounting for onerank-one modi�ation in (2.9), and involves the update (2.4) of the modi�ationvetor, the solution of the orresponding seular equation (2.6), the omputation of4



the orresponding eigenvetors and the update (2.8) of the eigenvetor matrix. In theourse of this proess, the bloks to be merged grow bigger and bigger.The synthesis proess an be pitured as a binary tree, the merging tree, withthe bloks ~B1; ~B2; : : : ; ~Bp as leaves. If p is a power of two, this tree is balaned. If pis not a power of two, a merging order an be determined whih, in a \preproessingphase", redues the number of bloks to the losest power of two less than p.A balaned merging tree is obviously attrative for a parallel implementationsine it provides natural task parallelism (see [9, 13℄). However, for unequally sizedbloks, the best order for merging bloks (in terms of eÆieny) does not neessarilyorrespond to a balaned tree. The reason is that even if the tree is balaned withrespet to the number of nodes (possibly after the \preproessing" mentioned above)unequal sizes of the submatries in the nodes may make the tree highly unbalanedworkwise. For a sequential algorithm, it is irrelevant whether the merging tree isbalaned or not beause the independene of di�erent merging operations annot betaken advantage of. Aspets related to the merging order in the synthesis phase aredisussed in more detail in Setion 3.Algorithm 2.1. Blok-Tridiagonal Divide-and-ConquerInput: Mp as in (1.1)(A) Subdivision~B1 := B1 � �1v1v>1 , ~Bp := Bp � �p�1up�1u>p�1, z1 := � v1u1 �do i = 2; 3; : : : ; p� 1~Bi := Bi � �i�1ui�1u>i�1 � �iviv>i ; zi := � viui �end do(B) Solution of Subproblemsdo i = 1; 2; : : : ; pompute the spetral deomposition ~Bi = QiDiQ>iend doX := blok-diag (Q1; Q2; : : : ; Qp)(C) Synthesisdetermine a good merging order (see Setion 3.4);denote the ordered modi�ation vetors by z(i),the orresponding parts of X and D by X(i) and D(i)do i = 1; 2; : : : ; p� 1(i) update the modi�ation vetor z(i)~z(i) := X>(i)0� 0z(i)0 1A(ii) deompose D(i) + �(i)~z(i)~z>(i) = Q�(i)Q>(iii) update the eigenvetors X := X0� I Q I 1Aend doOutput: spetral deomposition Mp = V �(p�1)V > with V := XFig. 2.1. The divide-and-onquer algorithm for blok-tridiagonal matries with rank-one o�-diagonal bloks. 5



3. Unbalaned Merging Operations. In the standard divide-and-onquermethod for a given irreduible tridiagonal matrix the blok sizes ki an be hosenby the user or by the algorithm. Usually this is done by breaking the original matrixin two and then repeatedly halving the sizes of the submatries. Exept for potentialdi�erenes in the early stages of the synthesis phase, the blok sizes are thereforeessentially equal [18, 21℄. The situation onsidered in this paper is slightly more om-pliated beause the sizes ki of the diagonal bloks Bi are assumed to be determineda priori (as indiated in (1.1)) and may be unequal.Unequal blok sizes inuene two important aspets of the algorithm presented:its arithmeti omplexity and its workspae requirements. Although the sequene ofblok sizes fkigpi=1 is given a priori, there is some freedom in hoosing the order inwhih (neighboring) bloks are to be merged. It will be illustrated in Setions 3.1and 3.2 that for a sequential algorithm it is bene�ial to hoose the merging ordersuh that the merging operations are as \balaned" as possible.In Setions 3.1 and 3.2, we investigate the arithmeti omplexity of a single merg-ing operation involving a  �  blok ~A1 and an (l � ) � (l � ) blok ~A2 where1 �  � l � 1.  will also be alled the ut point between the two bloks. If  � [l=2℄the merging operation is alled balaned , if  � [l=2℄ or  � [l=2℄ it is alled unbal-aned . The nonzero portions u and v of the assoiated orretion vetor z are assumedto be of size b1 and b2, respetively (thus, b1 = ki+1 and b2 = ki for some i).If the merging operation ours at the beginning of the merging proess, i. e., ifit involves two original (neighboring) bloks of (1.1) whih are leaves of the mergingtree, then b1 =  and b2 = l � . If the merge ours at a later stage of the mergingproess, i. e., if it involves two bloks whih are themselves the result of at least onemerging operation, then 1 � b1 <  and 1 � b2 < l�. In the �nal merging operation,l = n.The e�ets of the merging order in the ontext of the full synthesis phase for p > 2are illustrated in Setion 3.3 by omparing a very bad merging order (unbalanedmerges) with a very good merging order (balaned merges) for an example problem.In Setion 3.4 an approah for determining a good merging order will be desribed.3.1. Arithmeti Complexity. For a given sequene fkigpi=1 of blok sizes theop ounts of several operations of Algorithm 2.1 are independent of the ut points .This inludes the orretion operations in Step A and the solution of the subproblemsin Step B. The op ount for solving a seular equation (2.6) and for omputing theeigenvetors of the synthesis problem in Step C.ii an also be onsidered independentof the ut point . There are, however, two operations in the synthesis phase, whoseop ounts depend on .1. Update of the modi�ation vetor z (f. Step C.i in Algorithm 2.1): Thematrix-vetor produtsQ>1 � 0v � and Q>2 � u0 �require (2b2 � 1) + (l � )(2b1 � 1) = 2(b2 � b1) + l(2b1 � 1) ops:(3.1)Considered separately, expression (3.1) would favor unbalaned merging op-erations, i. e.,  as small or as large as possible, depending on whether b2� b1is greater or less than zero. 6



2. Multipliation of the intermediate eigenvetors X with the eigenvetors Q ofthe synthesis problem (f. Step C.iii in Algorithm 2.1):Assuming for simpliity that no deation has ourred (whih implies thatwe ompute an upper bound for the arithmeti omplexity of this operation),the �  blok of eigenvetors of ~A1 has to be multiplied with the upper � lpart of the eigenvetor matrix Q of the synthesis problem whih requiresl(2� 1) ops:(3.2)Multipliation of the (l�)�(l�) blok of eigenvetors of ~A2 with the lower(l� )� l part of the eigenvetor matrix Q of the synthesis problem requires(l � )l (2 (l � )� 1) ops:(3.3)Adding up (3.1), (3.2), and (3.3) yields W (), an upper bound for the portion of thearithmeti omplexity of a single merging operation depending on the ut point :W () = 42l +  �2 (b2 � b1)� 4l2�+ 2l3 � l2 + l (2b1 � 1) ops:(3.4)Asymptotially, the updates of the eigenvetors (Step C.iii) are the most expensiveparts of the synthesis phase and also of the entire divide-and-onquer algorithm 2.1(f. [8, 10℄). Therefore, the dominating terms of the arithmeti omplexity of the fullalgorithm an be omputed based on W () (see Setion 3.3.1).Investigation of the �rst and seond derivative of W () in terms of  reveals thatW () has a minimum at � = l2 � b2 � b14l(3.5)with the value W (�) = l3 � l2 + l (b1 + b2 � 1)� (b2 � b1)24l :(3.6)Note that jb2 � b1j < l, thus ����b2 � b14l ���� < 14 ;and therefore (3.5) implies that the losest integer value to � is l=2 if l is even andeither (l + 1)=2 or (l � 1)=2 if l is odd. This means that the optimum ut pointfor a single merging operation in terms of arithmeti omplexity is either bl=2 orb(l + 1)=2.Comparison of the highest order terms in (3.4) and (3.6),W () � 2l3 � (4+ 1) l2 + 42l(3.7) W (�) � l3 � l2(3.8)shows that asymptotially the \penalty" to be paid for an unbalaned merging oper-ation in whih the ut point deviates from � isW ()W (�) � 2ll � 1 � 4+ 1l � 1 + 42l(l� 1) :7



This quadrati funtion in  has the minimum value 1 at  = � = l=2. Its maximumvalue ours at the boundaries, i. e., for  = 1 or  = l � 1:W (1)W (�) = W (l � 1)W (�) = 2ll � 1 � 5l � 1 + 4l(l � 1) :(3.9)For large l, (3.9) approahes the value 2. Thus,W (�) �W () � 2W (�):3.2. Workspae Requirements. The implementation of the blok-tridiagonaldivide-and-onquer algorithm is based on the Lapak [1℄ implementation of thetridiagonal divide-and-onquer algorithm (LAPACK/*sted and dependenies). Sev-eral routines had to be modi�ed, some others ould be used diretly. New as-pets arise from unequal blok sizes. The routine LAPACK/*laed1 formally requiresmin(1; l) �  � l=2 whih annot be guaranteed in the blok-tridiagonal divide-and-onquer algorithm (it may well happen that the �rst of two bloks involved in amerging operation is larger than the seond one).In the following, we give an analysis of the total workspae requirements ofour implementation of the blok-tridiagonal divide-and-onquer algorithm, whih arestrongly inuened by the design of the Lapak routines (see [18℄). It is shown thathighly unbalaned merging operations may signi�antly inrease the workspae re-quirements. This observation again underlines the bene�ts of a merging order wheremerging operations are as balaned as possible (see Setion 3.4).3.2.1. Workspae for Vetors. Workspae of Sv := 3n oating point numbersis required for storing intermediate vetors, just like in the original Lapak routines.3.2.2. Eigenvetors Before the Merging Operation. As in Algorithm 2.1let X denote the matrix ontaining the eigenvetors of the two subproblems to bemerged. The workspae SX required for storing X isSX := (1 + 2) + (l � )(2 + 3)(3.10)oating point numbers. Here, 1 denotes the number of olumns in X whih are of\type 1" (nonzero in the upper part only), 2 denotes the number of olumns in Xwhih are of \type 2" (dense), and 3 denotes the number of olumns in X whih areof \type 3" (nonzero in the lower part only).Before deation, 1 = , 2 = 0, and 3 = l � . Columns of type 2 are reatedwhen (almost) equal eigenvalues are deated whih appear in the upper and in thelower blok: The Householder/Givens transformations G with GG> = I used to zeroout orresponding entries in the ~z-vetorX �D + ~z~z>�X> = XG> �GDG> +G~z~z>G>�GX>may ause a �ll-in in the upper/lower part of X , beause the operation XG> formslinear ombinations of the olumns of X whih orrespond to (almost) equal eigen-values. If these happen to be in di�erent bloks of D, then the lower/upper parts ofthe orresponding olumns of X �ll up.This implies that an upper bound on 2 is given by the total number of eigenvaluesdeated: 2 � l� k; 1 � k � l;8



where k denotes the number of non-deated eigenvalues. Every deated eigenvaluemay potentially add two olumns to 2 (by �lling up the upper part and the lowerpart of two olumns of X) while taking away one olumn from 1 and 3 eah. Thus,1 + 2 � + l � k2 and 2 + 3 � l � + l � k2 :(3.11)Substituting (3.11) into (3.10) yieldsSX � �kl2 + l22 + 2 + (l � )2:(3.12)Note that less deation (larger k) implies a lower bound for the workspae require-ments SX .3.2.3. Multipliation of the Eigenvetor Matries. The matrix multiplia-tion in the routine LAPACK/*laed3 for establishing the updated (intermediate) eigen-vetor matrix X (Step C.iii in Algorithm 2.1) requires a workspae ofSS := max f(1 + 2) k; (2 + 3) kgoating point numbers for opying row bloks of Q onsisting of the �rst 1 + 2 andthe last 2 + 3 rows, respetively, into a temporary array S (see also [18℄). Thebounds (3.11) imply SS � k�max f; l � g+ l� k2 � :Case I:  � l �  ,  � l=2 leads toSS � �k22 + k�3l2 � � :(3.13)Case II:  � l �  ,  � l=2 leads toSS � �k22 + k� l2 + � :(3.14)Note that in both ases, less deation (larger k) also implies a lower bound on theworkspae requirements SS .3.2.4. Total Workspae Requirements.Case I: 1 �  � l=2(3.12) and (3.13) implySX + SS � �k22 + k (l � ) + l22 + 2 + (l � )2 :Investigation of the �rst and seond derivative of this upper bound in termsof k reveals that it ahieves a maximum if  eigenvalues are deated, i. e. fork� = l � :Therefore, a sharp upper bound for SX + SS independent of how muh de-ation ours is SX + SS � l22 + 3 (l � )22 + 2:(3.15) 9



Investigation of the �rst and seond derivative in terms of  reveals thatthe quadrati funtion on the right hand side of (3.15) has a minimum for = 3l=5. This value is not within the range onsidered, and therefore theatual minimum ours at the upper boundary, for� = l2(3.16)with the funtion value 9l28 :(3.17)At the lower boundary (for  = 1), the upper bound (3.15) ahieves its maxi-mum 2l2� 3l+5=2, and therefore the best general upper bound for SX +SSindependent of k and  is given asSX + SS � 2l2 � 3l + 3:(3.18)Case II: l=2 �  � l � 1(3.12) and (3.14) implySX + SS � �k22 + k+ l22 + 2 + (l � )2 :Investigation of the �rst and seond derivative of this upper bound in termsof k reveals that it ahieves a maximum if l �  eigenvalues are deated, i. e.for k� = :Therefore, a sharp upper bound for SX + SS independent of how muh de-ation ours is SX + SS � l22 + (l� )2 + 322 :(3.19)Investigation of the �rst and seond derivative in terms of  reveals thatthe quadrati funtion on the right hand side of (3.19) has a minimum for = 2l=5. This value is not within the range onsidered, and therefore theatual minimum ours at the lower boundary, for� = l2(3.20)with the funtion value 9l28 :(3.21)At the upper boundary (for  = l � 1), the upper bound (3.19) ahieves itsmaximum 2l2�3l+5=2, and therefore also in this ase the best general upperbound SX + SS independent of k and  is given asSX + SS � 2l2 � 3l + 3:(3.22)(3.16) and (3.20) show that the ut point � whih yields the lowest workspae require-ments over all possible deation senarios is essentially the same whih minimizes thearithmeti omplexity of the merging operation as disussed in Setion 3.1.10



3.3. The General Case. After having investigated the inuene of the utpoint  on arithmeti omplexity and workspae requirements of a single mergingoperation we now turn to a disussion of the e�ets in the framework of a generalsynthesis phase onsisting of p� 1 merging operations.3.3.1. Arithmeti Complexity. Expression (3.4) shows how the arithmetiomplexity of updating modi�ation vetor and eigenvetors in one merging opera-tion depends on the ut point , and expression (3.6) gives its minimum value for theoptimal �. Utilizing these expressions allows one to illustrate the potentially signi�-ant inrease of the arithmeti omplexity aused by a bad hoie of the merging orderin the synthesis phase of the full blok-tridiagonal divide-and-onquer algorithm.We onsider the following example: n = 2q and p = n=2+1 = 2q�1+1. The bloksizes are k1 = 2q�1, k2 = k3 = : : : k2q�1+1 = 1. Two di�erent merging strategies willbe ompared: in the �rst one all the merging operations are as unbalaned as possible,whereas in the seond one all the merging operations are perfetly balaned. In theanalysis, the leading-term approximations (3.7) and (3.8) for the expressions (3.4)and (3.6) are used.Unbalaned Merges: Merge ~B1 with ~B2, the resulting blok with ~B3, the resultingblok with ~B4, et.This may be onsidered an unnatural and somewhat arti�ial merging orderfor the matrix onsidered. Nevertheless, the intention is to illustrate the ef-fets of unbalaned merges in a \worst ase" senario. The natural approahfor this problem, subdividing between the �rst large blok and the tridiagonalpart, then treating the tridiagonal part using the standard divide-and-onqueralgorithm for a tridiagonal matrix, and eventually performing one �nal merg-ing operation with the �rst blok, is investigated later as the alternativestrategy alled \balaned merges".For the strategy of unbalaned merges, the intermediate blok sizes li in thesynthesis phase are given asli = 2q�1 + i; i = 1; : : : ; 2q�1;(3.23)and the ut points i asi = li � 1; i = 1; : : : ; 2q�1;(3.24)i. e., every single merging operation is as unbalaned as possible.Substituting (3.23) for l and (3.24) for  into (3.7) and summing over allthe merging operations yields an upper bound WU (beause no deation wasassumed) for the total arithmeti omplexity of the updates of modi�ationvetors and eigenvetors in the synthesis phase for unbalaned merges:WU = 2q�1Xi=1 �2 �2q�1 + i�3 � 5 �2q�1 + i�2 + 4 �2q�1 + i��= n=2Xi=1 �2i3 + i2 (3n� 5) + i�3n22 �5n+4�+ n3�5n2+8n4 �= 1532n4 � 712n3 + 712nIt is worth noting that this unfavorable merging order leads to an O(n4) (!)arithmeti omplexity for the speial problem onsidered.11



Balaned Merges: Merge the small bloks �rst. Start with 2q�2 merges of neig-boring bloks of size 1 ( ~B2i with ~B2i+1, i = 1; 2; : : : 2q�2), then perform 2q�3merges of the resulting bloks of size 2, then perform 2q�4 merges of the re-sulting bloks of size 4, et. After 2q�1 � 1 merging operations, all originalbloks of size one have been merged into a single blok of size 2q�1. In the�nal merging operation, this blok is merged with ~B1.For this merging order, the intermediate blok sizes li in the synthesis phaseare given as li = 2i; i = 1; 2; : : : ; q;(3.25)and the ut points i as i = li=2; i = 1; 2; : : : ; q;i. e., every single merging operation is perfetly balaned.Substituting (3.25) for l into (3.8) and summing over all merging operationsyields an upper bound WB (beause no deation was assumed) for the totalarithmeti omplexity of updates of the modi�ation vetors and eigenvetorsin the synthesis phase for balaned merges:WB = 2q�2 ��21�3��21�2�+ 2q�3 ��22�3��22�2�+ : : :: : : + 2��2q�2�3��2q�2�2�+ �2q�1�3��2q�1�2 + (2q)3�(2q)2= n3 � n2 + q�1Xi=1 �2q�1+2i � 2q�1+i�= n3 � n2 + n2 q�1Xi=1 4i � n2 q�1Xi=1 2i= 76n3 � 32n2 + 13nThus, the favorable balaned merging operations lead to an O(n3) arithmetiomplexity for the speial problem onsidered, whih is an order of magnitudelower than the unbalaned merges.This example illustrated \worst" and \best" ase senarios. In most pratial prob-lems the arithmeti omplexities orresponding to di�erent merging orders will usuallynot di�er that muh. Nevertheless, for a given sequene of blok sizes the arithmetiomplexities assoiated with di�erent merging strategies may still vary signi�antly.Therefore, the hoie of a good merging order in the synthesis phase (see Setion 3.4)is ruial for eÆieny.3.3.2. Workspae Requirements. The disussion in Setion 3.2 was appli-able to any single merging operation ourring in the blok-tridiagonal divide-and-onquer algorithm. Obviously, the workspae requirements for the entire algorithm aredetermined by the maximum over all merging operations. This maximum is ahievedin the �nal merging operation where l = n.Aounting for Sv = 3n in (3.18) or (3.22) yields an upper bound for the totaloating-point workspae required by the blok-tridiagonal divide-and-onquer algo-rithm: Sv + SX + SS � 2n2 + 3:12



The minimum workspae requirements allowing for all possible deation senariosmay be as low as 98n2 + 3noating point numbers (f. (3.17) and (3.21)). In the best ase|if no deation hap-pens at all in the last merging operation (2 = 0), and if  = n=2|a workspae ofonly n2 + 3n oating point numbers suÆes.3.4. Determination of a Merging Order. It has been shown in Setions 3.1,3.2, and 3.3 that equally sized bloks in a merging operation lead to the lowest arith-meti omplexity and therefore to the highest eÆieny, as well as to the lowestworkspae requirements. Therefore, we determine a merging order in the sequentialblok-tridiagonal divide-and-onquer algorithm suh that bloks to be merged di�eras little as possible in size.Merging operations and their eigenvetor updates towards the end of the synthesisphase dominate the arithmeti omplexity of the entire algorithm (beause l is loseto n). Consequently, highest priority is assigned to minimizing the di�erene in bloksizes in the �nal merging operation. The ut point whih orresponds to the minimumomplexity of this �nal merging operation is determined by �nding the index j, 1 �j � p� 1, suh that jXi=1 ki � n2 and j+1Xi=1 ki > n2 :The ut points for the previous merges in eah of the two parts are determined byontinuing this proess reursively above and below the �nal ut point.Note that this reursive strategy is not optimal in a rigorous sense beause it doesnot minimize the overall arithmeti omplexity of the synthesis phase for all possiblesequenes of blok sizes. A simple generi example illustrates this: For a sequenefm; 1; 1;mg of blok sizes the strategy used would merge the �rst with the seondand the third with the fourth blok, resulting in the sequene fm + 1;m + 1g, and�nally merge two equally sized bloks. Using the leading term approximations (3.7)and (3.8) this amounts to 12m3 +O(m2) ops. A di�erent merging order would leadto a lower op ount: First merging the two small bloks in the middle, resulting inthe sequene fm; 2;mg, then the �rst two bloks, resulting in the sequene fm+2;mg,and �nally two bloks of slightly di�erent sizes requires only 10m3 +O(m2) ops.However, even in these ases the strategy used tends to be not muh more expen-sive than the theoretial optimum. This fat and the signi�antly larger overhead fordetermining an optimal merging order in the rigorous sense led to the deision to usethe reursive strategy desribed above.4. Numerial Aspets. An error analysis of Cuppen's divide-and-onquer al-gorithm for tridiagonal matries was given by Barlow [5℄. The numerial stability of aslightly modi�ed divide-and-onquer algorithm for tridiagonal matries was shown byGu and Eisenstat [14, 15℄. Many elements of these analyses an be arried over diretlyto the algorithm disussed in this paper. It an be seen that the blok-tridiagonaldivide-and-onquer algorithm omputes a numerial spetral deomposition V̂ �̂V̂ >suh that Mp = V̂ �̂V̂ > +O�"n� maxi=1;2;:::;p kBik2 + maxi=1;2;:::;p�i�� ;13



where quantities supersripted with a hat distinguish omputed quantities from exatquantities and " denotes the mahine preision (unit roundo�).The norm of the oating-point error Æ ~Bi := ~̂Bi� ~Bi of eah of the orretion operationsin Step A of Algorithm 2.1 an be bounded bykÆ ~B1k2 � "k1 (2kB1k2 + 5�1) +O("2);kÆ ~Bik2 � "ki (2kBik2 + 5�i�1 + 5�i) +O("2); i = 2; 3; : : : ; p� 1;kÆ ~Bpk2 � "kp (2kBpk2 + 5�p�1) +O("2);and therefore the entire oating-point error made in the subdivision phase an bebounded by 10"n� maxi=1;2;:::;p kBik2 + maxi=1;2;:::;p�i�+O("2):Provided a bakward stable algorithm is used to ompute the spetral deompo-sitions in Step B in Algorithm 2.1, the errors made when omputing the eigenvaluesdi of the subproblems an be bounded asjdi � d̂ij � O(") maxj=1;2;:::;p k ~Bjk2; i = 1; 2; : : : ; naording to Weyl's theorem (see, for example, [8℄).The method used for omputing the spetral deomposition of the rank-one mod-i�ation problems arising in Step C.ii of Algorithm 2.1 is the one developed by Guand Eisenstat [14℄. Therefore, for the synthesis part of the algorithm desribed inSetion 2.3 their analysis an be diretly applied, showing that the eigenvalues areomputed to high absolute auray. They also showed that the vetor �z is lose toz in high absolute auray and that these properties suÆe to ompute the spetraldeomposition of a rank-one modi�ation of a diagonal matrix numerially stably.Therefore eah numerially omputed eigendeomposition of a rank-one modi�ationproblem satis�esD(i) + �(i)~z(i)~z>(i) = Q̂�̂(i)Q̂> + O �" �kD(i)k2 + �(i)k~z(i)k22��where Q̂ is numerially orthogonal.5. Experiments. The blok-tridiagonal divide-and-onquer method has beenimplemented in Fortran 77 (dsbtd) and evaluated experimentally. In Setion 5.1 itis ompared to orresponding Lapak routines, and in Setion 5.2 the e�ets of themerging order for unequal blok sizes are illustrated.Experiments were performed on a number of test matries. Symmetri bloksBi as well as vetors ui and vi, whih determine the rank-one o�-diagonal bloks Ei,were reated randomly using Matlab. �i = 1 (i = 1; 2; : : : ; p � 1) was hosen forall test matries. The omputations were done on a SUN Ultra 5 Workstation witha 400 MHz UltraSPARC-IIi proessor in double preision with a mahine preision" = 1:1 � 10�16.The auray of eah method is measured by the saled residual error R and bythe departure from orthogonality O of the eigenvetors, de�ned byR := maxi=1;2;:::;n Mpv̂i � �̂iv̂i2kMpk2 andO := maxi=1;2;:::;n �V̂ >V̂ � I� ei2 :14



5.1. Equally Sized Bloks. dsbtd is ompared with the routines� LAPACK/dsbevd for a banded symmetri matrix, whih performs tridiagonal-ization, the tridiagonal divide-and-onquer method, and �nally the baktrans-formation of the eigenvetors, as well as� LAPACK/dsyev for a general symmetri matrix, whih performs tridiagonal-ization, the QR-algorithm on the tridiagonal matrix, and �nally the bak-transformation of the eigenvetors.Results are shown for the following three matries:� Me124: n = 620; p = 124; blok sizes ki = 5, i = 1; 2; : : : ; p� Me62: n = 620; p = 62; blok sizes ki = 10, i = 1; 2; : : : ; p� Me31: n = 620; p = 31; blok sizes ki = 20, i = 1; 2; : : : ; pThe narrowest band matrix whih fully ontains the orresponding blok-tridiagonalmatrix was used as input for LAPACK/dsbevd. This matrix ontains 2(p � 2) zeron=p � n=p triangles in addition to the blok-tridiagonal matrix. These triangles �llup during the tridiagonalization performed by LAPACK/dsbevd. However, a diretomparison for blok-tridiagonal matries is not possible, and espeially for largevalues of p the di�erene is not very big. For LAPACK/dsyev, the blok-tridiagonalmatrix was ompleted to a full matrix by zero entries.The experiments are summarized in Table 5.1. TBT ; TLB and TLF denote theruntimes of dsbtd, LAPACK/dsbevd and LAPACK/dsyev, respetively. The resultsshow that due to being able to take advantage of the speial struture of the o�-diagonal bloks as well as due to improved data-loality whih is important for thememory hierarhies of modern omputer systems the blok-tridiagonal divide-and-onquer algorithm is more eÆient than the standard method for banded eigenvalueproblems while ahieving the same level of auray.Table 5.1Comparison for blok-tridiagonal matries with equally sized bloks.Routine Me124 Me62 Me31dsbtd TBT [s℄ 1.6 2.5 3.1R 1:4 � 10�15 1:6 � 10�15 1:2 � 10�15R kMpk2max kBik2+max�i 1:4 � 10�15 1:6 � 10�15 1:2 � 10�15O 3:9 � 10�15 4:9 � 10�15 6:5 � 10�15LAPACK/dsbevd TLB=TBT 5.0 3.5 3.4R 2:3 � 10�14 6:8 � 10�15 6:3 � 10�15O 2:6 � 10�14 8:4 � 10�15 8:0 � 10�15LAPACK/dsyev TLF=TBT 12.1 7.1 6.5R 4:9 � 10�15 5:6 � 10�15 3:7 � 10�15O 1:4 � 10�14 1:3 � 10�14 1:1 � 10�145.2. General Bloks. The two testmatries� M b8 : n = 1500; p = 8; blok sizes fkig8i=1 = f5; 180; 190; 375; 5; 180; 190; 375g� Mu8 : n = 1500; p = 8; blok sizes fkig8i=1 = f375; 190; 375; 190; 180; 180; 5; 5gdi�er only in the order of their diagonal bloks. However, the merging operationsfor M b8 are quite niely balaned (exept for two initial merges), whereas most of the15



merging operations for Mu8 (in partiular the ones towards the end of the synthesisphase) are unbalaned.Table 5.2 shows the orresponding experimental data.Table 5.2Inuene of unequal blok sizes on exeution time.Routine M b8 Mu8dsbtd TBT [s℄ 39.2 46.2R 2:5 � 10�15 3:6 � 10�15R kMpk2max kBik2+max�i 2:4 � 10�15 3:3 � 10�15O 1:8 � 10�14 1:7 � 10�14LAPACK/dsbevd TLB=TBT 5.3 4.7R 7:7 � 10�15 7:6 � 10�15O 1:5 � 10�14 1:7 � 10�14LAPACK/dsyevd TLFTBT 6.9 7.6R 9:3 � 10�15 5:6 � 10�15O 1:9 � 10�14 1:4 � 10�146. Conlusion. It has been shown that for a speial lass of blok-tridiagonalmatries the divide-and-onquer approah for omputing the spetral deompositionan be diretly extended and yields very attrative results in terms of eÆieny andauray.The impliations of unequally sized bloks have been studied. A reliable methodfor determining a merging order whose assoiated arithmeti omplexity is at leastlose to optimal for any given sequene of blok sizes has been proposed.The algorithm presented in this paper provides approximate eigenpairs if the o�-diagonal bloks of a general blok-tridiagonal matrix, whih in general have a rankhigher than one, are approximated by rank-one matries. In some instanes thisapproximation may not be aurate enough. However, the algorithm will be extendedto allow for higher rank approximations of the o�-diagonal bloks Ei. If they are notof rank one, then the singular value deompositions (see [13℄)Ei = kiXi=1 �iuiv>i ; i = 1; 2; : : : ; p� 1;an be used for onstruting approximations of arbitrary rank orresponding to thelargest singular values �i. The authors are urrently developing these ideas in orderto utilize higher rank approximations of the o�-diagonal bloks if required. Thisapproximative approah will be illustrated in more detail in a separate forthomingpaper.Referenes.[1℄ E. Anderson, Z. Bai, C. H. Bishof, S. Blakford, J. W. Demmel, J. J.Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. MKenney,and D. C. Sorensen, Lapak Users' Guide, SIAM Press, Philadelphia, PA,3 ed., 1999. 16



[2℄ P. Arbenz, Divide and onquer algorithms for the bandsymmetri eigenvalueproblem, Parallel Comput., 18 (1992), pp. 1105{1128.[3℄ P. Arbenz, W. Gander, and G. H. Golub, Restrited rank modi�ation ofthe symmetri eigenvalue problem: Theoretial onsiderations, Linear AlgebraAppl., 104 (1988), pp. 75{95.[4℄ P. Arbenz and G. H. Golub, On the spetral deomposition of hermitianmatries modi�ed by low rank perturbations with appliations, SIAM J. MatrixAnal. Appl., 9 (1988), pp. 40{58.[5℄ J. L. Barlow, Error analysis of update methods for the symmetri eigenvalueproblem, SIAM J. Matrix Anal. Appl., 14 (1993), pp. 598{618.[6℄ J. R. Bunh, C. P. Nielsen, and D. C. Sorensen, Rank-one modi�ationof the symmetri eigenproblem, Numer. Math., 31 (1978), pp. 31{48.[7℄ J. J. M. Cuppen, A divide and onquer method for the symmetri tridiagonaleigenproblem, Numer. Math., 36 (1981), pp. 177{195.[8℄ J. W. Demmel, Applied Numerial Linear Algebra, SIAM Press, Philadelphia,PA, 1997.[9℄ J. J. Dongarra and D. C. Sorensen, A fully parallel algorithm for the sym-metri eigenproblem, SIAM J. Si. Comput., 8 (1987), pp. s139{s154.[10℄ W. N. Gansterer, J. Shneid, and C. W. Ueberhuber, A divide-and-onquer method for symmetri banded eigenproblems. part ii: Complexity anal-ysis, Tehnial Report AURORA TR1999-14, Vienna University of Tehnology,1999.[11℄ K. Gates and P. Arbenz, Parallel divide and onquer algorithms for thesymmetri tridiagonal eigenproblem, Tehnial Report 222, Institut f�ur Wis-senshaftlihes Rehnen, ETH Z�urih, 1994.[12℄ G. H. Golub, Some modi�ed matrix eigenvalue problems, SIAM Rev., 15 (1973),pp. 318{334.[13℄ G. H. Golub and C. F. Van Loan, Matrix Computations, Johns HopkinsUniversity Press, Baltimore, MD, 3 ed., 1996.[14℄ M. Gu and S. C. Eisenstat, A stable and eÆient algorithm for the rank-onemodi�ation of the symmetri eigenproblem, SIAM J. Matrix Anal. Appl., 15(1994), pp. 1266{1276.[15℄ , A divide-and-onquer algorithm for the symmetri tridiagonal eigenprob-lem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172{191.[16℄ R.-C. Li, Solving the seular equations stably and eÆiently, Lapak WorkingNote 89, University of Tennessee, Knoxville, TN, Nov. 1994.[17℄ K. L�owner, �Uber monotone Matrixfunktionen, Math. Z., 38 (1934), pp. 177{216.[18℄ J. Rutter, A serial implementation of uppen's divide and onquer algorithm forthe symmetri eigenvalue problem, Lapak Working Note 69, Computer SieneDivision (EECS), University of California at Berkeley, Berkeley, CA, 1994.[19℄ D. C. Sorensen and P. T. P. Tang, On the orthogonality of eigenvetorsomputed by divide-and-onquer tehniques, SIAM J. Numer. Anal., 28 (1991),pp. 1752{1775.[20℄ A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publia-tions, Mineola, NY, 1996.[21℄ F. Tisseur and J. J. Dongarra, A parallel divide and onquer algorithm forthe symmetri eigenvalue problem on distributed memory arhitetures, SIAM J.Si. Comput., 20 (1999), pp. 2223{2236.17


