AN EXTENSION OF THE DIVIDE-AND-CONQUER METHOD FOR
A CLASS OF SYMMETRIC BLOCK-TRIDIAGONAL
EIGENPROBLEMS

WILFRIED N. GANSTERER*$, ROBERT C. WARD*%, AND RICHARD P. MULLER'$

Technical Report UT-CS-00-447 *
University of Tennessee

September 2000

Abstract. A divide-and-conquer method for computing eigenvalues and eigenvectors of a block-
tridiagonal matrix with rank-one off-diagonal blocks is presented. The implications of unbalanced
merging operations due to unequal block sizes are analyzed and illustrated with numerical examples.
It is shown that an unfavorable order for merging blocks in the synthesis phase of the algorithm may
lead to a significant increase of the arithmetic complexity. A strategy to determine a good merging
order which is at least close to optimal in all cases is given.

1. Introduction. We consider the problem of computing eigenvalues and eigen-
vectors of an irreducible symmetric block tridiagonal matrix

B, E]
E, B, Ej
(1.1) M, := E, Bz . € R™ ™,
.. EpT—l
E,, B,

where the blocks B; € RF:i ki (; = 1,2, ..., p) along the diagonal are symmetric, and
the off-diagonal blocks E; € RFi+1*%i (; =1,2,... p— 1) have rank one:

_ T
E; = ouiv;

with [Jus]]2 = ||vi]]2 = 1 and o; > 0. The block sizes k; have to satisfy 1 < k; < n and
Zle kl =n.

Many applications, e.g., the self-consistent-field procedure in Quantum Chem-
istry [20], yield computational matrix eigenproblems with the property that the mag-
nitudes of the matrix elements rapidly decrease as they move away from the diag-
onal; thus, they can be approximated by matrices of the form (1.1). Although the
off-diagonal blocks E; of the matrices arising in these problems are in general not
rank-one matrices, it is possible to approximate them with rank-one matrices, and in
many applications, the approximations may be sufficient for the desired accuracy.

*Department of Computer Science, University of Tennessee, 203 Claxton Complex, 1122 Volun-
teer Blvd., Knoxville, TN 37996-3450

fMaterials and Process Simulation Center, Beckman Institute, California Institute of Technology
139-74, Pasadena, California, 91125

8This work was supported by the Academic Strategic Alliances Program of the Accelerated
Strategic Computing Initiative (ASCI/ASAP) under subcontract number B341492 of DOE contract
W-7405-ENG-48.

! Available from: http://www.cs.utk.edu/ library/TechReports.html

Related Work. The standard divide-and-conquer method for computing eigen-
values and eigenvectors of a tridiagonal symmetric matrix has been developed by
Cuppen [7]. The core of this algorithm is a method for efficiently computing the
spectral decomposition of a rank-one modification of a diagonal matrix which has
been given in [12, 6]. Over time numerically stable and efficient implementations of
Cuppen’s method were developed [9, 19, 14, 15, 18].

The divide-and-conquer approach not only has attractive parallelization proper-
ties [21, 11], in combination with tridiagonalization it is even sequentially one of the
fastest methods currently available if all eigenvalues and eigenvectors of a large dense
or banded symmetric matrix are to be computed [8].

Several variants of generalizing the divide-and-conquer approach to banded ma-
trices have been investigated ([2] based on [4, 3]; more recently [10]). One of the
central questions remains numerical stability and although promising advances have
been made no final method has been established (yet).

2. Mathematical Concept. The algorithm presented here is an extension of
Cuppen’s tridiagonal divide-and-conquer method for computing eigenvalues and eigen-
vectors of the symmetric block-tridiagonal matrix (1.1). Three phases can be distin-
guished: (i) subdivision, (ii) solution of subproblems, and (iii) synthesis of the solu-
tions of the subproblems. These phases are illustrated in more detail in Sections 2.1
to 2.3. In order to simplify the presentation of the basic concepts, the special case
p = 2 (two diagonal blocks) is considered first. The general case p > 2 is discussed in
Section 2.4.

2.1. Subdivision. Firstly, the matrix

B1 E;r B1 0'1’1}111,1r
M2 = = T
E, B, o1ULv] B-

is represented as a rank-one modification of a block diagonal matrix My:

_ Bl—alvlvlT 0 (%1 T T
(2.1) M2_< 0 By—orwmul) T w (v wul)

:M2+gl<511>(uf ul).

2.2. Solution of Subproblems. Secondly, the spectral decompositions of the
decoupled diagonal blocks

Bl = B1 — Ul'Ul’UlT, BQ = 32 — 0'1’1)1'Uir
of M, can be computed independently:
(2.2) Bi=@Q1D1Q] and By = Q:D2Q,.

Substituting (2.2) into (2.1) yields

(2.3) My = < Q1 0,) K D, b,)-{-alzzT} < Qf or)

where

(T)(2)

2

(2.3) shows that M> is orthogonally similar to a rank-one modification of the diagonal

matrix
__(D
D .= (Dy > .

2.3. Synthesis of the Solution of the Subproblems. In the third phase of
the algorithm, the spectral decomposition

(2.5) D+oyzz" =QAQT

is computed (i. e., the corresponding diagonal blocks D; and D» are “merged”). The
method used is identical to the one in the standard divide-and-conquer algorithm for
a tridiagonal matrix.

2.3.1. Eigenvalues of the Synthesis Problem. After deflation [6, 7, 9] it
is guaranteed that the vector z has k& < n nonzero components (; and that the
corresponding k entries d; of the diagonal matrix D are all distinct. The eigenvalues
A; in (2.5) can now be computed as the solutions of the secular equation [12]

k
(2.6) fN) ::1+01;di’_/\:0.

Just like in the tridiagonal divide-and-conquer method, the d; are poles of f()), and
f(A) is strictly increasing between these poles. Moreover, its zeros, the eigenvalues \;,
interlace the d;. Equation (2.6) is solved with a usually very fast converging version
of Newton’s method which uses a rational approximation of f(\) between two poles
d; and d;1+1 ([16, 6], also see the routine LAPACK/*1laed4).

2.3.2. Eigenvectors of the Synthesis Problem. As shown in [6], the eigen-
vector ¢; of (2.5) corresponding to the eigenvalue \; is given by

(2.7) gi=(D-NI)""z

However, using (2.7) for computing the eigenvectors of (2.5) is not numerically stable
and can lead to a loss of numerical orthogonality if the corresponding eigenvalues \;
and A; are very close to each other [7, 9, 19]. Therefore, a slightly modified, numeri-
cally stable method introduced by Gu and Eisenstat [14] has to be used, exactly as in
the tridiagonal divide-and-conquer method. The central idea is to apply formula (2.7)
to a nearby problem D + zz' with a modification vector Z which can be computed
efficiently to componentwise high relative accuracy and for which the computed eigen-
values are “exact”. A theorem by Lowner [17] shows how to compute the vector z
from the d; and the ;.

Substituting the spectral decomposition (2.5) into (2.3) reveals that the diagonal
matrix A contains the desired eigenvalues of M, and that its eigenvectors V' can be
computed according to

(2.8) V= < @ 0,)Q.

2.4. The General Case. The main differences between the algorithm for p = 2
illustrated in Sections 2.1 to 2.3 and the general case p > 2 lie in the subdivision and
synthesis phases. After a discussion of the three phases for the general case, the com-
plete block-tridiagonal divide-and-conquer method is summarized in Algorithm 2.1.

3

2.4.1. Subdivision. With the corrections

Bl = Bl —Ul'Ul'Uir
B; = B; — 0;_uiu;_; — o], i=2,3 -1
i = Dj—0j_1Ui—1U;_1 —OVV; , 1 =24,9,...,pD

L T
Bp = Bp — Up,lup,lupfl,

M,, can be represented as a series of p — 1 rank-one modifications of a block-diagonal
matrix M), with the B; (i =1,2,...,p) along its diagonal.

2.4.2. Solution of Subproblems. The spectral decompositions
Bz:QzDzQ;ra i:1727"'7p7

of the p diagonal blocks of Mp make it possible to construct a diagonal matrix

Dy
D :=
Dy
and a block-diagonal matrix
Q1
X =
Qyp
such that
0
U1 Vs
D+ X" [wi | (v uf 0)X+...+0X" W [0 ol ul 0) X+
0 (2
0
0
+op—1 X Up—1 (0 v, U;—Ll)X
Up—1

is orthogonally similar to M.

2.4.3. Synthesis of the Solution of the Subproblems. The eigenvalues and
eigenvectors of

0
p—1
(2.9) D+ZcriXT Zi (0 o u 0)X,
=1 0

where the norm of each modification vector equals /2, have to be computed. This
can be done by successively performing rank-one modifications, which corresponds
to merging neighboring diagonal blocks of D. In total, p — 1 merging operations
are required. Each of them combines two diagonal blocks of D, accounting for one
rank-one modification in (2.9), and involves the update (2.4) of the modification
vector, the solution of the corresponding secular equation (2.6), the computation of

4

the corresponding eigenvectors and the update (2.8) of the eigenvector matrix. In the
course of this process, the blocks to be merged grow bigger and bigger.

The synthesis process can be pictured as a binary tree, the merging tree, with
the blocks By, Bo, ... ,Bp as leaves. If p is a power of two, this tree is balanced. If p
is not a power of two, a merging order can be determined which, in a “preprocessing
phase”, reduces the number of blocks to the closest power of two less than p.

A balanced merging tree is obviously attractive for a parallel implementation
since it provides natural task parallelism (see [9, 13]). However, for unequally sized
blocks, the best order for merging blocks (in terms of efficiency) does not necessarily
correspond to a balanced tree. The reason is that even if the tree is balanced with
respect to the number of nodes (possibly after the “preprocessing” mentioned above)
unequal sizes of the submatrices in the nodes may make the tree highly unbalanced
workwise. For a sequential algorithm, it is irrelevant whether the merging tree is
balanced or not because the independence of different merging operations cannot be
taken advantage of. Aspects related to the merging order in the synthesis phase are
discussed in more detail in Section 3.

ALGorITHM 2.1. Block-Tridiagonal Divide-and-Conquer
Input: M, as in (1.1)
(A) Subdivision

Bl = Bl —0’1’!}11)1T, Bp = Bp —apflupflu;_l, zZ1 = (le)
do 1=2,3,...,p—1
Bi = B; — m_lui_lu;r_l — aiviv?, Zi = (ZI)
end do '
(B) Solution of Subproblems
do i=1,2,...,p
compute the spectral decomposition B; = Q;D;Q;
end do
X := block-diag (Q1,Q2,...,Qp)
(C) Synthesis
determine a good merging order (see Section 3.4);
denote the ordered modification vectors by z(;),
the corresponding parts of X and D by X(;y and D
do i=1,2,...,p—1

(i) update the modification vector z(;

0
s T
Zay = Xay | 20
0
(M.) decompose D(i) + U(i)g(i)é(:) = QA(i)QT
I
(i11) update the eigenvectors X :=X Q

I
end do

Output: spectral decomposition — M, = VA(p_l)VT with V := X

Fic. 2.1. The divide-and-conquer algorithm for block-tridiagonal matrices with rank-one off-
diagonal blocks.

3. Unbalanced Merging Operations. In the standard divide-and-conquer
method for a given irreducible tridiagonal matrix the block sizes k; can be chosen
by the user or by the algorithm. Usually this is done by breaking the original matrix
in two and then repeatedly halving the sizes of the submatrices. Except for potential
differences in the early stages of the synthesis phase, the block sizes are therefore
essentially equal [18, 21]. The situation considered in this paper is slightly more com-
plicated because the sizes k; of the diagonal blocks B; are assumed to be determined
a priori (as indicated in (1.1)) and may be unequal.

Unequal block sizes influence two important aspects of the algorithm presented:
its arithmetic complexity and its workspace requirements. Although the sequence of
block sizes {k;};_, is given a priori, there is some freedom in choosing the order in
which (neighboring) blocks are to be merged. It will be illustrated in Sections 3.1
and 3.2 that for a sequential algorithm it is beneficial to choose the merging order
such that the merging operations are as “balanced” as possible.

In Sections 3.1 and 3.2, we investigate the arithmetic complexity of a single merg-
ing operation involving a ¢ x ¢ block A; and an (I — ¢) x (I — ¢) block A, where
1 <e<Il-1. ¢ will also be called the cut point between the two blocks. If ¢ = [I/2]
the merging operation is called balanced, if ¢ < [I/2] or ¢ > [I/2] it is called unbal-
anced. The nonzero portions u and v of the associated correction vector z are assumed
to be of size by and bs, respectively (thus, by = k; 11 and by = k; for some).

If the merging operation occurs at the beginning of the merging process, i.e., if
it involves two original (neighboring) blocks of (1.1) which are leaves of the merging
tree, then by = c and by =1 — c. If the merge occurs at a later stage of the merging
process, i.e., if it involves two blocks which are themselves the result of at least one
merging operation, then 1 < b; < cand 1 < by <[—c¢. In the final merging operation,
l=n.

The effects of the merging order in the context of the full synthesis phase for p > 2
are illustrated in Section 3.3 by comparing a very bad merging order (unbalanced
merges) with a very good merging order (balanced merges) for an example problem.
In Section 3.4 an approach for determining a good merging order will be described.

3.1. Arithmetic Complexity. For a given sequence {k;}}_, of block sizes the
flop counts of several operations of Algorithm 2.1 are independent of the cut points c.
This includes the correction operations in Step A and the solution of the subproblems
in Step B. The flop count for solving a secular equation (2.6) and for computing the
eigenvectors of the synthesis problem in Step C.ii can also be considered independent
of the cut point ¢. There are, however, two operations in the synthesis phase, whose
flop counts depend on c.

1. Update of the modification vector z (cf. Step C.i in Algorithm 2.1): The
matrix-vector products

QI(E,’) and QJ(S)

(3.1) ¢(2ba — 1)+ (I —c¢)(2by — 1) = 2¢(by — by) +1(2b; — 1) flops.

require

Considered separately, expression (3.1) would favor unbalanced merging op-
erations, i.e., ¢ as small or as large as possible, depending on whether b, — b,
is greater or less than zero.

2. Multiplication of the intermediate eigenvectors X with the eigenvectors @) of
the synthesis problem (cf. Step C.iii in Algorithm 2.1):
Assuming for simplicity that no deflation has occurred (which implies that
we compute an upper bound for the arithmetic complexity of this operation),
the ¢ x ¢ block of eigenvectors of A, has to be multiplied with the upper ¢ x [
part of the eigenvector matrix () of the synthesis problem which requires

(3.2) cl(2¢—1) flops.

Multiplication of the (I—¢) x (I — ¢) block of eigenvectors of Ay with the lower
(I — ¢) x I part of the eigenvector matrix @ of the synthesis problem requires

(3.3) (-l (2(—-c)—1) flops.

Adding up (3.1), (3.2), and (3.3) yields W (c), an upper bound for the portion of the
arithmetic complexity of a single merging operation depending on the cut point c:

(3.4) W(e) =4l +c(2(by —by) —41%) + 20> = 1> +1(2b; — 1) flops.

Asymptotically, the updates of the eigenvectors (Step C.iii) are the most expensive
parts of the synthesis phase and also of the entire divide-and-conquer algorithm 2.1
(cf. [8, 10]). Therefore, the dominating terms of the arithmetic complexity of the full
algorithm can be computed based on W (c) (see Section 3.3.1).

Investigation of the first and second derivative of W (c) in terms of ¢ reveals that
W (c) has a minimum at

L1 by—b
(3.5) ¢’ =3 v
with the value
2
(3.6) W(c*):l3—l2+l(bl+b2—1)—%.
Note that [bs — b1| < I, thus
by — by 1
a |ST

and therefore (3.5) implies that the closest integer value to ¢* is 1/2 if [is even and
either (I +1)/2 or (I —1)/2 if | is odd. This means that the optimum cut point
for a single merging operation in terms of arithmetic complexity is either [I/2] or

L(I+1)/2].

Comparison of the highest order terms in (3.4) and (3.6),
(3.7) W(e) ~20° — (4c + 1) 1> + 4c%1
(3.8) W(c*) ~1? - 12

shows that asymptotically the “penalty” to be paid for an unbalanced merging oper-
ation in which the cut point deviates from c* is

W(e) 21 4c+1 N 4c?
W) Si-1 1-1 Ti-n
7

This quadratic function in ¢ has the minimum value 1 at ¢ = ¢* =1/2. Its maximum
value occurs at the boundaries, i.e., forc=1orc=1-1:

W) wi-1 2 5 4

(39) W) W) -1 1—-1"1(-1)

For large [, (3.9) approaches the value 2. Thus,
W(er) < W(e) < 2W(c"),

3.2. Workspace Requirements. The implementation of the block-tridiagonal
divide-and-conquer algorithm is based on the LAPACK [1] implementation of the
tridiagonal divide-and-conquer algorithm (LAPACK/*stedc and dependencies). Sev-
eral routines had to be modified, some others could be used directly. New as-
pects arise from unequal block sizes. The routine LAPACK/*laedl formally requires
min(1,7) < ¢ <1/2 which cannot be guaranteed in the block-tridiagonal divide-and-
conquer algorithm (it may well happen that the first of two blocks involved in a
merging operation is larger than the second one).

In the following, we give an analysis of the total workspace requirements of
our implementation of the block-tridiagonal divide-and-conquer algorithm, which are
strongly influenced by the design of the LAPACK routines (see [18]). It is shown that
highly unbalanced merging operations may significantly increase the workspace re-
quirements. This observation again underlines the benefits of a merging order where
merging operations are as balanced as possible (see Section 3.4).

3.2.1. Workspace for Vectors. Workspace of S, := 3n floating point numbers
is required for storing intermediate vectors, just like in the original LAPACK routines.

3.2.2. Eigenvectors Before the Merging Operation. As in Algorithm 2.1
let X denote the matrix containing the eigenvectors of the two subproblems to be
merged. The workspace Sx required for storing X is

(3.10) Sx :=c(c1 +c2) + (I —¢)(c2 + ¢3)

floating point numbers. Here, ¢; denotes the number of columns in X which are of
“type 1” (nonzero in the upper part only), co denotes the number of columns in X
which are of “type 2” (dense), and c3 denotes the number of columns in X which are
of “type 3” (nonzero in the lower part only).

Before deflation, ¢; = ¢, co = 0, and ¢3 = [— ¢. Columns of type 2 are created
when (almost) equal eigenvalues are deflated which appear in the upper and in the
lower block: The Householder/Givens transformations G with GG" = I used to zero
out corresponding entries in the Z-vector

X(D+2:T)XT=XGT (GDGT +Gz:"GT)GX T

may cause a fill-in in the upper/lower part of X, because the operation XG " forms
linear combinations of the columns of X which correspond to (almost) equal eigen-
values. If these happen to be in different blocks of D, then the lower/upper parts of
the corresponding columns of X fill up.

This implies that an upper bound on ¢ is given by the total number of eigenvalues
deflated:

where k denotes the number of non-deflated eigenvalues. Every deflated eigenvalue
may potentially add two columns to c¢» (by filling up the upper part and the lower
part of two columns of X) while taking away one column from ¢; and c3 each. Thus,

-k -k
(3.11) cl+02§c—|—T and 02+C3§l—C+T-

Substituting (3.11) into (3.10) yields

2
(3.12) ng—g+%+02+(l—c)2.

Note that less deflation (larger k) implies a lower bound for the workspace require-
ments Sx.

3.2.3. Multiplication of the Eigenvector Matrices. The matrix multiplica-
tion in the routine LAPACK/*1laed3 for establishing the updated (intermediate) eigen-
vector matrix X (Step C.iii in Algorithm 2.1) requires a workspace of

Ss:=max{(c1 +c2) k, (c2 +¢3) k}

floating point numbers for copying row blocks of @ consisting of the first ¢; + co and
the last ¢z + ¢3 rows, respectively, into a temporary array S (see also [18]). The
bounds (3.11) imply

Ss <k (max{c,l—c}+#>.

CaseI: ¢c<l-c¢ & ¢<1/2 leadsto

k? 3l
. <- = _e).
(3.13) Ss < 2+k<2 c)
CaseII: ¢c>l—-c & c¢>1/2 leadsto
k2 l
(314) SSS—?-FIC §+C .

Note that in both cases, less deflation (larger k) also implies a lower bound on the
workspace requirements Ss.

3.2.4. Total Workspace Requirements.
Case I: 1<c¢<1/2
(3.12) and (3.13) imply
k? 12 N 2
SX+55§—?+k(l—c)+5+c +(—-c).

Investigation of the first and second derivative of this upper bound in terms
of k reveals that it achieves a maximum if ¢ eigenvalues are deflated, i.e. for

k" =1-c.

Therefore, a sharp upper bound for Sx + Sg independent of how much de-
flation occurs is
2 3(1-c¢°

(3.15) SX+SSSE+T+C'

9

Investigation of the first and second derivative in terms of ¢ reveals that
the quadratic function on the right hand side of (3.15) has a minimum for
¢ = 31/5. This value is not within the range considered, and therefore the
actual minimum occurs at the upper boundary, for

(3.16) ¢t =<

with the function value
9_l2
8
At the lower boundary (for ¢ = 1), the upper bound (3.15) achieves its maxi-

mum 2{? — 3]+ 5/2, and therefore the best general upper bound for Sx + Ss
independent of k£ and c is given as

(3.17)

(3.18) Sx + Ss < 21% — 31 + 3.

CaseII: [/2<c¢<I-1
(3.12) and (3.14) imply
k2 12) N
Sx + Ss < —?+kc+5+c +(-0)".
Investigation of the first and second derivative of this upper bound in terms
of k reveals that it achieves a maximum if [— ¢ eigenvalues are deflated, i.e.
for

k* =c.

Therefore, a sharp upper bound for Sx + Ss independent of how much de-
flation occurs is

l2 2 302
(3.19) SX+55§5+(l—c) +

Investigation of the first and second derivative in terms of ¢ reveals that
the quadratic function on the right hand side of (3.19) has a minimum for
¢ = 21/5. This value is not within the range considered, and therefore the
actual minimum occurs at the lower boundary, for

(3.20) ¢t ==

with the function value
9_l2
8
At the upper boundary (for ¢ = [— 1), the upper bound (3.19) achieves its

maximum 2[? —3[+5/2, and therefore also in this case the best general upper
bound Sx + Sg independent of k and c is given as

(3.21)

(3.22) Sx +Ss <21* -3l +3.

(3.16) and (3.20) show that the cut point ¢* which yields the lowest workspace require-
ments over all possible deflation scenarios is essentially the same which minimizes the
arithmetic complexity of the merging operation as discussed in Section 3.1.

10

3.3. The General Case. After having investigated the influence of the cut
point ¢ on arithmetic complexity and workspace requirements of a single merging
operation we now turn to a discussion of the effects in the framework of a general
synthesis phase consisting of p — 1 merging operations.

3.3.1. Arithmetic Complexity. Expression (3.4) shows how the arithmetic
complexity of updating modification vector and eigenvectors in one merging opera-
tion depends on the cut point ¢, and expression (3.6) gives its minimum value for the
optimal c¢*. Utilizing these expressions allows one to illustrate the potentially signifi-
cant increase of the arithmetic complexity caused by a bad choice of the merging order
in the synthesis phase of the full block-tridiagonal divide-and-conquer algorithm.

We consider the following example: n = 29 and p = n/2+1 = 291 +1. The block
sizes are k; = 2971 ky = k3 = ... kye-1,1 = 1. Two different merging strategies will
be compared: in the first one all the merging operations are as unbalanced as possible,
whereas in the second one all the merging operations are perfectly balanced. In the
analysis, the leading-term approximations (3.7) and (3.8) for the expressions (3.4)
and (3.6) are used.

Unbalanced Merges: Merge B; with Bs, the resulting block with Bs, the resulting
block with By, etc.
This may be considered an unnatural and somewhat artificial merging order
for the matrix considered. Nevertheless, the intention is to illustrate the ef-
fects of unbalanced merges in a “worst case” scenario. The natural approach
for this problem, subdividing between the first large block and the tridiagonal
part, then treating the tridiagonal part using the standard divide-and-conquer
algorithm for a tridiagonal matrix, and eventually performing one final merg-
ing operation with the first block, is investigated later as the alternative
strategy called “balanced merges”.
For the strategy of unbalanced merges, the intermediate block sizes [; in the
synthesis phase are given as

(3.23) =201+, i=1,...,271
and the cut points c; as
(3.24) cG=U—-1, i=1,...,21""%

i.e., every single merging operation is as unbalanced as possible.
Substituting (3.23) for [and (3.24) for ¢ into (3.7) and summing over all
the merging operations yields an upper bound Wy (because no deflation was
assumed) for the total arithmetic complexity of the updates of modification
vectors and eigenvectors in the synthesis phase for unbalanced merges:

2971

Wo =3 (2027 +i)’ =5 (207 i) +4(207 +1))
i=1
n/2

2 3_ 2
=3 <2z‘3 +i2(3n—5) +i (3%—5%4) + w>
i=1

15, T a7

T " TR
It is worth noting that this unfavorable merging order leads to an O(n?) (!)
arithmetic complexity for the special problem considered.

11

Balanced Merges: Merge the small blocks first. Start with 2¢-2 merges of neig-
boring blocks of size 1 (By; with Baj1, i =1,2,...2972), then perform 2¢~3
merges of the resulting blocks of size 2, then perform 2¢=% merges of the re-
sulting blocks of size 4, etc. After 29-! — 1 merging operations, all original
blocks of size one have been merged into a single block of size 2971, In the
final merging operation, this block is merged with B;.

For this merging order, the intermediate block sizes I; in the synthesis phase
are given as

(3.25) ;=2 i=1,2,...,q,
and the cut points ¢; as
Ci:li/2, i:1,2,...,q,

i.e., every single merging operation is perfectly balanced.

Substituting (3.25) for [into (3.8) and summing over all merging operations
yields an upper bound Wg (because no deflation was assumed) for the total
arithmetic complexity of updates of the modification vectors and eigenvectors
in the synthesis phase for balanced merges:

Wi =202 ((21)7 = (21)") +202 ((2)" - (2)") +.
+2((27)" = (207%)) + (207 (2q N 4+ (21)? - (29)°

—1
— n3 _n2 + Z 2(1 1424 _ 24— 1+z)

i=1

n 2 n 2
3 2 o i Y i
=n n+22 4 22 2

=1 =
7 3 1
:6n3—§n2+§n

Thus, the favorable balanced merging operations lead to an O(n?) arithmetic

complexity for the special problem considered, which is an order of magnitude

lower than the unbalanced merges.
This example illustrated “worst” and “best” case scenarios. In most practical prob-
lems the arithmetic complexities corresponding to different merging orders will usually
not differ that much. Nevertheless, for a given sequence of block sizes the arithmetic
complexities associated with different merging strategies may still vary significantly.
Therefore, the choice of a good merging order in the synthesis phase (see Section 3.4)
is crucial for efficiency.

3.3.2. Workspace Requirements. The discussion in Section 3.2 was appli-
cable to any single merging operation occurring in the block-tridiagonal divide-and-
conquer algorithm. Obviously, the workspace requirements for the entire algorithm are
determined by the maximum over all merging operations. This maximum is achieved
in the final merging operation where [= n.

Accounting for S, = 3n in (3.18) or (3.22) yields an upper bound for the total
floating-point workspace required by the block-tridiagonal divide-and-conquer algo-
rithm:

Sy + Sx +Sg < 2n? + 3.
12

The minimum workspace requirements allowing for all possible deflation scenarios
may be as low as

9 5

- 3

8n + on
floating point numbers (cf. (3.17) and (3.21)). In the best case—if no deflation hap-
pens at all in the last merging operation (c2 = 0), and if ¢ = n/2—a workspace of
only n? + 3n floating point numbers suffices.

3.4. Determination of a Merging Order. It has been shown in Sections 3.1,
3.2, and 3.3 that equally sized blocks in a merging operation lead to the lowest arith-
metic complexity and therefore to the highest efficiency, as well as to the lowest
workspace requirements. Therefore, we determine a merging order in the sequential
block-tridiagonal divide-and-conquer algorithm such that blocks to be merged differ
as little as possible in size.

Merging operations and their eigenvector updates towards the end of the synthesis
phase dominate the arithmetic complexity of the entire algorithm (because [is close
to n). Consequently, highest priority is assigned to minimizing the difference in block
sizes in the final merging operation. The cut point which corresponds to the minimum
complexity of this final merging operation is determined by finding the index 7, 1 <
j < p—1, such that

J n Jj+1
k < = d ki > —

The cut points for the previous merges in each of the two parts are determined by
continuing this process recursively above and below the final cut point.

Note that this recursive strategy is not optimal in a rigorous sense because it does
not minimize the overall arithmetic complexity of the synthesis phase for all possible
sequences of block sizes. A simple generic example illustrates this: For a sequence
{m, 1,1, m} of block sizes the strategy used would merge the first with the second
and the third with the fourth block, resulting in the sequence {m + 1,m + 1}, and
finally merge two equally sized blocks. Using the leading term approximations (3.7)
and (3.8) this amounts to 12m? + O(m?) flops. A different merging order would lead
to a lower flop count: First merging the two small blocks in the middle, resulting in
the sequence {m, 2, m}, then the first two blocks, resulting in the sequence {m+2,m},
and finally two blocks of slightly different sizes requires only 10m3 + O(m?) flops.

However, even in these cases the strategy used tends to be not much more expen-
sive than the theoretical optimum. This fact and the significantly larger overhead for
determining an optimal merging order in the rigorous sense led to the decision to use
the recursive strategy described above.

4. Numerical Aspects. An error analysis of Cuppen’s divide-and-conquer al-
gorithm for tridiagonal matrices was given by Barlow [5]. The numerical stability of a
slightly modified divide-and-conquer algorithm for tridiagonal matrices was shown by
Gu and Eisenstat [14, 15]. Many elements of these analyses can be carried over directly
to the algorithm discussed in this paper. It can be seen that the block-tridiagonal
divide-and-conquer algorithm computes a numerical spectral decomposition VAVT
such that

M,=VAV' +0 <5n < max || B;lls + ax o,-)) ,
i=1,2 i=1,2,.p

=1,2,...,

13

where quantities superscripted with a hat distinguish computed quantities from exact
quantities and ¢ denotes the machine precision (unit roundoff).

The norm of the floating-point error 0B, := B;— B, of each of the correction operations
in Step A of Algorithm 2.1 can be bounded by

16B1[l2 < ek (2||Bill2 + 501) + O(?),

I6Billa < ki (2||Bill2 + 504—1 + 50) + O(€?), i=2,3,...,p—1,

16Byll> < ek (21 Byll2 + 50,-1) + O(e?),
and therefore the entire floating-point error made in the subdivision phase can be
bounded by

10en (max ||Bi|ls + max a,-) + 0(e%).
1=1,2,...,p 1=1,2,...,p

Provided a backward stable algorithm is used to compute the spectral decompo-
sitions in Step B in Algorithm 2.1, the errors made when computing the eigenvalues
d; of the subproblems can be bounded as

|d; —d;] < O(e) max ||Bjll2, i=1,2,...,n
J=1,2,...,p
according to Weyl’s theorem (see, for example, [8]).

The method used for computing the spectral decomposition of the rank-one mod-
ification problems arising in Step C.ii of Algorithm 2.1 is the one developed by Gu
and Eisenstat [14]. Therefore, for the synthesis part of the algorithm described in
Section 2.3 their analysis can be directly applied, showing that the eigenvalues are
computed to high absolute accuracy. They also showed that the vector z is close to
z in high absolute accuracy and that these properties suffice to compute the spectral
decomposition of a rank-one modification of a diagonal matrix numerically stably.
Therefore each numerically computed eigendecomposition of a rank-one modification
problem satisfies

Dy + 0y wFh = QAw@T + 0 (e (1Dl + o) 12 113))
where @ is numerically orthogonal.

5. Experiments. The block-tridiagonal divide-and-conquer method has been
implemented in Fortran 77 (dsbtdc) and evaluated experimentally. In Section 5.1 it
is compared to corresponding LAPACK routines, and in Section 5.2 the effects of the
merging order for unequal block sizes are illustrated.

Experiments were performed on a number of test matrices. Symmetric blocks
B; as well as vectors u; and v;, which determine the rank-one off-diagonal blocks E;,
were created randomly using Matlab. o; = 1 (¢ = 1,2,...,p — 1) was chosen for
all test matrices. The computations were done on a SUN Ultra 5 Workstation with
a 400 MHz UltraSPARC-IIi processor in double precision with a machine precision
e=1.1-10"16,

The accuracy of each method is measured by the scaled residual error R and by
the departure from orthogonality O of the eigenvectors, defined by

[t |
R:= max ————F—= and
B P VAR
O := max (VTV - I) el .
i=1,2,...,n 2

5.1. Equally Sized Blocks. dsbtdc is compared with the routines
e LAPACK/dsbevd for a banded symmetric matrix, which performs tridiagonal-
ization, the tridiagonal divide-and-conquer method, and finally the backtrans-
formation of the eigenvectors, as well as
e LAPACK/dsyev for a general symmetric matrix, which performs tridiagonal-
ization, the QR-algorithm on the tridiagonal matrix, and finally the back-
transformation of the eigenvectors.
Results are shown for the following three matrices:
o M7y, m=620; p=124; block sizes k; =5,1=1,2,...,p
o Msy: n =620; p=62; block sizes k; =10,1=1,2,...,p
o M$: n=620; p=31; block sizes k; =20,i=1,2,...,p
The narrowest band matrix which fully contains the corresponding block-tridiagonal
matrix was used as input for LAPACK/dsbevd. This matrix contains 2(p — 2) zero
n/p x n/p triangles in addition to the block-tridiagonal matrix. These triangles fill
up during the tridiagonalization performed by LAPACK/dsbevd. However, a direct
comparison for block-tridiagonal matrices is not possible, and especially for large
values of p the difference is not very big. For LAPACK/dsyev, the block-tridiagonal
matrix was completed to a full matrix by zero entries.

The experiments are summarized in Table 5.1. Tpp,Trp and Trr denote the
runtimes of dsbtdc, LAPACK/dsbevd and LAPACK/dsyev, respectively. The results
show that due to being able to take advantage of the special structure of the off-
diagonal blocks as well as due to improved data-locality which is important for the
memory hierarchies of modern computer systems the block-tridiagonal divide-and-
conquer algorithm is more efficient than the standard method for banded eigenvalue
problems while achieving the same level of accuracy.

TABLE 5.1
Comparison for block-tridiagonal matrices with equally sized blocks.

[Routine | Mt | M§, | M5, |
dsbtdc
Tsr [$] 1.6 2.5 3.1
R 14-107% | 1.6-10715 | 1.2.107!®
R |[My,

1.4-107%% | 1.6-10715 | 1.2.107%
3.9-107% | 49-1071% | 6.5-10715

max || B;||2+max o;

LAPACK/dsbevd
Trp/Ter 5.0 3.5 34
R 23-107™ | 6.8-1071° | 6.3-1071°
@) 26-107™ | 84-1071% | 8.0-1071°
LAPACK/dsyev
Trr/Ter 12.1 7.1 6.5
R 49-107% | 56-10715 | 3.7-10715
@) 1.4-107 | 1.3-107* | 1.1-107

5.2. General Blocks. The two testmatrices
e M?!: n =1500; p = 8; block sizes {k;}5_, = {5,180,190, 375, 5,180, 190, 375}
e M: n = 1500; p = 8; block sizes {k;}5_, = {375,190, 375,190, 180, 180, 5, 5}
differ only in the order of their diagonal blocks. However, the merging operations
for M{ are quite nicely balanced (except for two initial merges), whereas most of the

15

merging operations for M{' (in particular the ones towards the end of the synthesis
phase) are unbalanced.
Table 5.2 shows the corresponding experimental data.

TABLE 5.2
Influence of unequal block sizes on execution time.

[Routine [[y]
dsbtdc
Tsr [s] 39.2 46.2
R 2.5-10715 | 3.6-1071°
R || Mpl]l,

2.4-1015 | 3.3.10°1°
1.8-1071* | 1.7-10~4

max || B;|[2+max o;

LAPACK/dsbevd
TLB/TBT 5.3 4.7
R 7.7-1071% | 7.6-1071°
O 1.5-107™ | 1.7.-10714
LAPACK/dsyevd
TLrTr 6.9 7.6
R 9.3-107'% | 5.6-10715
O 1.9-107™ | 1.4-10714

6. Conclusion. It has been shown that for a special class of block-tridiagonal
matrices the divide-and-conquer approach for computing the spectral decomposition
can be directly extended and yields very attractive results in terms of efficiency and
accuracy.

The implications of unequally sized blocks have been studied. A reliable method
for determining a merging order whose associated arithmetic complexity is at least
close to optimal for any given sequence of block sizes has been proposed.

The algorithm presented in this paper provides approzimate eigenpairs if the off-
diagonal blocks of a general block-tridiagonal matrix, which in general have a rank
higher than one, are approximated by rank-one matrices. In some instances this
approximation may not be accurate enough. However, the algorithm will be extended
to allow for higher rank approximations of the off-diagonal blocks E;. If they are not
of rank one, then the singular value decompositions (see [13])

ki
E; =) omw), i=12,...,p-1,

i=1
can be used for constructing approximations of arbitrary rank corresponding to the
largest singular values o;. The authors are currently developing these ideas in order
to utilize higher rank approximations of the off-diagonal blocks if required. This
approximative approach will be illustrated in more detail in a separate forthcoming
paper.

References.

[1] E. ANDERSON, Z. Bal, C. H. BISCHOF, S. BLACKFORD, J. W. DEMMEL, J. J.
DONGARRA, J. DUCROZ, A. GREENBAUM, S. HAMMARLING, A. MCKENNEY,
AND D. C. SORENSEN, LAPACK Users’ Guide, SIAM Press, Philadelphia, PA,
3 ed., 1999.

16

[2]
[3]

[4]

[5]
[6]

[11]

[12]
[13]

[14]

[15]
[16]
[17]

[18]

[19]

[20]

[21]

P. ARBENZ, Divide and conquer algorithms for the bandsymmetric eigenvalue
problem, Parallel Comput., 18 (1992), pp. 1105-1128.

P. ArRBENZ, W. GANDER, AND G. H. GOLUB, Restricted rank modification of
the symmetric eigenvalue problem: Theoretical considerations, Linear Algebra
Appl., 104 (1988), pp. 75-95.

P. ArRBENZ AND G. H. GOLUB, On the spectral decomposition of hermitian
matrices modified by low rank perturbations with applications, SIAM J. Matrix
Anal. Appl., 9 (1988), pp. 40-58.

J. L. BARLOW, Error analysis of update methods for the symmetric eigenvalue
problem, STAM J. Matrix Anal. Appl., 14 (1993), pp. 598-618.

J. R. BuncH, C. P. NIELSEN, AND D. C. SORENSEN, Rank-one modification
of the symmetric eigenproblem, Numer. Math., 31 (1978), pp. 31-48.

J. J. M. CupPEN, A divide and conquer method for the symmetric tridiagonal
eigenproblem, Numer. Math., 36 (1981), pp. 177-195.

J. W. DEMMEL, Applied Numerical Linear Algebra, SIAM Press, Philadelphia,
PA, 1997.

J. J. DONGARRA AND D. C. SORENSEN, A fully parallel algorithm for the sym-
metric eigenproblem, STAM J. Sci. Comput., 8 (1987), pp. s139-s154.

W. N. GANSTERER, J. SCHNEID, AND C. W. UEBERHUBER, A divide-and-
conquer method for symmetric banded eigenproblems. part ii: Complezity anal-
ysis, Technical Report AURORA TR1999-14, Vienna University of Technology,
1999.

K. GATES AND P. ARBENZ, Parallel divide and conquer algorithms for the
symmetric tridiagonal eigenproblem, Technical Report 222, Institut fiir Wis-
senschaftliches Rechnen, ETH Ziirich, 1994.

G. H. GoLus, Some modified matriz eigenvalue problems, STAM Rev., 15 (1973),
pp- 318-334.

G. H. GoruB anD C. F. VAN LOAN, Matriz Computations, Johns Hopkins
University Press, Baltimore, MD, 3 ed., 1996.

M. GuU AND S. C. EISENSTAT, A stable and efficient algorithm for the rank-one
modification of the symmetric eigenproblem, STAM J. Matrix Anal. Appl., 15
(1994), pp. 1266-1276.

— A divide-and-conquer algorithm for the symmetric tridiagonal eigenprob-
lern, STAM J. Matrix Anal. Appl., 16 (1995), pp. 172-191.

R.-C. Li, Solving the secular equations stably and efficiently, LAPACK Working
Note 89, University of Tennessee, Knoxville, TN, Nov. 1994.

K. LOWNER, Uber monotone Matrizfunktionen, Math. Z., 38 (1934), pp. 177-
216.

J. RUTTER, A serial implementation of cuppen’s divide and conquer algorithm for
the symmetric eigenvalue problem, LAPACK Working Note 69, Computer Science
Division (EECS), University of California at Berkeley, Berkeley, CA, 1994.

D. C. SORENSEN AND P. T. P. TANG, On the orthogonality of eigenvectors
computed by divide-and-conquer techniques, STAM J. Numer. Anal., 28 (1991),
pp- 1752-1775.

A. SzABO AND N. S. OSTLUND, Modern Quantum Chemistry, Dover Publica-
tions, Mineola, NY, 1996.

F. TISSEUR AND J. J. DONGARRA, A parallel divide and conquer algorithm for
the symmetric eigenvalue problem on distributed memory architectures, SITAM J.
Sci. Comput., 20 (1999), pp. 2223-2236.

17

