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al Report UT-CS-00-447 1University of TennesseeSeptember 2000Abstra
t. A divide-and-
onquer method for 
omputing eigenvalues and eigenve
tors of a blo
k-tridiagonal matrix with rank-one o�-diagonal blo
ks is presented. The impli
ations of unbalan
edmerging operations due to unequal blo
k sizes are analyzed and illustrated with numeri
al examples.It is shown that an unfavorable order for merging blo
ks in the synthesis phase of the algorithm maylead to a signi�
ant in
rease of the arithmeti
 
omplexity. A strategy to determine a good mergingorder whi
h is at least 
lose to optimal in all 
ases is given.1. Introdu
tion. We 
onsider the problem of 
omputing eigenvalues and eigen-ve
tors of an irredu
ible symmetri
 blo
k tridiagonal matrixMp := 0BBBBBB� B1 E>1E1 B2 E>2E2 B3 . . .. . . . . . E>p�1Ep�1 Bp
1CCCCCCA 2 Rn�n ;(1.1)where the blo
ks Bi 2 Rki�ki (i = 1; 2; : : : ; p) along the diagonal are symmetri
, andthe o�-diagonal blo
ks Ei 2 Rki+1�ki (i = 1; 2; : : : ; p� 1) have rank one:Ei = �iuiv>iwith kuik2 = kvik2 = 1 and �i > 0. The blo
k sizes ki have to satisfy 1 � ki < n andPpi=1 ki = n.Many appli
ations, e.g., the self-
onsistent-�eld pro
edure in Quantum Chem-istry [20℄, yield 
omputational matrix eigenproblems with the property that the mag-nitudes of the matrix elements rapidly de
rease as they move away from the diag-onal; thus, they 
an be approximated by matri
es of the form (1.1). Although theo�-diagonal blo
ks Ei of the matri
es arising in these problems are in general notrank-one matri
es, it is possible to approximate them with rank-one matri
es, and inmany appli
ations, the approximations may be suÆ
ient for the desired a

ura
y.�Department of Computer S
ien
e, University of Tennessee, 203 Claxton Complex, 1122 Volun-teer Blvd., Knoxville, TN 37996-3450yMaterials and Pro
ess Simulation Center, Be
kman Institute, California Institute of Te
hnology139-74, Pasadena, California, 91125xThis work was supported by the A
ademi
 Strategi
 Allian
es Program of the A

eleratedStrategi
 Computing Initiative (ASCI/ASAP) under sub
ontra
t number B341492 of DOE 
ontra
tW-7405-ENG-48.1Available from: http://www.
s.utk.edu/~library/Te
hReports.html



Related Work. The standard divide-and-
onquer method for 
omputing eigen-values and eigenve
tors of a tridiagonal symmetri
 matrix has been developed byCuppen [7℄. The 
ore of this algorithm is a method for eÆ
iently 
omputing thespe
tral de
omposition of a rank-one modi�
ation of a diagonal matrix whi
h hasbeen given in [12, 6℄. Over time numeri
ally stable and eÆ
ient implementations ofCuppen's method were developed [9, 19, 14, 15, 18℄.The divide-and-
onquer approa
h not only has attra
tive parallelization proper-ties [21, 11℄, in 
ombination with tridiagonalization it is even sequentially one of thefastest methods 
urrently available if all eigenvalues and eigenve
tors of a large denseor banded symmetri
 matrix are to be 
omputed [8℄.Several variants of generalizing the divide-and-
onquer approa
h to banded ma-tri
es have been investigated ([2℄ based on [4, 3℄; more re
ently [10℄). One of the
entral questions remains numeri
al stability and although promising advan
es havebeen made no �nal method has been established (yet).2. Mathemati
al Con
ept. The algorithm presented here is an extension ofCuppen's tridiagonal divide-and-
onquer method for 
omputing eigenvalues and eigen-ve
tors of the symmetri
 blo
k-tridiagonal matrix (1.1). Three phases 
an be distin-guished: (i) subdivision, (ii) solution of subproblems, and (iii) synthesis of the solu-tions of the subproblems. These phases are illustrated in more detail in Se
tions 2.1to 2.3. In order to simplify the presentation of the basi
 
on
epts, the spe
ial 
asep = 2 (two diagonal blo
ks) is 
onsidered �rst. The general 
ase p > 2 is dis
ussed inSe
tion 2.4.2.1. Subdivision. Firstly, the matrixM2 := � B1 E>1E1 B2 � = � B1 �1v1u>1�1u1v>1 B2 �is represented as a rank-one modi�
ation of a blo
k diagonal matrix ~M2:M2 = � B1 � �1v1v>1 00 B2 � �1u1u>1 �+ �1� v1u1 �� v>1 u>1 �(2.1) = ~M2 + �1� v1u1 �� v>1 u>1 � :2.2. Solution of Subproblems. Se
ondly, the spe
tral de
ompositions of thede
oupled diagonal blo
ks~B1 := B1 � �1v1v>1 ; ~B2 := B2 � �1v1v>1of ~M2 
an be 
omputed independently:~B1 = Q1D1Q>1 and ~B2 = Q2D2Q>2 :(2.2)Substituting (2.2) into (2.1) yieldsM2 = � Q1 Q2 ��� D1 D2 �+ �1zz>�� Q>1 Q>2 �(2.3)where z := � Q>1 Q>2 �� v1u1 � :(2.4) 2



(2.3) shows thatM2 is orthogonally similar to a rank-one modi�
ation of the diagonalmatrix D := � D1 D2 � :2.3. Synthesis of the Solution of the Subproblems. In the third phase ofthe algorithm, the spe
tral de
ompositionD + �1zz> = Q�Q>(2.5)is 
omputed (i. e., the 
orresponding diagonal blo
ks D1 and D2 are \merged"). Themethod used is identi
al to the one in the standard divide-and-
onquer algorithm fora tridiagonal matrix.2.3.1. Eigenvalues of the Synthesis Problem. After de
ation [6, 7, 9℄ itis guaranteed that the ve
tor z has k � n nonzero 
omponents �i and that the
orresponding k entries di of the diagonal matrix D are all distin
t. The eigenvalues�i in (2.5) 
an now be 
omputed as the solutions of the se
ular equation [12℄f(�) := 1 + �1 kXi=1 �2idi � � = 0:(2.6)Just like in the tridiagonal divide-and-
onquer method, the di are poles of f(�), andf(�) is stri
tly in
reasing between these poles. Moreover, its zeros, the eigenvalues �i,interla
e the di. Equation (2.6) is solved with a usually very fast 
onverging versionof Newton's method whi
h uses a rational approximation of f(�) between two polesdi and di+1 ([16, 6℄, also see the routine LAPACK/*laed4).2.3.2. Eigenve
tors of the Synthesis Problem. As shown in [6℄, the eigen-ve
tor qi of (2.5) 
orresponding to the eigenvalue �i is given byqi = (D � �iI)�1 z:(2.7)However, using (2.7) for 
omputing the eigenve
tors of (2.5) is not numeri
ally stableand 
an lead to a loss of numeri
al orthogonality if the 
orresponding eigenvalues �iand �j are very 
lose to ea
h other [7, 9, 19℄. Therefore, a slightly modi�ed, numeri-
ally stable method introdu
ed by Gu and Eisenstat [14℄ has to be used, exa
tly as inthe tridiagonal divide-and-
onquer method. The 
entral idea is to apply formula (2.7)to a nearby problem D + �z�z> with a modi�
ation ve
tor �z whi
h 
an be 
omputedeÆ
iently to 
omponentwise high relative a

ura
y and for whi
h the 
omputed eigen-values are \exa
t". A theorem by L�owner [17℄ shows how to 
ompute the ve
tor �zfrom the di and the �i.Substituting the spe
tral de
omposition (2.5) into (2.3) reveals that the diagonalmatrix � 
ontains the desired eigenvalues of M2 and that its eigenve
tors V 
an be
omputed a

ording to V = � Q1 Q2 �Q:(2.8)2.4. The General Case. The main di�eren
es between the algorithm for p = 2illustrated in Se
tions 2.1 to 2.3 and the general 
ase p > 2 lie in the subdivision andsynthesis phases. After a dis
ussion of the three phases for the general 
ase, the 
om-plete blo
k-tridiagonal divide-and-
onquer method is summarized in Algorithm 2.1.3



2.4.1. Subdivision. With the 
orre
tions~B1 := B1 � �1v1v>1~Bi := Bi � �i�1ui�1u>i�1 � �iviv>i ; i = 2; 3; : : : ; p� 1~Bp := Bp � �p�1up�1u>p�1;Mp 
an be represented as a series of p� 1 rank-one modi�
ations of a blo
k-diagonalmatrix ~Mp, with the ~Bi (i = 1; 2; : : : ; p) along its diagonal.2.4.2. Solution of Subproblems. The spe
tral de
ompositions~Bi = QiDiQ>i ; i = 1; 2; : : : ; p;of the p diagonal blo
ks of ~Mp make it possible to 
onstru
t a diagonal matrixD := 0B� D1 . . . Dp 1CAand a blo
k-diagonal matrix X := 0B� Q1 . . . Qp 1CAsu
h thatD + �1X>0� v1u10 1A� v>1 u>1 0 �X + : : :+ �iX>0BB� 0viui0 1CCA� 0 v>i u>i 0 �X +: : :: : :+ �p�1X>0� 0vp�1up�1 1A� 0 v>p�1 u>p�1 �Xis orthogonally similar to Mp.2.4.3. Synthesis of the Solution of the Subproblems. The eigenvalues andeigenve
tors of D + p�1Xi=1 �iX>0BB� 0viui0 1CCA� 0 v>i u>i 0 �X;(2.9)where the norm of ea
h modi�
ation ve
tor equals p2, have to be 
omputed. This
an be done by su

essively performing rank-one modi�
ations, whi
h 
orrespondsto merging neighboring diagonal blo
ks of D. In total, p � 1 merging operationsare required. Ea
h of them 
ombines two diagonal blo
ks of D, a

ounting for onerank-one modi�
ation in (2.9), and involves the update (2.4) of the modi�
ationve
tor, the solution of the 
orresponding se
ular equation (2.6), the 
omputation of4



the 
orresponding eigenve
tors and the update (2.8) of the eigenve
tor matrix. In the
ourse of this pro
ess, the blo
ks to be merged grow bigger and bigger.The synthesis pro
ess 
an be pi
tured as a binary tree, the merging tree, withthe blo
ks ~B1; ~B2; : : : ; ~Bp as leaves. If p is a power of two, this tree is balan
ed. If pis not a power of two, a merging order 
an be determined whi
h, in a \prepro
essingphase", redu
es the number of blo
ks to the 
losest power of two less than p.A balan
ed merging tree is obviously attra
tive for a parallel implementationsin
e it provides natural task parallelism (see [9, 13℄). However, for unequally sizedblo
ks, the best order for merging blo
ks (in terms of eÆ
ien
y) does not ne
essarily
orrespond to a balan
ed tree. The reason is that even if the tree is balan
ed withrespe
t to the number of nodes (possibly after the \prepro
essing" mentioned above)unequal sizes of the submatri
es in the nodes may make the tree highly unbalan
edworkwise. For a sequential algorithm, it is irrelevant whether the merging tree isbalan
ed or not be
ause the independen
e of di�erent merging operations 
annot betaken advantage of. Aspe
ts related to the merging order in the synthesis phase aredis
ussed in more detail in Se
tion 3.Algorithm 2.1. Blo
k-Tridiagonal Divide-and-ConquerInput: Mp as in (1.1)(A) Subdivision~B1 := B1 � �1v1v>1 , ~Bp := Bp � �p�1up�1u>p�1, z1 := � v1u1 �do i = 2; 3; : : : ; p� 1~Bi := Bi � �i�1ui�1u>i�1 � �iviv>i ; zi := � viui �end do(B) Solution of Subproblemsdo i = 1; 2; : : : ; p
ompute the spe
tral de
omposition ~Bi = QiDiQ>iend doX := blo
k-diag (Q1; Q2; : : : ; Qp)(C) Synthesisdetermine a good merging order (see Se
tion 3.4);denote the ordered modi�
ation ve
tors by z(i),the 
orresponding parts of X and D by X(i) and D(i)do i = 1; 2; : : : ; p� 1(i) update the modi�
ation ve
tor z(i)~z(i) := X>(i)0� 0z(i)0 1A(ii) de
ompose D(i) + �(i)~z(i)~z>(i) = Q�(i)Q>(iii) update the eigenve
tors X := X0� I Q I 1Aend doOutput: spe
tral de
omposition Mp = V �(p�1)V > with V := XFig. 2.1. The divide-and-
onquer algorithm for blo
k-tridiagonal matri
es with rank-one o�-diagonal blo
ks. 5



3. Unbalan
ed Merging Operations. In the standard divide-and-
onquermethod for a given irredu
ible tridiagonal matrix the blo
k sizes ki 
an be 
hosenby the user or by the algorithm. Usually this is done by breaking the original matrixin two and then repeatedly halving the sizes of the submatri
es. Ex
ept for potentialdi�eren
es in the early stages of the synthesis phase, the blo
k sizes are thereforeessentially equal [18, 21℄. The situation 
onsidered in this paper is slightly more 
om-pli
ated be
ause the sizes ki of the diagonal blo
ks Bi are assumed to be determineda priori (as indi
ated in (1.1)) and may be unequal.Unequal blo
k sizes in
uen
e two important aspe
ts of the algorithm presented:its arithmeti
 
omplexity and its workspa
e requirements. Although the sequen
e ofblo
k sizes fkigpi=1 is given a priori, there is some freedom in 
hoosing the order inwhi
h (neighboring) blo
ks are to be merged. It will be illustrated in Se
tions 3.1and 3.2 that for a sequential algorithm it is bene�
ial to 
hoose the merging ordersu
h that the merging operations are as \balan
ed" as possible.In Se
tions 3.1 and 3.2, we investigate the arithmeti
 
omplexity of a single merg-ing operation involving a 
 � 
 blo
k ~A1 and an (l � 
) � (l � 
) blo
k ~A2 where1 � 
 � l � 1. 
 will also be 
alled the 
ut point between the two blo
ks. If 
 � [l=2℄the merging operation is 
alled balan
ed , if 
 � [l=2℄ or 
 � [l=2℄ it is 
alled unbal-an
ed . The nonzero portions u and v of the asso
iated 
orre
tion ve
tor z are assumedto be of size b1 and b2, respe
tively (thus, b1 = ki+1 and b2 = ki for some i).If the merging operation o

urs at the beginning of the merging pro
ess, i. e., ifit involves two original (neighboring) blo
ks of (1.1) whi
h are leaves of the mergingtree, then b1 = 
 and b2 = l � 
. If the merge o

urs at a later stage of the mergingpro
ess, i. e., if it involves two blo
ks whi
h are themselves the result of at least onemerging operation, then 1 � b1 < 
 and 1 � b2 < l�
. In the �nal merging operation,l = n.The e�e
ts of the merging order in the 
ontext of the full synthesis phase for p > 2are illustrated in Se
tion 3.3 by 
omparing a very bad merging order (unbalan
edmerges) with a very good merging order (balan
ed merges) for an example problem.In Se
tion 3.4 an approa
h for determining a good merging order will be des
ribed.3.1. Arithmeti
 Complexity. For a given sequen
e fkigpi=1 of blo
k sizes the
op 
ounts of several operations of Algorithm 2.1 are independent of the 
ut points 
.This in
ludes the 
orre
tion operations in Step A and the solution of the subproblemsin Step B. The 
op 
ount for solving a se
ular equation (2.6) and for 
omputing theeigenve
tors of the synthesis problem in Step C.ii 
an also be 
onsidered independentof the 
ut point 
. There are, however, two operations in the synthesis phase, whose
op 
ounts depend on 
.1. Update of the modi�
ation ve
tor z (
f. Step C.i in Algorithm 2.1): Thematrix-ve
tor produ
tsQ>1 � 0v � and Q>2 � u0 �require 
(2b2 � 1) + (l � 
)(2b1 � 1) = 2
(b2 � b1) + l(2b1 � 1) 
ops:(3.1)Considered separately, expression (3.1) would favor unbalan
ed merging op-erations, i. e., 
 as small or as large as possible, depending on whether b2� b1is greater or less than zero. 6



2. Multipli
ation of the intermediate eigenve
tors X with the eigenve
tors Q ofthe synthesis problem (
f. Step C.iii in Algorithm 2.1):Assuming for simpli
ity that no de
ation has o

urred (whi
h implies thatwe 
ompute an upper bound for the arithmeti
 
omplexity of this operation),the 
� 
 blo
k of eigenve
tors of ~A1 has to be multiplied with the upper 
� lpart of the eigenve
tor matrix Q of the synthesis problem whi
h requires
l(2
� 1) 
ops:(3.2)Multipli
ation of the (l�
)�(l�
) blo
k of eigenve
tors of ~A2 with the lower(l� 
)� l part of the eigenve
tor matrix Q of the synthesis problem requires(l � 
)l (2 (l � 
)� 1) 
ops:(3.3)Adding up (3.1), (3.2), and (3.3) yields W (
), an upper bound for the portion of thearithmeti
 
omplexity of a single merging operation depending on the 
ut point 
:W (
) = 4
2l + 
 �2 (b2 � b1)� 4l2�+ 2l3 � l2 + l (2b1 � 1) 
ops:(3.4)Asymptoti
ally, the updates of the eigenve
tors (Step C.iii) are the most expensiveparts of the synthesis phase and also of the entire divide-and-
onquer algorithm 2.1(
f. [8, 10℄). Therefore, the dominating terms of the arithmeti
 
omplexity of the fullalgorithm 
an be 
omputed based on W (
) (see Se
tion 3.3.1).Investigation of the �rst and se
ond derivative of W (
) in terms of 
 reveals thatW (
) has a minimum at 
� = l2 � b2 � b14l(3.5)with the value W (
�) = l3 � l2 + l (b1 + b2 � 1)� (b2 � b1)24l :(3.6)Note that jb2 � b1j < l, thus ����b2 � b14l ���� < 14 ;and therefore (3.5) implies that the 
losest integer value to 
� is l=2 if l is even andeither (l + 1)=2 or (l � 1)=2 if l is odd. This means that the optimum 
ut pointfor a single merging operation in terms of arithmeti
 
omplexity is either bl=2
 orb(l + 1)=2
.Comparison of the highest order terms in (3.4) and (3.6),W (
) � 2l3 � (4
+ 1) l2 + 4
2l(3.7) W (
�) � l3 � l2(3.8)shows that asymptoti
ally the \penalty" to be paid for an unbalan
ed merging oper-ation in whi
h the 
ut point deviates from 
� isW (
)W (
�) � 2ll � 1 � 4
+ 1l � 1 + 4
2l(l� 1) :7



This quadrati
 fun
tion in 
 has the minimum value 1 at 
 = 
� = l=2. Its maximumvalue o

urs at the boundaries, i. e., for 
 = 1 or 
 = l � 1:W (1)W (
�) = W (l � 1)W (
�) = 2ll � 1 � 5l � 1 + 4l(l � 1) :(3.9)For large l, (3.9) approa
hes the value 2. Thus,W (
�) �W (
) � 2W (
�):3.2. Workspa
e Requirements. The implementation of the blo
k-tridiagonaldivide-and-
onquer algorithm is based on the Lapa
k [1℄ implementation of thetridiagonal divide-and-
onquer algorithm (LAPACK/*sted
 and dependen
ies). Sev-eral routines had to be modi�ed, some others 
ould be used dire
tly. New as-pe
ts arise from unequal blo
k sizes. The routine LAPACK/*laed1 formally requiresmin(1; l) � 
 � l=2 whi
h 
annot be guaranteed in the blo
k-tridiagonal divide-and-
onquer algorithm (it may well happen that the �rst of two blo
ks involved in amerging operation is larger than the se
ond one).In the following, we give an analysis of the total workspa
e requirements ofour implementation of the blo
k-tridiagonal divide-and-
onquer algorithm, whi
h arestrongly in
uen
ed by the design of the Lapa
k routines (see [18℄). It is shown thathighly unbalan
ed merging operations may signi�
antly in
rease the workspa
e re-quirements. This observation again underlines the bene�ts of a merging order wheremerging operations are as balan
ed as possible (see Se
tion 3.4).3.2.1. Workspa
e for Ve
tors. Workspa
e of Sv := 3n 
oating point numbersis required for storing intermediate ve
tors, just like in the original Lapa
k routines.3.2.2. Eigenve
tors Before the Merging Operation. As in Algorithm 2.1let X denote the matrix 
ontaining the eigenve
tors of the two subproblems to bemerged. The workspa
e SX required for storing X isSX := 
(
1 + 
2) + (l � 
)(
2 + 
3)(3.10)
oating point numbers. Here, 
1 denotes the number of 
olumns in X whi
h are of\type 1" (nonzero in the upper part only), 
2 denotes the number of 
olumns in Xwhi
h are of \type 2" (dense), and 
3 denotes the number of 
olumns in X whi
h areof \type 3" (nonzero in the lower part only).Before de
ation, 
1 = 
, 
2 = 0, and 
3 = l � 
. Columns of type 2 are 
reatedwhen (almost) equal eigenvalues are de
ated whi
h appear in the upper and in thelower blo
k: The Householder/Givens transformations G with GG> = I used to zeroout 
orresponding entries in the ~z-ve
torX �D + ~z~z>�X> = XG> �GDG> +G~z~z>G>�GX>may 
ause a �ll-in in the upper/lower part of X , be
ause the operation XG> formslinear 
ombinations of the 
olumns of X whi
h 
orrespond to (almost) equal eigen-values. If these happen to be in di�erent blo
ks of D, then the lower/upper parts ofthe 
orresponding 
olumns of X �ll up.This implies that an upper bound on 
2 is given by the total number of eigenvaluesde
ated: 
2 � l� k; 1 � k � l;8



where k denotes the number of non-de
ated eigenvalues. Every de
ated eigenvaluemay potentially add two 
olumns to 
2 (by �lling up the upper part and the lowerpart of two 
olumns of X) while taking away one 
olumn from 
1 and 
3 ea
h. Thus,
1 + 
2 � 
+ l � k2 and 
2 + 
3 � l � 
+ l � k2 :(3.11)Substituting (3.11) into (3.10) yieldsSX � �kl2 + l22 + 
2 + (l � 
)2:(3.12)Note that less de
ation (larger k) implies a lower bound for the workspa
e require-ments SX .3.2.3. Multipli
ation of the Eigenve
tor Matri
es. The matrix multipli
a-tion in the routine LAPACK/*laed3 for establishing the updated (intermediate) eigen-ve
tor matrix X (Step C.iii in Algorithm 2.1) requires a workspa
e ofSS := max f(
1 + 
2) k; (
2 + 
3) kg
oating point numbers for 
opying row blo
ks of Q 
onsisting of the �rst 
1 + 
2 andthe last 
2 + 
3 rows, respe
tively, into a temporary array S (see also [18℄). Thebounds (3.11) imply SS � k�max f
; l � 
g+ l� k2 � :Case I: 
 � l � 
 , 
 � l=2 leads toSS � �k22 + k�3l2 � 
� :(3.13)Case II: 
 � l � 
 , 
 � l=2 leads toSS � �k22 + k� l2 + 
� :(3.14)Note that in both 
ases, less de
ation (larger k) also implies a lower bound on theworkspa
e requirements SS .3.2.4. Total Workspa
e Requirements.Case I: 1 � 
 � l=2(3.12) and (3.13) implySX + SS � �k22 + k (l � 
) + l22 + 
2 + (l � 
)2 :Investigation of the �rst and se
ond derivative of this upper bound in termsof k reveals that it a
hieves a maximum if 
 eigenvalues are de
ated, i. e. fork� = l � 
:Therefore, a sharp upper bound for SX + SS independent of how mu
h de-
ation o

urs is SX + SS � l22 + 3 (l � 
)22 + 
2:(3.15) 9



Investigation of the �rst and se
ond derivative in terms of 
 reveals thatthe quadrati
 fun
tion on the right hand side of (3.15) has a minimum for
 = 3l=5. This value is not within the range 
onsidered, and therefore thea
tual minimum o

urs at the upper boundary, for
� = l2(3.16)with the fun
tion value 9l28 :(3.17)At the lower boundary (for 
 = 1), the upper bound (3.15) a
hieves its maxi-mum 2l2� 3l+5=2, and therefore the best general upper bound for SX +SSindependent of k and 
 is given asSX + SS � 2l2 � 3l + 3:(3.18)Case II: l=2 � 
 � l � 1(3.12) and (3.14) implySX + SS � �k22 + k
+ l22 + 
2 + (l � 
)2 :Investigation of the �rst and se
ond derivative of this upper bound in termsof k reveals that it a
hieves a maximum if l � 
 eigenvalues are de
ated, i. e.for k� = 
:Therefore, a sharp upper bound for SX + SS independent of how mu
h de-
ation o

urs is SX + SS � l22 + (l� 
)2 + 3
22 :(3.19)Investigation of the �rst and se
ond derivative in terms of 
 reveals thatthe quadrati
 fun
tion on the right hand side of (3.19) has a minimum for
 = 2l=5. This value is not within the range 
onsidered, and therefore thea
tual minimum o

urs at the lower boundary, for
� = l2(3.20)with the fun
tion value 9l28 :(3.21)At the upper boundary (for 
 = l � 1), the upper bound (3.19) a
hieves itsmaximum 2l2�3l+5=2, and therefore also in this 
ase the best general upperbound SX + SS independent of k and 
 is given asSX + SS � 2l2 � 3l + 3:(3.22)(3.16) and (3.20) show that the 
ut point 
� whi
h yields the lowest workspa
e require-ments over all possible de
ation s
enarios is essentially the same whi
h minimizes thearithmeti
 
omplexity of the merging operation as dis
ussed in Se
tion 3.1.10



3.3. The General Case. After having investigated the in
uen
e of the 
utpoint 
 on arithmeti
 
omplexity and workspa
e requirements of a single mergingoperation we now turn to a dis
ussion of the e�e
ts in the framework of a generalsynthesis phase 
onsisting of p� 1 merging operations.3.3.1. Arithmeti
 Complexity. Expression (3.4) shows how the arithmeti

omplexity of updating modi�
ation ve
tor and eigenve
tors in one merging opera-tion depends on the 
ut point 
, and expression (3.6) gives its minimum value for theoptimal 
�. Utilizing these expressions allows one to illustrate the potentially signi�-
ant in
rease of the arithmeti
 
omplexity 
aused by a bad 
hoi
e of the merging orderin the synthesis phase of the full blo
k-tridiagonal divide-and-
onquer algorithm.We 
onsider the following example: n = 2q and p = n=2+1 = 2q�1+1. The blo
ksizes are k1 = 2q�1, k2 = k3 = : : : k2q�1+1 = 1. Two di�erent merging strategies willbe 
ompared: in the �rst one all the merging operations are as unbalan
ed as possible,whereas in the se
ond one all the merging operations are perfe
tly balan
ed. In theanalysis, the leading-term approximations (3.7) and (3.8) for the expressions (3.4)and (3.6) are used.Unbalan
ed Merges: Merge ~B1 with ~B2, the resulting blo
k with ~B3, the resultingblo
k with ~B4, et
.This may be 
onsidered an unnatural and somewhat arti�
ial merging orderfor the matrix 
onsidered. Nevertheless, the intention is to illustrate the ef-fe
ts of unbalan
ed merges in a \worst 
ase" s
enario. The natural approa
hfor this problem, subdividing between the �rst large blo
k and the tridiagonalpart, then treating the tridiagonal part using the standard divide-and-
onqueralgorithm for a tridiagonal matrix, and eventually performing one �nal merg-ing operation with the �rst blo
k, is investigated later as the alternativestrategy 
alled \balan
ed merges".For the strategy of unbalan
ed merges, the intermediate blo
k sizes li in thesynthesis phase are given asli = 2q�1 + i; i = 1; : : : ; 2q�1;(3.23)and the 
ut points 
i as
i = li � 1; i = 1; : : : ; 2q�1;(3.24)i. e., every single merging operation is as unbalan
ed as possible.Substituting (3.23) for l and (3.24) for 
 into (3.7) and summing over allthe merging operations yields an upper bound WU (be
ause no de
ation wasassumed) for the total arithmeti
 
omplexity of the updates of modi�
ationve
tors and eigenve
tors in the synthesis phase for unbalan
ed merges:WU = 2q�1Xi=1 �2 �2q�1 + i�3 � 5 �2q�1 + i�2 + 4 �2q�1 + i��= n=2Xi=1 �2i3 + i2 (3n� 5) + i�3n22 �5n+4�+ n3�5n2+8n4 �= 1532n4 � 712n3 + 712nIt is worth noting that this unfavorable merging order leads to an O(n4) (!)arithmeti
 
omplexity for the spe
ial problem 
onsidered.11



Balan
ed Merges: Merge the small blo
ks �rst. Start with 2q�2 merges of neig-boring blo
ks of size 1 ( ~B2i with ~B2i+1, i = 1; 2; : : : 2q�2), then perform 2q�3merges of the resulting blo
ks of size 2, then perform 2q�4 merges of the re-sulting blo
ks of size 4, et
. After 2q�1 � 1 merging operations, all originalblo
ks of size one have been merged into a single blo
k of size 2q�1. In the�nal merging operation, this blo
k is merged with ~B1.For this merging order, the intermediate blo
k sizes li in the synthesis phaseare given as li = 2i; i = 1; 2; : : : ; q;(3.25)and the 
ut points 
i as 
i = li=2; i = 1; 2; : : : ; q;i. e., every single merging operation is perfe
tly balan
ed.Substituting (3.25) for l into (3.8) and summing over all merging operationsyields an upper bound WB (be
ause no de
ation was assumed) for the totalarithmeti
 
omplexity of updates of the modi�
ation ve
tors and eigenve
torsin the synthesis phase for balan
ed merges:WB = 2q�2 ��21�3��21�2�+ 2q�3 ��22�3��22�2�+ : : :: : : + 2��2q�2�3��2q�2�2�+ �2q�1�3��2q�1�2 + (2q)3�(2q)2= n3 � n2 + q�1Xi=1 �2q�1+2i � 2q�1+i�= n3 � n2 + n2 q�1Xi=1 4i � n2 q�1Xi=1 2i= 76n3 � 32n2 + 13nThus, the favorable balan
ed merging operations lead to an O(n3) arithmeti

omplexity for the spe
ial problem 
onsidered, whi
h is an order of magnitudelower than the unbalan
ed merges.This example illustrated \worst" and \best" 
ase s
enarios. In most pra
ti
al prob-lems the arithmeti
 
omplexities 
orresponding to di�erent merging orders will usuallynot di�er that mu
h. Nevertheless, for a given sequen
e of blo
k sizes the arithmeti

omplexities asso
iated with di�erent merging strategies may still vary signi�
antly.Therefore, the 
hoi
e of a good merging order in the synthesis phase (see Se
tion 3.4)is 
ru
ial for eÆ
ien
y.3.3.2. Workspa
e Requirements. The dis
ussion in Se
tion 3.2 was appli-
able to any single merging operation o

urring in the blo
k-tridiagonal divide-and-
onquer algorithm. Obviously, the workspa
e requirements for the entire algorithm aredetermined by the maximum over all merging operations. This maximum is a
hievedin the �nal merging operation where l = n.A

ounting for Sv = 3n in (3.18) or (3.22) yields an upper bound for the total
oating-point workspa
e required by the blo
k-tridiagonal divide-and-
onquer algo-rithm: Sv + SX + SS � 2n2 + 3:12



The minimum workspa
e requirements allowing for all possible de
ation s
enariosmay be as low as 98n2 + 3n
oating point numbers (
f. (3.17) and (3.21)). In the best 
ase|if no de
ation hap-pens at all in the last merging operation (
2 = 0), and if 
 = n=2|a workspa
e ofonly n2 + 3n 
oating point numbers suÆ
es.3.4. Determination of a Merging Order. It has been shown in Se
tions 3.1,3.2, and 3.3 that equally sized blo
ks in a merging operation lead to the lowest arith-meti
 
omplexity and therefore to the highest eÆ
ien
y, as well as to the lowestworkspa
e requirements. Therefore, we determine a merging order in the sequentialblo
k-tridiagonal divide-and-
onquer algorithm su
h that blo
ks to be merged di�eras little as possible in size.Merging operations and their eigenve
tor updates towards the end of the synthesisphase dominate the arithmeti
 
omplexity of the entire algorithm (be
ause l is 
loseto n). Consequently, highest priority is assigned to minimizing the di�eren
e in blo
ksizes in the �nal merging operation. The 
ut point whi
h 
orresponds to the minimum
omplexity of this �nal merging operation is determined by �nding the index j, 1 �j � p� 1, su
h that jXi=1 ki � n2 and j+1Xi=1 ki > n2 :The 
ut points for the previous merges in ea
h of the two parts are determined by
ontinuing this pro
ess re
ursively above and below the �nal 
ut point.Note that this re
ursive strategy is not optimal in a rigorous sense be
ause it doesnot minimize the overall arithmeti
 
omplexity of the synthesis phase for all possiblesequen
es of blo
k sizes. A simple generi
 example illustrates this: For a sequen
efm; 1; 1;mg of blo
k sizes the strategy used would merge the �rst with the se
ondand the third with the fourth blo
k, resulting in the sequen
e fm + 1;m + 1g, and�nally merge two equally sized blo
ks. Using the leading term approximations (3.7)and (3.8) this amounts to 12m3 +O(m2) 
ops. A di�erent merging order would leadto a lower 
op 
ount: First merging the two small blo
ks in the middle, resulting inthe sequen
e fm; 2;mg, then the �rst two blo
ks, resulting in the sequen
e fm+2;mg,and �nally two blo
ks of slightly di�erent sizes requires only 10m3 +O(m2) 
ops.However, even in these 
ases the strategy used tends to be not mu
h more expen-sive than the theoreti
al optimum. This fa
t and the signi�
antly larger overhead fordetermining an optimal merging order in the rigorous sense led to the de
ision to usethe re
ursive strategy des
ribed above.4. Numeri
al Aspe
ts. An error analysis of Cuppen's divide-and-
onquer al-gorithm for tridiagonal matri
es was given by Barlow [5℄. The numeri
al stability of aslightly modi�ed divide-and-
onquer algorithm for tridiagonal matri
es was shown byGu and Eisenstat [14, 15℄. Many elements of these analyses 
an be 
arried over dire
tlyto the algorithm dis
ussed in this paper. It 
an be seen that the blo
k-tridiagonaldivide-and-
onquer algorithm 
omputes a numeri
al spe
tral de
omposition V̂ �̂V̂ >su
h that Mp = V̂ �̂V̂ > +O�"n� maxi=1;2;:::;p kBik2 + maxi=1;2;:::;p�i�� ;13



where quantities supers
ripted with a hat distinguish 
omputed quantities from exa
tquantities and " denotes the ma
hine pre
ision (unit roundo�).The norm of the 
oating-point error Æ ~Bi := ~̂Bi� ~Bi of ea
h of the 
orre
tion operationsin Step A of Algorithm 2.1 
an be bounded bykÆ ~B1k2 � "k1 (2kB1k2 + 5�1) +O("2);kÆ ~Bik2 � "ki (2kBik2 + 5�i�1 + 5�i) +O("2); i = 2; 3; : : : ; p� 1;kÆ ~Bpk2 � "kp (2kBpk2 + 5�p�1) +O("2);and therefore the entire 
oating-point error made in the subdivision phase 
an bebounded by 10"n� maxi=1;2;:::;p kBik2 + maxi=1;2;:::;p�i�+O("2):Provided a ba
kward stable algorithm is used to 
ompute the spe
tral de
ompo-sitions in Step B in Algorithm 2.1, the errors made when 
omputing the eigenvaluesdi of the subproblems 
an be bounded asjdi � d̂ij � O(") maxj=1;2;:::;p k ~Bjk2; i = 1; 2; : : : ; na

ording to Weyl's theorem (see, for example, [8℄).The method used for 
omputing the spe
tral de
omposition of the rank-one mod-i�
ation problems arising in Step C.ii of Algorithm 2.1 is the one developed by Guand Eisenstat [14℄. Therefore, for the synthesis part of the algorithm des
ribed inSe
tion 2.3 their analysis 
an be dire
tly applied, showing that the eigenvalues are
omputed to high absolute a

ura
y. They also showed that the ve
tor �z is 
lose toz in high absolute a

ura
y and that these properties suÆ
e to 
ompute the spe
tralde
omposition of a rank-one modi�
ation of a diagonal matrix numeri
ally stably.Therefore ea
h numeri
ally 
omputed eigende
omposition of a rank-one modi�
ationproblem satis�esD(i) + �(i)~z(i)~z>(i) = Q̂�̂(i)Q̂> + O �" �kD(i)k2 + �(i)k~z(i)k22��where Q̂ is numeri
ally orthogonal.5. Experiments. The blo
k-tridiagonal divide-and-
onquer method has beenimplemented in Fortran 77 (dsbtd
) and evaluated experimentally. In Se
tion 5.1 itis 
ompared to 
orresponding Lapa
k routines, and in Se
tion 5.2 the e�e
ts of themerging order for unequal blo
k sizes are illustrated.Experiments were performed on a number of test matri
es. Symmetri
 blo
ksBi as well as ve
tors ui and vi, whi
h determine the rank-one o�-diagonal blo
ks Ei,were 
reated randomly using Matlab. �i = 1 (i = 1; 2; : : : ; p � 1) was 
hosen forall test matri
es. The 
omputations were done on a SUN Ultra 5 Workstation witha 400 MHz UltraSPARC-IIi pro
essor in double pre
ision with a ma
hine pre
ision" = 1:1 � 10�16.The a

ura
y of ea
h method is measured by the s
aled residual error R and bythe departure from orthogonality O of the eigenve
tors, de�ned byR := maxi=1;2;:::;n 


Mpv̂i � �̂iv̂i


2kMpk2 andO := maxi=1;2;:::;n 


�V̂ >V̂ � I� ei


2 :14



5.1. Equally Sized Blo
ks. dsbtd
 is 
ompared with the routines� LAPACK/dsbevd for a banded symmetri
 matrix, whi
h performs tridiagonal-ization, the tridiagonal divide-and-
onquer method, and �nally the ba
ktrans-formation of the eigenve
tors, as well as� LAPACK/dsyev for a general symmetri
 matrix, whi
h performs tridiagonal-ization, the QR-algorithm on the tridiagonal matrix, and �nally the ba
k-transformation of the eigenve
tors.Results are shown for the following three matri
es:� Me124: n = 620; p = 124; blo
k sizes ki = 5, i = 1; 2; : : : ; p� Me62: n = 620; p = 62; blo
k sizes ki = 10, i = 1; 2; : : : ; p� Me31: n = 620; p = 31; blo
k sizes ki = 20, i = 1; 2; : : : ; pThe narrowest band matrix whi
h fully 
ontains the 
orresponding blo
k-tridiagonalmatrix was used as input for LAPACK/dsbevd. This matrix 
ontains 2(p � 2) zeron=p � n=p triangles in addition to the blo
k-tridiagonal matrix. These triangles �llup during the tridiagonalization performed by LAPACK/dsbevd. However, a dire
t
omparison for blo
k-tridiagonal matri
es is not possible, and espe
ially for largevalues of p the di�eren
e is not very big. For LAPACK/dsyev, the blo
k-tridiagonalmatrix was 
ompleted to a full matrix by zero entries.The experiments are summarized in Table 5.1. TBT ; TLB and TLF denote theruntimes of dsbtd
, LAPACK/dsbevd and LAPACK/dsyev, respe
tively. The resultsshow that due to being able to take advantage of the spe
ial stru
ture of the o�-diagonal blo
ks as well as due to improved data-lo
ality whi
h is important for thememory hierar
hies of modern 
omputer systems the blo
k-tridiagonal divide-and-
onquer algorithm is more eÆ
ient than the standard method for banded eigenvalueproblems while a
hieving the same level of a

ura
y.Table 5.1Comparison for blo
k-tridiagonal matri
es with equally sized blo
ks.Routine Me124 Me62 Me31dsbtd
 TBT [s℄ 1.6 2.5 3.1R 1:4 � 10�15 1:6 � 10�15 1:2 � 10�15R kMpk2max kBik2+max�i 1:4 � 10�15 1:6 � 10�15 1:2 � 10�15O 3:9 � 10�15 4:9 � 10�15 6:5 � 10�15LAPACK/dsbevd TLB=TBT 5.0 3.5 3.4R 2:3 � 10�14 6:8 � 10�15 6:3 � 10�15O 2:6 � 10�14 8:4 � 10�15 8:0 � 10�15LAPACK/dsyev TLF=TBT 12.1 7.1 6.5R 4:9 � 10�15 5:6 � 10�15 3:7 � 10�15O 1:4 � 10�14 1:3 � 10�14 1:1 � 10�145.2. General Blo
ks. The two testmatri
es� M b8 : n = 1500; p = 8; blo
k sizes fkig8i=1 = f5; 180; 190; 375; 5; 180; 190; 375g� Mu8 : n = 1500; p = 8; blo
k sizes fkig8i=1 = f375; 190; 375; 190; 180; 180; 5; 5gdi�er only in the order of their diagonal blo
ks. However, the merging operationsfor M b8 are quite ni
ely balan
ed (ex
ept for two initial merges), whereas most of the15



merging operations for Mu8 (in parti
ular the ones towards the end of the synthesisphase) are unbalan
ed.Table 5.2 shows the 
orresponding experimental data.Table 5.2In
uen
e of unequal blo
k sizes on exe
ution time.Routine M b8 Mu8dsbtd
 TBT [s℄ 39.2 46.2R 2:5 � 10�15 3:6 � 10�15R kMpk2max kBik2+max�i 2:4 � 10�15 3:3 � 10�15O 1:8 � 10�14 1:7 � 10�14LAPACK/dsbevd TLB=TBT 5.3 4.7R 7:7 � 10�15 7:6 � 10�15O 1:5 � 10�14 1:7 � 10�14LAPACK/dsyevd TLFTBT 6.9 7.6R 9:3 � 10�15 5:6 � 10�15O 1:9 � 10�14 1:4 � 10�146. Con
lusion. It has been shown that for a spe
ial 
lass of blo
k-tridiagonalmatri
es the divide-and-
onquer approa
h for 
omputing the spe
tral de
omposition
an be dire
tly extended and yields very attra
tive results in terms of eÆ
ien
y anda

ura
y.The impli
ations of unequally sized blo
ks have been studied. A reliable methodfor determining a merging order whose asso
iated arithmeti
 
omplexity is at least
lose to optimal for any given sequen
e of blo
k sizes has been proposed.The algorithm presented in this paper provides approximate eigenpairs if the o�-diagonal blo
ks of a general blo
k-tridiagonal matrix, whi
h in general have a rankhigher than one, are approximated by rank-one matri
es. In some instan
es thisapproximation may not be a

urate enough. However, the algorithm will be extendedto allow for higher rank approximations of the o�-diagonal blo
ks Ei. If they are notof rank one, then the singular value de
ompositions (see [13℄)Ei = kiXi=1 �iuiv>i ; i = 1; 2; : : : ; p� 1;
an be used for 
onstru
ting approximations of arbitrary rank 
orresponding to thelargest singular values �i. The authors are 
urrently developing these ideas in orderto utilize higher rank approximations of the o�-diagonal blo
ks if required. Thisapproximative approa
h will be illustrated in more detail in a separate forth
omingpaper.Referen
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