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Part IIntrodu
tionThe ATLAS (Automati
ally Tuned Linear Algebra Software) proje
t is an ongoing resear
he�ort fo
using on applying empiri
al te
hniques in order to provide portable performan
e.Linear algebra routines are widely used in the 
omputational s
ien
es in general, and s
i-enti�
 modeling in parti
ular. In many of these appli
ations, the performan
e of the linearalgebra operations are the main 
onstraint preventing the s
ientist from modeling more
omplex problems, whi
h would then more 
losely mat
h reality. This then di
tates anongoing need for highly eÆ
ient routines; as more 
ompute power be
omes available thes
ientist typi
ally in
reases the 
omplexity/a

ura
y of the model until the limits of the
omputational power are rea
hed. Therefore, sin
e many appli
ations have no pra
ti
allimit of \enough" a

ura
y, it is important that ea
h generation of in
reasingly powerful
omputers have optimized linear algebra routines available.Linear algebra is ri
h in operations whi
h are highly optimizable, in the sense that ahighly tuned 
ode may run multiple orders of magnitude faster than a naively 
oded rou-tine. However, these optimizations are platform spe
i�
, su
h that an optimization for agiven 
omputer ar
hite
ture will a
tually 
ause a slow-down on another ar
hite
ture. Thetraditional method of handling this problem has been to produ
e hand-optimized routinesfor a given ma
hine. This is a painstaking pro
ess, typi
ally requiring many man-monthsof highly trained (both in linear algebra and 
omputational optimization) personnel. Thein
redible pa
e of hardware evolution makes this te
hnique untenable in the long run, par-ti
ularly so when 
onsidering that there are many software layers (eg., operating systems,
ompilers, et
), whi
h also e�e
t these kinds of optimizations, that are 
hanging at a similar,but independent rates.Therefore a new paradigm is needed for the produ
tion of highly eÆ
ient routines inthe modern age of 
omputing, and ATLAS represents an implementation of su
h a set ofnew te
hniques. We 
all this paradigm "Automated Empiri
al Optimization of Software",or AEOS. In an AEOS-enabled pa
kage su
h as ATLAS, the pa
kage provides many waysof doing the required operations, and uses empiri
al timings in order to 
hoose the bestmethod for a given ar
hite
ture. Thus, if written generally enough, an AEOS-aware pa
k-age 
an automati
ally adapt to a new 
omputer ar
hite
ture in a matter of hours, ratherthan requiring months or even years of highly-trained professionals' time, as di
tated bytraditional methods.ATLAS typi
ally uses 
ode generators (i.e., programs that write other programs) inorder to provide the many di�erent ways of doing a given operation, and has sophisti
atedsear
h s
ripts and robust timing me
hanisms in order to �nd the best ways of performingthe operation for a given ar
hite
ture.One of the main performan
e kernels of linear algebra has traditionally been a standardAPI known as the BLAS (Basi
 Linear Algebra Subprograms) [14, 17, 6, 7, 5℄ This API issupported by hand-tuned e�orts of many hardware vendors, and thus provides a good �rsttarget for ATLAS, as there is both a large audien
e for this API, and on those platformswhere vendor-supplied BLAS exist, an easy way to determine if ATLAS 
an provide therequired level of performan
e. 3



Part IIAEOS1 AEOS in ContextHistori
ally, the resear
h 
ommunity has pursued two separate paths towards the goal ofmaking software run at near peak levels. The �rst and most generally su

essful of thesebuilds on resear
h into 
ompilers and their asso
iated te
hnologies. The holy grail of 
om-pilation resear
h is to take an arbitrary 
ode as an input and produ
e 
ompletely optimal
ode as output for given languages and hardware platforms. Despite the immense amount ofe�ort that has been poured into this approa
h, its su

ess has been limited both by pra
ti
altime 
onstraints (viz. users will not tolerate 
ompile-times that extend into several days)and by the amount of detailed information the 
ompiler 
an obtain about the software tobe 
ompiled and the hardware on whi
h it is supposed to exe
ute [16, 23, 24℄.A se
ond, 
omplementary thrust has been to identify kernel routines that 
onstitute thedominant performan
e 
ost of a wide variety of appli
ations. When su
h kernels 
an beidenti�ed and an API 
an be agreed upon by the members of the 
ommunity, small groupsof programmers with the required level of te
hni
al knowledge 
an 
on
entrate their e�ortson produ
ing optimized kernel libraries for ar
hite
tures of interest. A prime example ofthis kind of e�ort is the aforementioned BLAS. As experien
e with the BLAS has shown,these libraries 
an be produ
ed by some 
ombination of hardware vendors (e.g. IBM,Intel), independent software vendors (e.g. Cooke & Asso
iates), and resear
hers, dependingin large measure on the level of importan
e the di�erent parties atta
h to the routines inquestion. Developers who write their 
ode to 
all these well-known APIs 
an then a
hievehigh performan
e a
ross all supported ar
hite
tures.But just as there are 
urrently boundaries to what 
an be done to a
hieve near peakperforman
e via 
ompiler optimization, the library-oriented approa
h has signi�
ant limi-tations as well. For instan
e, it is 
lear that in order to eli
it the kind of attention requiredto 
reate an optimized library for a given operation, the operation must be regarded aswidely useful by the members of a programming 
ommunity, who are usually already over-burdened. Moreover, on
e an API has been agreed upon, support for various ar
hite
turesbe
omes the dominant problem, espe
ially sin
e the kind of optimizations ne
essary toa
hieve high performan
e are by their very nature non-portable. Su
h performan
e tuningrelies on a 
areful exploitation of the spe
i�
 details the underlying hardware ar
hite
ture;if that hardware is 
hanged, a previous optimization may now 
ause the program to exe
utemore slowly on the new platform.The expensive and hardware-relative nature of kernel optimizations be
omes all themore problemati
 when pro
essor designs are 
hanging at the remarkable pa
e di
tatedby Moore's Law. These in
reases in pro
essor performan
e are, however, largely wastedunless the key libraries are updated at the same pa
e as the hardware. With ever-shrinkinghardware generation 
y
les, these updates be
ome nearly impossible to do by hand. It isa fa
t of the 
omputing industry that by the time highly optimized 
ode is available for agiven ar
hite
ture, that ar
hite
ture is generally well on its way towards obsoles
en
e.We believe the AEOS methodologies address this problem dire
tly, and have the po-tential to make a signi�
ant impa
t on how high performan
e libraries are produ
ed and4



maintained.2 Basi
 AEOS RequirementsThe basi
 requirements for supporting a library using AEOS methodologies are:� Isolation of performan
e-
riti
al routines. Just as with traditional libraries, someonemust �nd the performan
e-
riti
al se
tions of 
ode, separate them into subroutines,and 
hoose an appropriate API.� A method of adapting software to di�ering environments Sin
e AEOS depends oniteratively trying di�ering ways of performing the performan
e-
riti
al operation, theauthor must be able to provide routines that instantiate a wide range of optimizations.This may be done very simply, for instan
e by having parameters in a �xed 
odewhi
h, when varied, 
orrespond to di�ering 
a
he sizes, et
, or it may be done mu
hmore generally, for instan
e by supplying a highly parameterized 
ode generator whi
h
an produ
e an almost in�nite number of implementations. No matter how generalthe adaptation strategy, there will be limitations or built-in assumptions about therequired ar
hite
ture whi
h should be identi�ed in order to estimate the probableboundaries on the 
ode's 
exibility. Se
tion 3 dis
usses software adaptation methodsin further detail.� Robust, 
ontext-sensitive timers Sin
e timings are used to sele
t the best 
ode, itbe
omes very important that these timings be a

urate. Sin
e few users 
an guaranteesingle-user a

ess, the timers must be robust enough to produ
e reliable timings evenon heavily loaded ma
hines. Furthermore, the timers need to repli
ate as 
losely aspossible the way in whi
h the given operation will be used. For instan
e, if the routinewill normally be 
alled with 
old 
a
hes, 
a
he 
ushing will be required. If the routinewill typi
ally be 
alled with a given level of 
a
he preloaded, while others are not, thattoo should be taken into a

ount. If there is no known ma
hine state, timers allowingfor many di�erent states, whi
h the user 
an vary, should be 
reated.� Appropriate sear
h heuristi
 The �nal requirement is a sear
h heuristi
 whi
h auto-mates the sear
h for the most optimal available implementation. For a simple methodof 
ode adaptation, su
h as supplying a �xed number of hand-tuned implementations,a simple linear sear
h will suÆ
e. However, with sophisti
ated 
ode generators withliterally hundreds of thousands of ways of doing an operation, a similarly sophisti-
ated sear
h heuristi
 must be employed in order to prune the sear
h tree as rapidlyas possible, so that the optimal 
ases are both found and found qui
kly (obviously,few users will tolerate heavily parameterized sear
h times with fa
torial growth). Ifthe sear
h takes longer than a handful of minutes, it needs to be robust enough tonot require a 
omplete restart if hardware or software failure interrupts the originalsear
h.3 Methods of Software AdaptationThere are essentially two di�erent methods of software adaptation. The �rst is widely usedin programming in general, and it involves parameterizing 
hara
teristi
s whi
h vary from5



ma
hine to ma
hine. In linear algebra, the most important of su
h parameters is probablythe blo
king fa
tor used in blo
ked algorithms, whi
h, when varied, varies the data 
a
heutilization. In general, parameterizing as many levels of data 
a
he as the algorithm 
ansupport 
an provide remarkable speedups. With an AEOS approa
h, su
h parameters 
anbe 
ompile-time variables, and thus not 
ause a runtime slowdown. We 
all this methodparameterized adaptation.Not all important ar
hite
tural variables 
an be handled by parameterized adaptation(simple examples in
lude instru
tion 
a
he size, 
hoi
e of 
ombined or separate multiplyand add instru
tions, length of 
oating point and fet
h pipelines, et
), sin
e varying thema
tually requires 
hanging the underlying sour
e 
ode. This then brings in the need forthe se
ond method of software adaptation, sour
e 
ode adaptation, whi
h involves a
tuallygenerating di�ering implementations of the same operation.There are at least two di�erent ways to do sour
e 
ode adaptation; Perhaps the simplestapproa
h is for the designer to supply various hand-tuned implementations, and then thesear
h heuristi
 may be as simple as trying ea
h implementation in turn until the best isfound. At �rst glan
e, one might suspe
t that supplying these multiple implementationswould make even this approa
h to sour
e 
ode adaptation mu
h more diÆ
ult than thetraditional hand-tuning of libraries. However, traditional hand-tuning is not the mere ap-pli
ation of known te
hniques it may appear when examined 
asually. Knowing the sizeand properties of your level 1 
a
he is not suÆ
ient to 
hoose the best blo
king fa
tor, forinstan
e, as this depends on a host of interlo
king fa
tors whi
h defy a priori understandingin the real world. Therefore, it is 
ommon in hand-tuned optimizations to utilize the known
hara
teristi
s of the ma
hine to narrow the sear
h, but then the programmer writes variousimplementations and 
hooses the best.For the simplest AEOS implementation, this pro
ess remains the same, but the pro-grammer adds a sear
h and timing layer whi
h do what would otherwise be done by hand.In the simplest 
ases, the time to write this layer may not be mu
h if any more than the timethe implementor would have spent doing the same pro
ess in a less formal way by hand,while at the same time 
apturing at least some of the 
exibility inherent in AEOS-
entri
design. We will refer to this sour
e 
ode adaptation te
hnique as multiple implementation.Due to its obvious simpli
ity, this method is highly parallelizable, in the sense that multi-ple authors 
an meaningfully 
ontribute without having to understand the entire pa
kage.In parti
ular, various spe
ialists on given ar
hite
tures 
an provide a hand-tuned routineswithout needing to understand other ar
hite
tures, the higher level 
odes (e.g. timers,sear
h heuristi
s, higher-level routine whi
h utilize these basi
 kernels, et
). This makesmultiple implementation a very good approa
h if the user base is large and skilled enoughto support an open sour
e initiative along the lines of, for example, Linux.The se
ond method of sour
e 
ode adaptation is 
ode generation. In 
ode generation,a 
ode generator (i.e., a program that writes other programs) is produ
ed. This 
odegenerator takes as parameters the various sour
e 
ode adaptations to be made. As before,simple examples in
lude instru
tion 
a
he size, 
hoi
e of 
ombined or separate multiply andadd instru
tions, length of 
oating point and fet
h pipelines, and so on. Depending onthe parameters, the 
ode generator produ
es sour
e 
ode with the requisite 
hara
teristi
s.The great strength of 
ode generators is their ultimate 
exibility, whi
h 
an allow for fargreater tunings than 
ould be produ
ed by all but the best hand-
oders. However, generator
omplexity tends to go up along with 
exibility, so that these routines rapidly be
ome almost6



insurmountable barriers to outside 
ontribution.It thus seems likely that the best approa
h will 
ombine these two methods; in su
h asystem 
ode generation will be harnessed for its generality, but it will be supplemented bymultiple implementation, allowing for the extension of the pa
kage beyond one designer'svision via 
ommunity 
ollaboration.4 Adapting to Constantly Changing Hardware and SoftwareLayersAs mentioned in the introdu
tion, AEOS design for libraries is essentially an outgrowth ofthe rapid pa
e of hardware evolution. However, all layers of software separating the AEOSpa
kage from the hardware 
omprise what 
ould be 
alled the library-per
eived ar
hite
ture.Therefore, AEOS-
entri
 pa
kages adapt to both software and hardware, whi
h 
hange atonly loosely related rates.The history of the ATLAS proje
t in
ludes numerous examples of the la
k of syn
hronybetween software and hardware releases. Gnu g

 on the UltraSpar
 shows one su
h 
ase.The �rst available release of g

 for this new (at the time) hardware still used a previousISA (instru
tion set ar
hite
ture), so that only 16 of the available 32 
oating point registerswere addressable to 
odes written in C, as ATLAS is. This meant that at that point in thehardware/software 
y
le, the best 
ase of register blo
king (an important optimization for
oating point intensive software) used roughly 16 registers, not the ISA limit of 32. Lateron, g

 was adapted to the new ISA, and ATLAS's new optimal 
ase used the in
reasednumbers of registers to further improve the software.In the traditional way of supporting libraries, this would have required the developmentof two libraries, ea
h requiring signi�
ant investment of time and e�ort from highly trainedprofessionals. With ATLAS, the optimized library was available within hours of even arelatively unsophisti
ated user gaining a

ess to the new hardware or software.Generally, the lower-level the language an AEOS pa
kage is implemented, the smallerthe gap between software and hardware release 
y
les are. For instan
e, it is likely that anassembler would be able to address the new ISA before a 
ompiler, su
h as C or Fortran77,will. However, implementing in high level languages has at least two distin
t advantages.First, the software is mu
h more portable, and se
ondly, the ex
ellent and ongoing resear
hinto 
ompiler te
hnology is leveraged automati
ally. Examples of the way that 
ompileroptimizations 
an aid AEOS programming abound. Compiler-
ontrolled prefet
h, loopunrolling, pipelining and loop skewing are just a few of the obvious areas. Of 
ourse, manysu
h optimizations may be done expli
itly by the 
ode generator as well. In pra
ti
e, a 
odegenerator whi
h 
an expli
itly do su
h optimizations, while also being 
apable of generating
ode without su
h optimizations in order to allow the 
ompiler the opportunity to performthem impli
itly, will enjoy the most general su

ess.4.1 AEOS/Compiler SynergyThis brings us to an interesting topi
, that of AEOS/
ompiler synergy. As previouslymentioned, AEOS 
an readily leverage the improvements inherent in 
ompiler advan
ement.The reverse is also true. As languages be
ome higher level, they impli
itly begin to relyon standard libraries for a larger and larger proportion of their performan
e. An already7



existing example of this would be Fortran95's addition of matrix multiply and matrix-ve
tormultiplies as language primitives. These kinds of high-level abstra
tions will naturally 
alla library, and AEOS te
hniques 
an provide the adaptability required in today's 
ompilerlife 
y
les.This kind of mixture of 
ompiler, language, and libraries 
an be mined mu
h moreextensively in the sear
h for synergy between these dis
iplines, as with the resear
h presentlybeing done on teles
oping languages [16℄.Finally, we believe that many of the empiri
al te
hniques in
orporated in AEOS willeventually make their way into 
ompilers. For instan
e, if a very high level of optimizationsis set, a 
ompiler 
ould generate and time various unrollings, et
, just as is done presently inATLAS, in order to �nd the best for the given operation. I.e., in 
ases where heavy use makesthe 
ost worthwhile, the almost purely a priori te
hniques presently used by 
ompilers 
anbe supplemented with what amounts to automated tuning on the 
y. Interpreted languagesusing te
hniques similar to Java's hot-spot 
an iteratively improve 
ode in a like mannera
ross multiple 
alls.No matter how good 
ompilers get, it is unlikely that the need for optimized libraries,and thus of AEOS, will ever go away (although their use may no longer be apparent tothe programmer, as in a paradigm su
h as teles
oping languages). The hard limits ofwhat a 
ompiler 
an do will always be di
tated by the amount of information the 
ompiler
an extra
t from the provided 
ode. Library building, where an operation is di
tated (asopposed to an implementation of that operation), with its asso
iated enormously expandedhigh-level understanding, allows for mu
h greater varian
e in implementation.Part IIIATLASATLAS is the proje
t from whi
h our 
urrent understanding of AEOS methodologies grew,and now provides a test bed for their further development and testing. ATLAS was not,however, the �rst proje
t to harness AEOS-like te
hniques for library produ
tion and main-tenan
e. As far as we know, the PHiPAC [3℄ proje
t was the �rst attempt to apply them toLinear Algebra. The FFTW [11, 9, 10℄ proje
t, whi
h uses AEOS te
hniques to optimizeFast Fourier transforms, was also released around this time frame. Other proje
ts withAEOS-like designs in
lude [18, 20, 19℄. The philosophies, approa
h and appli
ation su

essof these proje
ts vary widely, but they are all built around the idea of using empiri
al resultsand some degree of automation to adapt libraries for greater performan
e.The initial goal of ATLAS was to provide a portably eÆ
ient implementation of theBLAS. ATLAS now provides at least some level of support for all of the BLAS, and the�rst tentative extensions beyond this one API have been taken (for example, the most re
entATLAS release 
ontained some higher level routines from the LAPACK [1℄ API). Due tospa
e limitations, this paper will 
on
entrate on ATLAS's BLAS support.The BLAS (Basi
 Linear Algebra Subroutines) are building blo
k routines for perform-ing basi
 ve
tor and matrix operations. The BLAS are divided into three levels: Level1 BLAS do ve
tor-ve
tor operations, Level 2 BLAS do matrix-ve
tor operations, and theLevel 3 BLAS do matrix-matrix operations. The performan
e gains from optimized imple-8



mentations is strongly a�e
ted by the level of the BLAS.Level 1 BLAS, where no memory reuse is possible, gain only minus
ule speedups fromall but the best implementations (as a ba
k of envelope estimate, 
onsider these speedupsto typi
ally be in the range of 0-15%). Essentially, the only optimizations to be done atthis level involve 
oating point unit usage, loop optimizations, et
. However, sin
e theseroutines are very simple, the 
ompiler 
an usually do an ex
ellent job of these optimizations,so real performan
e gains are typi
ally found only when a 
ompiler is poorly adapted to agiven platform.In the Level 2 BLAS, memory blo
king 
an allow for reuse of the ve
tor operands, butnot, in general, of the matrix operand (the ex
eption is that some matrix types, for instan
esymmetri
 or Hermitian, 
an e�e
tively use ea
h matrix operand twi
e). Redu
ing theve
tor operands from O(N2) to O(N) represents 
onsiderable savings over naive 
ode, butdue to the irredu
ible matrix 
osts, the memory load remains of the same order (O(N2)) asthe operation 
ount. Therefore, the Level 2 BLAS 
an enjoy modest speedup (say, roughlyin the range of 10-300%), both be
ause memory blo
king is e�e
tive, and be
ause the loopsare 
omplex enough that more 
ompilers begin having problems doing the 
oating pointoptimizations automati
ally.Finally, the Level 3 BLAS 
an display orders of magnitude speedups. To simplify greatly,these operations 
an be blo
ked su
h that the natural O(N3) fet
h 
osts be
ome essentiallyO(N2). Further, the triply-nested loops used here are almost always too 
omplex for the
ompiler to �gure out without hints from the programmer (eg, some expli
it loop unrolling),and thus the O(N3) 
omputation 
ost 
an be greatly optimized as well.The following se
tions dis
uss our handling of the Level 3 and 2 BLAS in ATLAS.Be
ause of the amount of e�ort required to provide high-quality AEOS software, it be
omes
riti
al to �nd the smallest possible kernels whi
h 
an be leveraged to supply all requiredfun
tionality. Thus, ea
h se
tion des
ribes the low level performan
e kernels, the te
hniquesused to 
reate them, and how these kernels are utilized to produ
e all required fun
tionality.The Level 1 BLAS are not dis
ussed; at present ATLAS provides hand-tuned 
odes for theseoperations, essentially relying on the 
ompiler for the lion's share of the optimization.5 Limits of ATLAS's Approa
hAs previously mentioned, any AEOS approa
h is bound to have some restri
tions on itsadaptability. ATLAS is no ex
eption, and the following assumptions need to hold true forATLAS to perform well:1. Adequate ANSI C 
ompiler ATLAS is written entirely in ANSI/ISO C, with the ex-
eption of the Fortran77 interfa
e 
odes (whi
h are simple wrappers written in ANSIFortran77, 
alling the C internals for 
omputation). ATLAS does not require anex
ellent 
ompiler, sin
e it uses 
ode generation to perform many optimizations typ-i
ally done by 
ompilers. However, too-aggressive 
ompilers 
an transform alreadyoptimal 
ode into suboptimal 
ode, if 
ags do not exist to turn o� 
ertain 
ompileroptimizations. On the other hand, 
ompilers without the ability to e�e
tively usethe underlying ISA (eg., inability to utilize registers, even when the C 
ode 
alls forthem), will yield poor results as well. 9



2. Hierar
hi
al memory ATLAS assumes a hierar
hi
al memory is present. Best resultswill be obtained when both registers and at least an L1 data 
a
he are present.Of these two restri
tions, the most important is the need for an adequate C 
ompiler.La
k of hierar
hi
al memory would at worst turn some of ATLAS's blo
king and registerusage into overheads. Even with this handi
ap, ATLAS's 
ode adaptation may still yieldenough performan
e to provide an adequate BLAS. If the ANSI C 
ompiler is poor enough,however, this 
an result in the 
omputational portion of the algorithms being e�e
tivelyunoptimized. Sin
e the 
omputational optimizations are the dominant 
ost of a blo
kedLevel 3 BLAS, this 
an produ
e extremely poor results.6 Level 3 BLAS Support in ATLASAs previously mentioned, all Level 3 BLAS routines (for ea
h real data type there are sixLevel 3 BLAS, and nine routines for ea
h 
omplex data type) 
an be eÆ
iently implementedgiven an eÆ
ient matrix-matrix multiply (hereafter shortened to matmul, or the BLAS mat-mul routine name, GEMM). Thus the main performan
e kernel is GEMM. As subsequentse
tions show, however, GEMM itself is further narrowed down to an even smaller kernelbefore 
ode generation takes pla
e.The BLAS supply a routine GEMM, whi
h performs a general matrix-matrix multipli-
ation of the form C  �op(A)op(B) + �C, where op(X) = X or XT . C is an M � Nmatrix, and op(A) and op(B) are matri
es of size M �K and K �N , respe
tively.In general, the arrays A, B, and C will be too large to �t into 
a
he. Using a blo
k-partitioned algorithm for matrix multiply it is still possible to arrange for the operations tobe performed with data for the most part in 
a
he by dividing the matrix into blo
ks. Foradditional details see [8℄.Using this BLAS routine, the rest of the Level 3 BLAS 
an be eÆ
iently supported, soGEMM is the Level 3 BLAS 
omputational kernel. ATLAS supports this kernel using bothparameterized adaptation and 
ode generation. There are hand-written high-level 
odesthat use 
ompile- or run-time variables to adapt to ma
hines. These high level 
odes utilizea generated L1 (Level 1) 
a
he-
ontained matrix multiply as their kernel.6.1 Building the General Matrix Multiply From the L1 Ca
he-
ontainedMultiplyThis se
tion des
ribes the non-generated 
ode, whose only varian
e a
ross platforms 
omefrom parameterization. These 
odes are used to form the BLAS's general matrix-matrixmultiply using a L1 
a
he-
ontained matmul (hereafter referred to as the L1 matmul).Se
tion 6.2 des
ribes the L1 matmul and its generator in detail. For our present dis-
ussion, it is enough to know that ATLAS has at its disposal highly optimized routinesfor doing matrix multiplies whose dimensions are 
hosen su
h that 
a
he blo
king is notrequired (i.e., the hand-written 
ode dis
ussed in this se
tion deals with 
a
he blo
king; thegenerated 
ode assumes things �t into 
a
he).When the user 
alls GEMM, ATLAS must de
ide whether the problem is large enoughto tolerate 
opying the input matri
es A and B. If the matri
es are large enough to supportthis O(N2) overhead, ATLAS will 
opy A and B into blo
k-major format. ATLAS's blo
k-major format breaks up the input matri
es into 
ontiguous blo
ks of a �xed size NB , where10



NB is 
hosen as dis
ussed in se
tion 6.2 in order to maximize L1 
a
he reuse. On
e inblo
k-major format, the blo
ks are 
ontiguous, whi
h eliminates TLB problems, minimizes
a
he thrashing and maximizes 
a
he line use. It also allows ATLAS to apply alpha (if alphais not already one) to the smaller of A or B, thus minimizing this 
ost as well. Finally,the pa
kage 
an use the 
opy to transform the problem to a parti
ular transpose setting,whi
h for load and indexing optimization, is set so A is 
opied to transposed form, andB is in normal (non-transposed) form. This means our L1-
a
he 
ontained 
ode is of theform C  ATB, C  ATB + C, and C  ATB + �C, where all dimensions, in
ludingthe non-
ontiguous stride, are known to be NB . Knowing all of the dimensions of the loopsallows for arbitrary unrollings (i.e., if the instru
tion 
a
he 
ould support it, ATLAS 
ouldunroll all loops 
ompletely, so that the L1 
a
he-
ontained multiply had no loops at all).Further, when the 
ode generator knows leading dimension of the matri
es (i.e., the rowstride), all indexing 
an be done up front, without the need for expensive integer or pointer
omputations.If the matri
es are too small, the O(N2) data 
opy 
ost 
an a
tually dominate thealgorithm 
ost, even though the 
omputation 
ost is O(N3). For these matri
es, ATLASwill 
all an L1 matmul whi
h operates on non-
opied matri
es (i.e. dire
tly on the user'soperands). The non-
opy L1 matmul will generally not be as eÆ
ient as the 
opy L1 matmul;at this problem size the main drawba
k is the additional pointer arithmeti
 required in orderto support the user-supplied leading dimension.The 
hoi
e of when a 
opy is di
tated and when it is prohibitively expensive is an AEOSparameter; it turns out that this 
rossover point depends strongly both on the parti
ularar
hite
ture, and the shape of the operands (matrix shape e�e
tively sets limits on whi
hmatrix dimensions 
an enjoy 
a
he reuse). To handle this problem, ATLAS simply 
omparesthe speed of the 
opy and non-
opy L1 matmul for variously shaped matri
es, varying theproblem size until the 
opying provides a speedup (on some platforms, and with someshapes, this point is never rea
hed). These 
rossover points are determined at install time,and then used to make this de
ision at runtime. Be
ause it is the dominant 
ase, this paperdes
ribes only the 
opied matmul algorithm in detail.There are presently two algorithms for performing the general matrix-matrix multiply.The two algorithms 
orrespond to di�erent orderings of the loops; i.e., is the outer loopover M (over the rows of A), and thus the se
ond loop is over N (over the 
olumns of B),or is this order reversed. The dimension 
ommon to A and B (i.e., the K loop) is 
urrentlyalways the innermost loop.Let us de�ne the input matrix looped over by the outer loop as the outer or outermostmatrix; the other input matrix will therefore be the inner or innermost matrix. Bothalgorithms have the option of writing the result of the L1 matmul dire
tly to the matrix,or to an output temporary Ĉ. The advantages to writing to Ĉ rather than C are:1. address alignment may be 
ontrolled (i.e., the 
ode 
an ensure during the mallo
 thatĈ begins on a 
a
he-line boundary)2. Data is 
ontiguous, eliminating possibility of unne
essary 
a
he-thrashing due to ill-
hosen leading dimension (assuming a non-write-through 
a
he)The disadvantage of using Ĉ is that an additional write to C is required after the L1matmul operations have 
ompleted. This 
ost is minimal if GEMM makes many 
alls to the11



L1 matmul (ea
h of whi
h writes to either C or Ĉ), but 
an add signi�
antly to the overheadwhen this is not the 
ase. In parti
ular, an important appli
ation of matrix multiply is therank-K update, where the write to the output matrix C 
an be a signi�
ant portion of the
ost of the algorithm. For the rank-K update, writing to Ĉ essentially doubles the write
ost, whi
h is 
learly una

eptable. The routines therefore employ a heuristi
 to determineif the number of times the L1 matmul will be 
alled in the K loop is large enough to justifyusing Ĉ, otherwise the answer is written dire
tly to C.Regardless of whi
h matrix is outermost, both algorithms try to allo
ate enough spa
eto store NB � NB output temporary, Ĉ (if needed), 1 panel of the outermost matrix, andthe entire inner matrix. If this fails, the algorithms attempt to allo
ate smaller work arrays,the smallest a

eptable workspa
e being enough spa
e to hold Ĉ, and 1 panel from both Aand B. The minimum workspa
e required by these routines is therefore 2KNB , if writingdire
tly to C, and NB2 + 2KNB if not. If this amount of workspa
e 
annot be allo
ated,the previously mentioned non-
opy 
ode is 
alled instead.If there is enough spa
e to 
opy the entire innermost matrix, there are several bene�tsto doing so:� Ea
h matrix is 
opied only one time� If all of the workspa
es �t into L2 
a
he, the algorithm enjoys 
omplete L2 reuse onthe innermost matrix� Data 
opying is limited to the outermost loop, prote
ting the inner loops from un-needed 
a
he thrashingOf 
ourse, even if the allo
ation su

eeds, using too mu
h memory might result inunneeded swapping. Therefore, the user 
an set a maximal amount of workspa
e thatATLAS is allowed to have, and ATLAS will not try to 
opy the innermost matrix if thismaximum workspa
e requirement is ex
eeded.If enough spa
e for a 
opy of the entire innermost matrix is not allo
ated, the innermostmatrix will be entirely 
opied for ea
h panel of the outermost matrix (i.e., if A is ouroutermost matrix, ATLAS will 
opy B dM=NBe times). Further, our usable L2 
a
he isredu
ed (the 
opy of a panel of the innermost matrix will take up twi
e the panel's size inL2 
a
he; the same is true of the outermost panel 
opy, but that will only be seen the �rsttime through the se
ondary loop).Regardless of whi
h looping stru
ture or allo
ation pro
edure used, the inner loop isalways along K. Therefore, the operation done in the inner loop by both routines is thesame, and it is shown in �gure 1.If GEMM is writing to Ĉ, the following a
tions are performed in order to 
al
ulate theNB �NB blo
k Ci;j, where i and j are in the range 0 � i < dM=NBe, 0 � j < dN=NBe:1. Call L1 matmul of the form C  AB to multiply blo
k 0 of the row panel i of A withblo
k 0 of the 
olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blo
k k of the row panel i of Awith blo
k k of the 
olumn panel j of B, 8k; 1 � k < dK=NBe. The L1 matmul isperforming the operation C  AB+C, so as expe
ted this results in multiplying therow panel of A with the 
olumn panel of B.12



C3;2 A3;1A3;2M NC  M KA N K� BB1;2B2;2B3;2Figure 1: One step of matrix-matrix multiply3. Ĉ now holds the produ
t of the row panel of A with the 
olumn panel of B, so ATLASnow performs the blo
k write-ba
k operation Ci;j  Ĉi;j + �Ci;j.If ATLAS is writing dire
tly to C, this a
tion be
omes:1. Call L1 matmul of the 
orre
t form based on user-de�ned � (eg. if � == �1, useC  AB �C) to multiply blo
k 0 of the row panel i of A with blo
k 0 of the 
olumnpanel j of B.2. Call L1 matmul of form C  AB + C to multiply blo
k k of the row panel i of Awith blo
k k of the 
olumn panel j of B, 8k; 1 � k < dK=NBe.Building from this inner loop, ATLAS has di�ering loop orderings whi
h provide two al-gorithms for the full matmul. Figures 2 and 3 give the pseudo-
ode for these two algorithms,assuming the write is dire
tly to C (writing to Ĉ is only trivially di�erent). For simpli
-ity, this pseudo-
ode skips the 
leanup ne
essary for 
ases where dimensions do not evenlydivide NB . The matrix 
opies are shown as if 
oming from the notranspose, notranspose
ase. If they do not, only the array a

ess on the 
opy 
hanges.

13



work = allo
ate((M+NB)*K)if (allo
ated(work)) thenPARTIAL_MATRIX = .FALSE.
opy A into blo
k major formatelsePARTIAL_MATRIX = .TRUE.work = allo
ate(NB*2*K)if (.NOT.allo
ated(work)) 
all small_
ase_
odereturnend ifNBNB = NB * NBdo j = 1, N, NBBwork = ALPHA*B(:,J:J+NB-1); Bwork in blo
k major formatdo i = 1, M, NBif (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in blo
k major formatON_CHIP_MATMUL(Awork(1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), ld
)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, C(i:i+NB-1, j:j+NB-1), ld
)end doend doend do Figure 2: General matrix multipli
ation with A as innermost matrixwork = allo
ate(N*K + NB*K)if (allo
ated(work)) thenPARTIAL_MATRIX = .FALSE.
opy B into blo
k major formatelsePARTIAL_MATRIX = .TRUE.work = allo
ate(NB*2*K)if (.NOT.allo
ated(work)) 
all small_
ase_
odereturnend ifNBNB = NB * NBdo i = 1, M, NBAwork = ALPHA*A(i:i+NB-1,:); Awork in blo
k major formatdo j = 1, N, NBif (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in blo
k major formatON_CHIP_MATMUL(Awork(1:NBNB), Bwork(1:NBNB), BETA,Cwork(i:i+NB-1, j:j+NB-1), ld
)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, Cwork(i:i+NB-1, j:j+NB-1), ld
)end doend doend do Figure 3: General matrix multipli
ation with B as innermost matrix14



6.1.1 Choosing the Corre
t Looping Stru
tureWhen the 
all to the matrix multiply is made, the routine must de
ide whi
h loop stru
tureto 
all (i.e., whi
h matrix to put as outermost). If the matri
es are of di�erent size, L2 
a
hereuse 
an be en
ouraged by de
iding the looping stru
ture based on the following 
riteria:1. If either matrix will �t 
ompletely into the usable L2 
a
he, put it as the innermostmatrix (algorithm gets L2 
a
he reuse on the entire inner matrix)2. If neither matrix �ts 
ompletely into L2 
a
he, put largest matrix as the outermostmatrix (algorithm gets L2 
a
he reuse on the panel of the outer matrix, if it �ts in
a
he, and memory usage is minimized)The size of the usable L2 
a
he is not dire
tly known by ATLAS (although the AEOSvariable Ca
heEdge des
ribed in se
tion 6.1.2 will often serve the same purpose) and so these
riteria are not presently used for this sele
tion. Rather, in order to minimize workspa
e,and maximize the 
han
e that 
ondition one above o

urs, the smallest matrix will alwaysbe used as the innermost matrix. If both matri
es are the same size, A is sele
ted as theinnermost matrix (this implies a better a

ess pattern for C).6.1.2 Blo
king for Higher Levels of Ca
heNote that this paper de�nes the Level 1 (L1) 
a
he as the \lowest" level of 
a
he: the one
losest to the pro
essor. Subsequent levels are \higher": further from the pro
essor and thususually larger and slower. Typi
ally, L1 
a
hes are relatively small (eg., 8-32KB), employleast re
ently used repla
ement poli
ies, have separate data and instru
tion 
a
hes, and areoften non-asso
iative and write-through. Higher levels of 
a
he or more often non-write-through, with varying degrees of asso
iativity, di�ering repla
ement poli
es, and 
ombinedinstru
tion and data 
a
he.ATLAS dete
ts the a
tual size of the L1 data 
a
he. However, due to the wide varian
ein high level 
a
he behaviors, in parti
ular the diÆ
ulty of determining how mu
h of su
h
a
hes are usable after line 
on
i
ts and data/instru
tion partitioning is done, ATLAS doesnot presently dete
t and use a expli
it Level 2 
a
he size as su
h. Rather, ATLAS employsa empiri
ally determined value 
alled Ca
heEdge, whi
h represents the amount of the 
a
hethat is usable by ATLAS for its parti
ular kind of blo
king.Expli
it 
a
he blo
king for the sele
ted level of 
a
he is only required when the 
a
he sizeis insuÆ
ient to hold the two input panels and the NB �NB pie
e of C. This means thatusers will have optimal results for many problem sizes without employing Ca
heEdge. Thisis expressed formally below; Noti
e that 
onditions 1 and 2 below do not require expli
it
a
he blo
king, so the user gets this result even if Ca
heEdge is not set.Therefore, the expli
it 
a
he blo
king strategy dis
ussed in 4 below assumes that thepanels of A and B over
ow a parti
ular level of 
a
he. In this 
ase, the problem 
an beeasily partitioned along the K dimension of the input matri
es su
h that the panels of thepartitioned matri
es Ap and Bp will �t into the 
a
he. This means that we get 
a
he reuseon the input matri
es, at the 
ost of writing C additional times.It is easily shown that the footprint of the algorithm 
omputing a NB �NB se
tion ofC in 
a
he is roughly 2KNB +NB2, where 2KNB stores the panels from A and B, and these
tion of C is of size NB2. If the above expression is set equal to Ca
heEdge, and solved15



for K, it will yield the maximal K (
all this quantity Km) whi
h will, assuming the innermatrix was 
opied up front, allow for reusing the outer matrix panel N=NB times. Thispartitioning transforms the original matrix multiply into dK=Kme rank-Km updates.Sin
e the 
orre
t value of Ca
heEdge is not known a priori, ATLAS empiri
ally de-termines it at install time by using large matri
es (whose panel sizes 
an be expe
ted toover
ow the 
a
he, and thus indu
e the need for expli
it, rather than impli
it, L2 or higherblo
king), and simply tries various settings. Extremely large 
a
hes will probably not bedete
ted in this manner (i.e., if the user 
annot allo
ate enough memory to 
ause a panelto over
ow the 
a
he, the large 
a
he will not be dete
ted), in whi
h 
ase Ca
heEdge willnot be set or used (very large 
a
hes will have impli
it 
a
he reuse for all but the largestmatri
es anyway). Some 
a
hes will not give a 
lear enough optimization using Ca
heEdgefor timings to reliably dete
t the di�eren
e, and in these 
ases, where no noti
eable bene�tis dete
ted, Ca
heEdge will not be set or used.Assuming that matrix A is the innermost matrix, and we are dis
ussing 
a
he level L,of size SL, and that main memory is 
lassi�ed as a level of \
a
he" greater than L, thereare four possible states (depending on 
a
he and problem size, and whether Ca
heEdge isset) whi
h ATLAS may be in. These states and their asso
iated memory a

ess 
osts are:1. If the entire inner matrix, a panel of the outer matrix, and the NB �NB se
tion of C�ts into the 
a
he (eg. MK +KNB +NB2 � SL)� K(M +N)+MN reads (of A, B and C, respe
tively ) from higher level(s) 
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
he re-
eive only the �nal MN writes2. If the 
a
he 
annot satisfy the memory requirements of 1, it may still be large enoughto a

ommodate the two a
tive input panels, along with the relevant se
tion of C(eg., (2KNB +NB2 � SL AND ATLAS 
opies the entire inner matrix)OR (3KNB +NB2 � SL AND ATLAS 
opies a panel of the inner matrix in the innerloop, thus doubling the inner panel's footprint in the 
a
he))� NK+MNKNB +MN reads (B, A and C, respe
tively) from higher level(s) of 
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
he re-
eive only the �nal MN writes3. If the 
a
he is too small for either of the previous 
ases to hold true, (eg., 2KNB +NB2 > SL) and Ca
heEdge is not set, and thus no expli
it level L blo
king is done,the memory a

ess be
omes:� 2MNKNB +MN reads (A, B, and C) from higher level(s) of 
a
he� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
he re-
eive only the �nal MN writes4. Finally, if the �rst two 
ases do not apply (eg., 2KNB +NB2 > SL), but Ca
heEdgeis set to SL, ATLAS 
an perform 
a
he blo
king to 
hange the memory a

ess fromthat given in 3 to:� NK + MNKNB + MNKKm (B, A, C) reads from higher level(s) of 
a
he16



� MNKNB writes to �rst level of non-write-through 
a
he; higher levels of 
a
he re-
eive at most MNKKm writesAs mentioned above, 
ase 4 is only used if Ca
heEdge has been set, and 
ases 1 and 2do not apply (i.e, it is used as an alternative to 
ase 3). At �rst glan
e, 
hanging 
ase 3to 4 may appear to be a poor bargain indeed, parti
ularly sin
e writes are generally moreexpensive than reads. There are, however, several mitigating fa
tors that make this blo
kingnonetheless worthwhile. If the 
a
he is write-through, 4 does not in
rease writes over 3,so it is a 
lear win. Se
ond, ATLAS also does not allow Km < NB , and in many 
asesKm � NB , so the savings are well worth having. With respe
t to the expense of writes,the writes are not 
ushed immediately; This fa
t has two important 
onsequen
es:1. The 
a
he 
an s
hedule the write-ba
k during times when the algorithm is not usingthe bus.2. Writes may be written in large bursts, whi
h signi�
antly redu
es bus traÆ
; this 
antremendously optimize writing on some systemsIn pra
ti
e, 4 has been shown to be at least roughly as good as 3 on all platforms. Theamount of a
tual speedup varies widely depending on problem size and ar
hite
ture. Onsome systems the speedup is negligible; on others it 
an be signi�
ant: for instan
e, it 
anmake up to 20% di�eren
e on DEC 21164 based systems (whi
h have three layers of 
a
he).Note that this 20% improvement is merely the di�eren
e between 
ases 3 and 4, not betweenATLAS and some naive implementation, for instan
e.The analysis given above may be applied to any 
a
he level greater than 1; it is not forlevel 2 
a
hes only. However, this analysis is a

urate only for the algorithm used by ATLASin a parti
ular se
tion of 
ode, so it is not possible to re
ur in order to perform expli
it
a
he blo
king for arbitrary levels of 
a
he. To put this another way, ATLAS expli
itlyblo
ks for L1, and only one other higher level 
a
he. If an ar
hite
ture has 3 levels of 
a
he,ATLAS 
an expli
itly blo
k for L1 and L2, or L1 and L3, but not all three.If ATLAS performs expli
it 
a
he blo
king for level L, that does not mean that levelL + 1 would be useless; depending on 
a
he size and repla
ement poli
y, level L + 1 maystill save extra read and writes to main memory through impli
it 
a
he blo
king.6.2 L1 Ca
he-
ontained MatmulThe only 
ode generator required to support the Level 3 BLAS produ
es a L1 
a
he-
ontained matmul. The operation supported by the kernel is still: C  �op(A)op(B)+�C,where op(X) = X or XT . C is an M � N matrix, and op(A) and op(B) are matri
es ofsize M �K and K � N , respe
tively. However, by L1 
a
he-
ontained we mean that thedimensions of its operands have been 
hosen su
h that Level 1 
a
he reuse is maximized (seebelow for more details). Therefore, the generated 
ode blo
ks for the L1 
a
he using thedimensions of its operand matri
es (M, N, and K), whi
h, when not in the 
leanup se
tionof the algorithm, are all known to be NB .In a multiply designed for L1 
a
he reuse, one of the input matri
es is brought 
ompletelyinto the L1 
a
he, and is then reused in looping over the rows or 
olumns of the other inputmatrix. The present 
ode brings in the matrix A, and loops over the 
olumns of B; this17



was an arbitrary 
hoi
e, and there is no theoreti
al reason it would be superior to bringingin B and looping over the rows of A.There is a 
ommon mis
on
eption that 
a
he reuse is optimized when both input matri-
es, or all three matri
es, �t into L1 
a
he. In fa
t, the only win in �tting all three matri
esinto L1 
a
he is that it is possible, assuming the 
a
he is not write-through, to save the 
ostof pushing previously used se
tions of C ba
k to higher levels of memory. Often, however,the L1 
a
he is write-through, while higher levels are not. If this is the 
ase, there is no wayto minimize the write 
ost, so keeping all three matri
es in L1 does not result in greater
a
he reuse.Therefore, ignoring the write 
ost, maximal 
a
he reuse for our 
ase is a
hieved whenall of A �ts into 
a
he, with room for at least two 
olumns of B and 1 
a
he line of C.Only one 
olumn of B is a
tually a

essed at a time in this s
enario; having enough storagefor two 
olumns assures that the old 
olumn will be the least re
ently used data when the
a
he over
ows, thus making 
ertain that all of A is kept in pla
e (this obviously assumesthe 
a
he repla
ement poli
y is least re
ently used).While 
a
he reuse 
an a

ount for a great amount of the overall performan
e win, it isobviously not the only fa
tor. The following se
tions outline some of these non-data 
a
herelated optimizations.6.2.1 Instru
tion Ca
he ReuseInstru
tions are 
a
hed, and it is therefore important to �t the L1 matmul's instru
tionsinto the L1 instru
tion 
a
he. This means optimizations that generate massive amount ofinstru
tion bloat (
ompletely unrolling all three loops, for instan
e) 
annot be employed.6.2.2 Floating Point Instru
tion OrderingWhen this paper dis
usses 
oating point instru
tion ordering, it will usually be in referen
eto laten
y hiding, and its asso
iated loop skewing.Most modern ar
hite
tures possess pipelined 
oating point units. This means that theresults of an operation will not be available for use until X 
y
les later, where X is thenumber of stages in the 
oating point pipe (typi
ally somewhere around 3-8). Rememberthat our L1 matmul is of the form C  ATB + C; individual statements would thennaturally be some variant of C[X℄ += A[Y℄ * B[Z℄. If the ar
hite
ture does not possessa fused multiply/add unit, this 
an 
ause an unne
essary exe
ution stall. The operationregister = A[Y℄ * B[Z℄ is issued to the 
oating point unit, and the add 
annot be starteduntil the result of this 
omputation is available, X 
y
les later. Sin
e the add operation isnot started until the multiply �nishes, the 
oating point pipe is not utilized.The solution is to remove this dependen
e by separating the multiply and add, andissuing unrelated instru
tions between them (requiring the loop to be skewed, sin
e themultiply must now be issued X 
y
les before the add, whi
h 
omes X 
y
les before thestore). This reordering of operations 
an be done in hardware (out-of-order exe
ution) orby the 
ompiler, but this will oftentimes generate 
ode that is not as eÆ
ient as doing itexpli
itly. More importantly, not all platforms have this 
apability (for example, g

 on aPentium), and in this 
ase the performan
e win 
an be large.18



6.2.3 Redu
ing Loop OverheadThe primary method of redu
ing loop overhead is through loop unrolling. If it is desirableto redu
e loop overhead without 
hanging the order of instru
tions, one must unroll theloop over the dimension 
ommon to A and B (i.e., unroll the K loop). Unrolling alongthe other dimensions (the M and N loops) 
hanges the order of instru
tions, and thus theresulting memory a

ess patterns.6.2.4 Exposing ParallelismMany modern ar
hite
tures have multiple 
oating point units. There are two barriers toa
hieving perfe
t parallel speedup with 
oating point 
omputations in su
h a 
ase. The�rst is a hardware limitation, and therefore out of our hands: All of the 
oating point unitswill need to a

ess memory, and thus, for perfe
t parallel speedup, the memory fet
h willusually also need to operate in parallel.The se
ond prerequisite is that the 
ompiler re
ognize opportunities for parallelization,and this is amenable to software 
ontrol. The �x for this is the 
lassi
al one employedin su
h 
ases, namely unrolling the M and/or N loops, and 
hoosing the 
orre
t registerallo
ation so that parallel operations are not 
onstrained by false dependen
ies.6.2.5 Finding the Corre
t Number of Ca
he MissesAny operand that is not already in a register must be fet
hed from memory. If that operandis not in the L1 
a
he, it must be fet
hed from further up in the memory hierar
hy, possi-bly resulting in large delays in exe
ution. The number of 
a
he misses whi
h 
an be issuedsimultaneously without blo
king exe
ution varies between ar
hite
tures. To minimize mem-ory 
osts, the maximal number of 
a
he misses should be issued ea
h 
y
le, until all memoryis in 
a
he or used. In theory, one 
an permute the matrix multiply to ensure that this istrue. In pra
ti
e, this �ne a level of 
ontrol would be diÆ
ult to ensure (there would beproblems with over
owing the instru
tion 
a
he, and the generation of su
h a pre
ise in-stru
tion sequen
e, for instan
e). So the method ATLAS uses to 
ontrol the 
a
he-hit ratiois the more 
lassi
al one of M and N loop unrolling.6.2.6 Code Generator ParametersThe 
ode generator is heavily parameterized in order to allow for 
exibility in all of theareas. In parti
ular, the options are:� Support for A and/or B being either standard form, or stored in transposed form� Register blo
king of \outer produ
t" form (the most optimal form of matmul registerblo
king). Varying the register blo
king parameters provides many di�erent imple-mentations of matmul. The register blo
king parameters are:{ ar : registers used for elements of A,{ br : registers used for elements of BOuter produ
t register blo
king then implies that ar � br registers are then used toblo
k the elements of C. Thus, if Nr is the maximal number of registers dis
overed19



during the 
oating point unit probe, the sear
h needs to try all ar and br that satisfyarbr + ar + br � Nr.� Loop unrollings: Their are three loops involved in matmul, one over ea
h of theprovided dimensions (M, N and K), ea
h of whi
h 
an have its asso
iated unrollingfa
tor (mu; nu; ku). The M and N unrolling fa
tors are restri
ted to varying with theasso
iated register blo
king (ar and br, respe
tively), but the K-loop may be unrolledto any depth (i.e., on
e ar is sele
ted, mu is set as well, but ku is an independentvariable).� Choi
e of 
oating point instru
tion:{ Combined multiply/add with required pipelining{ Separate multiply and add instru
tions, with asso
iated pipelining and loop skew-ing� User 
hoi
e of utilizing generation-time 
onstant or run-time variables for all loopdimensions (M, N, and K; for non-
leanup 
opy L1 matmul, M = N = K = NB). Forea
h dimension that is known at generation, the following optimizations are made:{ If unrolling meets or ex
eeds the dimension, no a
tual loop is generated (no needfor loop if fully unrolled){ If unrolling is non-one, 
orre
t 
leanup 
an be generated without using an if (thusavoiding bran
hing within the loop)Even if a given dimension is a run-time variable, the generator 
an be told to assumeparti
ular, no, or general-
ase 
leanup for arbitrary unrolling.� For ea
h operand array, the leading dimension 
an be either a generation time 
onstant(for example, it is known to be NB for 
opied L1 matmul), with asso
iated savings inindexing 
omputations, or it may be a run-time variable.� For ea
h operand array, the leading dimension 
an have a stride (stride of 1 is most
ommon, but stride of 2 
an be used to support 
omplex arithmeti
).� The generator 
an eliminate unne
essary arithmeti
 by generating 
ode with spe
ialalpha (1, -1, and variable) and beta (0, 1, -1, and variable) 
ases. In addition, thereis a spe
ial 
ase for when alpha and beta are both variables, but it is safe to dividebeta by alpha (this 
an save multiple appli
ations of alpha).� Various fet
h patterns for loading A and B registers6.2.7 Putting It All Together { Outline of the Sear
h Heuristi
It is obvious that with this many intera
ting e�e
ts, it would be diÆ
ult, if not impossibleto predi
t a priori the best blo
king fa
tor, loop unrolling et
. Our approa
h is to providea 
ode generator 
oupled with a timer routine whi
h takes in some initial information, andthen tries di�erent strategies for loop unrolling and laten
y hiding and 
hooses the 
asewhi
h demonstrated the best performan
e. 20



The timers are stru
tured so that operations have a large granularity, leading to fairlyrepeatable results even on non-dedi
ated ma
hines, and all intermediate results are writtento output �les so that interrupted installs may be restarted from the point of interruption.The �rst step of the timing �gures the size of the L1 
a
he. This is done by performinga �xed number of memory referen
es, while su

essively redu
ing the amount memoryaddressed. The most signi�
ant gap between timings for su

essive memory sizes is de
laredto mark the L1 
a
he boundary. For speed, only powers of 2 are examined. This meansthat a 48K 
a
he would probably be dete
ted as a 32K 
a
he, for instan
e. We have notfound this problem severe enough to justify the additional installation time it would taketo remedy it.Next, ATLAS probes to determine information regarding the 
oating point units of theplatform. First ATLAS needs to understand whether the ar
hite
ture possesses a 
ombinedmuladd unit, or if independent multiply and add pipes are required. To do this, ATLASgenerates simple register-to-register 
ode whi
h performs the required multiply-add using a
ombined muladd and separate multiply and add pipes. Both variants are tried using 
odewhi
h implies various pipeline lengths. ATLAS then repli
ates the best of these 
odes insu
h a way that in
reasing numbers of independent registers are required, until performan
edrops o� suÆ
iently to demonstrate that the available 
oating point registers have beenex
eeded. With this data in hand, ATLAS is ready to begin a
tual L1 matmul timings.These general timings give ATLAS the L1 
a
he size, the kind of 
oating point instru
-tions to issue (muladd or separate multiply and add), the pipeline depth, and a rough ideaof the number of 
oating point registers. Given the size of the L1 
a
he, ATLAS is able
hoose the relevant range of blo
king fa
tors to examine. Knowing the type of 
oating pointinstru
tion the underlying hardware needs 
uts the 
ases to be sear
hed in half, while themaximum number of registers implies what register blo
kings are feasible, whi
h in turndi
tates the M and/or N loop unrollings to perform. Thus, the matmul sear
h (and indeedmany other sear
hes) is shortened 
onsiderably by doing these general ar
hite
ture probes.In pra
ti
e, K loop unrollings of 1 or K have tended to produ
e the best results. ThusATLAS times only these two K loop unrolling during our initial sear
h. This is done toredu
e the length of install time. At the end of the install pro
ess, ATLAS attempts toensure optimalK unrollings have not been missed by trying a wide range ofK loop unrollingfa
tors with the best 
ase 
ode generated for the unrollings fa
tors of 1 or K.The theoreti
ally optimal register blo
king in terms of maximizing 
ops/load are thenear-square 
ases that satisfy the aforementioned equation arbr + ar + br � Nr (see se
-tion 6.2.6 for details). Sin
e the ATLAS generator requires that ar = mu and br = nu,these M and N loop unrollings are then used to �nd an initial blo
king fa
tor. The initialblo
king fa
tor is found by simply using the above dis
ussed loop unrollings, and seeingwhi
h of the blo
king fa
tors appropriate to the dete
ted L1 
a
he size produ
e the bestresult.With this initial blo
king fa
tor, whi
h instru
tions set to use (muladd or separatemultiply and add), and a guess as to pipeline length, the sear
h routine loops over all Mand N loop unrollings possible with the given number of registers.On
e an optimal unrolling has been found, ATLAS again tries all blo
king fa
tors, andvarious laten
y and K-loop unrolling fa
tors, and 
hooses the best.All results are stored in �les, so that subsequent sear
hes will not repeat the sameexperiments, allowing sear
hes to build on previously obtained data. This also means that21



if a sear
h is interrupted (for instan
e due to a ma
hine failure), previously run 
ases willnot need to be re-timed. A typi
al install takes from 1 to 2 hours for ea
h pre
ision.6.2.8 Timing ResultsFigure 4 shows the performan
e of double pre
ision matmul a
ross multiple ar
hite
tures fora problem of size 500. This graph 
ompares performan
e obtained by ATLAS, the Fortran77referen
e BLAS, and on those platforms where they exist, the vendor-supplied BLAS. Theproblem size 500 is 
hosen as an intermediate problem size (i.e., it is not the problem sizewhi
h ATLAS performs best on, for instan
e). These timings utilize ATLAS's 
a
he-
ushingme
hanism, and so may be lower than those reported elsewhere. More 
omplete timings
an be found in [21, 22℄.
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6.3 GEMM-based Level 3 BLASThe Level 3 BLAS spe
ify six (respe
tively nine) routines for the real (respe
tively 
omplex)data types. In addition to the general matrix-matrix multipli
ation (GEMM) des
ribedabove, the Level 3 BLAS API [5℄ spe
i�es routines performing triangular matrix-matrixmultiply (TRMM), triangular system solve (TRSM), symmetri
 or Hermitian matrix-matrixmultiply (SYMM, HEMM), and symmetri
 or Hermitian rank-k and rank-2k updates (SYRK,SYR2K, HERK and HER2K).From a mathemati
al point of view, it is 
lear that all of these operations 
an be ex-pressed in terms of general matrix-matrix multiplies (GEMM) and 
oating-point division.Su
h a design is highly attra
tive due to the obvious potential for 
ode reuse. It turns outthat su
h formulations of these remaining Level 3 BLAS operations 
an be made highly ef-�
ient, assuming the implementation of the GEMM routine is. Su
h Level 3 BLAS designsare traditionally referred to as GEMM-based.The basi
 idea is to partition the 
omputations a
ross submatri
es so that the 
al
u-lations 
an be expressed in terms of expli
it 
alls to GEMM and the appropriate Level 3BLAS primitives. This idea 
an be illustrated using the triangular matrix-matrix multiplyoperation B  A�B, where A is an M -by-M upper triangular matrix, and B is a generalM -by-N matrix.  B1B2 ! =  A11 A120 A22 ! B1B2 ! (1)Equation 1 illustrates a simple partitioning s
heme, where the triangular matrix A hasbeen partitioned on
e in both dimensions, and the right-hand side matrix B has beena

ordingly de
omposed in the row dimension only. The overall 
omputation 
an then beexpressed as follows:1. B1  A11B1 (TRMM)2. B1  B1 +A12B2 (GEMM)3. B2  A22B2 (TRMM)This example shows two main features of GEMM-based Level 3 BLAS: �rst, expli
it
alls to the Level 3 BLAS GEMM routine are made, and se
ond, su
h a design is naturallyre
ursive. GEMM-based Level 3 BLAS are further 
lassi�ed a

ording to their partitioningpoli
y. There are many possible partitioning algorithms, and a great deal of past and
ontinuing resear
h has been done on this problem. For instan
e, partitioning s
hemesmay utilize �xed and ma
hine-spe
i�
 blo
king as in [15, 4℄, or more generalized re
ursives
hemes su
h as presented in [12, 13℄.ATLAS implements a relative simple re
ursive GEMM-based BLAS design. The rowand 
olumn dimensions of the triangular, symmetri
 or Hermitian matrix and only theappropriate dimension of the general matrix operands are halved at ea
h step. Re
ursionstops when the order of the square blo
k diagonal is less than or equal to GEMM's Level 1
a
he blo
king fa
tor, NB . The NB or less sized Level 3 BLAS primitives (TRMM in theabove example) used at the leaves of the tree are implemented both as simple loops, and interms of GEMM, and whi
h one is used depends on the problem sizes and relative eÆ
ien
ybetween GEMM and the simple loop implementation.This design 
an be implemented both simply and elegantly in a very small amount of
ode in any language natively supporting re
ursion. The design's most important feature23



is that all performan
e optimizations, both memory and 
omputational, are isolated inGEMM. Most other GEMM-based designs instead perform the memory optimizations to atleast some degree in the GEMM-based routines, and rely on GEMM mainly for 
omputa-tional optimizations.To understand this, re
all that optimizing memory a

ess involves blo
king the matri
esin order to en
ourage 
a
he reuse. However, the partitioning s
heme used by the Level 3BLAS is itself a blo
king, and if 
hosen unwisely, 
an prevent GEMM from doing 
a
heblo
king.The drawba
ks of this approa
h are obvious. As we have seen in previous se
tions,partitioning s
hemes 
an be
ome quite 
omplex; this 
omplexity is naturally re
e
ted in theimplementation. Reprodu
ing both this 
ode 
omplexity and the ar
hite
tural-dependent
a
hing information throughout the Level 3 BLAS robs the GEMM-based design of itsgreatest strength: its relian
e on a 
entralized kernel for performan
e wins.In ATLAS's GEMM-based approa
h, the only parameter that 
hanges with the ar
hi-te
ture is NB, whi
h is supplied automati
ally by GEMM. Further, the submatri
es impliedby the re
ursion are square, whi
h tends to allow greater 
a
he blo
king opportunities toGEMM than non-square shapes.It is 
lear that the most optimal implementation would not be GEMM-based, but wouldinstead have spe
ialized 
a
he and 
ompute parameters just as in our previously des
ribedGEMM implementation. However, we believe that the performan
e loss inherent in usingATLAS's GEMM-based approa
h is in pra
ti
e negligible, and thus the simpli
ity andplatform-independen
e of the GEMM-based approa
h used by ATLAS 
onstitutes a 
learwin. The timings presented in the following se
tion appear to substantiate this idea.6.3.1 Timing ResultsAgain, spa
e 
onsiderations rule out presenting extensive timing results. We have 
hosento show results for all double pre
ision BLAS operations on two ar
hite
tures, again withproblems of size 500, and 
omparing results for vendor, ATLAS, and Fortran77 referen
eimplementations.Figure 5 shows the performan
e results for the Sun UltraSpar
 (200Mhz). This ar
hi-te
ture is interesting be
ause it is the one on whi
h ATLAS's GEMM (the 
ompute kernelfor all of ATLAS's Level 3 BLAS) performs worst in regards to the vendor-supplied version.This graph shows that, even when ATLAS's GEMM is not as good as the vendor version,the rest of the Level 3 BLAS, whi
h are built in terms of it, may nonetheless still 
omparefavorably with the vendor BLAS. This highlights one of the disadvantages of 
odes that donot use the kernel approa
h to library building: uneven optimization, based on the prioritiesof the library produ
er (whi
h may well not mat
h the needs of the end user).Figure 6 shows the same data for a 533Mhz DEC ev56. This se
ond ar
hite
ture ismore typi
al in that ATLAS and vendor GEMM are mu
h 
loser to parity. Here we see thatwhen ATLAS's GEMM 
ompares favorably with the vendor implementation, this advantage
arries over for the entire BLAS. As with the UltraSpar
 results, we again see that the vendoroptimization e�ort has varied widely between routines, while ATLAS maintains a more evenlevel of optimality.
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7 Optimizing the Level 2 BLASThe Level 2 BLAS perform matrix-ve
tor operations of various sorts. All routines have atmost one matrix operand, and one or two ve
tor operands. Unfortunately, spa
e 
onsidera-tions rule out 
overing ATLAS's Level 2 BLAS implementation in any real detail. Therefore,this se
tion will explain the theoreti
al underpinnings of all Level 2 optimizations: the basi
memory optimization te
hniques that allow the ve
tor operand(s) main memory a

ess tobe redu
ed from O(N2) to O(N). We then des
ribe, in the broadest possible strokes, howthese and other optimizations are used by ATLAS.7.1 Register and Ca
he Blo
king for the Level 2 BLASIf no register or 
a
he blo
king were done, the Level 2 operations would require O(N2)data a

ess on ea
h operand. With the appropriate register and 
a
he blo
king, the ve
toroperands' a

ess 
an be redu
ed to O(N). Obviously enough, the O(N2) matrix a

ess
annot be redu
ed, sin
e the matrix is a
tually of size O(N2).To understand this in detail, we look at the matrix ve
tor multiply operation. In theBLAS, the matrix-ve
tor multiply routine performs y  �op(A)x + �y, where op(A) = A,AH or AT and A has M rows and N 
olumns. For our dis
ussion, it is enough to examinethe 
ase y  Ax+ y, where A is a square matrix of size N .This operation may be summarized as PNi=1(yi =PNj=1Aijxj + yi); From this equationit is 
lear that 
al
ulating an element of y requires reading the entire N length ve
tor x,reading and writing the ith element of y N times, and reading the entire N length row iof the matrix A. Sin
e there are N elements of y, it follows that this algorithm requiresN2 reads of A, N2 reads of x, N2 reads and N2 writes of y. Just as with the Level 3operations, the number of referen
es 
annot be 
hanged without 
hanging the de�nitionof the operation, but by using appropriate 
a
he and register blo
kings, the number ofthe referen
es that must be satis�ed out of main memory or higher levels of 
a
he 
an bedrasti
ally redu
ed.The minimum number of main memory referen
es required to do this operation resultsin a

essing ea
h element from main memory only on
e, whi
h redu
es the a

esses from(3N2 reads + N2 writes) to (N2 +N reads + N writes).As an interesting aside, even this trivial analysis is suÆ
ient to understand the largeperforman
e advantage enjoyed by the Level 3 over the Level 2 BLAS routines. All Level 2BLAS require O(N2) FLOPs (Floating Point Operations); a 
ompletely optimal implemen-tation 
an at best redu
e the number of main memory a

esses to the same order, O(N2).The Level 3 BLAS, in 
ontrast, require O(N3) FLOPs, but the number of main memorya

esses 
an be redu
ed to a lower order term, O(N2). Sin
e most modern ma
hines haverelatively slow memory when 
ompared to their peak FLOP rate, this analysis di
tates thatLevel 3 BLAS will a
hieve a mu
h higher per
entage of the peak FLOP rate than the Level2 BLAS.Getting ba
k to Level 2 BLAS, we now examine the register and 
a
he blo
king, whi
hare used in order to redu
e the ve
tor a

esses.
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7.1.1 Register Blo
kingRegisters are s
alars whi
h are dire
tly a

essed by the 
oating point unit. In a way,registers thus 
orrespond to a \Level 0" 
a
he, whi
h operates at in�nite speed. Given anin�nite number of registers, only one main memory a

ess per element would be requiredfor all operations. Unfortunately, the number of user-addressable 
oating point registersavailable on modern ar
hite
tures typi
ally varies between 8 and 32, and thus all but themost trivial operations will over
ow the registers.For this reason, register blo
king alone 
an redu
e either the y or x a

ess term fromO(N2), to O(N), but not both. This is easily seen using the simpli�ed GEMV operationintrodu
ed in the previous se
tion. The basi
 algorithm required to redu
e the a

esses ofy to O(N) is most easily shown in the following pseudo-
ode:do I = 1, Nr = y(I)do J = 1, Nr += A(I,J) * x(J)end doend doThis is an \inner produ
t" or dot produ
t-based matrix ve
tor multiply. If we unrollthe I loop and use Ry registers to hold the elements of y, we 
an redu
e the N2 a

esses ofx to N2Ry , by using a register to reuse the element x(J) Ry times for ea
h load.Unrolling the loop like this essentially 
reates a hybrid algorithm, in the sense that theRy y a

ess 
onstitute a small outer produ
t. However, sin
e registers 
annot hold both yand x throughout the algorithm, one or the other must be 
ushed as the loop progresses(thus ne
essitating multiple loads to registers), and sin
e we drop the value of x and maintainy in the registers, this \hybrid" algorithm is still essentially inner produ
t.Redu
ing the x 
omponent to O(N) a

esses requires the \outer produ
t" or AXPY-based (AXPY being a Level 1 BLAS routine performing the operation y  �x+ y) versionof GEMV:do J = 1, Nr = x(J)do I = 1, Ny(I) += A(I,J) * rend doend doThis gives us N read a

esses on x, and, just as with the inner produ
t, unrolling theJ loop and using Rx registers to hold the elements of x, we 
an redu
e the a

esses of y toN2Rx reads and writes, by using an additional register to reuse y(I) Rx times.Therefore, stri
tly for register blo
king purposes, the inner produ
t formulation is supe-rior to the outer produ
t: the total number of reads of both formulations is O(N2)+O(N),but the number of writes is O(N) for inner produ
t, but O(N2) for outer produ
t. In pra
-ti
e, when array 
olumns are stored 
ontiguously, a heavily unrolled AXPY-based algorithmmay in fa
t be used, sin
e it better utilizes hardware prefet
h, 
a
he line fet
h, TLB a

ess,et
. As mentioned before, however, su
h details are beyond the s
ope of this paper, so wewill assume the register blo
king used will be the inner produ
t formulation.27



As another pra
ti
al note, the number of registers available for doing multiple AXPYsor dot produ
ts is severely limited, even beyond the 8 or 32 ISA (instru
tion set ar
hite
-ture) limit. In the inner produ
t formulation, where Ry registers are used to form the Rysimultaneous dot produ
ts, at least two registers must be available for loading elementsof x and A. Further registers will be used in order to support pipelining and prefet
h.Large unrollings also mean a

essing many more memory lo
ations simultaneously, whi
h
an swamp the memory fet
h 
apabilities of the ar
hite
ture. This means that Ry is usuallykept to a relatively small number (typi
ally in the range of 2� 8).In summation, register blo
king redu
es one ve
tor a

ess to O(N) 
ost; the ve
torusually 
hosen for this redu
tion is the output ve
tor (i.e., an inner produ
t type registerblo
k), due to its higher 
ost. In order to redu
e the remaining ve
tor to O(N), we mustapply 
a
he blo
king.While it is tempting to regard register blo
king as a spe
ial 
ase of 
a
he blo
king, theirimplementations are fundamentally di�erent. As we will see, 
a
he blo
king 
an be easilydone by simply parameterizing the relevant 
ode, so that properly blo
ked se
tions of theoperands are a

essed. Register blo
king, as this se
tion has demonstrated, relies on sour
eadaptation, sin
e varying it requires 
hanging the loop order, number of registers, loopunrollings, et
., all of whi
h 
hange the 
ode in ways that 
annot be supported via simpleparameterization.7.1.2 Ca
he Blo
kingAs previously dis
ussed, register blo
king has redu
ed the a

ess of y to O(N), leavingthe x a

ess at O(N2). Therefore, loading x to registers O(N2) times 
annot be avoided;However, the optimal algorithm will guarantee that main memory satis�es only O(N) ofthese requests, leaving lower levels of 
a
he to satisfy the rest.Again, GEMV 
an be used to better understand this idea. The register blo
k is doingRy simultaneous dot produ
ts, so that the y a

ess is N reads and N writes, while thex fet
h to registers is N2Ry . Sin
e x is reused in forming ea
h su

essive dot produ
t, x isa 
andidate for 
a
he reuse. It is easily seen that forming Ry dot produ
ts a

esses Ryelements of y, all N elements of x, and Ry �N elements of A. Thus the footprint in 
a
heof one step of this algorithm is roughly Ry +N +RyN .Therefore, we 
an e�e
tively guarantee L1 
a
he reuse by partitioning the originalproblem so that the footprint in 
a
he is small enough that the relevant portion of xis not 
ushed between su

essive sets of dot produ
ts. Therefore, the 
orre
t blo
kingfor x may be determined by solving an equation, whose simpli�ed expression would be:Ry + Np + RyNp = S1 ) Np = S1�RyRy+1 , where S1 is the size, in elements, of the Level 1
a
he, and Np is the partitioning of x that we are solving for.In pra
ti
e, this equation is more 
ompli
ated: some memory unrelated to the algorithmwill always be in 
a
he, there will be problems asso
iated with 
a
he line 
on
i
ts, et
. Inaddition, the equation needs to be adapted to the underlying register blo
king so thatthe initial load of the next step does not unne
essarily 
ush x. However, these details,while important in extra
ting the maximal performan
e, are not required for 
on
eptualunderstanding, and so are omitted here.With the 
orre
t partitioning (Np) known, the originalN�N GEMV is then blo
ked intodN=Npe separate problems of size N �Np (the last su
h problem will obviously be smaller28



if Np does not divide N evenly). The data a

ess to main memory is then dN=NpeN readsand writes of y, N reads of X, and N2 reads of A.Np is typi
ally very 
lose to N in size, and so this algorithm is very near optimal in itsmemory a

ess. Np will typi
ally be in the range 350 - 1500, so even very large problemsstill have extremely small 
oeÆ
ients on the y a

ess term. Note that any problem withN � Np will a
hieve the optimal result (N2 a

ess of A, N a

ess of x and y) without anyneed for any 
a
he blo
king (register blo
king is still required).There is little point in expli
itly blo
king for higher levels of 
a
he in the Level 2 BLAS.However, if the ma
hine possesses a level of 
a
he large enough to hold the footprint ofthe entire L1-blo
ked algorithm (with the previously stated simpli�
ations, this is roughlyNpN +Np+Ry), y will be reused without need for expli
it blo
king, and the main memorya

ess will be redu
ed to its theoreti
al minimum.7.2 ATLAS's Level 2 Compute KernelsAs we have seen, ATLAS employs one low-level 
ompute kernel (the L1 matmul), fromwhi
h the BLAS's more general GEMM routine is built. The L1 matmul and GEMM arethen used in turn to generate the rest of the Level 3 BLAS. With this method, only this onerelatively simple kernel needs to be supported using 
ode adaptation, and its performan
edi
tates that of the entire Level 3 BLAS.The same strategy is employed for the Level 2 BLAS, but two types of 
ompute kernelsare needed rather than one. Just as with the L1 matmul, these kernels perform registerblo
king and various 
oating point optimizations, but do no 
a
he blo
king, as it is assumedthat the dimensions of the arguments have been blo
ked by higher level 
odes in order toensure L1 
a
he reuse. The 
ompute kernels for the Level 2 BLAS are:� L1 matve
: An L1-
ontained matrix ve
tor multiply, with four variants:1. No Transpose { matrix A's rows are stored in rows of input array2. Conjugate (
omplex only) { matrix A's rows are stored in 
onjugated form inrows of input array3. Transpose { matrix A's rows are stored in 
olumns of input array4. Conjugate Transpose (
omplex only) { matrix A's rows are stored in 
onjugatedform in 
olumns of input array� L1 update1: An L1-
ontained rank-1 updateBoth of these kernels further supply three spe
ialized � 
ases (0, 1, and variable).7.3 Building ATLAS's Level 2 BLASThis se
tion presents a very rough outline of how ATLAS supports the Level 2 BLAS. Theinstall of the Level 3 BLAS pre
edes that of the Level 2, and from this pro
ess ATLAS knowsthe size of the L1 
a
he. Thus, using a slightly more 
ompli
ated version of the equationsgiven in Se
tion 7.1.2, ATLAS has a good idea of the 
orre
t Level 1 
a
he partitioning touse. With this in hand, ATLAS is ready to �nd the best 
ompute kernels for the Level 2BLAS. 29



Presently, ATLAS relies solely on multiple implementation to support these kernels (e.g.
ode generation is not employed). Therefore, the sear
h simply tries ea
h implementationin turn, and 
hooses the best. The 
onjugate forms of the L1 matve
 have the sameperforman
e 
hara
teristi
s as their non
onjugate equivalents, so ATLAS need sear
h only3 di�ering kernels: notranspose matve
, transpose matve
, and L1 update1.Using these best algorithms, ATLAS empiri
ally dis
overs the optimum per
entage ofthe L1 
a
he to use. These empiri
ally-dis
overed blo
kings and kernel implementations arethen used to build the Level 2 BLAS routines GEMV and GER (mu
h as GEMM was builtusing the L1 matmul), and all of this information and these building blo
ks are then usedto produ
e the rest of the Level 2 BLAS.Part IVCon
lusion and future workResults presented and referen
ed here demonstrate unambiguously that AEOS te
hniques
an be utilized to build portable performan
e-
riti
al libraries, whi
h 
ompete favorablywith ma
hine-spe
i�
, hand-tuned 
odes. We believe that the AEOS paradigm will ulti-mately have a major impa
t on high performan
e library development and maintenan
e.ATLAS has produ
ed a 
omplete BLAS, and the ATLAS BLAS are already widelyused in the linear algebra 
ommunity. Further information, in
luding the software anddo
umentation, is available at the ATLAS homepage, www.netlib.org/atlas.This paper has given a very high level overview of the methods used in the ATLASproje
t to support the BLAS, and the ATLAS proje
t is 
ontinuing to improve and extend onthis work. There are many more areas of ATLAS/AEOS resear
h than 
an be investigatedby any one group. Some of the areas we are 
urrently 
onsidering are:� Generalizations of ar
hite
ture information. We are examining to what degree theinformation ATLAS dis
overs during the install pro
ess 
an be generalized and madeavailable to other pa
kages.� Code Generation for GEMV and GER kernels. The present dense Level 2 BLAS maynot be optimal for all platforms be
ause their 
ompute engine (L1 matmul and L1update1) are supported solely by multiple implementation. For maximal performan
e,it will be ne
essary to supplement this with 
ode generation, as we have done in theLevel 3 BLAS.� Code generation for some Level 1 BLAS routines. Many Level 1 BLAS routines
annot be optimized mu
h more than a standard 
ompiler will do, and so do notneed spe
ial attention via ATLAS's empiri
al te
hniques. However, operations su
has AXPY (y  y + �x) are 
omplex enough that the potential performan
e bene�tmakes it worth investigating the optimizations provided by 
ode generation. Also,this investigation is ne
essary in order to support sparse operations, whi
h use Level1, or near-Level 1, operations relatively often.� SMP support via pthreads. Providing shared memory pro
essing support for the BLASvia pthreads is not diÆ
ult. However, making su
h support portable a
ross di�ering30



pthreads implementations is more 
hallenging, and �nding reliable timing methods forthreaded 
odes so that they may be adapted via AEOS te
hniques has proven quitediÆ
ult indeed. We are investigating these areas now.� Pa
ked storage optimizations. One important area that has been traditionally mishan-dled is pa
ked storage, where only the relevant portion of a triangular or symmetri
matrix is stored, allowing for larger problems to be solved in the same memory spa
e.Present implementations are orders of magnitude slower than they need to be due toBLAS interfa
e issues, and ve
tor-based algorithms. This work may require extendingthe present generators, or development of spe
ialized routines.� Sparse optimizations. This is an open-ended resear
h area that en
ompasses many dif-ferent areas of optimization. We hope to use our experien
e with dense optimizationsin order to gain insight into the more tra
table storage s
hemes. This will later pavethe way for more advan
ed work, su
h as stru
ture analysis and dynami
 libraries, aswell as providing a springboard to handling the less dense-like stru
tures.� Algorithmi
 resear
h and higher level routines. We have already extended ATLASbeyond the BLAS and into higher level kernels su
h as LAPACK's LU and Cholesky.This trend should 
ontinue, with perhaps some interesting algorithmi
 resear
h. Forinstan
e, with the known performan
e provided by ATLAS, alternative algorithmsmay be
ome attra
tive in the sear
h for the best performan
e (an example might beuse of the sign fun
tion for eigenvalues, due to the relative performan
e advantageits Level 3 BLAS operations enjoy over the Level 2 operations used by traditionalmethods) [2℄.
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