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Part IIntrodutionThe ATLAS (Automatially Tuned Linear Algebra Software) projet is an ongoing researhe�ort fousing on applying empirial tehniques in order to provide portable performane.Linear algebra routines are widely used in the omputational sienes in general, and si-enti� modeling in partiular. In many of these appliations, the performane of the linearalgebra operations are the main onstraint preventing the sientist from modeling moreomplex problems, whih would then more losely math reality. This then ditates anongoing need for highly eÆient routines; as more ompute power beomes available thesientist typially inreases the omplexity/auray of the model until the limits of theomputational power are reahed. Therefore, sine many appliations have no pratiallimit of \enough" auray, it is important that eah generation of inreasingly powerfulomputers have optimized linear algebra routines available.Linear algebra is rih in operations whih are highly optimizable, in the sense that ahighly tuned ode may run multiple orders of magnitude faster than a naively oded rou-tine. However, these optimizations are platform spei�, suh that an optimization for agiven omputer arhiteture will atually ause a slow-down on another arhiteture. Thetraditional method of handling this problem has been to produe hand-optimized routinesfor a given mahine. This is a painstaking proess, typially requiring many man-monthsof highly trained (both in linear algebra and omputational optimization) personnel. Theinredible pae of hardware evolution makes this tehnique untenable in the long run, par-tiularly so when onsidering that there are many software layers (eg., operating systems,ompilers, et), whih also e�et these kinds of optimizations, that are hanging at a similar,but independent rates.Therefore a new paradigm is needed for the prodution of highly eÆient routines inthe modern age of omputing, and ATLAS represents an implementation of suh a set ofnew tehniques. We all this paradigm "Automated Empirial Optimization of Software",or AEOS. In an AEOS-enabled pakage suh as ATLAS, the pakage provides many waysof doing the required operations, and uses empirial timings in order to hoose the bestmethod for a given arhiteture. Thus, if written generally enough, an AEOS-aware pak-age an automatially adapt to a new omputer arhiteture in a matter of hours, ratherthan requiring months or even years of highly-trained professionals' time, as ditated bytraditional methods.ATLAS typially uses ode generators (i.e., programs that write other programs) inorder to provide the many di�erent ways of doing a given operation, and has sophistiatedsearh sripts and robust timing mehanisms in order to �nd the best ways of performingthe operation for a given arhiteture.One of the main performane kernels of linear algebra has traditionally been a standardAPI known as the BLAS (Basi Linear Algebra Subprograms) [14, 17, 6, 7, 5℄ This API issupported by hand-tuned e�orts of many hardware vendors, and thus provides a good �rsttarget for ATLAS, as there is both a large audiene for this API, and on those platformswhere vendor-supplied BLAS exist, an easy way to determine if ATLAS an provide therequired level of performane. 3



Part IIAEOS1 AEOS in ContextHistorially, the researh ommunity has pursued two separate paths towards the goal ofmaking software run at near peak levels. The �rst and most generally suessful of thesebuilds on researh into ompilers and their assoiated tehnologies. The holy grail of om-pilation researh is to take an arbitrary ode as an input and produe ompletely optimalode as output for given languages and hardware platforms. Despite the immense amount ofe�ort that has been poured into this approah, its suess has been limited both by pratialtime onstraints (viz. users will not tolerate ompile-times that extend into several days)and by the amount of detailed information the ompiler an obtain about the software tobe ompiled and the hardware on whih it is supposed to exeute [16, 23, 24℄.A seond, omplementary thrust has been to identify kernel routines that onstitute thedominant performane ost of a wide variety of appliations. When suh kernels an beidenti�ed and an API an be agreed upon by the members of the ommunity, small groupsof programmers with the required level of tehnial knowledge an onentrate their e�ortson produing optimized kernel libraries for arhitetures of interest. A prime example ofthis kind of e�ort is the aforementioned BLAS. As experiene with the BLAS has shown,these libraries an be produed by some ombination of hardware vendors (e.g. IBM,Intel), independent software vendors (e.g. Cooke & Assoiates), and researhers, dependingin large measure on the level of importane the di�erent parties attah to the routines inquestion. Developers who write their ode to all these well-known APIs an then ahievehigh performane aross all supported arhitetures.But just as there are urrently boundaries to what an be done to ahieve near peakperformane via ompiler optimization, the library-oriented approah has signi�ant limi-tations as well. For instane, it is lear that in order to eliit the kind of attention requiredto reate an optimized library for a given operation, the operation must be regarded aswidely useful by the members of a programming ommunity, who are usually already over-burdened. Moreover, one an API has been agreed upon, support for various arhiteturesbeomes the dominant problem, espeially sine the kind of optimizations neessary toahieve high performane are by their very nature non-portable. Suh performane tuningrelies on a areful exploitation of the spei� details the underlying hardware arhiteture;if that hardware is hanged, a previous optimization may now ause the program to exeutemore slowly on the new platform.The expensive and hardware-relative nature of kernel optimizations beomes all themore problemati when proessor designs are hanging at the remarkable pae ditatedby Moore's Law. These inreases in proessor performane are, however, largely wastedunless the key libraries are updated at the same pae as the hardware. With ever-shrinkinghardware generation yles, these updates beome nearly impossible to do by hand. It isa fat of the omputing industry that by the time highly optimized ode is available for agiven arhiteture, that arhiteture is generally well on its way towards obsolesene.We believe the AEOS methodologies address this problem diretly, and have the po-tential to make a signi�ant impat on how high performane libraries are produed and4



maintained.2 Basi AEOS RequirementsThe basi requirements for supporting a library using AEOS methodologies are:� Isolation of performane-ritial routines. Just as with traditional libraries, someonemust �nd the performane-ritial setions of ode, separate them into subroutines,and hoose an appropriate API.� A method of adapting software to di�ering environments Sine AEOS depends oniteratively trying di�ering ways of performing the performane-ritial operation, theauthor must be able to provide routines that instantiate a wide range of optimizations.This may be done very simply, for instane by having parameters in a �xed odewhih, when varied, orrespond to di�ering ahe sizes, et, or it may be done muhmore generally, for instane by supplying a highly parameterized ode generator whihan produe an almost in�nite number of implementations. No matter how generalthe adaptation strategy, there will be limitations or built-in assumptions about therequired arhiteture whih should be identi�ed in order to estimate the probableboundaries on the ode's exibility. Setion 3 disusses software adaptation methodsin further detail.� Robust, ontext-sensitive timers Sine timings are used to selet the best ode, itbeomes very important that these timings be aurate. Sine few users an guaranteesingle-user aess, the timers must be robust enough to produe reliable timings evenon heavily loaded mahines. Furthermore, the timers need to repliate as losely aspossible the way in whih the given operation will be used. For instane, if the routinewill normally be alled with old ahes, ahe ushing will be required. If the routinewill typially be alled with a given level of ahe preloaded, while others are not, thattoo should be taken into aount. If there is no known mahine state, timers allowingfor many di�erent states, whih the user an vary, should be reated.� Appropriate searh heuristi The �nal requirement is a searh heuristi whih auto-mates the searh for the most optimal available implementation. For a simple methodof ode adaptation, suh as supplying a �xed number of hand-tuned implementations,a simple linear searh will suÆe. However, with sophistiated ode generators withliterally hundreds of thousands of ways of doing an operation, a similarly sophisti-ated searh heuristi must be employed in order to prune the searh tree as rapidlyas possible, so that the optimal ases are both found and found quikly (obviously,few users will tolerate heavily parameterized searh times with fatorial growth). Ifthe searh takes longer than a handful of minutes, it needs to be robust enough tonot require a omplete restart if hardware or software failure interrupts the originalsearh.3 Methods of Software AdaptationThere are essentially two di�erent methods of software adaptation. The �rst is widely usedin programming in general, and it involves parameterizing harateristis whih vary from5



mahine to mahine. In linear algebra, the most important of suh parameters is probablythe bloking fator used in bloked algorithms, whih, when varied, varies the data aheutilization. In general, parameterizing as many levels of data ahe as the algorithm ansupport an provide remarkable speedups. With an AEOS approah, suh parameters anbe ompile-time variables, and thus not ause a runtime slowdown. We all this methodparameterized adaptation.Not all important arhitetural variables an be handled by parameterized adaptation(simple examples inlude instrution ahe size, hoie of ombined or separate multiplyand add instrutions, length of oating point and feth pipelines, et), sine varying thematually requires hanging the underlying soure ode. This then brings in the need forthe seond method of software adaptation, soure ode adaptation, whih involves atuallygenerating di�ering implementations of the same operation.There are at least two di�erent ways to do soure ode adaptation; Perhaps the simplestapproah is for the designer to supply various hand-tuned implementations, and then thesearh heuristi may be as simple as trying eah implementation in turn until the best isfound. At �rst glane, one might suspet that supplying these multiple implementationswould make even this approah to soure ode adaptation muh more diÆult than thetraditional hand-tuning of libraries. However, traditional hand-tuning is not the mere ap-pliation of known tehniques it may appear when examined asually. Knowing the sizeand properties of your level 1 ahe is not suÆient to hoose the best bloking fator, forinstane, as this depends on a host of interloking fators whih defy a priori understandingin the real world. Therefore, it is ommon in hand-tuned optimizations to utilize the knownharateristis of the mahine to narrow the searh, but then the programmer writes variousimplementations and hooses the best.For the simplest AEOS implementation, this proess remains the same, but the pro-grammer adds a searh and timing layer whih do what would otherwise be done by hand.In the simplest ases, the time to write this layer may not be muh if any more than the timethe implementor would have spent doing the same proess in a less formal way by hand,while at the same time apturing at least some of the exibility inherent in AEOS-entridesign. We will refer to this soure ode adaptation tehnique as multiple implementation.Due to its obvious simpliity, this method is highly parallelizable, in the sense that multi-ple authors an meaningfully ontribute without having to understand the entire pakage.In partiular, various speialists on given arhitetures an provide a hand-tuned routineswithout needing to understand other arhitetures, the higher level odes (e.g. timers,searh heuristis, higher-level routine whih utilize these basi kernels, et). This makesmultiple implementation a very good approah if the user base is large and skilled enoughto support an open soure initiative along the lines of, for example, Linux.The seond method of soure ode adaptation is ode generation. In ode generation,a ode generator (i.e., a program that writes other programs) is produed. This odegenerator takes as parameters the various soure ode adaptations to be made. As before,simple examples inlude instrution ahe size, hoie of ombined or separate multiply andadd instrutions, length of oating point and feth pipelines, and so on. Depending onthe parameters, the ode generator produes soure ode with the requisite harateristis.The great strength of ode generators is their ultimate exibility, whih an allow for fargreater tunings than ould be produed by all but the best hand-oders. However, generatoromplexity tends to go up along with exibility, so that these routines rapidly beome almost6



insurmountable barriers to outside ontribution.It thus seems likely that the best approah will ombine these two methods; in suh asystem ode generation will be harnessed for its generality, but it will be supplemented bymultiple implementation, allowing for the extension of the pakage beyond one designer'svision via ommunity ollaboration.4 Adapting to Constantly Changing Hardware and SoftwareLayersAs mentioned in the introdution, AEOS design for libraries is essentially an outgrowth ofthe rapid pae of hardware evolution. However, all layers of software separating the AEOSpakage from the hardware omprise what ould be alled the library-pereived arhiteture.Therefore, AEOS-entri pakages adapt to both software and hardware, whih hange atonly loosely related rates.The history of the ATLAS projet inludes numerous examples of the lak of synhronybetween software and hardware releases. Gnu g on the UltraSpar shows one suh ase.The �rst available release of g for this new (at the time) hardware still used a previousISA (instrution set arhiteture), so that only 16 of the available 32 oating point registerswere addressable to odes written in C, as ATLAS is. This meant that at that point in thehardware/software yle, the best ase of register bloking (an important optimization foroating point intensive software) used roughly 16 registers, not the ISA limit of 32. Lateron, g was adapted to the new ISA, and ATLAS's new optimal ase used the inreasednumbers of registers to further improve the software.In the traditional way of supporting libraries, this would have required the developmentof two libraries, eah requiring signi�ant investment of time and e�ort from highly trainedprofessionals. With ATLAS, the optimized library was available within hours of even arelatively unsophistiated user gaining aess to the new hardware or software.Generally, the lower-level the language an AEOS pakage is implemented, the smallerthe gap between software and hardware release yles are. For instane, it is likely that anassembler would be able to address the new ISA before a ompiler, suh as C or Fortran77,will. However, implementing in high level languages has at least two distint advantages.First, the software is muh more portable, and seondly, the exellent and ongoing researhinto ompiler tehnology is leveraged automatially. Examples of the way that ompileroptimizations an aid AEOS programming abound. Compiler-ontrolled prefeth, loopunrolling, pipelining and loop skewing are just a few of the obvious areas. Of ourse, manysuh optimizations may be done expliitly by the ode generator as well. In pratie, a odegenerator whih an expliitly do suh optimizations, while also being apable of generatingode without suh optimizations in order to allow the ompiler the opportunity to performthem impliitly, will enjoy the most general suess.4.1 AEOS/Compiler SynergyThis brings us to an interesting topi, that of AEOS/ompiler synergy. As previouslymentioned, AEOS an readily leverage the improvements inherent in ompiler advanement.The reverse is also true. As languages beome higher level, they impliitly begin to relyon standard libraries for a larger and larger proportion of their performane. An already7



existing example of this would be Fortran95's addition of matrix multiply and matrix-vetormultiplies as language primitives. These kinds of high-level abstrations will naturally alla library, and AEOS tehniques an provide the adaptability required in today's ompilerlife yles.This kind of mixture of ompiler, language, and libraries an be mined muh moreextensively in the searh for synergy between these disiplines, as with the researh presentlybeing done on telesoping languages [16℄.Finally, we believe that many of the empirial tehniques inorporated in AEOS willeventually make their way into ompilers. For instane, if a very high level of optimizationsis set, a ompiler ould generate and time various unrollings, et, just as is done presently inATLAS, in order to �nd the best for the given operation. I.e., in ases where heavy use makesthe ost worthwhile, the almost purely a priori tehniques presently used by ompilers anbe supplemented with what amounts to automated tuning on the y. Interpreted languagesusing tehniques similar to Java's hot-spot an iteratively improve ode in a like manneraross multiple alls.No matter how good ompilers get, it is unlikely that the need for optimized libraries,and thus of AEOS, will ever go away (although their use may no longer be apparent tothe programmer, as in a paradigm suh as telesoping languages). The hard limits ofwhat a ompiler an do will always be ditated by the amount of information the ompileran extrat from the provided ode. Library building, where an operation is ditated (asopposed to an implementation of that operation), with its assoiated enormously expandedhigh-level understanding, allows for muh greater variane in implementation.Part IIIATLASATLAS is the projet from whih our urrent understanding of AEOS methodologies grew,and now provides a test bed for their further development and testing. ATLAS was not,however, the �rst projet to harness AEOS-like tehniques for library prodution and main-tenane. As far as we know, the PHiPAC [3℄ projet was the �rst attempt to apply them toLinear Algebra. The FFTW [11, 9, 10℄ projet, whih uses AEOS tehniques to optimizeFast Fourier transforms, was also released around this time frame. Other projets withAEOS-like designs inlude [18, 20, 19℄. The philosophies, approah and appliation suessof these projets vary widely, but they are all built around the idea of using empirial resultsand some degree of automation to adapt libraries for greater performane.The initial goal of ATLAS was to provide a portably eÆient implementation of theBLAS. ATLAS now provides at least some level of support for all of the BLAS, and the�rst tentative extensions beyond this one API have been taken (for example, the most reentATLAS release ontained some higher level routines from the LAPACK [1℄ API). Due tospae limitations, this paper will onentrate on ATLAS's BLAS support.The BLAS (Basi Linear Algebra Subroutines) are building blok routines for perform-ing basi vetor and matrix operations. The BLAS are divided into three levels: Level1 BLAS do vetor-vetor operations, Level 2 BLAS do matrix-vetor operations, and theLevel 3 BLAS do matrix-matrix operations. The performane gains from optimized imple-8



mentations is strongly a�eted by the level of the BLAS.Level 1 BLAS, where no memory reuse is possible, gain only minusule speedups fromall but the best implementations (as a bak of envelope estimate, onsider these speedupsto typially be in the range of 0-15%). Essentially, the only optimizations to be done atthis level involve oating point unit usage, loop optimizations, et. However, sine theseroutines are very simple, the ompiler an usually do an exellent job of these optimizations,so real performane gains are typially found only when a ompiler is poorly adapted to agiven platform.In the Level 2 BLAS, memory bloking an allow for reuse of the vetor operands, butnot, in general, of the matrix operand (the exeption is that some matrix types, for instanesymmetri or Hermitian, an e�etively use eah matrix operand twie). Reduing thevetor operands from O(N2) to O(N) represents onsiderable savings over naive ode, butdue to the irreduible matrix osts, the memory load remains of the same order (O(N2)) asthe operation ount. Therefore, the Level 2 BLAS an enjoy modest speedup (say, roughlyin the range of 10-300%), both beause memory bloking is e�etive, and beause the loopsare omplex enough that more ompilers begin having problems doing the oating pointoptimizations automatially.Finally, the Level 3 BLAS an display orders of magnitude speedups. To simplify greatly,these operations an be bloked suh that the natural O(N3) feth osts beome essentiallyO(N2). Further, the triply-nested loops used here are almost always too omplex for theompiler to �gure out without hints from the programmer (eg, some expliit loop unrolling),and thus the O(N3) omputation ost an be greatly optimized as well.The following setions disuss our handling of the Level 3 and 2 BLAS in ATLAS.Beause of the amount of e�ort required to provide high-quality AEOS software, it beomesritial to �nd the smallest possible kernels whih an be leveraged to supply all requiredfuntionality. Thus, eah setion desribes the low level performane kernels, the tehniquesused to reate them, and how these kernels are utilized to produe all required funtionality.The Level 1 BLAS are not disussed; at present ATLAS provides hand-tuned odes for theseoperations, essentially relying on the ompiler for the lion's share of the optimization.5 Limits of ATLAS's ApproahAs previously mentioned, any AEOS approah is bound to have some restritions on itsadaptability. ATLAS is no exeption, and the following assumptions need to hold true forATLAS to perform well:1. Adequate ANSI C ompiler ATLAS is written entirely in ANSI/ISO C, with the ex-eption of the Fortran77 interfae odes (whih are simple wrappers written in ANSIFortran77, alling the C internals for omputation). ATLAS does not require anexellent ompiler, sine it uses ode generation to perform many optimizations typ-ially done by ompilers. However, too-aggressive ompilers an transform alreadyoptimal ode into suboptimal ode, if ags do not exist to turn o� ertain ompileroptimizations. On the other hand, ompilers without the ability to e�etively usethe underlying ISA (eg., inability to utilize registers, even when the C ode alls forthem), will yield poor results as well. 9



2. Hierarhial memory ATLAS assumes a hierarhial memory is present. Best resultswill be obtained when both registers and at least an L1 data ahe are present.Of these two restritions, the most important is the need for an adequate C ompiler.Lak of hierarhial memory would at worst turn some of ATLAS's bloking and registerusage into overheads. Even with this handiap, ATLAS's ode adaptation may still yieldenough performane to provide an adequate BLAS. If the ANSI C ompiler is poor enough,however, this an result in the omputational portion of the algorithms being e�etivelyunoptimized. Sine the omputational optimizations are the dominant ost of a blokedLevel 3 BLAS, this an produe extremely poor results.6 Level 3 BLAS Support in ATLASAs previously mentioned, all Level 3 BLAS routines (for eah real data type there are sixLevel 3 BLAS, and nine routines for eah omplex data type) an be eÆiently implementedgiven an eÆient matrix-matrix multiply (hereafter shortened to matmul, or the BLAS mat-mul routine name, GEMM). Thus the main performane kernel is GEMM. As subsequentsetions show, however, GEMM itself is further narrowed down to an even smaller kernelbefore ode generation takes plae.The BLAS supply a routine GEMM, whih performs a general matrix-matrix multipli-ation of the form C  �op(A)op(B) + �C, where op(X) = X or XT . C is an M � Nmatrix, and op(A) and op(B) are matries of size M �K and K �N , respetively.In general, the arrays A, B, and C will be too large to �t into ahe. Using a blok-partitioned algorithm for matrix multiply it is still possible to arrange for the operations tobe performed with data for the most part in ahe by dividing the matrix into bloks. Foradditional details see [8℄.Using this BLAS routine, the rest of the Level 3 BLAS an be eÆiently supported, soGEMM is the Level 3 BLAS omputational kernel. ATLAS supports this kernel using bothparameterized adaptation and ode generation. There are hand-written high-level odesthat use ompile- or run-time variables to adapt to mahines. These high level odes utilizea generated L1 (Level 1) ahe-ontained matrix multiply as their kernel.6.1 Building the General Matrix Multiply From the L1 Cahe-ontainedMultiplyThis setion desribes the non-generated ode, whose only variane aross platforms omefrom parameterization. These odes are used to form the BLAS's general matrix-matrixmultiply using a L1 ahe-ontained matmul (hereafter referred to as the L1 matmul).Setion 6.2 desribes the L1 matmul and its generator in detail. For our present dis-ussion, it is enough to know that ATLAS has at its disposal highly optimized routinesfor doing matrix multiplies whose dimensions are hosen suh that ahe bloking is notrequired (i.e., the hand-written ode disussed in this setion deals with ahe bloking; thegenerated ode assumes things �t into ahe).When the user alls GEMM, ATLAS must deide whether the problem is large enoughto tolerate opying the input matries A and B. If the matries are large enough to supportthis O(N2) overhead, ATLAS will opy A and B into blok-major format. ATLAS's blok-major format breaks up the input matries into ontiguous bloks of a �xed size NB , where10



NB is hosen as disussed in setion 6.2 in order to maximize L1 ahe reuse. One inblok-major format, the bloks are ontiguous, whih eliminates TLB problems, minimizesahe thrashing and maximizes ahe line use. It also allows ATLAS to apply alpha (if alphais not already one) to the smaller of A or B, thus minimizing this ost as well. Finally,the pakage an use the opy to transform the problem to a partiular transpose setting,whih for load and indexing optimization, is set so A is opied to transposed form, andB is in normal (non-transposed) form. This means our L1-ahe ontained ode is of theform C  ATB, C  ATB + C, and C  ATB + �C, where all dimensions, inludingthe non-ontiguous stride, are known to be NB . Knowing all of the dimensions of the loopsallows for arbitrary unrollings (i.e., if the instrution ahe ould support it, ATLAS ouldunroll all loops ompletely, so that the L1 ahe-ontained multiply had no loops at all).Further, when the ode generator knows leading dimension of the matries (i.e., the rowstride), all indexing an be done up front, without the need for expensive integer or pointeromputations.If the matries are too small, the O(N2) data opy ost an atually dominate thealgorithm ost, even though the omputation ost is O(N3). For these matries, ATLASwill all an L1 matmul whih operates on non-opied matries (i.e. diretly on the user'soperands). The non-opy L1 matmul will generally not be as eÆient as the opy L1 matmul;at this problem size the main drawbak is the additional pointer arithmeti required in orderto support the user-supplied leading dimension.The hoie of when a opy is ditated and when it is prohibitively expensive is an AEOSparameter; it turns out that this rossover point depends strongly both on the partiulararhiteture, and the shape of the operands (matrix shape e�etively sets limits on whihmatrix dimensions an enjoy ahe reuse). To handle this problem, ATLAS simply omparesthe speed of the opy and non-opy L1 matmul for variously shaped matries, varying theproblem size until the opying provides a speedup (on some platforms, and with someshapes, this point is never reahed). These rossover points are determined at install time,and then used to make this deision at runtime. Beause it is the dominant ase, this paperdesribes only the opied matmul algorithm in detail.There are presently two algorithms for performing the general matrix-matrix multiply.The two algorithms orrespond to di�erent orderings of the loops; i.e., is the outer loopover M (over the rows of A), and thus the seond loop is over N (over the olumns of B),or is this order reversed. The dimension ommon to A and B (i.e., the K loop) is urrentlyalways the innermost loop.Let us de�ne the input matrix looped over by the outer loop as the outer or outermostmatrix; the other input matrix will therefore be the inner or innermost matrix. Bothalgorithms have the option of writing the result of the L1 matmul diretly to the matrix,or to an output temporary Ĉ. The advantages to writing to Ĉ rather than C are:1. address alignment may be ontrolled (i.e., the ode an ensure during the mallo thatĈ begins on a ahe-line boundary)2. Data is ontiguous, eliminating possibility of unneessary ahe-thrashing due to ill-hosen leading dimension (assuming a non-write-through ahe)The disadvantage of using Ĉ is that an additional write to C is required after the L1matmul operations have ompleted. This ost is minimal if GEMM makes many alls to the11



L1 matmul (eah of whih writes to either C or Ĉ), but an add signi�antly to the overheadwhen this is not the ase. In partiular, an important appliation of matrix multiply is therank-K update, where the write to the output matrix C an be a signi�ant portion of theost of the algorithm. For the rank-K update, writing to Ĉ essentially doubles the writeost, whih is learly unaeptable. The routines therefore employ a heuristi to determineif the number of times the L1 matmul will be alled in the K loop is large enough to justifyusing Ĉ, otherwise the answer is written diretly to C.Regardless of whih matrix is outermost, both algorithms try to alloate enough spaeto store NB � NB output temporary, Ĉ (if needed), 1 panel of the outermost matrix, andthe entire inner matrix. If this fails, the algorithms attempt to alloate smaller work arrays,the smallest aeptable workspae being enough spae to hold Ĉ, and 1 panel from both Aand B. The minimum workspae required by these routines is therefore 2KNB , if writingdiretly to C, and NB2 + 2KNB if not. If this amount of workspae annot be alloated,the previously mentioned non-opy ode is alled instead.If there is enough spae to opy the entire innermost matrix, there are several bene�tsto doing so:� Eah matrix is opied only one time� If all of the workspaes �t into L2 ahe, the algorithm enjoys omplete L2 reuse onthe innermost matrix� Data opying is limited to the outermost loop, proteting the inner loops from un-needed ahe thrashingOf ourse, even if the alloation sueeds, using too muh memory might result inunneeded swapping. Therefore, the user an set a maximal amount of workspae thatATLAS is allowed to have, and ATLAS will not try to opy the innermost matrix if thismaximum workspae requirement is exeeded.If enough spae for a opy of the entire innermost matrix is not alloated, the innermostmatrix will be entirely opied for eah panel of the outermost matrix (i.e., if A is ouroutermost matrix, ATLAS will opy B dM=NBe times). Further, our usable L2 ahe isredued (the opy of a panel of the innermost matrix will take up twie the panel's size inL2 ahe; the same is true of the outermost panel opy, but that will only be seen the �rsttime through the seondary loop).Regardless of whih looping struture or alloation proedure used, the inner loop isalways along K. Therefore, the operation done in the inner loop by both routines is thesame, and it is shown in �gure 1.If GEMM is writing to Ĉ, the following ations are performed in order to alulate theNB �NB blok Ci;j, where i and j are in the range 0 � i < dM=NBe, 0 � j < dN=NBe:1. Call L1 matmul of the form C  AB to multiply blok 0 of the row panel i of A withblok 0 of the olumn panel j of B.2. Call L1 matmul of form C  AB + C to multiply blok k of the row panel i of Awith blok k of the olumn panel j of B, 8k; 1 � k < dK=NBe. The L1 matmul isperforming the operation C  AB+C, so as expeted this results in multiplying therow panel of A with the olumn panel of B.12



C3;2 A3;1A3;2M NC  M KA N K� BB1;2B2;2B3;2Figure 1: One step of matrix-matrix multiply3. Ĉ now holds the produt of the row panel of A with the olumn panel of B, so ATLASnow performs the blok write-bak operation Ci;j  Ĉi;j + �Ci;j.If ATLAS is writing diretly to C, this ation beomes:1. Call L1 matmul of the orret form based on user-de�ned � (eg. if � == �1, useC  AB �C) to multiply blok 0 of the row panel i of A with blok 0 of the olumnpanel j of B.2. Call L1 matmul of form C  AB + C to multiply blok k of the row panel i of Awith blok k of the olumn panel j of B, 8k; 1 � k < dK=NBe.Building from this inner loop, ATLAS has di�ering loop orderings whih provide two al-gorithms for the full matmul. Figures 2 and 3 give the pseudo-ode for these two algorithms,assuming the write is diretly to C (writing to Ĉ is only trivially di�erent). For simpli-ity, this pseudo-ode skips the leanup neessary for ases where dimensions do not evenlydivide NB . The matrix opies are shown as if oming from the notranspose, notransposease. If they do not, only the array aess on the opy hanges.
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work = alloate((M+NB)*K)if (alloated(work)) thenPARTIAL_MATRIX = .FALSE.opy A into blok major formatelsePARTIAL_MATRIX = .TRUE.work = alloate(NB*2*K)if (.NOT.alloated(work)) all small_ase_odereturnend ifNBNB = NB * NBdo j = 1, N, NBBwork = ALPHA*B(:,J:J+NB-1); Bwork in blok major formatdo i = 1, M, NBif (PARTIAL_MATRIX) Awork = A(i:i+NB-1,:); Awork in blok major formatON_CHIP_MATMUL(Awork(1:NB*NB), Bwork(1:NB*NB), BETA, C(i:i+NB-1, j:j+NB-1), ld)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, C(i:i+NB-1, j:j+NB-1), ld)end doend doend do Figure 2: General matrix multipliation with A as innermost matrixwork = alloate(N*K + NB*K)if (alloated(work)) thenPARTIAL_MATRIX = .FALSE.opy B into blok major formatelsePARTIAL_MATRIX = .TRUE.work = alloate(NB*2*K)if (.NOT.alloated(work)) all small_ase_odereturnend ifNBNB = NB * NBdo i = 1, M, NBAwork = ALPHA*A(i:i+NB-1,:); Awork in blok major formatdo j = 1, N, NBif (PARTIAL_MATRIX) Bwork = B(:,J:J+NB-1); Bwork in blok major formatON_CHIP_MATMUL(Awork(1:NBNB), Bwork(1:NBNB), BETA,Cwork(i:i+NB-1, j:j+NB-1), ld)do k = 2, K, NBON_CHIP_MATMUL(Awork((k-1)*NBNB+1:k*NBNB), Bwork((k-1)*NBNB+1:k*NBNB),1.0, Cwork(i:i+NB-1, j:j+NB-1), ld)end doend doend do Figure 3: General matrix multipliation with B as innermost matrix14



6.1.1 Choosing the Corret Looping StrutureWhen the all to the matrix multiply is made, the routine must deide whih loop strutureto all (i.e., whih matrix to put as outermost). If the matries are of di�erent size, L2 ahereuse an be enouraged by deiding the looping struture based on the following riteria:1. If either matrix will �t ompletely into the usable L2 ahe, put it as the innermostmatrix (algorithm gets L2 ahe reuse on the entire inner matrix)2. If neither matrix �ts ompletely into L2 ahe, put largest matrix as the outermostmatrix (algorithm gets L2 ahe reuse on the panel of the outer matrix, if it �ts inahe, and memory usage is minimized)The size of the usable L2 ahe is not diretly known by ATLAS (although the AEOSvariable CaheEdge desribed in setion 6.1.2 will often serve the same purpose) and so theseriteria are not presently used for this seletion. Rather, in order to minimize workspae,and maximize the hane that ondition one above ours, the smallest matrix will alwaysbe used as the innermost matrix. If both matries are the same size, A is seleted as theinnermost matrix (this implies a better aess pattern for C).6.1.2 Bloking for Higher Levels of CaheNote that this paper de�nes the Level 1 (L1) ahe as the \lowest" level of ahe: the onelosest to the proessor. Subsequent levels are \higher": further from the proessor and thususually larger and slower. Typially, L1 ahes are relatively small (eg., 8-32KB), employleast reently used replaement poliies, have separate data and instrution ahes, and areoften non-assoiative and write-through. Higher levels of ahe or more often non-write-through, with varying degrees of assoiativity, di�ering replaement polies, and ombinedinstrution and data ahe.ATLAS detets the atual size of the L1 data ahe. However, due to the wide varianein high level ahe behaviors, in partiular the diÆulty of determining how muh of suhahes are usable after line onits and data/instrution partitioning is done, ATLAS doesnot presently detet and use a expliit Level 2 ahe size as suh. Rather, ATLAS employsa empirially determined value alled CaheEdge, whih represents the amount of the ahethat is usable by ATLAS for its partiular kind of bloking.Expliit ahe bloking for the seleted level of ahe is only required when the ahe sizeis insuÆient to hold the two input panels and the NB �NB piee of C. This means thatusers will have optimal results for many problem sizes without employing CaheEdge. Thisis expressed formally below; Notie that onditions 1 and 2 below do not require expliitahe bloking, so the user gets this result even if CaheEdge is not set.Therefore, the expliit ahe bloking strategy disussed in 4 below assumes that thepanels of A and B overow a partiular level of ahe. In this ase, the problem an beeasily partitioned along the K dimension of the input matries suh that the panels of thepartitioned matries Ap and Bp will �t into the ahe. This means that we get ahe reuseon the input matries, at the ost of writing C additional times.It is easily shown that the footprint of the algorithm omputing a NB �NB setion ofC in ahe is roughly 2KNB +NB2, where 2KNB stores the panels from A and B, and thesetion of C is of size NB2. If the above expression is set equal to CaheEdge, and solved15



for K, it will yield the maximal K (all this quantity Km) whih will, assuming the innermatrix was opied up front, allow for reusing the outer matrix panel N=NB times. Thispartitioning transforms the original matrix multiply into dK=Kme rank-Km updates.Sine the orret value of CaheEdge is not known a priori, ATLAS empirially de-termines it at install time by using large matries (whose panel sizes an be expeted tooverow the ahe, and thus indue the need for expliit, rather than impliit, L2 or higherbloking), and simply tries various settings. Extremely large ahes will probably not bedeteted in this manner (i.e., if the user annot alloate enough memory to ause a panelto overow the ahe, the large ahe will not be deteted), in whih ase CaheEdge willnot be set or used (very large ahes will have impliit ahe reuse for all but the largestmatries anyway). Some ahes will not give a lear enough optimization using CaheEdgefor timings to reliably detet the di�erene, and in these ases, where no notieable bene�tis deteted, CaheEdge will not be set or used.Assuming that matrix A is the innermost matrix, and we are disussing ahe level L,of size SL, and that main memory is lassi�ed as a level of \ahe" greater than L, thereare four possible states (depending on ahe and problem size, and whether CaheEdge isset) whih ATLAS may be in. These states and their assoiated memory aess osts are:1. If the entire inner matrix, a panel of the outer matrix, and the NB �NB setion of C�ts into the ahe (eg. MK +KNB +NB2 � SL)� K(M +N)+MN reads (of A, B and C, respetively ) from higher level(s) ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahe re-eive only the �nal MN writes2. If the ahe annot satisfy the memory requirements of 1, it may still be large enoughto aommodate the two ative input panels, along with the relevant setion of C(eg., (2KNB +NB2 � SL AND ATLAS opies the entire inner matrix)OR (3KNB +NB2 � SL AND ATLAS opies a panel of the inner matrix in the innerloop, thus doubling the inner panel's footprint in the ahe))� NK+MNKNB +MN reads (B, A and C, respetively) from higher level(s) of ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahe re-eive only the �nal MN writes3. If the ahe is too small for either of the previous ases to hold true, (eg., 2KNB +NB2 > SL) and CaheEdge is not set, and thus no expliit level L bloking is done,the memory aess beomes:� 2MNKNB +MN reads (A, B, and C) from higher level(s) of ahe� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahe re-eive only the �nal MN writes4. Finally, if the �rst two ases do not apply (eg., 2KNB +NB2 > SL), but CaheEdgeis set to SL, ATLAS an perform ahe bloking to hange the memory aess fromthat given in 3 to:� NK + MNKNB + MNKKm (B, A, C) reads from higher level(s) of ahe16



� MNKNB writes to �rst level of non-write-through ahe; higher levels of ahe re-eive at most MNKKm writesAs mentioned above, ase 4 is only used if CaheEdge has been set, and ases 1 and 2do not apply (i.e, it is used as an alternative to ase 3). At �rst glane, hanging ase 3to 4 may appear to be a poor bargain indeed, partiularly sine writes are generally moreexpensive than reads. There are, however, several mitigating fators that make this blokingnonetheless worthwhile. If the ahe is write-through, 4 does not inrease writes over 3,so it is a lear win. Seond, ATLAS also does not allow Km < NB , and in many asesKm � NB , so the savings are well worth having. With respet to the expense of writes,the writes are not ushed immediately; This fat has two important onsequenes:1. The ahe an shedule the write-bak during times when the algorithm is not usingthe bus.2. Writes may be written in large bursts, whih signi�antly redues bus traÆ; this antremendously optimize writing on some systemsIn pratie, 4 has been shown to be at least roughly as good as 3 on all platforms. Theamount of atual speedup varies widely depending on problem size and arhiteture. Onsome systems the speedup is negligible; on others it an be signi�ant: for instane, it anmake up to 20% di�erene on DEC 21164 based systems (whih have three layers of ahe).Note that this 20% improvement is merely the di�erene between ases 3 and 4, not betweenATLAS and some naive implementation, for instane.The analysis given above may be applied to any ahe level greater than 1; it is not forlevel 2 ahes only. However, this analysis is aurate only for the algorithm used by ATLASin a partiular setion of ode, so it is not possible to reur in order to perform expliitahe bloking for arbitrary levels of ahe. To put this another way, ATLAS expliitlybloks for L1, and only one other higher level ahe. If an arhiteture has 3 levels of ahe,ATLAS an expliitly blok for L1 and L2, or L1 and L3, but not all three.If ATLAS performs expliit ahe bloking for level L, that does not mean that levelL + 1 would be useless; depending on ahe size and replaement poliy, level L + 1 maystill save extra read and writes to main memory through impliit ahe bloking.6.2 L1 Cahe-ontained MatmulThe only ode generator required to support the Level 3 BLAS produes a L1 ahe-ontained matmul. The operation supported by the kernel is still: C  �op(A)op(B)+�C,where op(X) = X or XT . C is an M � N matrix, and op(A) and op(B) are matries ofsize M �K and K � N , respetively. However, by L1 ahe-ontained we mean that thedimensions of its operands have been hosen suh that Level 1 ahe reuse is maximized (seebelow for more details). Therefore, the generated ode bloks for the L1 ahe using thedimensions of its operand matries (M, N, and K), whih, when not in the leanup setionof the algorithm, are all known to be NB .In a multiply designed for L1 ahe reuse, one of the input matries is brought ompletelyinto the L1 ahe, and is then reused in looping over the rows or olumns of the other inputmatrix. The present ode brings in the matrix A, and loops over the olumns of B; this17



was an arbitrary hoie, and there is no theoretial reason it would be superior to bringingin B and looping over the rows of A.There is a ommon misoneption that ahe reuse is optimized when both input matri-es, or all three matries, �t into L1 ahe. In fat, the only win in �tting all three matriesinto L1 ahe is that it is possible, assuming the ahe is not write-through, to save the ostof pushing previously used setions of C bak to higher levels of memory. Often, however,the L1 ahe is write-through, while higher levels are not. If this is the ase, there is no wayto minimize the write ost, so keeping all three matries in L1 does not result in greaterahe reuse.Therefore, ignoring the write ost, maximal ahe reuse for our ase is ahieved whenall of A �ts into ahe, with room for at least two olumns of B and 1 ahe line of C.Only one olumn of B is atually aessed at a time in this senario; having enough storagefor two olumns assures that the old olumn will be the least reently used data when theahe overows, thus making ertain that all of A is kept in plae (this obviously assumesthe ahe replaement poliy is least reently used).While ahe reuse an aount for a great amount of the overall performane win, it isobviously not the only fator. The following setions outline some of these non-data aherelated optimizations.6.2.1 Instrution Cahe ReuseInstrutions are ahed, and it is therefore important to �t the L1 matmul's instrutionsinto the L1 instrution ahe. This means optimizations that generate massive amount ofinstrution bloat (ompletely unrolling all three loops, for instane) annot be employed.6.2.2 Floating Point Instrution OrderingWhen this paper disusses oating point instrution ordering, it will usually be in refereneto lateny hiding, and its assoiated loop skewing.Most modern arhitetures possess pipelined oating point units. This means that theresults of an operation will not be available for use until X yles later, where X is thenumber of stages in the oating point pipe (typially somewhere around 3-8). Rememberthat our L1 matmul is of the form C  ATB + C; individual statements would thennaturally be some variant of C[X℄ += A[Y℄ * B[Z℄. If the arhiteture does not possessa fused multiply/add unit, this an ause an unneessary exeution stall. The operationregister = A[Y℄ * B[Z℄ is issued to the oating point unit, and the add annot be starteduntil the result of this omputation is available, X yles later. Sine the add operation isnot started until the multiply �nishes, the oating point pipe is not utilized.The solution is to remove this dependene by separating the multiply and add, andissuing unrelated instrutions between them (requiring the loop to be skewed, sine themultiply must now be issued X yles before the add, whih omes X yles before thestore). This reordering of operations an be done in hardware (out-of-order exeution) orby the ompiler, but this will oftentimes generate ode that is not as eÆient as doing itexpliitly. More importantly, not all platforms have this apability (for example, g on aPentium), and in this ase the performane win an be large.18



6.2.3 Reduing Loop OverheadThe primary method of reduing loop overhead is through loop unrolling. If it is desirableto redue loop overhead without hanging the order of instrutions, one must unroll theloop over the dimension ommon to A and B (i.e., unroll the K loop). Unrolling alongthe other dimensions (the M and N loops) hanges the order of instrutions, and thus theresulting memory aess patterns.6.2.4 Exposing ParallelismMany modern arhitetures have multiple oating point units. There are two barriers toahieving perfet parallel speedup with oating point omputations in suh a ase. The�rst is a hardware limitation, and therefore out of our hands: All of the oating point unitswill need to aess memory, and thus, for perfet parallel speedup, the memory feth willusually also need to operate in parallel.The seond prerequisite is that the ompiler reognize opportunities for parallelization,and this is amenable to software ontrol. The �x for this is the lassial one employedin suh ases, namely unrolling the M and/or N loops, and hoosing the orret registeralloation so that parallel operations are not onstrained by false dependenies.6.2.5 Finding the Corret Number of Cahe MissesAny operand that is not already in a register must be fethed from memory. If that operandis not in the L1 ahe, it must be fethed from further up in the memory hierarhy, possi-bly resulting in large delays in exeution. The number of ahe misses whih an be issuedsimultaneously without bloking exeution varies between arhitetures. To minimize mem-ory osts, the maximal number of ahe misses should be issued eah yle, until all memoryis in ahe or used. In theory, one an permute the matrix multiply to ensure that this istrue. In pratie, this �ne a level of ontrol would be diÆult to ensure (there would beproblems with overowing the instrution ahe, and the generation of suh a preise in-strution sequene, for instane). So the method ATLAS uses to ontrol the ahe-hit ratiois the more lassial one of M and N loop unrolling.6.2.6 Code Generator ParametersThe ode generator is heavily parameterized in order to allow for exibility in all of theareas. In partiular, the options are:� Support for A and/or B being either standard form, or stored in transposed form� Register bloking of \outer produt" form (the most optimal form of matmul registerbloking). Varying the register bloking parameters provides many di�erent imple-mentations of matmul. The register bloking parameters are:{ ar : registers used for elements of A,{ br : registers used for elements of BOuter produt register bloking then implies that ar � br registers are then used toblok the elements of C. Thus, if Nr is the maximal number of registers disovered19



during the oating point unit probe, the searh needs to try all ar and br that satisfyarbr + ar + br � Nr.� Loop unrollings: Their are three loops involved in matmul, one over eah of theprovided dimensions (M, N and K), eah of whih an have its assoiated unrollingfator (mu; nu; ku). The M and N unrolling fators are restrited to varying with theassoiated register bloking (ar and br, respetively), but the K-loop may be unrolledto any depth (i.e., one ar is seleted, mu is set as well, but ku is an independentvariable).� Choie of oating point instrution:{ Combined multiply/add with required pipelining{ Separate multiply and add instrutions, with assoiated pipelining and loop skew-ing� User hoie of utilizing generation-time onstant or run-time variables for all loopdimensions (M, N, and K; for non-leanup opy L1 matmul, M = N = K = NB). Foreah dimension that is known at generation, the following optimizations are made:{ If unrolling meets or exeeds the dimension, no atual loop is generated (no needfor loop if fully unrolled){ If unrolling is non-one, orret leanup an be generated without using an if (thusavoiding branhing within the loop)Even if a given dimension is a run-time variable, the generator an be told to assumepartiular, no, or general-ase leanup for arbitrary unrolling.� For eah operand array, the leading dimension an be either a generation time onstant(for example, it is known to be NB for opied L1 matmul), with assoiated savings inindexing omputations, or it may be a run-time variable.� For eah operand array, the leading dimension an have a stride (stride of 1 is mostommon, but stride of 2 an be used to support omplex arithmeti).� The generator an eliminate unneessary arithmeti by generating ode with speialalpha (1, -1, and variable) and beta (0, 1, -1, and variable) ases. In addition, thereis a speial ase for when alpha and beta are both variables, but it is safe to dividebeta by alpha (this an save multiple appliations of alpha).� Various feth patterns for loading A and B registers6.2.7 Putting It All Together { Outline of the Searh HeuristiIt is obvious that with this many interating e�ets, it would be diÆult, if not impossibleto predit a priori the best bloking fator, loop unrolling et. Our approah is to providea ode generator oupled with a timer routine whih takes in some initial information, andthen tries di�erent strategies for loop unrolling and lateny hiding and hooses the asewhih demonstrated the best performane. 20



The timers are strutured so that operations have a large granularity, leading to fairlyrepeatable results even on non-dediated mahines, and all intermediate results are writtento output �les so that interrupted installs may be restarted from the point of interruption.The �rst step of the timing �gures the size of the L1 ahe. This is done by performinga �xed number of memory referenes, while suessively reduing the amount memoryaddressed. The most signi�ant gap between timings for suessive memory sizes is delaredto mark the L1 ahe boundary. For speed, only powers of 2 are examined. This meansthat a 48K ahe would probably be deteted as a 32K ahe, for instane. We have notfound this problem severe enough to justify the additional installation time it would taketo remedy it.Next, ATLAS probes to determine information regarding the oating point units of theplatform. First ATLAS needs to understand whether the arhiteture possesses a ombinedmuladd unit, or if independent multiply and add pipes are required. To do this, ATLASgenerates simple register-to-register ode whih performs the required multiply-add using aombined muladd and separate multiply and add pipes. Both variants are tried using odewhih implies various pipeline lengths. ATLAS then repliates the best of these odes insuh a way that inreasing numbers of independent registers are required, until performanedrops o� suÆiently to demonstrate that the available oating point registers have beenexeeded. With this data in hand, ATLAS is ready to begin atual L1 matmul timings.These general timings give ATLAS the L1 ahe size, the kind of oating point instru-tions to issue (muladd or separate multiply and add), the pipeline depth, and a rough ideaof the number of oating point registers. Given the size of the L1 ahe, ATLAS is ablehoose the relevant range of bloking fators to examine. Knowing the type of oating pointinstrution the underlying hardware needs uts the ases to be searhed in half, while themaximum number of registers implies what register blokings are feasible, whih in turnditates the M and/or N loop unrollings to perform. Thus, the matmul searh (and indeedmany other searhes) is shortened onsiderably by doing these general arhiteture probes.In pratie, K loop unrollings of 1 or K have tended to produe the best results. ThusATLAS times only these two K loop unrolling during our initial searh. This is done toredue the length of install time. At the end of the install proess, ATLAS attempts toensure optimalK unrollings have not been missed by trying a wide range ofK loop unrollingfators with the best ase ode generated for the unrollings fators of 1 or K.The theoretially optimal register bloking in terms of maximizing ops/load are thenear-square ases that satisfy the aforementioned equation arbr + ar + br � Nr (see se-tion 6.2.6 for details). Sine the ATLAS generator requires that ar = mu and br = nu,these M and N loop unrollings are then used to �nd an initial bloking fator. The initialbloking fator is found by simply using the above disussed loop unrollings, and seeingwhih of the bloking fators appropriate to the deteted L1 ahe size produe the bestresult.With this initial bloking fator, whih instrutions set to use (muladd or separatemultiply and add), and a guess as to pipeline length, the searh routine loops over all Mand N loop unrollings possible with the given number of registers.One an optimal unrolling has been found, ATLAS again tries all bloking fators, andvarious lateny and K-loop unrolling fators, and hooses the best.All results are stored in �les, so that subsequent searhes will not repeat the sameexperiments, allowing searhes to build on previously obtained data. This also means that21



if a searh is interrupted (for instane due to a mahine failure), previously run ases willnot need to be re-timed. A typial install takes from 1 to 2 hours for eah preision.6.2.8 Timing ResultsFigure 4 shows the performane of double preision matmul aross multiple arhitetures fora problem of size 500. This graph ompares performane obtained by ATLAS, the Fortran77referene BLAS, and on those platforms where they exist, the vendor-supplied BLAS. Theproblem size 500 is hosen as an intermediate problem size (i.e., it is not the problem sizewhih ATLAS performs best on, for instane). These timings utilize ATLAS's ahe-ushingmehanism, and so may be lower than those reported elsewhere. More omplete timingsan be found in [21, 22℄.
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6.3 GEMM-based Level 3 BLASThe Level 3 BLAS speify six (respetively nine) routines for the real (respetively omplex)data types. In addition to the general matrix-matrix multipliation (GEMM) desribedabove, the Level 3 BLAS API [5℄ spei�es routines performing triangular matrix-matrixmultiply (TRMM), triangular system solve (TRSM), symmetri or Hermitian matrix-matrixmultiply (SYMM, HEMM), and symmetri or Hermitian rank-k and rank-2k updates (SYRK,SYR2K, HERK and HER2K).From a mathematial point of view, it is lear that all of these operations an be ex-pressed in terms of general matrix-matrix multiplies (GEMM) and oating-point division.Suh a design is highly attrative due to the obvious potential for ode reuse. It turns outthat suh formulations of these remaining Level 3 BLAS operations an be made highly ef-�ient, assuming the implementation of the GEMM routine is. Suh Level 3 BLAS designsare traditionally referred to as GEMM-based.The basi idea is to partition the omputations aross submatries so that the alu-lations an be expressed in terms of expliit alls to GEMM and the appropriate Level 3BLAS primitives. This idea an be illustrated using the triangular matrix-matrix multiplyoperation B  A�B, where A is an M -by-M upper triangular matrix, and B is a generalM -by-N matrix.  B1B2 ! =  A11 A120 A22 ! B1B2 ! (1)Equation 1 illustrates a simple partitioning sheme, where the triangular matrix A hasbeen partitioned one in both dimensions, and the right-hand side matrix B has beenaordingly deomposed in the row dimension only. The overall omputation an then beexpressed as follows:1. B1  A11B1 (TRMM)2. B1  B1 +A12B2 (GEMM)3. B2  A22B2 (TRMM)This example shows two main features of GEMM-based Level 3 BLAS: �rst, expliitalls to the Level 3 BLAS GEMM routine are made, and seond, suh a design is naturallyreursive. GEMM-based Level 3 BLAS are further lassi�ed aording to their partitioningpoliy. There are many possible partitioning algorithms, and a great deal of past andontinuing researh has been done on this problem. For instane, partitioning shemesmay utilize �xed and mahine-spei� bloking as in [15, 4℄, or more generalized reursiveshemes suh as presented in [12, 13℄.ATLAS implements a relative simple reursive GEMM-based BLAS design. The rowand olumn dimensions of the triangular, symmetri or Hermitian matrix and only theappropriate dimension of the general matrix operands are halved at eah step. Reursionstops when the order of the square blok diagonal is less than or equal to GEMM's Level 1ahe bloking fator, NB . The NB or less sized Level 3 BLAS primitives (TRMM in theabove example) used at the leaves of the tree are implemented both as simple loops, and interms of GEMM, and whih one is used depends on the problem sizes and relative eÆienybetween GEMM and the simple loop implementation.This design an be implemented both simply and elegantly in a very small amount ofode in any language natively supporting reursion. The design's most important feature23



is that all performane optimizations, both memory and omputational, are isolated inGEMM. Most other GEMM-based designs instead perform the memory optimizations to atleast some degree in the GEMM-based routines, and rely on GEMM mainly for omputa-tional optimizations.To understand this, reall that optimizing memory aess involves bloking the matriesin order to enourage ahe reuse. However, the partitioning sheme used by the Level 3BLAS is itself a bloking, and if hosen unwisely, an prevent GEMM from doing ahebloking.The drawbaks of this approah are obvious. As we have seen in previous setions,partitioning shemes an beome quite omplex; this omplexity is naturally reeted in theimplementation. Reproduing both this ode omplexity and the arhitetural-dependentahing information throughout the Level 3 BLAS robs the GEMM-based design of itsgreatest strength: its reliane on a entralized kernel for performane wins.In ATLAS's GEMM-based approah, the only parameter that hanges with the arhi-teture is NB, whih is supplied automatially by GEMM. Further, the submatries impliedby the reursion are square, whih tends to allow greater ahe bloking opportunities toGEMM than non-square shapes.It is lear that the most optimal implementation would not be GEMM-based, but wouldinstead have speialized ahe and ompute parameters just as in our previously desribedGEMM implementation. However, we believe that the performane loss inherent in usingATLAS's GEMM-based approah is in pratie negligible, and thus the simpliity andplatform-independene of the GEMM-based approah used by ATLAS onstitutes a learwin. The timings presented in the following setion appear to substantiate this idea.6.3.1 Timing ResultsAgain, spae onsiderations rule out presenting extensive timing results. We have hosento show results for all double preision BLAS operations on two arhitetures, again withproblems of size 500, and omparing results for vendor, ATLAS, and Fortran77 refereneimplementations.Figure 5 shows the performane results for the Sun UltraSpar (200Mhz). This arhi-teture is interesting beause it is the one on whih ATLAS's GEMM (the ompute kernelfor all of ATLAS's Level 3 BLAS) performs worst in regards to the vendor-supplied version.This graph shows that, even when ATLAS's GEMM is not as good as the vendor version,the rest of the Level 3 BLAS, whih are built in terms of it, may nonetheless still omparefavorably with the vendor BLAS. This highlights one of the disadvantages of odes that donot use the kernel approah to library building: uneven optimization, based on the prioritiesof the library produer (whih may well not math the needs of the end user).Figure 6 shows the same data for a 533Mhz DEC ev56. This seond arhiteture ismore typial in that ATLAS and vendor GEMM are muh loser to parity. Here we see thatwhen ATLAS's GEMM ompares favorably with the vendor implementation, this advantagearries over for the entire BLAS. As with the UltraSpar results, we again see that the vendoroptimization e�ort has varied widely between routines, while ATLAS maintains a more evenlevel of optimality.
24
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7 Optimizing the Level 2 BLASThe Level 2 BLAS perform matrix-vetor operations of various sorts. All routines have atmost one matrix operand, and one or two vetor operands. Unfortunately, spae onsidera-tions rule out overing ATLAS's Level 2 BLAS implementation in any real detail. Therefore,this setion will explain the theoretial underpinnings of all Level 2 optimizations: the basimemory optimization tehniques that allow the vetor operand(s) main memory aess tobe redued from O(N2) to O(N). We then desribe, in the broadest possible strokes, howthese and other optimizations are used by ATLAS.7.1 Register and Cahe Bloking for the Level 2 BLASIf no register or ahe bloking were done, the Level 2 operations would require O(N2)data aess on eah operand. With the appropriate register and ahe bloking, the vetoroperands' aess an be redued to O(N). Obviously enough, the O(N2) matrix aessannot be redued, sine the matrix is atually of size O(N2).To understand this in detail, we look at the matrix vetor multiply operation. In theBLAS, the matrix-vetor multiply routine performs y  �op(A)x + �y, where op(A) = A,AH or AT and A has M rows and N olumns. For our disussion, it is enough to examinethe ase y  Ax+ y, where A is a square matrix of size N .This operation may be summarized as PNi=1(yi =PNj=1Aijxj + yi); From this equationit is lear that alulating an element of y requires reading the entire N length vetor x,reading and writing the ith element of y N times, and reading the entire N length row iof the matrix A. Sine there are N elements of y, it follows that this algorithm requiresN2 reads of A, N2 reads of x, N2 reads and N2 writes of y. Just as with the Level 3operations, the number of referenes annot be hanged without hanging the de�nitionof the operation, but by using appropriate ahe and register blokings, the number ofthe referenes that must be satis�ed out of main memory or higher levels of ahe an bedrastially redued.The minimum number of main memory referenes required to do this operation resultsin aessing eah element from main memory only one, whih redues the aesses from(3N2 reads + N2 writes) to (N2 +N reads + N writes).As an interesting aside, even this trivial analysis is suÆient to understand the largeperformane advantage enjoyed by the Level 3 over the Level 2 BLAS routines. All Level 2BLAS require O(N2) FLOPs (Floating Point Operations); a ompletely optimal implemen-tation an at best redue the number of main memory aesses to the same order, O(N2).The Level 3 BLAS, in ontrast, require O(N3) FLOPs, but the number of main memoryaesses an be redued to a lower order term, O(N2). Sine most modern mahines haverelatively slow memory when ompared to their peak FLOP rate, this analysis ditates thatLevel 3 BLAS will ahieve a muh higher perentage of the peak FLOP rate than the Level2 BLAS.Getting bak to Level 2 BLAS, we now examine the register and ahe bloking, whihare used in order to redue the vetor aesses.
26



7.1.1 Register BlokingRegisters are salars whih are diretly aessed by the oating point unit. In a way,registers thus orrespond to a \Level 0" ahe, whih operates at in�nite speed. Given anin�nite number of registers, only one main memory aess per element would be requiredfor all operations. Unfortunately, the number of user-addressable oating point registersavailable on modern arhitetures typially varies between 8 and 32, and thus all but themost trivial operations will overow the registers.For this reason, register bloking alone an redue either the y or x aess term fromO(N2), to O(N), but not both. This is easily seen using the simpli�ed GEMV operationintrodued in the previous setion. The basi algorithm required to redue the aesses ofy to O(N) is most easily shown in the following pseudo-ode:do I = 1, Nr = y(I)do J = 1, Nr += A(I,J) * x(J)end doend doThis is an \inner produt" or dot produt-based matrix vetor multiply. If we unrollthe I loop and use Ry registers to hold the elements of y, we an redue the N2 aesses ofx to N2Ry , by using a register to reuse the element x(J) Ry times for eah load.Unrolling the loop like this essentially reates a hybrid algorithm, in the sense that theRy y aess onstitute a small outer produt. However, sine registers annot hold both yand x throughout the algorithm, one or the other must be ushed as the loop progresses(thus neessitating multiple loads to registers), and sine we drop the value of x and maintainy in the registers, this \hybrid" algorithm is still essentially inner produt.Reduing the x omponent to O(N) aesses requires the \outer produt" or AXPY-based (AXPY being a Level 1 BLAS routine performing the operation y  �x+ y) versionof GEMV:do J = 1, Nr = x(J)do I = 1, Ny(I) += A(I,J) * rend doend doThis gives us N read aesses on x, and, just as with the inner produt, unrolling theJ loop and using Rx registers to hold the elements of x, we an redue the aesses of y toN2Rx reads and writes, by using an additional register to reuse y(I) Rx times.Therefore, stritly for register bloking purposes, the inner produt formulation is supe-rior to the outer produt: the total number of reads of both formulations is O(N2)+O(N),but the number of writes is O(N) for inner produt, but O(N2) for outer produt. In pra-tie, when array olumns are stored ontiguously, a heavily unrolled AXPY-based algorithmmay in fat be used, sine it better utilizes hardware prefeth, ahe line feth, TLB aess,et. As mentioned before, however, suh details are beyond the sope of this paper, so wewill assume the register bloking used will be the inner produt formulation.27



As another pratial note, the number of registers available for doing multiple AXPYsor dot produts is severely limited, even beyond the 8 or 32 ISA (instrution set arhite-ture) limit. In the inner produt formulation, where Ry registers are used to form the Rysimultaneous dot produts, at least two registers must be available for loading elementsof x and A. Further registers will be used in order to support pipelining and prefeth.Large unrollings also mean aessing many more memory loations simultaneously, whihan swamp the memory feth apabilities of the arhiteture. This means that Ry is usuallykept to a relatively small number (typially in the range of 2� 8).In summation, register bloking redues one vetor aess to O(N) ost; the vetorusually hosen for this redution is the output vetor (i.e., an inner produt type registerblok), due to its higher ost. In order to redue the remaining vetor to O(N), we mustapply ahe bloking.While it is tempting to regard register bloking as a speial ase of ahe bloking, theirimplementations are fundamentally di�erent. As we will see, ahe bloking an be easilydone by simply parameterizing the relevant ode, so that properly bloked setions of theoperands are aessed. Register bloking, as this setion has demonstrated, relies on soureadaptation, sine varying it requires hanging the loop order, number of registers, loopunrollings, et., all of whih hange the ode in ways that annot be supported via simpleparameterization.7.1.2 Cahe BlokingAs previously disussed, register bloking has redued the aess of y to O(N), leavingthe x aess at O(N2). Therefore, loading x to registers O(N2) times annot be avoided;However, the optimal algorithm will guarantee that main memory satis�es only O(N) ofthese requests, leaving lower levels of ahe to satisfy the rest.Again, GEMV an be used to better understand this idea. The register blok is doingRy simultaneous dot produts, so that the y aess is N reads and N writes, while thex feth to registers is N2Ry . Sine x is reused in forming eah suessive dot produt, x isa andidate for ahe reuse. It is easily seen that forming Ry dot produts aesses Ryelements of y, all N elements of x, and Ry �N elements of A. Thus the footprint in aheof one step of this algorithm is roughly Ry +N +RyN .Therefore, we an e�etively guarantee L1 ahe reuse by partitioning the originalproblem so that the footprint in ahe is small enough that the relevant portion of xis not ushed between suessive sets of dot produts. Therefore, the orret blokingfor x may be determined by solving an equation, whose simpli�ed expression would be:Ry + Np + RyNp = S1 ) Np = S1�RyRy+1 , where S1 is the size, in elements, of the Level 1ahe, and Np is the partitioning of x that we are solving for.In pratie, this equation is more ompliated: some memory unrelated to the algorithmwill always be in ahe, there will be problems assoiated with ahe line onits, et. Inaddition, the equation needs to be adapted to the underlying register bloking so thatthe initial load of the next step does not unneessarily ush x. However, these details,while important in extrating the maximal performane, are not required for oneptualunderstanding, and so are omitted here.With the orret partitioning (Np) known, the originalN�N GEMV is then bloked intodN=Npe separate problems of size N �Np (the last suh problem will obviously be smaller28



if Np does not divide N evenly). The data aess to main memory is then dN=NpeN readsand writes of y, N reads of X, and N2 reads of A.Np is typially very lose to N in size, and so this algorithm is very near optimal in itsmemory aess. Np will typially be in the range 350 - 1500, so even very large problemsstill have extremely small oeÆients on the y aess term. Note that any problem withN � Np will ahieve the optimal result (N2 aess of A, N aess of x and y) without anyneed for any ahe bloking (register bloking is still required).There is little point in expliitly bloking for higher levels of ahe in the Level 2 BLAS.However, if the mahine possesses a level of ahe large enough to hold the footprint ofthe entire L1-bloked algorithm (with the previously stated simpli�ations, this is roughlyNpN +Np+Ry), y will be reused without need for expliit bloking, and the main memoryaess will be redued to its theoretial minimum.7.2 ATLAS's Level 2 Compute KernelsAs we have seen, ATLAS employs one low-level ompute kernel (the L1 matmul), fromwhih the BLAS's more general GEMM routine is built. The L1 matmul and GEMM arethen used in turn to generate the rest of the Level 3 BLAS. With this method, only this onerelatively simple kernel needs to be supported using ode adaptation, and its performaneditates that of the entire Level 3 BLAS.The same strategy is employed for the Level 2 BLAS, but two types of ompute kernelsare needed rather than one. Just as with the L1 matmul, these kernels perform registerbloking and various oating point optimizations, but do no ahe bloking, as it is assumedthat the dimensions of the arguments have been bloked by higher level odes in order toensure L1 ahe reuse. The ompute kernels for the Level 2 BLAS are:� L1 matve: An L1-ontained matrix vetor multiply, with four variants:1. No Transpose { matrix A's rows are stored in rows of input array2. Conjugate (omplex only) { matrix A's rows are stored in onjugated form inrows of input array3. Transpose { matrix A's rows are stored in olumns of input array4. Conjugate Transpose (omplex only) { matrix A's rows are stored in onjugatedform in olumns of input array� L1 update1: An L1-ontained rank-1 updateBoth of these kernels further supply three speialized � ases (0, 1, and variable).7.3 Building ATLAS's Level 2 BLASThis setion presents a very rough outline of how ATLAS supports the Level 2 BLAS. Theinstall of the Level 3 BLAS preedes that of the Level 2, and from this proess ATLAS knowsthe size of the L1 ahe. Thus, using a slightly more ompliated version of the equationsgiven in Setion 7.1.2, ATLAS has a good idea of the orret Level 1 ahe partitioning touse. With this in hand, ATLAS is ready to �nd the best ompute kernels for the Level 2BLAS. 29



Presently, ATLAS relies solely on multiple implementation to support these kernels (e.g.ode generation is not employed). Therefore, the searh simply tries eah implementationin turn, and hooses the best. The onjugate forms of the L1 matve have the sameperformane harateristis as their nononjugate equivalents, so ATLAS need searh only3 di�ering kernels: notranspose matve, transpose matve, and L1 update1.Using these best algorithms, ATLAS empirially disovers the optimum perentage ofthe L1 ahe to use. These empirially-disovered blokings and kernel implementations arethen used to build the Level 2 BLAS routines GEMV and GER (muh as GEMM was builtusing the L1 matmul), and all of this information and these building bloks are then usedto produe the rest of the Level 2 BLAS.Part IVConlusion and future workResults presented and referened here demonstrate unambiguously that AEOS tehniquesan be utilized to build portable performane-ritial libraries, whih ompete favorablywith mahine-spei�, hand-tuned odes. We believe that the AEOS paradigm will ulti-mately have a major impat on high performane library development and maintenane.ATLAS has produed a omplete BLAS, and the ATLAS BLAS are already widelyused in the linear algebra ommunity. Further information, inluding the software anddoumentation, is available at the ATLAS homepage, www.netlib.org/atlas.This paper has given a very high level overview of the methods used in the ATLASprojet to support the BLAS, and the ATLAS projet is ontinuing to improve and extend onthis work. There are many more areas of ATLAS/AEOS researh than an be investigatedby any one group. Some of the areas we are urrently onsidering are:� Generalizations of arhiteture information. We are examining to what degree theinformation ATLAS disovers during the install proess an be generalized and madeavailable to other pakages.� Code Generation for GEMV and GER kernels. The present dense Level 2 BLAS maynot be optimal for all platforms beause their ompute engine (L1 matmul and L1update1) are supported solely by multiple implementation. For maximal performane,it will be neessary to supplement this with ode generation, as we have done in theLevel 3 BLAS.� Code generation for some Level 1 BLAS routines. Many Level 1 BLAS routinesannot be optimized muh more than a standard ompiler will do, and so do notneed speial attention via ATLAS's empirial tehniques. However, operations suhas AXPY (y  y + �x) are omplex enough that the potential performane bene�tmakes it worth investigating the optimizations provided by ode generation. Also,this investigation is neessary in order to support sparse operations, whih use Level1, or near-Level 1, operations relatively often.� SMP support via pthreads. Providing shared memory proessing support for the BLASvia pthreads is not diÆult. However, making suh support portable aross di�ering30



pthreads implementations is more hallenging, and �nding reliable timing methods forthreaded odes so that they may be adapted via AEOS tehniques has proven quitediÆult indeed. We are investigating these areas now.� Paked storage optimizations. One important area that has been traditionally mishan-dled is paked storage, where only the relevant portion of a triangular or symmetrimatrix is stored, allowing for larger problems to be solved in the same memory spae.Present implementations are orders of magnitude slower than they need to be due toBLAS interfae issues, and vetor-based algorithms. This work may require extendingthe present generators, or development of speialized routines.� Sparse optimizations. This is an open-ended researh area that enompasses many dif-ferent areas of optimization. We hope to use our experiene with dense optimizationsin order to gain insight into the more tratable storage shemes. This will later pavethe way for more advaned work, suh as struture analysis and dynami libraries, aswell as providing a springboard to handling the less dense-like strutures.� Algorithmi researh and higher level routines. We have already extended ATLASbeyond the BLAS and into higher level kernels suh as LAPACK's LU and Cholesky.This trend should ontinue, with perhaps some interesting algorithmi researh. Forinstane, with the known performane provided by ATLAS, alternative algorithmsmay beome attrative in the searh for the best performane (an example might beuse of the sign funtion for eigenvalues, due to the relative performane advantageits Level 3 BLAS operations enjoy over the Level 2 operations used by traditionalmethods) [2℄.
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