
On
omputing Givens rotations reliably and eÆ
ientlyD. Bindel� J. Demmely W. Kahanz O. MarquesxAugust 23, 2000Abstra
tWe
onsider the eÆ
ient and a

urate
omputation of Givens rotations. When f and g are positivereal numbers, this simply amounts to
omputing the values of
 = f=pf2 + g2, s = g=pf2 + g2, andr = pf2 + g2. This apparently trivial
omputation merits
loser
onsideration for the following threereasons. First, while the de�nitions of
, s and r seem obvious in the
ase of two nonnegative arguments fand g, there is enough freedom of
hoi
e when one or more of f and g are negative, zero or
omplex thatLAPACK auxiliary routines SLARTG, CLARTG, SLARGV and CLARGV
an
ompute rather di�erentvalues of
, s and r for mathemati
ally identi
al values of f and g. To eliminate this unne
essaryambiguity, the BLAS Te
hni
al Forum
hose a single
onsistent de�nition of Givens rotations that wewill justify here. Se
ond,
omputing a

urate values of
, s and r as eÆ
iently as possible and reliablydespite over/under
ow is surprisingly
ompli
ated. For
omplex Givens rotations, the most eÆ
ientformulas require only one real square root and one real divide (as well as several mu
h
heaper additionsand multipli
ations), but a reliable implementation has a number of
ases. On a Sun Ultra-10, the newimplementation is 20% faster than the previous LAPACK implementation in the most
ommon
ase,and nearly 4 times faster than the
orresponding vendor, referen
e or ATLAS routines. It is also morereliable; all previous
odes o

asionally su�er from large ina

ura
ies due to over/under
ow. Third, thedesign pro
ess that led to this reliable implementation is quite systemati
, and
ould be applied to thedesign of similarly reliable subroutines.1 Introdu
tionGivens rotations are widely used in numeri
al linear algebra. Given f and g, a Givens rotation is a 2-by-2unitary matrix R(
; s) su
h thatR(
; s) � � fg � � �
 s��s
 � � � fg � = � r0 � (1)The fa
t that R(
; s) is unitary impliesR(
; s) � (R(
; s))� = �
 s��s
 � � � �
 �s�s �
 �= �
�
+ s�s �
s+ �
s��s�
+ �s

�
+ s�s �= � j
j2 + jsj2 s(�
�
)�s(
� �
) j
j2 + jsj2 �= I�Computer S
ien
e Division University of California, Berkeley, CA 94720 (dbindel�
s.berkeley.edu).yComputer S
ien
e Division and Mathemati
s Dept., University of California, Berkeley, CA 94720(demmel�
s.berkeley.edu). This material is based in part upon work supported by the Advan
ed Resear
h Proje
tsAgen
y
ontra
t No. DAAH04-95-1-0077 (via sub
ontra
t No. ORA4466.02 with the University of Tennessee), the Departmentof Energy grant No. DE-FG03-94ER25219, and
ontra
t No. W-31-109-Eng-38 (via sub
ontra
t Nos. 20552402 and 941322401with Argonne National Laboratory), the National S
ien
e Foundation grants ASC-9313958 and ASC-9813361, and NSFInfrastru
ture Grant Nos. CDA-8722788 and CDA-9401156.zComputer S
ien
e Division and Mathemati
s Dept., University of California, Berkeley, CA 94720(wkahan�
s.berkeley.edu).xNERSC, Lawren
e Berkeley National Lab, (osni�ners
.gov).1

From this we see that j
j2 + jsj2 = 1 and
� �
 = 0; i:e:
 is real (2)When f and g are real and positive, the widely a

epted
onvention is to let
 = f=pf2 + g2s = g=pf2 + g2r = pf2 + g2However, the negatives of
, s and r also satisfy
onditions (1) and (2). And when f = g = 0, any
 and ssatisfying (2) also satisfy (1). So
, s and r are not determined uniquely. This slight ambiguity has led to asurprising diversity of in
onsistent de�nitions in the literature and in software. For example, the LAPACKroutines SLARTG, CLARTG, SLARGV and CLARGV, as well as Algorithm 5.1.5 in [3℄
an get signi�
antlydi�erent answers for mathemati
ally identi
al inputs.To avoid this unne
essary diversity, the BLAS (Basi
 Linear Algebra Subroutines) Te
hni
al Forum, inits design of the new BLAS standard [1℄,
hose to pi
k a single de�nition of Givens rotations. Se
tion 2below presents and justi�es the design.The BLAS Te
hni
al Forum is also providing referen
e implementations of the new standard. In the
aseof
omputing Givens rotation and a few other kernel routines, intermediate over/under
ows in straightfor-ward implementations
an make the output ina

urate (or perhaps even stop exe
ution) even though thetrue mathemati
al answer might be unex
eptional. To
ompute
, s and r as eÆ
iently as possible andreliably despite over/under
ow
ow is surprisingly
ompli
ated, parti
ularly for
omplex f and g.Square root and division are by far the most expensive real
oating point operations on
urrent ma
hines,and it is easy to see that one real square root and one real division (or perhaps a single re
ipro
al-square-root operation) are ne
essary to
ompute
, s and r. With a little algebrai
 manipulation, we also showthat a single square root and division are also suÆ
ient (along with several mu
h
heaper additions andmultipli
ations) to
ompute
, s and r in the
omplex
ase.However, these formulas for
, s and r that use just one square root and one division are sus
eptibleto over/under
ow, if we must store all intermediate results in the same pre
ision as f and g. De�nekfk1 = max(jre f j; jim gj). We systemati
ally identify the values of f and g for whi
h these formulasare reliable (i.e. guaranteed not to under
ow in su
h a way that unne
essarily loses relative pre
ision, norto over
ow) by generating a set of simultaneous linear inequalities in log kfk1 and log kgk1, whi
h de�nea (non
onvex) 2D polygonal region S (for Safe) in (log kfk1; log kgk1) spa
e in whi
h the formulas maybe used. This is the most
ommon situation, whi
h we
all Case 1 in the algorithm. In this
ase, thenew algorithm runs 20% faster than LAPACK's CLARTG routine, and nearly 4 times faster than the
rotgroutine in the vendor BLAS on a Sun Ultra-10, ATLAS BLAS, or Fortran referen
e BLAS.If (log kfk1; log kgk1) lies outside S, there are two possibilities: s
aling f and g by a
onstant to �tinside S, or using di�erent formulas. S
aling may be interpreted geometri
ally as shifting S parallel to thediagonal line log kfk1 = log kgk1 in (log kfk1; log kgk1) spa
e. The region
overed by shifted images of S(S's \shadow") is the region in whi
h s
aling is possible. In part of this shadow (
ase 4 in the algorithm),we do s
ale f and g to lie inside S and then use the previous formula.The remaining region of (log kfk1; log kgk1) spa
e, in
luding spa
e outside S's shadow,
onsists ofregions where log kfk1 and log kgk1 di�er so mu
h that jf j2 + jgj2 rounds either to jf j2 (Case 2 in thealgorithms) or jgj2 (Case 3). Repla
ing jf j2+ jgj2 by either jf j2 or jgj2 simpli�es the algorithm, and di�erentformulas are used.In addition to the new algorithm being signi�
antly faster than previous routines, it is more a

urate. Allearlier routines have inputs that exhibit large relative errors, whereas ours is always nearly fully a

urate.When a format with a wider exponent range is available to store intermediate results, we may use our mainnew formula without fear of over/under
ow, drasti
ally simplifying the algorithm. For example, IEEE doublepre
ision (with an 11-bit exponent)
an be used when inputs f and g are IEEE single pre
ision numbers(with 8-bit exponents). On a Sun Ultra-10, this mixed-pre
ision algorithm is nearly exa
tly as fast in Case1 of the single pre
ision algorithm des
ribed above, and usually rather faster in Cases 2 through 4, makingit the algorithm of
hoi
e. On an Intel ma
hine double extended
oating point (with 15-bit exponents)
an be used for single or double pre
ision inputs, and this would be the algorithm of
hoi
e. However,2

with double pre
ision inputs on a ma
hine like a Sun Ultra-10 without double-extended arithmeti
, or whendouble pre
ision is mu
h slower than single pre
ision, our new algorithm with 4
ases is the best we know.The rest of this paper is organized as follows. Se
tion 2 presents and justi�es the proposed de�nition ofGivens rotations. Se
tion 3 details the di�eren
es between the proposed de�nition and existing LAPACK
ode. Se
tion 4 des
ribes our assumptions about
oating point arithmeti
. Se
tion 5 presents the algorithmin the
omplex
ase, assuming that neither over
ow nor under
ow o

ur (Case 1). Se
tion 6 shows alternateformulas for
omplex Given rotations when f and g di�er greatly in magnitude (Cases 2 and 3). Se
tion 7des
ribes s
aling when f and g are
omparable in magnitude but both very large or very small (Case 4).Se
tion 8
ompares the a

ura
y of our new
omplex Givens routine and several alternatives; only ours isa

urate in all
ases. Se
tion 9 dis
usses performan
e of our
omplex Givens routine. Se
tion 10 brie
ydis
usses real Givens rotations, whi
h are rather easier. Se
tion 11 draws
on
lusions. The a
tual softwareis in
luded in an appendix.2 De�ning Givens rotationsWe will use the following fun
tion, de�ned for a
omplex variable x, in what follows:sign(x) � � x=jxj if x 6= 01 if x = 0sign(x) is
learly a
ontinuous fun
tion away from x = 0. When x is real the de�nition simplies tosign(x) � � �1 if x < 01 if x � 0As stated in the introdu
tion, we need extra requirements besides (1) and (2) in order to determine
and s (and hen
e r) uniquely. For when at least one of f and g are nonzero, the most that we
an dedu
efrom the �rst
omponent of R(
; s)[f; g℄T = [r; 0℄T in (1) is that
 = ei� jf jpjf j2 + jgj2s = ei�sign(f) �gpjf j2 + jgj2r = ei�sign(f)pjf j2 + jgj2for i = p�1 and some real �. From the fa
t that
 must be real we dedu
e that if f 6= 0 then
 = � jf jpjf j2 + jgj2s = �sign(f) �gpjf j2 + jgj2 (3)r = �sign(f)pjf j2 + jgj2and if f = 0 and g 6= 0 then
 = 0s = ei� (4)r = ei�gAs stated before, when f = g = 0,
 and s
an be
hosen arbitrarily, as long as they satisfy (2).The extra requirements initially
hosen by the BLAS Te
hni
al Forum to help resolve the
hoi
e of �sign in (3) and � in (4) are as follows.R1 The de�nitions for real and
omplex data should be
onsistent, so that real data passed to the
omplexalgorithm should result in the same answers (modulo roundo�) as from the real algorithm.3

R2 Current LAPACK subroutines that use Givens rotations should
ontinue to work
orre
tly with the newde�nition.The
urrent LAPACK subroutines SLARTG and CLARTG (whi
h
ompute a single real and
omplexGivens rotation, resp.) do not satisfy requirement 1. Furthermore, the LAPACK subroutines SLARGVand CLARGV for
omputing multiple Givens rotations do not
ompute the same answers as SLARTG andCLARTG, resp. The di�eren
es are des
ribed in se
tion 3 below. So some
hange in pra
ti
e is needed tohave
onsistent de�nitions. (Indeed, this was the original motivation for BLAS Te
hni
al Forum not simplyadopting the LAPACK de�nitions un
hanged.)However, R1 and R2 do not immediately resolve the
hoi
e of sign in (1). To pro
eed we add requirementR3 The mapping from (f; g) to (
; s; r) should be
ontinuous whenever possible.Continuity of
 and s as fun
tions of f and g is not possible everywhere, be
ause as real f and g approa
h(0; 0) along the real line g = f � tan�,
 = �
os� and �s = sin�, so
 and s must be dis
ontinuous at (0; 0).But
onsider
; s; r as fun
tions of (f; g) = (ei�; 1) as � in
reases from 0 to 2�, i.e. f traverses the unit
ir
le in the
omplex plane. At � = 0, (f; g) = (1; 1) and
onsider the
ommon
onvention (
; s) = (1p2 ; 1p2).As � in
reases, j
j = jsj remains equal to 1p2 . Sin
e
 is real,
ontinuity implies
 stays �xed at
 = 1p2 forall �, and hen
e s = ei�=p2 and r = ei�p2 are
ontinuous as desired. Thus requirement R3 implies that
must be nonnegative. Together with (3), this implies that when f 6= 0 we have
 � jf jpjf j2 + jgj2s � sign(f) �gpjf j2 + jgj2 (5)r � sign(f)pjf j2 + jgj2Formulas (5) obviously de�ne f , g and r
ontinuously away from f = 0. When g = 0, they simplify to
 = 1,s = 0 and r = f . This is attra
tive be
ause R(1; 0) is the identity matrix, so using it to multiply an arbitrarypair of ve
tors requires no work,When f = 0 but g 6= 0 we reexamine (4) in the light of requirement R3. Sin
e
 and s are not
ontinuousat f = 0, be
ause sign(f)
an
hange arbitrarily in a small
omplex neighborhood of 0, we
annot hopeto de�ne � by a
ontinuity argument that in
ludes
omplex f . Instead, we ask just that
, s, and r be
ontinuous fun
tions of real f � 0 and and
omplex g 6= 0, i.e. they should be
ontinuous as f approa
heszero from the right. This limit is easily seen to be
 � 0s � sign(�g) (6)r � jgjwhi
h we take as the de�nition for f = 0 and
omplex g 6= 0.Finally we
onsider the
ase f = g = 0. This is impossible to de�ne by
ontinuity, sin
e f and g
anapproa
h 0 from any dire
tion, so instead we add requirementR4 Given a
hoi
e of
 and s,
hoose those requiring the least work.Sin
e R(
; s) is typi
ally used to multiply a pair of ve
tors, and R(1; 0) = I requires no work to do this, weset
 = 1 and s = 0 when f = g = 0.In summary, the algorithm for
omplex or real f and g is as follows.Algorithm 1: Computing Givens Rotationsif g = 0 (in
ludes the
ase f = g = 0)
 = 1s = 0r = f 4

elseif f = 0 (g must be nonzero)
 = 0s = sign(�g)r = jgjelse (f and g both nonzero)
 = jf j=pjf j2 + jgj2s = sign(f)�g=pjf j2 + jgj2r = sign(f)pjf j2 + jgj2endifWhen f and g are real, the algorithm
an be slightly simplied by repla
ing �g by g.3 Di�eren
es from
urrent LAPACK
odesHere is a short summary of the di�eren
es between Algorithm 1 and the algorithms in LAPACK 3.0 andearlier versions. The LAPACK algorithms in question are SLARTG, CLARTG, SLARGV and CLARGV.All the LAPACK release 3.0 test
ode passed as well with the new Givens rotations as with the old ones(indeed, one test failure in the old
ode disappeared with the new rotations), so the new de�nition of Givensrotations satis�es requirement R2.SLARTG When f = 0 and g 6= 0, Algorithm 1 returns s = sign(g) whereas SLARTG returns s = 1. The
omment in SLARTG about \saving work" does not mean SBDSQR assumes s = 1. When jf j � jgjand f < 0 (so both f and g are nonzero), SLARTG returns the negatives of the values of
, s and rreturned by Algorithm 1.CLARTG Algorithm 1 is mathemati
ally identi
al to CLARTG. But it is not numeri
ally identi
al, seese
tion 8 below.SLARGV When f = g = 0, SLARGV returns
 = 0 and s = 1 instead of
 = 1 and s = 0. When f 6= 0and g = 0, SLARGV returns
 = sign(f) instead of
 = 1. When f = 0 and g 6= 0, SLARGV returnss = 1 instead of s = sign(g). When f 6= 0 and g 6= 0, SLARGV returns sign(
) = sign(f), instead of
 � 0.CLARGV When f = g = 0, CLARGV return
 = 0 and s = 1 instead of
 = 1 and s = 0. When f = 0and g 6= 0, CLARGV returns s = 1 instead of s = sign(�g).4 Assumptions about
oating point arithmeti
In LAPACK, we have the routines SLAMCH and DLAMCH available, whi
h return various ma
hine
on-stants that we will need. In parti
ular, we assume that " = ma
hine epsilon is available, whi
h is a powerof the ma
hine radix. On ma
hine with IEEE
oating point arithmeti
, it is either 2�24 in single or 2�53 indouble. Also, we use SAFMIN, whi
h is intended to be the smallest normalized power of the radix whosere
ipro
al
an be
omputed without over
ow. On IEEE ma
hines this should be the under
ow threshold,2�126 in single and 2�1022 in double. However, on ma
hines where
omplex division is implemented in the
ompiler by the fastest but risky algorithma+ ib
+ id = a
+ bd
2 + d2 + i b
� ad
2 + d2the exponent range is e�e
tively halved, sin
e
2 + d2
an over/under
ow even though the true quotient isnear 1. On these ma
hines SAFMIN may be set to pSAFMIN to indi
ate this. As a result, our s
alingalgorithms make no assumptions about the proximity of SAFMIN to the a
tual under
ow threshold, andindeed any tiny value rather less than " will lead to
orre
t
ode, though the
loser SAFMIN is to theunder
ow threshold the fewer s
aling steps are needed in extreme
ases.5

Our algorithms also work
orre
tly and a

urately whether or not under
ow is gradual. This is importanton the pro
essors where default \fast mode" repla
es all under
owed quantities by zero. This means that thee�e
tive under
ow threshold is SAFMIN/", sin
e under
ow in x
an
ause a relative error in SAFMIN/"+xof at most ", the same as roundo�.In our s
aling algorithms we will use the quantity z = ("=SAFMIN)1=4 rounded to the nearest power ofthe radix. Thus we use z�4 = SAFMIN=" as the e�e
tive under
ow threshold, and z4 = "=SAFMIN as theover
ow threshold. Note that we may safely add and subtra
t many quantities bounded in magnitude by z4without in
urring over
ow. We repeat that the algorithms work
orre
tly, if more slowly, if a
onservativeestimate of SAFMIN is used (i.e. one that is too large). The powers of z used by the software are
omputedon the �rst
all, and then saved and reused for later
alls. The values of z and its powers for IEEE ma
hineswith SAFMIN equal to the under
ow threshold are as follows.Single Pre
ision Double Pre
isionSAFMIN 2�126 � 1 � 10�38 2�1022 � 2 � 10�308" 2�24 � 6 � 10�8 2�53 � 1 � 10�16z 225 � 3 � 107 2242 � 7 � 1072z4 2100 � 1 � 1030 2968 � 2 � 10291z�1 2�25 � 3 � 10�8 2�242 � 1 � 10�73z�4 2�100 � 7 � 10�31 2�968 � 4 � 10�292The assiduous reader will have noted that Algorithm 1 leaves ambiguous how the sign of zero is treated.Di�erent implementations are free to return +0 or �0 whenever a zero is to be delivered. There seems tobe little to be gained by insisting, for example, that r = �0 when f = �0 and g = �0, whi
h is what woulda
tually be
omputed if R(1;+0) were multiplied by the ve
tor [�0;�0℄T .In later dis
ussion we denote the a
tual over
ow threshold by OV, the under
ow threshold by UN, andthe smallest nonzero number bym, whi
h is 2�"�UN on a ma
hine with gradual under
ow, and UN otherwise.5 Complex AlgorithmIn what follows we use the
onvention of
apitalizing all variable names, so that C, S and R are the data tobe
omputed from F and G. We use the notation re(F) and im(F) to mean the real and imaginary partsof F, and kwk1 = max(jrewj; jimwj) for any
omplex number w. We begin by eliminating the easy
aseswhere at least one of F and G is zero. Variables F, G, S and R are
omplex, and the rest are real.Algorithm 2: Computing Givens Rotations when f = 0 or g = 0if G = 0... in
ludes the
ase F = G = 0C = 1S = 0R = Felse if F = 0... G must be nonzeroC = 0s
ale G by powers of z�4 so that z�2 � kGk1 � z2D1 = sqrt(re(G)**2+im(G)**2)R = D1D1 = 1/D1S =
onj(G)*D1uns
ale R by powers of z�4else ... both F and G are nonzero... use algorithm des
ribed belowendif 6

We note that even though F = 0 6= G is an \easy"
ase we need to s
ale G to avoid over/under
ow when
omputing re(G)**2+im(G)**2.Now assume F and G are nonzero. We
an
ompute C, S and R with the following
ode fragment,whi
h employs only one division and one square root. The last
olumn shows the algebrai
ally exa
t quan-tity
omputed by ea
h line of
ode. We assume that real*
omplex multipli
ations are performed by tworeal multipli
ations (the Fortran implementation does this expli
itly rather than relying on the
ompiler).Variables F, G, R and S are
omplex, and the rest are real.Algorithm 3: Fast Complex Givens Rotations when f and g are \well s
aled"1. F2 := re(F)**2 + im(F)**2 jf j22. G2 := re(G)**2 + im(G)**2 jgj23. FG2 := F2 + G2 jf j2 + jgj24. D1 := 1/sqrt(F2*FG2) 1=pjf j4 + jf j2jgj2 = 1=(jf jpjf j2 + jgj2)5. C := F2*D1 jf j=pjf j2 + jgj26. FG2 := FG2*D1 pjf j2 + jgj2=jf j =p1 + jgj2=jf j27. R := F*FG2 fp1 + jgj2=jf j2 = sign(f)pjf j2 + jgj28. S := F*D1 fjf j 1pjf j2+jgj29. S :=
onj(G)*S fjf j gpjf j2+jgj2Now re
all z = ("=SAFMIN)1=4, so that z4 is an e�e
tive over
ow threshold and z�4 is an e�e
tiveunder
ow threshold. The region where the above algorithm
an be run reliably is des
ribed by the followinginequalities, whi
h are numbered to
orrespond to lines in the above algorithm. All logarithms are to thebase 2.1. We assume kfk1 � z2 to prevent over
ow in
omputation of F22. We assume kgk1 � z2 to prevent over
ow in
omputation of G23. This line is safe given previous assumptions.4a. We assume z�2 � kfk1 to prevent under
ow of F2 and
onsequent division by zero in the
omputationof D14b. We assume kfk1 � z to prevent over
ow from the jf j4 term in F2*FG2 in the
omputation of D14
. We assume kfk1kgk1 � z2 to prevent over
ow from the jf j2jgj2 term in F2*FG2 in the
omputationof D1Either 4d. z�1 � kfk1or 4e. z�2 � kfk1kgk1to prevent under
ow of F2*FG2 and
onsequent division by zero in the
omputation of D15. This line is safe given previous assumptions. If C under
ows, it is deserved.6. kgk1=kfk1 � z4 to prevent over
ow of FG2 sin
e p1 + jgj2=jf j2 = O(jgj=jf j) if jgj=jf j is large.7. This line is safe given previous assumptions, returning jRj roughly between z�1 and z2. If the smaller
omponent of R under
ows, it is deserved.8. This line is safe given previous assumptions, returning jSj roughly between z�2 and 1. The smaller
omponent of S may under
ow, but this error is very small
ompared to the other
omponent of S.9. This line is safe given previous assumptions. If S under
ows, it is deserved.Note that all the inequalities in the above list des
ribe half planes in(log kfk1; log kgk1) spa
e. For example inequality 6 be
omeslog kgk1 � log kfk1 � 4 log z.The region des
ribed by all inequalities is shown in �gure 1. Ea
h inequality is des
ribed by a thin linemarked by arrows indi
ating the side on whi
h the inequality holds. The heavy line borders the safe regionS satisfying all the inequalities, where the above algorithm
an be safely used.7

1

(1)

−4 −3 −2 −1 0

4

2 3

(2)

4 OV

−3

0

OV

3

−2

2

1

−1

UN

−4

log ||F|| / log z

log ||G|| / log z

UN

m

(4b)

(4a)

(4c)

(4d)

(4e)

(6)

Figure 1: Inequalities des
ribing the region of no unne
essary over/under
ow. UN and OV are theover/under
ow thresholds; m is the smallest representable positive number.

8

It remains to say how to de
ide whether a point lies in S. The boundary of S is
ompli
ated, so thetime to test for membership in S
an be nontrivial. A

ordingly, we use the simplest tests that are likely tosu

eed �rst, and only then do we use more expensive tests. In parti
ular, the easiest tests are threshold
omparisons with kfk1 and kgk1. So we test for membership in the subset of S labeled (1) in Figure 2 bythe following algorithm:if kfk1 � z and kfk1 � z�1 and kgk1 � z thenf; g is in Region (1)endifThis is
alled Case 1 in the software.Region (1)
ontains all data where kfk1 and kgk1 are not terribly far from 1 in magnitude (betweenz�1 = 2�25 � 10�7 and in single between z�1 = 2�242 � 10�73 in double), whi
h we expe
t to be mostarguments, espe
ially in double.The
omplement of Region (1) in S is shown bounded by dashed lines in Figure 2. It is harder to testfor, be
ause its boundaries require doing threshold tests on the produ
t kfk1 � kgk1, whi
h
ould over
ow.So we will not test for membership in this region expli
itly in the
ase, but do something else instead.6 When f and g di�er greatly in magnitudeWhen jgj2 � "jf j2, then jf j2 + jgj2 rounds to jf j2, and the formulas for
, s and r may be greatly simpli�edand very a

urately approximated by
 � 1s � sign(f) �gjf j = f � �gjf j2 (7)r � fThis region is
losely approximated by the regions kgk1 � "1=2kfk1 marked (2) in Figure 2.When instead jf j2 � "jgj2, then jf j2+ jgj2 rounds to jgj2, and the formulas for
, s and r may be greatlysimpli�ed and very a

urately approximated by
 � jf jjgj = jf j2jf j � jgjs � sign(f) �gjgj = f � �gjf j � jgj (8)r � sign(f)jgj = f � jgj2jf j � jgjThis region is
losely approximated by the region kfk1 � "1=2kgk1 marked (3) in Figure 2.An important di�eren
e between the formulas in (7) and (8) versus the formula (5) is that (7) and (8)are independently homogeneous in f and g. In other words, we
an s
ale f and g independently instead ofby the same s
alar in order to evaluate them safely. Thus the \shadow" of the region in whi
h the aboveformulas are safe
overs all (f; g) pairs. In
ontrast in formula (5) f and g must be s
aled by the same value.Here are the algorithms implementing (7) and (8) without s
aling. Note that (7) does not even requirea square root.
9

Algorithm 4: Computing
omplex Given rotations when kgk1 � p"kfk1, using formulas (7),without s
alingif kGk1 � p" � kFk1 thenC = 1R = FD1 = 1/sqrt(re(F)**2 + im(F)**2)S = F �
onj(G)S = S � D1endifAlgorithm 5: Computing
omplex Given rotations when kfk1 � p"kgk1, using formulas (8),without s
alingif kFk1 � p" � kGk1 thenF2 = re(F)**2 + im(F)**2G2 = re(G)**2 + im(G)**2FG2 = F2 * G2D1 = 1/sqrt(FG2)C = F2 * D1S = F *
onj(G)S = S * D1D1 = D1 * G2R = D1 * FendifWe may now apply the same analysis as in the last se
tion to these formulas, dedu
ing linear inequalitiesin log kfk1 and log kgk1 whi
h must be satis�es in order to guarantee safe and a

urate exe
ution. Wesimply summarize the results here. In both
ases, we get regions with boundaries that, like S, are sets ofline segments that may be verti
al, horizontal or diagonal. We again wish to restri
t ourselves to tests onkfk1 and kgk1 alone, rather than their produ
t (whi
h might over
ow). This means that we identify asmaller safe region (like region (1) within S in Figure 2) where membership
an be easily tested. This saferegion for Algorithm 4 is the set satisfyingz�2 � kfk1 � z2 and z�2 � kgk1 � z2 (9)This safe region for Algorithm 5 is the smaller set satisfyingz�1 � kfk1 � z and z�1 � kgk1 � z (10)This leads to the following algorithms, whi
h in
orporate s
aling.Algorithm 6: Computing
omplex Given rotations when kgk1 � p"kfk1, using formulas (7),with s
alingif kGk1 � p" � kFk1 thenC = 1R = Fs
ale F by powers of z�4 so z�2 � kFk1 � z2s
ale G by powers of z�4 so z�2 � kGk1 � z2D1 = 1/sqrt(re(F)**2 + im(F)**2)S = F �
onj(G)S = S � D1uns
ale S by powers of z�4 to undo s
aling of F and Gend if 10

Algorithm 7: Computing
omplex Given rotations when kfk1 � p"kgk1, using formulas (8),with s
alingif kFk1 � p" � kGk1 thens
ale F by powers of z�2 so z�1 � kFk1 � zs
ale G by powers of z�2 so z�1 � kGk1 � zF2 = re(F)**2 + im(F)**2G2 = re(G)**2 + im(G)**2FG2 = F2 * G2D1 = 1/sqrt(FG2)C = F2 * D1S = F *
onj(G)S = S * D1D1 = D1 * G2R = D1 * Funs
ale C and R by powers of z�2 to undo s
aling of F and GendifNote in Algorithm 7 that the value of S is une�e
ted by independent s
aling of F and G.7 S
aling in Regions 4a and 4bFor any point (f; g) that does not lie in regions (1), (2) or (3) of Figure 2 we
an use the following algorithm:1. S
ale (f; g) to a point (s
ale � f; s
ale � g) that does lie in S.2. Apply Algorithm 3 to (s
ale � f; s
ale � g), yielding
; s; r̂.3. Uns
ale to get r = r̂=s
ale.This s
aling in Figure 2
orresponds to shifting f; g parallel to the diagonal line f = g by log s
ale untilit lies in S. It is geometri
ally apparent that the set of points s
alable in regions (4a) and (4b)of Figure 2lie in the set of all diagonal translates of S, i.e. the \shadow" of S, and
an be s
aled to lie in S. Indeed, allpoint in region (2) and many (but not all) points in region (3)
an be s
aled to lie in S, but in regions (2)and (3)
heaper formulas dis
ussed in the last se
tion are available.First suppose that (f; g) lies in region (4a). Let s = max(kfk1; kgk1). Then if s > z2, we
an s
ale fand g down by z�2. Eventually (f; g) will lie in the union of the two arrow-shaped regions A1 and A2 inFigure 3. Then, if s still ex
eeds z, i.e. (f; g) is in A1, we multiply f and g by z�1, putting it into A2. Thus,we guarantee that the s
aled f and g are in A2, where it is safe to use Algorithm 3.Next suppose that (f; g) lies in region (4b). Now let s = kfk1. Then if s < z�2, we
an s
ale f and gup by z2. Eventually (f; g) will like in the union of the two parallelograms B1 and B2 in Figure 4. Then, ifs is still less than z�1, i.e. (f; g) is in B1, we multiply f and g by z, putting it into B2. Thus, we guaranteethat the s
aled f and g are in B2, where it is safe to use Algorithm 3.These
onsiderations lead to the following algorithm

11

4

0

m UN

UN

log ||G|| / log z

log ||F|| / log z

−4

−2

−1

−4 −3 −2 −1 0 1 2 3

1

OV

−3

(1)

OV

3

4

2

(2)

(2)

(3) (4a)

(4b)

Figure 2: Cases in the
ode when f 6= 0 and g 6= 0Algorithm 8: Computing
omplex Givens rotations when (f; g) is in region (4a) or (4b), withs
aling.... this
ode is only exe
uted if f and g are in region (4a) or (4b)if kFk1 > 1s
ale F and G down by powers of z�2 until max(kFk1; kGk1) � z2if max(kFk1; kGk1) > z, s
ale F and G down by z�1else s
ale F and G up by powers of z2 until kFk1 � z�2if kFk1 < z, s
ale F and G up by zendif
ompute the Givens rotation using Algorithm 3undo the s
aling of R
aused by s
aling of F and GWe
all the overall algorithm new CLARTG, to distinguish from old CLARTG, whi
h is part of theLAPACK 3.0 release. The entire sour
e
ode in in
luded in the Appendix. It
ontains 237 non
ommentlines, as opposed to 20 in the referen
e
rotg implementation.
12

2 43UN

UN

log ||G|| / log z

log ||F|| / log z

−4

−2

−1

1

2

−4 −3 −2 −1 0 1

4

m OV

−3

0

OV

3

A1

A2

Figure 3: S
aling when (f; g) is in Region (4a).

3 OV4UN

UN

log ||G|| / log z

log ||F|| / log z

−4

−2

−1

−4 −3 −2 −1 0 1 2

1

m

−3

0

OV

3

4

2

B1

B2

Figure 4: S
aling when (f; g) is in Region (4b).
13

8 A

ura
y ResultsThe algorithm was run for 434 = 3418801 values of f and g, where the real and imaginary part of f and gindependently took on 43 di�erent values ranging from the smallest denormalized number to the over
owthreshold, with intermediate values
hosen just above and just below the threshold values determining all theedges and
orners in Figures 1 through 4, and thus barely satisfying (or not satisfying) all possible bran
hesin the algorithm. The
orre
t answer was
omputed using a straightforward implementation of Algorithm 1using double pre
ision arithmeti
, in whi
h no over
ow nor under
ow is possible for the arguments tested.The maximum errors in r,
 and s were
omputed as follows, Here rs was
omputed in single using the newalgorithm and rd was
omputed straightforwardly in double pre
ision; the subs
ripted
 and s variables haveanalogous meanings. In the absen
e of gradual under
ow, the error metri
 for rs isjrs � rdj=max("jrdj; SAFMIN) (11)and with gradual under
ow it is jrs � rdj=max("jrdj; SAFMIN � 2 � ") (12)with the maximum taken over all 434 test
ases. (The few values of f and g where the true answer over
owedwere ex
luded from the error bound
al
ulation.) Note that SAFMIN � 2 � " is the smallest denormalizednumber. Analogous metri
s were
omputed for ss and
s.The routines were �rst tested on a Sun Ultra-10 using f77 with the -fast -O5
ags, whi
h means gradualunder
ow is not used, i.e. results less than SAFMIN are repla
ed by 0. Therefore we expe
t the measure (11)to be at least 1, and hopefully just a little bigger than 1, meaning that the error jrs � rdj is either just morethan ma
hine epsilon " times the true result, or a small multiple of the under
ow threshold, whi
h is theinherent un
ertainty in the arithmeti
.The routines were also tested without any optimization
ags, whi
h means gradual under
ow is used, sowe expe
t the more stringent measure (12) to be
lose to 1.The results are as follows: Without Gradual Under
owRoutine Max error in rs Max error in ss Max error in
sNew CLARTG 3.04 2.96 2.46Old CLARTG 70588 70588 70292Referen
e
rotg NAN NAN NANModi�ed Referen
e
rotg 3.59 3.41 3.22ATLAS
rotg NAN NAN NANLimited ATLAS
rotg 2:88 1:7 � 107 3.11Vendor
rotg NAN NAN NANLimited Vendor
rotg 3.59 1:7 � 107 3.22With Gradual Under
owRoutine Max error in rs Max error in ss Max error in
sNew CLARTG 3.04 2.96 3.04Old CLARTG 4.60 4.27 4913930Referen
e
rotg NAN NAN NANModi�ed Referen
e
rotg 6949350 6952960 6949350Here is why the old CLARTG fails to be a

urate. First
onsider the situation without gradual under
ow.When jgj is just above z�2, and jf j is just below, the algorithm will de
ide that s
aling is unne
essary. Asa result jf j2 may have a nonnegligible relative error from under
ow, whi
h
reates a nonnegligible relativeerror in r, s and
. Now
onsider the situation with gradual under
ow. The above error does not o

ur, buta di�erent one o

urs. When 1 � jgj � jf j, and f is denormalized, then the algorithm will not s
ale. Asa result jf j su�ers a large loss of relative a

ura
y when it is rounded to the nearest denormalized number,and then
 � jf j=jgj has the same large loss of a

ura
y.14

Here is why the referen
e BLAS
rotg
an fail, even though it tries to s
ale to avoid over/under
ow. Thes
ale fa
tor jf j+ jgj
omputed internally
an over
ow even when jrj =pjf j2 + jgj2 does not. Now
onsiderthe situation without gradual under
ow. The sine is
omputed as s = (fjf j) � (�g)=(pjf j2 + jgj2), where themultipli
ation is done �rst. All three quantities in parentheses are quite a

urate, but the entries of f=jf jare both less than one,
ausing the multipli
ation to under
ow to 0, when the true s ex
eeds .4. This
anbe repaired by inserting parentheses s = (fjf j) � ((�g)=(pjf j2 + jgj2)) so the division is done �rst. Ex
ludingthese very large
ases, and inserting parentheses, we get the errors on the line \Modi�ed Referen
e
rotg".Now
onsider the situation with gradual under
ow. Then rounding intermediate quantities to the nearestdenormalized number
an
ause large relative errors, su
h as s and
 both equaling 1 instead of 1=p2.The ATLAS and vendor version of
rotg were only run with the full optimizations suggested by theirauthors, whi
h means gradual under
ow was not enabled. They also return NANs for large arguments evenwhen the true answer should have been representable. We did not modify these routines, but instead ranthem on the limited subset of examples where jf j + jgj was less than over
ow. They still o

asionally hadlarge errors that we suspe
t are due to under
ow, sin
e they o

urred for small arguments, between SAFMINand SAFMIN/".In summary, our systemati
 pro
edure produ
ed a provably reliable implementation whereas there areerrors in all previous implementations that yield ina

urate results without warning, or fail unne
essarilydue to over
ow. The latter only o

urs when the true r is
lose to over
ow, and so it is hard to
omplainvery mu
h, but the former problem deserves to be
orre
ted.9 Timing ResultsFor
omplex Givens rotations, we
ompared the new algorithm des
ribed above, the old CLARTG fromLAPACK, and
rotg from the referen
es BLAS. Timings were done on a Sun Ultra-10 using the f77
ompilerwith optimization
ags -fast -O5. Ea
h routine was
alled 106 times for arguments through the f; g planeshown in Figure 2. Indeed, 29
ases were tried in all, exer
ising all paths in the new CLARTG
ode. Theinput data is shown in a table below. Ea
h input was run 10 times and the average time taken; the range oftimings for ea
h (f; g) input was typi
ally only a few per
ent.The timing results are in the Figures 5 and 6. Five algorithms are
ompared:1. New CLARTG is the algorithm presented in this report2. OLD CLARTG is the algorithm in LAPACK 3.03. Ref CROTG is the referen
e BLAS4. ATLAS CROTG is the ATLAS BLAS5. Vendor CROTG is Sun's vendor BLASFigure 5 shows absolute times in mi
rose
onds, and Figure 6 shows times relative to new CLARTG. Theverti
al ti
k marks delimit the
ases in the
ode, as des
ribed in the table below.The most
ommon
ase is Case 1, at the left of the plots. We see that the new CLARTG is about 20%faster than old CLARTG, and nearly 4 times faster than any version of CROTG.To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. itomits all tests for s
aling of f and g and simply applies the algorithm appropriate for Case 1. This ultimateversion ran in about .243 mi
rose
onds, about 68% of the time of the new CLARTG. This is the pri
e ofreliability. Alternatively, on a system with fast ex
eption handling, one
ould run this algorithm and then
he
k if an under
ow, over
ow, or division-by-zero ex
eption o

urred, and only re
ompute in this rare
ase[2℄. Here is an alternative approa
h that avoids all need to s
ale and is fastest overall on the above ar
hite
turefor IEEE single pre
ision inputs: After testing for the
ases f = 0 or g = 0, use Algorithm 3 in IEEE doublepre
ision. The three extra exponent bits eliminate over/under
ow. On this ma
hine, this algorithm takes.365 mi
rose
onds for all nonzero inputs f and g, nearly exa
tly the same as Case 1 entirely in single. Thisalgorithm is the algorithm of
hoi
e for single pre
ision on this ma
hine, sin
e it is not only the fastest in15

most
ases, but mu
h simpler. Of
ourse it would not work if the input data were in double, sin
e a widerformat is not available on this ar
hite
ture.Case Case in
ode f g1 1 (0.11E+01 , 0.22E+01) (0.33E+01 , 0.44E+01)2 2 (0.37E+08 , 0.74E+08) (0.33E+01 , 0.44E+01)3 2 (0.12E+16 , 0.25E+16) (0.11E+09 , 0.15E+09)4 2 (0.42E+23 , 0.83E+23) (0.37E+16 , 0.50E+16)5 2 (0.14E+31 , 0.28E+31) (0.12E+24 , 0.17E+24)6 2 (0.14E+31 , 0.28E+31) (0.33E+01 , 0.44E+01)7 2 (0.14E+31 , 0.28E+31) (0.26E-29 , 0.35E-29)8 2 (0.14E+31 , 0.28E+31) (0.26E-29 , 0.35E-29)9 2 (0.29E-22 , 0.58E-22) (0.26E-29 , 0.35E-29)10 2 (0.98E-15 , 0.20E-14) (0.87E-22 , 0.12E-21)11 2 (0.33E-08 , 0.66E-08) (0.29E-14 , 0.39E-14)12 3 (0.11E+01 , 0.22E+01) (0.11E+09 , 0.15E+09)13 3 (0.37E+08 , 0.74E+08) (0.37E+16 , 0.50E+16)14 3 (0.12E+16 , 0.25E+16) (0.12E+24 , 0.17E+24)15 3 (0.42E+23 , 0.83E+23) (0.42E+31 , 0.56E+31)16 3 (0.11E+01 , 0.22E+01) (0.42E+31 , 0.56E+31)17 3 (0.87E-30 , 0.17E-29) (0.42E+31 , 0.56E+31)18 3 (0.87E-30 , 0.17E-29) (0.33E+01 , 0.44E+01)19 3 (0.87E-30 , 0.17E-29) (0.87E-22 , 0.12E-21)20 3 (0.29E-22 , 0.58E-22) (0.29E-14 , 0.39E-14)21 3 (0.98E-15 , 0.20E-14) (0.98E-07 , 0.13E-06)22 4 (0.37E+08 , 0.74E+08) (0.11E+09 , 0.15E+09)23 4 (0.12E+16 , 0.25E+16) (0.37E+16 , 0.50E+16)24 4 (0.42E+23 , 0.83E+23) (0.12E+24 , 0.17E+24)25 4 (0.14E+31 , 0.28E+31) (0.42E+31 , 0.56E+31)26 4 (0.33E-08 , 0.66E-08) (0.98E-08 , 0.13E-07)27 4 (0.98E-15 , 0.20E-14) (0.29E-14 , 0.39E-14)28 4 (0.29E-22 , 0.58E-22) (0.87E-22 , 0.12E-21)29 4 (0.87E-30 , 0.17E-29) (0.26E-29 , 0.35E-29)
10 Computing real Givens RotationsWhen both f and g are nonzero, the following algorithm minimizes the amount of work:Algorithm 9: Real Given rotations when f and g are nonzero, without s
alingFG2 = F**2 + G**2R = sqrt(FG2)RR = 1/RC = abs(F)*RRS = G*RRif F < 0 thenS = -SR = -RendifWe may now apply the same kind of analysis that we applied to Algorithm 3. We just summarize theresults here. 16

1 2 11 12 21 22
0

0.5

1

1.5

2

2.5

Case

M
ic

ro
se

co
nd

s

Time to compute complex Givens rotations

New CLARTG
Old CLARTG
ATLAS
Vendor
Reference

Figure 5: Time to
ompute
omplex Givens rotations.Algorithm 10: Real Given rotations when f and g are nonzero, with s
alings
ale = max(abs(F) , abs(G))if s
ale > z2 thens
ale F, G and s
ale down by powers of z�2 until s
ale � z2elseif s
ale < z�2 thens
ale F, G and s
ale up by powers of z2 until s
ale � z�2endifFG2 = F**2 + G**2R = sqrt(FG2)RR = 1/RC = abs(F)*RRS = G*RRif F < 0 thenS = -SR = -Rendifuns
ale R if ne
essaryThe worst
ase error, measured as in se
tion 8 was 1.45 for r and 1.81 for
 and s, with or withoutgradual under
ow. The
omplete
ode is lo
ated in the Appendix. It
ontains 74 non
omment lines of
ode,as opposed to 22 for the referen
e BLAS srotg. 17

1 2 11 12 21 22
0.5

0.8

1

1.2

1.5

2

3

4

5
Time to compute complex Givens rotations, relative to new CLARTG

Case

R
at

io
 o

f t
im

e
to

 ti
m

e
fo

r
ne

w
 C

LA
R

T
G

New CLARTG
Old CLARTG
ATLAS
Vendor
Reference

Figure 6: Relative Time to
ompute
omplex Givens rotations.11 Con
lusionsWe have justi�ed the spe
i�
ation of Givens rotations put forth in the re
ent BLAS Te
hni
al Forum stan-dard. We have shown how to implement the new spe
i�
ation in a way that is both faster than previousimplementations in the most
ommon
ases, and more reliable. We used a systemati
 design pro
ess forsu
h kernels that
ould be used whenever a

ura
y, reliability against over/under
ow, and eÆ
ien
y aresimultaneously desired. A side e�e
t of our approa
h is that the algorithms are mu
h longer than before.Referen
es[1℄ S. Bla
kford, G. Corliss, J. Demmel, J. Dongarra, I. Du�, S. Hammarling, G. Henry, M. Heroux, C. Hu,W. Kahan, L. Kaufman, B. Kearfott, F. Krogh, X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington,W. Walster, C. Whaley, and J. Wol� v. Gudenberg. Do
ument for the Basi
 Linear Algebra Subprograms(BLAS) Standard: BLAS Te
hni
al Forum. www.netlib.org/
gi-bin/
he
kout/blast/blast.pl, 1999.[2℄ J. Demmel and X. Li. Faster numeri
al algorithms via ex
eption handling. IEEE Trans. Comp.,43(8):983{992, 1994. LAPACK Working Note 59.[3℄ G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 3rdedition, 1996.
18

A SLARTGSUBROUTINE SLARTG(F, G, CS, SN, R)** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Ri
e University* July 23, 2000** .. S
alar Arguments ..REAL CS, F, G, R, SN* ..** Purpose* =======** SLARTG generate a plane rotation so that** [CS SN ℄ . [F ℄ = [R ℄ where CS**2 + SN**2 = 1.* [-SN CS ℄ [G ℄ [0 ℄** This is a slower, more a

urate version of the BLAS1 routine SROTG,* with the following other differen
es:* F and G are un
hanged on return.* If F=0 and G=0, then CS=1, SN=0, and R=0.* If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.* If F=0 and G .ne. 0, then CS=0, SN=sign(G), and R=abs(G).* If F .ne. 0 and (G .ne. 0), then* CS = abs(F)/sqrt(F**2 + G**2)* SN = sign(F)*G/sqrt(F**2 + G**2)* R = sign(F)*sqrt(F**2 + G**2)** This is the only definition with the following properties:* 1) CS is always nonnegative.* 2) R is real and nonnegative if F=0.* 3) CS=1 and SN=0 when F=G=0.** The
omplex routine CLARTG returns the same* CS and SN on
omplex inputs (F,0) and (G,0).** Arguments* =========** F (input) REAL* The first
omponent of ve
tor to be rotated.** G (input) REAL* The se
ond
omponent of ve
tor to be rotated.** CS (output) REAL* The
osine of the rotation.** SN (output) REAL* The sine of the rotation. 19

** R (output) REAL* The nonzero
omponent of the rotated ve
tor.** ===** .. Parameters ..REAL ZEROPARAMETER (ZERO = 0.0E0)REAL ONEPARAMETER (ONE = 1.0E0)REAL TWOPARAMETER (TWO = 2.0E0)* ..* .. Lo
al S
alars ..LOGICAL FIRSTINTEGER COUNT, IREAL EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALEREAL SCL* ..* .. External Fun
tions ..REAL SLAMCHEXTERNAL SLAMCH* ..* .. Intrinsi
 Fun
tions ..INTRINSIC ABS, INT, LOG, MAX, SQRT, SIGN* ..* .. Save statement ..SAVE FIRST, EPS, SAFMX2, SAFMIN, SAFMN2, SAFMNSAVE SAFMX* ..* .. Data statements ..DATA FIRST / .TRUE. /* ..* .. Exe
utable Statements ..* IF(FIRST) THEN** On first
all to SLARTG,
ompute* SAFMN2 = sqrt(SAFMIN/EPS) rounded down to the nearest power* of the floating point radix* This means that s
aling by multipli
ation by SAFMN2 and its* re
ipro
al SAFMX2
ause no roundoff error* FIRST = .FALSE.SAFMIN = SLAMCH('S')EPS = SLAMCH('E')SAFMN2 = SLAMCH('B')**INT(LOG(SAFMIN / EPS) /$ LOG(SLAMCH('B')) / TWO)SAFMN = SAFMN2**2SAFMX2 = ONE / SAFMN2SAFMX = SAFMX2**2END IFIF(G.EQ.ZERO) THEN 20

** In
ludes the
ase F=G=0* CS = ONESN = ZEROR = FELSE IF(F.EQ.ZERO) THEN** G must be nonzero* CS = ZEROSN = SIGN(ONE, G)R = ABS(G)ELSE** Both F and G must be nonzero* F1 = FG1 = GSCALE = MAX(ABS(F1), ABS(G1))COUNT = 0IF(SCALE.GE.SAFMX2) THEN** Handle
ase where F1**2 + G1**2 might overflow* SCL = SAFMX210 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMN2G1 = G1*SAFMN2SCALE = SCALE*SAFMN2IF(SCALE.GE.SAFMX2)$ GO TO 10ELSE IF(SCALE.LE.SAFMN2) THEN** Handle
ase where F1**2 + G1**2 might underflow* SCL = SAFMN230 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMX2G1 = G1*SAFMX2SCALE = SCALE*SAFMX2IF(SCALE.LE.SAFMN2)$ GO TO 30ENDIFR = SQRT(F1**2+G1**2)RR = ONE/RCS = ABS(F1) * RRSN = G1 * RRIF (F .LT. ZERO) THENR = -RSN = -SNENDIF 21

DO 40 I = 1, COUNTR = R*SCL40 CONTINUEENDIFRETURN** End of SLARTG* END

22

B CLARTGSUBROUTINE CLARTG(F, G, CS, SN, R)** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Ri
e University* July 22, 2000** .. S
alar Arguments ..REAL CSCOMPLEX F, G, R, SN* ..** Purpose* =======** CLARTG generates a plane rotation so that** [CS SN ℄ [F ℄ [R ℄* [__ ℄ . [℄ = [℄ where CS**2 + |SN|**2 = 1.* [-SN CS ℄ [G ℄ [0 ℄** This is a faster version of the BLAS1 routine CROTG, ex
ept for* the following differen
es:* F and G are un
hanged on return.* If F=0 and G=0, then CS=1, SN=0, and R=0.* If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.* If F=0 and G .ne. 0, then CS=0, SN=
onj(G)/abs(G), and R=abs(G).* If F .ne. 0 and G .ne. 0, then* CS = abs(F)/sqrt(F**2 + G**2)* SN = (F/abs(F))*
onj(G)/sqrt(F**2 + G**2)* R = (F/abs(F))*sqrt(F**2 + G**2)** This is the only definition with the following properties:* 1) CS is always real and nonnegative.* 2) R is real and nonnegative if F=0.* 3) CS=1 and SN=0 when F=G=0.** The real routine SLARTG returns the same* CS and SN if the inputs F and G are real.** Arguments* =========** F (input) COMPLEX* The first
omponent of ve
tor to be rotated.** G (input) COMPLEX* The se
ond
omponent of ve
tor to be rotated.** CS (output) REAL* The
osine of the rotation.* 23

* SN (output) COMPLEX* The sine of the rotation.** R (output) COMPLEX* The nonzero
omponent of the rotated ve
tor.** ===** .. Parameters ..REAL FOUR, ONE, ZEROPARAMETER (FOUR = 4.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0)COMPLEX CZEROPARAMETER (CZERO = (0.0E+0, 0.0E+0))* ..* .. Lo
al S
alars ..LOGICAL FIRST, AGAININTEGER COUNT, IREAL D1, EPS, F2, G2, SAFMIN,$ SAFMN2, SAFMX2, SAFMN4, SAFMX4, SAFMN, SAFMX,$ SCALEF, SCALEG, SCALEFG, FG2, SQREPSCOMPLEX FF, FS, GS* ..* .. External Fun
tions ..REAL SLAMCH, SLAPY2EXTERNAL SLAMCH, SLAPY2* ..* .. Intrinsi
 Fun
tions ..INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,$ SQRT* ..* .. Statement Fun
tions ..REAL ABS1, ABSSQ* ..* .. Save statement ..SAVE FIRST, SAFMIN, EPS, SQREPSSAVE SAFMX2, SAFMX4, SAFMN2, SAFMN4, SAFMN, SAFMX* ..* .. Data statements ..DATA FIRST / .TRUE. /* ..* .. Statement Fun
tion definitions ..ABS1(FF) = MAX(ABS(REAL(FF)), ABS(AIMAG(FF)))ABSSQ(FF) = REAL(FF)**2 + AIMAG(FF)**2* ..* .. Exe
utable Statements ..* IF(FIRST) THEN** On first
all to SLARTG,
ompute** SAFMN4 = (SAFMIN/EPS)**.25 rounded down to the nearest power* of the floating point radix* SAFMN2 = (SAFMIN/EPS)**.5 rounded down to the nearest power* of the floating point radix24

** This means that s
aling by SAFMN{2,4} and their* re
ipro
als SAFMX{2,4}
auses no roundoff error* FIRST = .FALSE.SAFMIN = SLAMCH('S')EPS = SLAMCH('E')SQREPS = SQRT(EPS)SAFMN4 = SLAMCH('B')**INT(LOG(SAFMIN / EPS) /$ LOG(SLAMCH('B')) / FOUR)SAFMN2 = SAFMN4**2SAFMN = SAFMN2**2SAFMX4 = ONE / SAFMN4SAFMX2 = SAFMX4**2SAFMX = SAFMX2**2ENDIF* SCALEF = ABS1(F)SCALEG = ABS1(G)IF(SCALEG.EQ.ZERO) THEN** In
ludes the
ase F=G=0* CS = ONESN = CZEROR = FELSEIF(SCALEF.EQ.ZERO) THEN** G must be nonzero* CS = ZEROGS = GCOUNT = 0IF (SCALEG .GT. SAFMX2) THEN1 CONTINUECOUNT = COUNT + 1GS = GS * SAFMNSCALEG = SCALEG * SAFMNIF (SCALEG .GT. SAFMX2) GOTO 1SCALE = SAFMXELSEIF(SCALEG .LT. SAFMN2) THEN2 CONTINUECOUNT = COUNT + 1GS = GS * SAFMXSCALEG = SCALEG * SAFMXIF (SCALEG .LT. SAFMN2) GOTO 2SCALE = SAFMNENDIFD1 = SQRT(REAL(GS)**2 + AIMAG(GS)**2)R = D1D1 = ONE/D1SN = CMPLX(REAL(GS)*D1, -AIMAG(GS)*D1)DO 3 I = 1, COUNTR = CMPLX(REAL(R)*SCALE, AIMAG(R)*SCALE)25

3 CONTINUEELSE** Both F and G must be nonzero* IF(SCALEF.LE.SAFMX4 .AND. SCALEF.GE.SAFMN4 .AND.$ SCALEG.LE.SAFMX4) THEN** Case 1: neither F nor G too big or too small, minimal work* F2 = ABSSQ(F)G2 = ABSSQ(G)FG2 = F2+G2D1 = ONE/SQRT(F2*FG2)CS = F2*D1FG2 = FG2 * D1R = CMPLX(REAL(F)*FG2, AIMAG(F)*FG2)SN = CMPLX(REAL(F)*D1 , AIMAG(F)*D1)SN = CONJG(G) * SNELSEIF(SCALEG .LT. SQREPS*SCALEF) THEN** Case 2: ABS(F)**2 + ABS(G)**2 rounds to ABS(F)**2* CS = ONER = FFS = FGS = GCOUNT = 0IF(SCALEF .GT. SAFMX2) THEN10 CONTINUECOUNT = COUNT + 1FS = FS * SAFMNSCALEF = SCALEF * SAFMNIF (SCALEF .GT. SAFMX2) GOTO 10ELSEIF(SCALEF .LT. SAFMN2) THEN20 CONTINUECOUNT = COUNT - 1FS = FS * SAFMXSCALEF = SCALEF * SAFMXIF (SCALEF .LT. SAFMN2) GOTO 20ENDIFIF(SCALEG .GT. SAFMX2) THEN30 CONTINUECOUNT = COUNT - 1GS = GS * SAFMNSCALEG = SCALEG * SAFMNIF (SCALEG .GT. SAFMX2) GOTO 30ELSEIF(SCALEG .LT. SAFMN2) THEN40 CONTINUECOUNT = COUNT + 1GS = GS * SAFMXSCALEG = SCALEG * SAFMXIF (SCALEG .LT. SAFMN2) GOTO 40ENDIF 26

D1 = ONE/(REAL(FS)**2 + AIMAG(FS)**2)SN = FS * CONJG(GS)SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)*D1)IF(COUNT .GT. 0) THENDO 50 I = 1, COUNTSN = CMPLX(REAL(SN)*SAFMN , AIMAG(SN)*SAFMN)50 CONTINUEELSEIF(COUNT .LT. 0) THENDO 60 I = 1, -COUNTSN = CMPLX(REAL(SN)*SAFMX , AIMAG(SN)*SAFMX)60 CONTINUEENDIFELSEIF(SCALEF .LT. SQREPS*SCALEG) THEN** Case 3: ABS(F)**2 + ABS(G)**2 rounds to ABS(G)**2* FS = FGS = GCOUNTF = 0COUNTG = 0IF(SCALEF .GT. SAFMX4) THEN70 CONTINUECOUNTF = COUNTF + 1FS = FS * SAFMN2SCALEF = SCALEF * SAFMN2IF (SCALEF .GT. SAFMX4) GOTO 70ELSEIF(SCALEF .LT. SAFMN4) THEN80 CONTINUECOUNTF = COUNTF - 1FS = FS * SAFMX2SCALEF = SCALEF * SAFMX2IF (SCALEF .LT. SAFMN4) GOTO 80ENDIFIF(SCALEG .GT. SAFMX4) THEN90 CONTINUECOUNTG = COUNTG + 1GS = GS * SAFMN2SCALEG = SCALEG * SAFMN2IF (SCALEG .GT. SAFMX4) GOTO 90ELSEIF(SCALEG .LT. SAFMN4) THEN100 CONTINUECOUNTG = COUNTG - 1GS = GS * SAFMX2SCALEG = SCALEG * SAFMX2IF (SCALEG .LT. SAFMN4) GOTO 100ENDIFF2 = REAL(FS)**2 + AIMAG(FS)**2G2 = REAL(GS)**2 + AIMAG(GS)**2D1 = ONE/SQRT(F2*G2)CS = F2*D1SN = FS * CONJG(GS)SN = CMPLX(REAL(SN)*D1 , AIMAG(SN)*D1)D1 = G2*D1R = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)27

COUNT = COUNTF - COUNTGIF(COUNT .GT. 0) THENDO 110 I = 1, COUNTCS = CS*SAFMX2110 CONTINUEELSEIF(COUNT .LT. 0) THENDO 120 I = 1, -COUNTCS = CS*SAFMN2120 CONTINUEENDIFIF(COUNTG .GT. 0) THENDO 130 I = 1, COUNTGR = CMPLX(REAL(R)*SAFMX2, AIMAG(R)*SAFMX2)130 CONTINUEELSEIF(COUNTG .LT. 0) THENDO 140 I = 1, -COUNTGR = CMPLX(REAL(R)*SAFMN2, AIMAG(R)*SAFMN2)140 CONTINUEENDIFELSE** Case 4: S
ale F and G up or down and use formula from Case 1* FS = FGS = GCOUNT = 0AGAIN = .FALSE.SCALEFG = MAX(SCALEF, SCALEG)IF(SCALEFG .GT. ONE) THENSCALE = SAFMX2150 CONTINUEIF(SCALEFG .LE. SAFMX2) GOTO 151COUNT = COUNT + 1FS = FS * SAFMN2GS = GS * SAFMN2SCALEFG = SCALEFG * SAFMN2GOTO 150151 CONTINUEIF(SCALEFG .GT. SAFMX4) THENSCALE2 = SAFMX4AGAIN = .TRUE.FS = FS * SAFMN4GS = GS * SAFMN4ENDIFELSESCALE = SAFMN2160 CONTINUECOUNT = COUNT + 1FS = FS * SAFMX2GS = GS * SAFMX2SCALEF = SCALEF * SAFMX2IF(SCALEF .LT. SAFMN2) GOTO 160IF(SCALEF .LT. SAFMN4) THENSCALE2 = SAFMN4 28

AGAIN = .TRUE.FS = FS * SAFMX4GS = GS * SAFMX4ENDIFENDIFF2 = ABSSQ(FS)G2 = ABSSQ(GS)FG2 = F2+G2D1 = ONE/SQRT(F2*FG2)CS = F2*D1FG2 = FG2 * D1R = CMPLX(REAL(FS)*FG2, AIMAG(FS)*FG2)SN = CMPLX(REAL(FS)*D1 , AIMAG(FS)*D1)SN = CONJG(GS) * SNDO 170 I = 1, COUNTR = CMPLX(REAL(R) * SCALE, AIMAG(R) * SCALE)170 CONTINUEIF (AGAIN)$ R = CMPLX(REAL(R) * SCALE2, AIMAG(R) * SCALE2)ENDIFENDIFRETURN** End of CLARTG* END

29

