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Abstract
We consider the efficient and accurate computation of Givens rotations. When f and g are positive

real numbers, this simply amounts to computing the values of ¢ = f/1/f2 + g2, s = g/\/f? + ¢2, and

r = v/ f? + ¢g2. This apparently trivial computation merits closer consideration for the following three
reasons. First, while the definitions of ¢, s and r seem obvious in the case of two nonnegative arguments f
and g, there is enough freedom of choice when one or more of f and g are negative, zero or complex that
LAPACK auxiliary routines SLARTG, CLARTG, SLARGV and CLARGYV can compute rather different
values of ¢, s and r for mathematically identical values of f and g. To eliminate this unnecessary
ambiguity, the BLAS Technical Forum chose a single consistent definition of Givens rotations that we
will justify here. Second, computing accurate values of ¢, s and r as efficiently as possible and reliably
despite over/underflow is surprisingly complicated. For complex Givens rotations, the most efficient
formulas require only one real square root and one real divide (as well as several much cheaper additions
and multiplications), but a reliable implementation has a number of cases. On a Sun Ultra-10, the new
implementation is 20% faster than the previous LAPACK implementation in the most common case,
and nearly 4 times faster than the corresponding vendor, reference or ATLAS routines. It is also more
reliable; all previous codes occasionally suffer from large inaccuracies due to over/underflow. Third, the
design process that led to this reliable implementation is quite systematic, and could be applied to the
design of similarly reliable subroutines.

1 Introduction

Givens rotations are widely used in numerical linear algebra. Given f and g, a Givens rotation is a 2-by-2
unitary matrix R(c,s) such that
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From this we see that
lc?+|s)?=1 and c—¢=0, ie. c is real (2)

When f and g are real and positive, the widely accepted convention is to let

¢ = [IVP+g?
s = g/VfP+g®
ro= ViP+g

However, the negatives of ¢, s and r also satisfy conditions (1) and (2). And when f = g =0, any ¢ and s
satisfying (2) also satisfy (1). So ¢, s and r are not determined uniquely. This slight ambiguity has led to a
surprising diversity of inconsistent definitions in the literature and in software. For example, the LAPACK
routines SLARTG, CLARTG, SLARGV and CLARGYV, as well as Algorithm 5.1.5 in [3] can get significantly
different answers for mathematically identical inputs.

To avoid this unnecessary diversity, the BLAS (Basic Linear Algebra Subroutines) Technical Forum, in
its design of the new BLAS standard [1], chose to pick a single definition of Givens rotations. Section 2
below presents and justifies the design.

The BLAS Technical Forum is also providing reference implementations of the new standard. In the case
of computing Givens rotation and a few other kernel routines, intermediate over/underflows in straightfor-
ward implementations can make the output inaccurate (or perhaps even stop execution) even though the
true mathematical answer might be unexceptional. To compute ¢, s and r as efficiently as possible and
reliably despite over/underflow flow is surprisingly complicated, particularly for complex f and g.

Square root and division are by far the most expensive real floating point operations on current machines,
and it is easy to see that one real square root and one real division (or perhaps a single reciprocal-square-
root operation) are necessary to compute ¢, s and r. With a little algebraic manipulation, we also show
that a single square root and division are also sufficient (along with several much cheaper additions and
multiplications) to compute ¢, s and r in the complex case.

However, these formulas for ¢, s and 7 that use just one square root and one division are susceptible
to over/underflow, if we must store all intermediate results in the same precision as f and g. Define
Il = max(|re f|,|img|). We systematically identify the values of f and g for which these formulas
are reliable (i.e. guaranteed not to underflow in such a way that unnecessarily loses relative precision, nor
to overflow) by generating a set of simultaneous linear inequalities in log || f||co and log||g||oc, which define
a (nonconvex) 2D polygonal region S (for Safe) in (log||f|leo,10g ||¢]|cc) space in which the formulas may
be used. This is the most common situation, which we call Case 1 in the algorithm. In this case, the
new algorithm runs 20% faster than LAPACK’s CLARTG routine, and nearly 4 times faster than the crotg
routine in the vendor BLAS on a Sun Ultra-10, ATLAS BLAS, or Fortran reference BLAS.

If (log||f|looslog|lglleo) lies outside S, there are two possibilities: scaling f and g by a constant to fit
inside S, or using different formulas. Scaling may be interpreted geometrically as shifting S parallel to the
diagonal line log || f]lco = log||9]lcc i (10g | fllco, l0g||g]lc) space. The region covered by shifted images of S
(S’s “shadow”) is the region in which scaling is possible. In part of this shadow (case 4 in the algorithm),
we do scale f and g to lie inside S and then use the previous formula.

The remaining region of (log||f]lec,10g|l9llco) space, including space outside S’s shadow, consists of
regions where log || f||ls and log||g|ls differ so much that |f|*> + |g|*> rounds either to |f|* (Case 2 in the
algorithms) or |g|> (Case 3). Replacing |f|? + |g|? by either |f|? or |g|? simplifies the algorithm, and different
formulas are used.

In addition to the new algorithm being significantly faster than previous routines, it is more accurate. All
earlier routines have inputs that exhibit large relative errors, whereas ours is always nearly fully accurate.

When a format with a wider exponent range is available to store intermediate results, we may use our main
new formula without fear of over/underflow, drastically simplifying the algorithm. For example, IEEE double
precision (with an 11-bit exponent) can be used when inputs f and g are IEEE single precision numbers
(with 8-bit exponents). On a Sun Ultra-10, this mixed-precision algorithm is nearly exactly as fast in Case
1 of the single precision algorithm described above, and usually rather faster in Cases 2 through 4, making
it the algorithm of choice. On an Intel machine double extended floating point (with 15-bit exponents)
can be used for single or double precision inputs, and this would be the algorithm of choice. However,



with double precision inputs on a machine like a Sun Ultra-10 without double-extended arithmetic, or when
double precision is much slower than single precision, our new algorithm with 4 cases is the best we know.

The rest of this paper is organized as follows. Section 2 presents and justifies the proposed definition of
Givens rotations. Section 3 details the differences between the proposed definition and existing LAPACK
code. Section 4 describes our assumptions about floating point arithmetic. Section 5 presents the algorithm
in the complex case, assuming that neither overflow nor underflow occur (Case 1). Section 6 shows alternate
formulas for complex Given rotations when f and g differ greatly in magnitude (Cases 2 and 3). Section 7
describes scaling when f and g are comparable in magnitude but both very large or very small (Case 4).
Section 8 compares the accuracy of our new complex Givens routine and several alternatives; only ours is
accurate in all cases. Section 9 discusses performance of our complex Givens routine. Section 10 briefly
discusses real Givens rotations, which are rather easier. Section 11 draws conclusions. The actual software
is included in an appendix.

2 Defining Givens rotations

We will use the following function, defined for a complex variable x, in what follows:
. zflz] ifx#0
sign(z) E{ 1/| | ifxio
sign(z) is clearly a continuous function away from z = 0. When z is real the definition simplies to

. [ -1 ifz<O
Sgn(®) =1 1 >0

As stated in the introduction, we need extra requirements besides (1) and (2) in order to determine ¢
and s (and hence r) uniquely. For when at least one of f and g are nonzero, the most that we can deduce
from the first component of R(c, s)[f, g]T = [r,0]T in (1) is that
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s = eYsign(f) J

VIFE+19P
r = emsign(f) |f|2 + |g|2

for i = v/—1 and some real #. From the fact that ¢ must be real we deduce that if f # 0 then

i
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s = sign(f) J
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r = ﬂ:Slgn(f) |f|2 + |g|2

and if f =0 and g # 0 then

c =0
s = ¢¥ 4)
ot

ro= g

As stated before, when f = ¢ =0, ¢ and s can be chosen arbitrarily, as long as they satisty (2).
The extra requirements initially chosen by the BLAS Technical Forum to help resolve the choice of +
sign in (3) and 6 in (4) are as follows.

R1 The definitions for real and complex data should be consistent, so that real data passed to the complex
algorithm should result in the same answers (modulo roundoff) as from the real algorithm.



R2 Current LAPACK subroutines that use Givens rotations should continue to work correctly with the new
definition.

The current LAPACK subroutines SLARTG and CLARTG (which compute a single real and complex
Givens rotation, resp.) do not satisfy requirement 1. Furthermore, the LAPACK subroutines SLARGV
and CLARGYV for computing multiple Givens rotations do not compute the same answers as SLARTG and
CLARTG, resp. The differences are described in section 3 below. So some change in practice is needed to
have consistent definitions. (Indeed, this was the original motivation for BLAS Technical Forum not simply
adopting the LAPACK definitions unchanged.)

However, R1 and R2 do not immediately resolve the choice of sign in (1). To proceed we add requirement

R3 The mapping from (f,g) to (¢, s, r) should be continuous whenever possible.

Continuity of ¢ and s as functions of f and g is not possible everywhere, because as real f and g approach
(0,0) along the real line g = f-tan«, ¢ = £ cosa and +s = sina, so ¢ and s must be discontinuous at (0, 0).

But consider c, s,r as functions of (f,g) = (e'®,1) as a increases from 0 to 27, i.e. f traverses the unit
circle in the complex plane. At a =0, (f,g) = (1, 1) and consider the common convention (¢, s) = (%, \/LE)

As « increases, |c¢| = |s| remains equal to % Since ¢ is real, continuity implies ¢ stays fixed at ¢ = % for
all a, and hence s = €'®//2 and r = €'®y/2 are continuous as desired. Thus requirement R3 implies that c

must be nonnegative. Together with (3), this implies that when f # 0 we have
_
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r = sign(f)V|fI?+ |g)?

Formulas (5) obviously define f, g and r continuously away from f = 0. When g = 0, they simplify to ¢ = 1,
s =0and r = f. This is attractive because R(1,0) is the identity matrix, so using it to multiply an arbitrary
pair of vectors requires no work,

When f = 0 but g # 0 we reexamine (4) in the light of requirement R3. Since ¢ and s are not continuous
at f = 0, because sign(f) can change arbitrarily in a small complex neighborhood of 0, we cannot hope
to define 8 by a continuity argument that includes complex f. Instead, we ask just that ¢, s, and r be
continuous functions of real f > 0 and and complex g # 0, i.e. they should be continuous as f approaches
zero from the right. This limit is easily seen to be

c = 0
s = sign(g) (6)
ro= g

which we take as the definition for f = 0 and complex g # 0.
Finally we consider the case f = g = 0. This is impossible to define by continuity, since f and g can
approach 0 from any direction, so instead we add requirement

R4 Given a choice of ¢ and s, choose those requiring the least work.

Since R(c,s) is typically used to multiply a pair of vectors, and R(1,0) = I requires no work to do this, we
set c=1and s =0 when f =g =0.
In summary, the algorithm for complex or real f and g is as follows.

Algorithm 1: Computing Givens Rotations
if g = 0 (includes the case f = g = 0)

c=1
s=0
r=f



elseif f = 0 (g must be nonzero)

c=0
s = sign(g)
r=lg|
else (f and g both nonzero)
c=|fI/VIfI? +1gI?

s = sign(f)g//If|* + |gI?

r = sign(f)V/|f[* + |g]?

endif

When f and g are real, the algorithm can be slightly simplied by replacing g by g.

3 Differences from current LAPACK codes

Here is a short summary of the differences between Algorithm 1 and the algorithms in LAPACK 3.0 and
earlier versions. The LAPACK algorithms in question are SLARTG, CLARTG, SLARGV and CLARGYV.
All the LAPACK release 3.0 test code passed as well with the new Givens rotations as with the old ones
(indeed, one test failure in the old code disappeared with the new rotations), so the new definition of Givens
rotations satisfies requirement R2.

SLARTG When f =0 and g # 0, Algorithm 1 returns s = sign(g) whereas SLARTG returns s = 1. The
comment in SLARTG about “saving work” does not mean SBDSQR assumes s = 1. When |f| < |g]
and f < 0 (so both f and g are nonzero), SLARTG returns the negatives of the values of ¢, s and r
returned by Algorithm 1.

CLARTG Algorithm 1 is mathematically identical to CLARTG. But it is not numerically identical, see
section 8 below.

SLARGYV When f =g =0, SLARGYV returns ¢ = 0 and s = 1 instead of c =1 and s = 0. When f # 0
and g = 0, SLARGYV returns ¢ = sign(f) instead of ¢ = 1. When f = 0 and g # 0, SLARGYV returns
s = 1 instead of s = sign(g). When f # 0 and g # 0, SLARGV returnus sign(c) = sign(f), instead of
c>0.

CLARGYV When f =g =0, CLARGV return ¢ = 0 and s = 1 instead of c =1 and s = 0. When f =0
and g # 0, CLARGYV returns s = 1 instead of s = sign(g).

4 Assumptions about floating point arithmetic

In LAPACK, we have the routines SLAMCH and DLAMCH available, which return various machine con-
stants that we will need. In particular, we assume that € = machine epsilon is available, which is a power
of the machine radix. On machine with IEEE floating point arithmetic, it is either 2724 in single or 27°% in
double. Also, we use SAFMIN, which is intended to be the smallest normalized power of the radix whose
reciprocal can be computed without overflow. On IEEE machines this should be the underflow threshold,
27126 in single and 271922 in double. However, on machines where complex division is implemented in the
compiler by the fastest but risky algorithm

a—l—ib_ ac+bd+ibc—ad
c+id S+ d? 2+ d?

the exponent range is effectively halved, since ¢ + d? can over/underflow even though the true quotient is
near 1. On these machines SAFMIN may be set to vSAFMIN to indicate this. As a result, our scaling
algorithms make no assumptions about the proximity of SAFMIN to the actual underflow threshold, and
indeed any tiny value rather less than ¢ will lead to correct code, though the closer SAFMIN is to the
underflow threshold the fewer scaling steps are needed in extreme cases.



Our algorithms also work correctly and accurately whether or not underflow is gradual. This is important
on the processors where default “fast mode” replaces all underflowed quantities by zero. This means that the
effective underflow threshold is SAFMIN/¢, since underflow in z can cause a relative error in SAFMIN/e 4z
of at most ¢, the same as roundoff.

In our scaling algorithms we will use the quantity z = (¢/SAFMIN)!/* rounded to the nearest power of
the radix. Thus we use z~* = SAFMIN /¢ as the effective underflow threshold, and z* = ¢/SAFMIN as the
overflow threshold. Note that we may safely add and subtract many quantities bounded in magnitude by z*
without incurring overflow. We repeat that the algorithms work correctly, if more slowly, if a conservative
estimate of SAFMIN is used (i.e. one that is too large). The powers of z used by the software are computed
on the first call, and then saved and reused for later calls. The values of z and its powers for IEEE machines
with SAFMIN equal to the underflow threshold are as follows.

Single Precision Double Precision
SAFMIN | 27126 x5 1.10738 | 271022 oy 9. 10308
€ 272 ~6-1078 275 x1.1016
2 225 ~3-107 2212 71072
2'4 2100 ~1- 1030 2968 ~2- 10291
27t 272 x~3.10°8 27242 5 1.10773
2_4 2—100 ~T7- 10—31 2—968 ~4. 10—292

The assiduous reader will have noted that Algorithm 1 leaves ambiguous how the sign of zero is treated.
Different implementations are free to return +0 or —0 whenever a zero is to be delivered. There seems to
be little to be gained by insisting, for example, that r = —0 when f = —0 and g = —0, which is what would
actually be computed if R(1,+0) were multiplied by the vector [—0, —0]%.

In later discussion we denote the actual overflow threshold by OV, the underflow threshold by UN, and
the smallest nonzero number by m, which is 2-£-UN on a machine with gradual underflow, and UN otherwise.

5 Complex Algorithm

In what follows we use the convention of capitalizing all variable names, so that C, S and R are the data to
be computed from F and G. We use the notation re(F) and im(F) to mean the real and imaginary parts
of F, and [|w||sc = max(|rew|, |imw]|) for any complex number w. We begin by eliminating the easy cases
where at least one of F and G is zero. Variables F, G, S and R are complex, and the rest are real.

Algorithm 2: Computing Givens Rotations when f =0 or g =0

ifGg=o0
.. includes the case F = G = 0
c=1
S=0
R=F
elseif F = 0
... G must be nonzero
cC=0

scale G by powers of z¥* so that 272 < [|G|s < 22
D1 = sqrt(re(G)**2+im(G)**2)
R = D1
D1 = 1/D1
S = conj(G)*D1
unscale R by powers of z+*
else
... both F and G are nonzero
.. use algorithm described below
endif



Y

We note that even though F = 0 # G is an “easy’
computing re (G) **2+im (G) **2.

Now assume F' and G are nonzero. We can compute C, S and R with the following code fragment,
which employs only one division and one square root. The last column shows the algebraically exact quan-
tity computed by each line of code. We assume that real*complex multiplications are performed by two
real multiplications (the Fortran implementation does this explicitly rather than relying on the compiler).
Variables F, G, R and S are complex, and the rest are real.

case we need to scale G to avoid over/underflow when

Algorithm 3: Fast Complex Givens Rotations when f and g are “well scaled”

1. F2 :=re(F)*x2 + im(F)*x2 |f|?
2. G2 = re(G)**2 + im(G)**2 |g|?
3. FG2 := F2 + G2 IfI? + 19/
4. D1 := 1/sqrt(F2+FG2) VI + 1Pl = 1/ AFIVIFP + 1917)
5. C = F2xD1 \F1/ V1P + gl
6. FG2 := FG2xD1 VI +1gP/1F1 = 1+ 192 /1f
7. R = F¥FG2 FVL+ g1 f1? = sign(F)V/IfI? + |gl?
8. S := FxD1 \_f”lé
. . \fl;ﬂy\"‘
9. S = conj (G)*S WW

Now recall z = (¢/SAFMIN)'/4, so that z* is an effective overflow threshold and z~—* is an effective
underflow threshold. The region where the above algorithm can be run reliably is described by the following
inequalities, which are numbered to correspond to lines in the above algorithm. All logarithms are to the
base 2.

1. We assume || f||oo < 22 to prevent overflow in computation of F2

2. We assume ||g]|oo < 22 to prevent overflow in computation of G2
3. This line is safe given previous assumptions.

4a. We assume 2z~ 2 < || || to prevent underflow of F2 and consequent division by zero in the computation
of D1

4b. We assume ||f|| < 2 to prevent overflow from the |f|* term in F2%FG2 in the computation of D1

4c. We assume || f]|sol|g|loc < 2% to prevent overflow from the |f|*|g|* term in F2*FG2 in the computation
of D1

Either 4d. 27! < [|f|loo

or de. 272 < || fllsollglloo
to prevent underflow of F2*xFG2 and consequent division by zero in the computation of D1

5. This line is safe given previous assumptions. If C underflows, it is deserved.

Nglloo/ I flloo < 2* to prevent overflow of FG2 since /1 + |g|2/|f]2 = O(lg|/|f]) if |g|/|f| is large.

7. This line is safe given previous assumptions, returning |R| roughly between 2! and 22. If the smaller
component of R underflows, it is deserved.

(=2}

8. This line is safe given previous assumptions, returning |S| roughly between z=2 and 1. The smaller
component of S may underflow, but this error is very small compared to the other component of S.

9. This line is safe given previous assumptions. If S underflows, it is deserved.

Note that all the inequalities in  the above list describe half planes in
(log || flloo> Log l|gllo0) space. For example inequality 6 becomes
1og [l9llos — log || lloo < 410g 2.

The region described by all inequalities is shown in figure 1. Each inequality is described by a thin line
marked by arrows indicating the side on which the inequality holds. The heavy line borders the safe region
S satisfying all the inequalities, where the above algorithm can be safely used.



Figure 1:

log ||G]| / log z

Inequalities describing the region of no unnecessary over/underflow.
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It remains to say how to decide whether a point lies in S. The boundary of S is complicated, so the
time to test for membership in S can be nontrivial. Accordingly, we use the simplest tests that are likely to
succeed first, and only then do we use more expensive tests. In particular, the easiest tests are threshold
comparisons with ||f||c and ||g||co- SO we test for membership in the subset of S labeled (1) in Figure 2 by
the following algorithm:

if [|flloo < 2z and || f|loo > 27! and [|g||co < 2z then
f,g is in Region (1)
endif

This is called Case 1 in the software.

Region (1) contains all data where ||f||c and ||g||cc are not terribly far from 1 in magnitude (between
z*l = 225 ~ 107 and in single between zT! = 2%242 &~ 10%73 in double), which we expect to be most
arguments, especially in double.

The complement of Region (1) in S is shown bounded by dashed lines in Figure 2. It is harder to test
for, because its boundaries require doing threshold tests on the product ||f||c - [|g||c0, Which could overflow.
So we will not test for membership in this region explicitly in the case, but do something else instead.

6 When f and g differ greatly in magnitude

When |g|? < e|f|?, then |f|* + |g|* rounds to |f|?, and the formulas for ¢, s and r may be greatly simplified
and very accurately approximated by

c ~ 1

e d 10
T "
r ~ f

This region is closely approximated by the regions ||g||oo < €'/?||f||oo marked (2) in Figure 2.
When instead |f|?> < e|g|?, then |f|* + |g|? rounds to |g|?, and the formulas for ¢, s and r may be greatly
simplified and very accurately approximated by

i,
lgl 1f]- gl
e _ 0
s~ s = ®)
[ gl

ﬁ
X

sign(f)lg| 7T 101

This region is closely approximated by the region || f||oo < €/?||g||co marked (3) in Figure 2.
An important difference between the formulas in (7) and (8) versus the formula (5) is that (7) and (8)

are independently homogeneous in f and g. In other words, we can scale f and g independently instead of

by the same scalar in order to evaluate them safely. Thus the “shadow” of the region in which the above

formulas are safe covers all (f, g) pairs. In contrast in formula (5) f and ¢ must be scaled by the same value.
Here are the algorithms implementing (7) and (8) without scaling. Note that (7) does not even require

a square root.



Algorithm 4: Computing complex Given rotations when ||g|lcc < v£||f]lcos using formulas (7),
without scaling

i /Glloc < v/ [[Fll then
c=1
R=F
D1 = 1/sqrt(re(F)**2 + im(F)**2)
S = F x conj(G)
S=85xD1

endif

Algorithm 5: Computing complex Given rotations when ||f|lc < v/2||g|lcos using formulas (8),
without scaling

if [|Flloo < v/ - [16]|oo then
F2 = re(F)**2 + im(F)**2
G2 = re(G)**x2 + im(G)**2
FG2 = F2 *x G2
D1 = 1/sqrt(FG2)

C = F2 % D1

S =F *x conj(G)

S =S *x D1

D1 = D1 x G2

R =D1=xF
endif

We may now apply the same analysis as in the last section to these formulas, deducing linear inequalities
in log||f|lco and log||g|lcc which must be satisfies in order to guarantee safe and accurate execution. We
simply summarize the results here. In both cases, we get regions with boundaries that, like S, are sets of
line segments that may be vertical, horizontal or diagonal. We again wish to restrict ourselves to tests on
[|fllco and ||g||cc alone, rather than their product (which might overflow). This means that we identify a
smaller safe region (like region (1) within S in Figure 2) where membership can be easily tested. This safe
region for Algorithm 4 is the set satisfying

27 < fllo <27 and 277 < gl < 27 9)
This safe region for Algorithm 5 is the smaller set satisfying
7 < fllo £ 2 and 27 < lgllw < 2 (10)

This leads to the following algorithms, which incorporate scaling.

Algorithm 6: Computing complex Given rotations when ||g|lco < v£||f]lcos using formulas (7),
with scaling

if [6l]oc < V- [l then
c=1
R=F
scale F by powers of 25 50 272 < [|F|| < 22
scale G by powers of 2% 50 272 < |G| < 22
D1 = 1/sqrt(re(F)**2 + im(F)**2)
S = F * conj(G)

S=Sx*D1
unscale S by powers of z** to undo scaling of F and G
end if

10



Algorithm 7: Computing complex Given rotations when ||f|lc < v/2||g|lcos using formulas (8),
with scaling

i [El]e < v/ - 6]l then
scale F by powers of 252 s0 271 < [|F||e < 2
scale G by powers of z%2 s0 27! < [|Gl|o < 2
F2 = re(F)**x2 + im(F)**2
G2 = re(G)**2 + im(G)**2
FG2 = F2 x G2
D1 = 1/sqrt(FG2)

C = F2 % D1

S =F *x conj(G)

S =S %Di1

D1 = D1 x G2

R =D1=xF

unscale C and R by powers of 22 to undo scaling of F and G

endif

Note in Algorithm 7 that the value of S is uneffected by independent scaling of F and G.

7 Scaling in Regions 4a and 4b

For any point (f, g) that does not lie in regions (1), (2) or (3) of Figure 2 we can use the following algorithm:
1. Scale (f, g) to a point (scale - f, scale - g) that does lie in S.
2. Apply Algorithm 3 to (scale - f, scale - g), yielding c, s, .
3. Unscale to get r = 7/scale.

This scaling in Figure 2 corresponds to shifting f, g parallel to the diagonal line f = g by log scale until
it lies in S. It is geometrically apparent that the set of points scalable in regions (4a) and (4b)of Figure 2
lie in the set of all diagonal translates of S, i.e. the “shadow” of S, and can be scaled to lie in S. Indeed, all
point in region (2) and many (but not all) points in region (3) can be scaled to lie in S, but in regions (2)
and (3) cheaper formulas discussed in the last section are available.

First suppose that (f,g) lies in region (4a). Let s = max(||f||co,||g9]lcc). Then if s > 22, we can scale f
and g down by 272, Eventually (f,g) will lie in the union of the two arrow-shaped regions A1 and A2 in
Figure 3. Then, if s still exceeds z, i.e. (f,g) isin Al, we multiply f and g by 2z~ !, putting it into A2. Thus,
we guarantee that the scaled f and g are in A2, where it is safe to use Algorithm 3.

Next suppose that (f,g) lies in region (4b). Now let s = ||f||oo. Then if s < 272, we can scale f and g
up by z2. Eventually (f,g) will like in the union of the two parallelograms B1 and B2 in Figure 4. Then, if
s is still less than 271, i.e. (f,g) is in B1, we multiply f and g by z, putting it into B2. Thus, we guarantee
that the scaled f and g are in B2, where it is safe to use Algorithm 3.

These considerations lead to the following algorithm
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Figure 2: Cases in the code when f # 0 and g # 0

Algorithm 8: Computing complex Givens rotations when (f,g) is in region (4a) or (4b), with
scaling.

... this code is only executed if f and g are in region (4a) or (4b)

if ||Floo > 1
scale F and G down by powers of =2 until max(||F||oo, ||Gl|s) < 2
if max(||F||oo, ||G|lcc) > z, scale F and G down by 2~}

2

else
scale F and G up by powers of 22 until ||F||o > 272
if |F||eo < 2, scale F and G up by z

endif

compute the Givens rotation using Algorithm 3

undo the scaling of R caused by scaling of F and G

We call the overall algorithm new CLARTG, to distinguish from old CLARTG, which is part of the
LAPACK 3.0 release. The entire source code in included in the Appendix. It contains 237 noncomment
lines, as opposed to 20 in the reference crotg implementation.
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8 Accuracy Results

The algorithm was run for 43* = 3418801 values of f and g, where the real and imaginary part of f and g
independently took on 43 different values ranging from the smallest denormalized number to the overflow
threshold, with intermediate values chosen just above and just below the threshold values determining all the
edges and corners in Figures 1 through 4, and thus barely satisfying (or not satisfying) all possible branches
in the algorithm. The correct answer was computed using a straightforward implementation of Algorithm 1
using double precision arithmetic, in which no overflow nor underflow is possible for the arguments tested.
The maximum errors in 7, ¢ and s were computed as follows, Here r; was computed in single using the new
algorithm and rg was computed straightforwardly in double precision; the subscripted ¢ and s variables have
analogous meanings. In the absence of gradual underflow, the error metric for r; is

|rs — rq|/ max(g|rq|, SAFMIN) (11)
and with gradual underflow it is
|rs — rql/ max(e|rq|, SAFMIN %2 x¢) (12)

with the maximum taken over all 43* test cases. (The few values of f and g where the true answer overflowed
were excluded from the error bound calculation.) Note that SAFMIN %2 x € is the smallest denormalized
number. Analogous metrics were computed for s, and cs.

The routines were first tested on a Sun Ultra-10 using {77 with the -fast -O5 flags, which means gradual
underflow is not used, i.e. results less than SAFMIN are replaced by 0. Therefore we expect the measure (11)
to be at least 1, and hopefully just a little bigger than 1, meaning that the error |rs — 74| is either just more
than machine epsilon € times the true result, or a small multiple of the underflow threshold, which is the
inherent uncertainty in the arithmetic.

The routines were also tested without any optimization flags, which means gradual underflow is used, so
we expect the more stringent measure (12) to be close to 1.

The results are as follows:

Without Gradual Underflow

Routine Max error in 7y, | Max error in sy | Max error in cg
New CLARTG 3.04 2.96 2.46
Old CLARTG 70588 70588 70292
Reference crotg NAN NAN NAN
Modified Reference crotg 3.59 3.41 3.22
ATLAS crotg NAN NAN NAN
Limited ATLAS crotg 2.88 1.7-107 3.11
Vendor crotg NAN NAN NAN
Limited Vendor crotg 3.59 1.7-107 3.22

With Gradual Underflow

Routine Max error in 7y | Max error in sy | Max error in cg
New CLARTG 3.04 2.96 3.04
Old CLARTG 4.60 4.27 4913930
Reference crotg NAN NAN NAN
Modified Reference crotg 6949350 6952960 6949350

Here is why the old CLARTG fails to be accurate. First consider the situation without gradual underflow.
When |g| is just above 272, and |f]| is just below, the algorithm will decide that scaling is unnecessary. As
a result |f|? may have a nonnegligible relative error from underflow, which creates a nonnegligible relative
error in r, s and c¢. Now consider the situation with gradual underflow. The above error does not occur, but
a different one occurs. When 1 > |g| > |f|, and f is denormalized, then the algorithm will not scale. As
a result |f| suffers a large loss of relative accuracy when it is rounded to the nearest denormalized number,
and then ¢ = |f|/|g| has the same large loss of accuracy.
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Here is why the reference BLAS crotg can fail, even though it tries to scale to avoid over/underflow. The
scale factor |f| + |g| computed internally can overflow even when |r| = \/|f|? + |g|?> does not. Now consider
the situation without gradual underflow. The sine is computed as s = (ﬁ) “(@)/(V/1fI* +19/?), where the

multiplication is done first. All three quantities in parentheses are quite accurate, but the entries of f/|f|
are both less than one, causing the multiplication to underflow to 0, when the true s exceeds .4. This can
be repaired by inserting parentheses s = (%) -((9)/ (/£ + |g]?)) so the division is done first. Excluding
these very large cases, and inserting parentheses, we get the errors on the line “Modified Reference crotg”.
Now consider the situation with gradual underflow. Then rounding intermediate quantities to the nearest
denormalized number can cause large relative errors, such as s and ¢ both equaling 1 instead of 1/v/2.

The ATLAS and vendor version of crotg were only run with the full optimizations suggested by their
authors, which means gradual underflow was not enabled. They also return NANs for large arguments even
when the true answer should have been representable. We did not modify these routines, but instead ran
them on the limited subset of examples where |f| + |g| was less than overflow. They still occasionally had
large errors that we suspect are due to underflow, since they occurred for small arguments, between SAFMIN
and SAFMIN /e.

In summary, our systematic procedure produced a provably reliable implementation whereas there are
errors in all previous implementations that yield inaccurate results without warning, or fail unnecessarily
due to overflow. The latter only occurs when the true r is close to overflow, and so it is hard to complain
very much, but the former problem deserves to be corrected.

9 Timing Results

For complex Givens rotations, we compared the new algorithm described above, the old CLARTG from
LAPACK, and crotg from the references BLAS. Timings were done on a Sun Ultra-10 using the {77 compiler
with optimization flags -fast -O5. Each routine was called 10® times for arguments through the f,g plane
shown in Figure 2. Indeed, 29 cases were tried in all, exercising all paths in the new CLARTG code. The
input data is shown in a table below. Each input was run 10 times and the average time taken; the range of
timings for each (f, g) input was typically only a few percent.

The timing results are in the Figures 5 and 6. Five algorithms are compared:

1. New CLARTG is the algorithm presented in this report
2. OLD CLARTG is the algorithm in LAPACK 3.0

3. Ref CROTG is the reference BLAS

4. ATLAS CROTG is the ATLAS BLAS

5. Vendor CROTG is Sun’s vendor BLAS

Figure 5 shows absolute times in microseconds, and Figure 6 shows times relative to new CLARTG. The
vertical tick marks delimit the cases in the code, as described in the table below.

The most common case is Case 1, at the left of the plots. We see that the new CLARTG is about 20%
faster than old CLARTG, and nearly 4 times faster than any version of CROTG.

To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. it
omits all tests for scaling of f and g and simply applies the algorithm appropriate for Case 1. This ultimate
version ran in about .243 microseconds, about 68% of the time of the new CLARTG. This is the price of
reliability. Alternatively, on a system with fast exception handling, one could run this algorithm and then
check if an underflow, overflow, or division-by-zero exception occurred, and only recompute in this rare case
[2].

Here is an alternative approach that avoids all need to scale and is fastest overall on the above architecture
for IEEE single precision inputs: After testing for the cases f =0 or g = 0, use Algorithm 3 in IEEE double
precision. The three extra exponent bits eliminate over/underflow. On this machine, this algorithm takes
.365 microseconds for all nonzero inputs f and g, nearly exactly the same as Case 1 entirely in single. This
algorithm is the algorithm of choice for single precision on this machine, since it is not only the fastest in
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most cases, but much simpler. Of course it would not work if the input data were in double, since a wider

format is not available on this architecture.

Case | Case in code f g
1 1 ( 0.11E+01 , 0.22E+01) | ( 0.33E+01 , 0.44E+01)
2 2 ( 0.37E+08 , 0.74E+08 ) | ( 0.33E+01 , 0.44E+01 )
3 2 ( 0.12E+16, 0.25E+16 ) | ( 0.11E+09 , 0.15E409 )
4 2 ( 0.42E+23, 0.83E+23 ) | ( 0.37TE+16 , 0.50E+16 )
5 2 ( 0.14E+31, 0.28E+31) | ( 0.12E+24 , 0.17E+24 )
6 2 ( 0.14E+31, 0.28E+31) | ( 0.33E+01 , 0.44E+01)
7 2 ( 0.14E+31, 0.28E+31) | ( 0.26E-29 , 0.35E-29)
8 2 ( 0.14E+31, 0.28E+31) | ( 0.26E-29, 0.35E-29 )
9 2 ( 0.29E-22 , 0.58E-22 ) ( 0.26E-29 , 0.35E-29 )
10 2 ( 0.98E-15, 0.20E-14 ) ( 0.87E-22, 0.12E-21)
11 2 ( 0.33E-08 , 0.66E-08 ) ( 0.29E-14 , 0.39E-14 )
12 3 ( 0.11E+01, 0.22E+01) | ( 0.11E+09, 0.15E409 )
13 3 ( 0.37E+08 , 0.74E+08 ) | ( 0.37TE+16 , 0.50E+16 )
14 3 ( 0.12E+16, 0.25E+16 ) | ( 0.12E+24 , 0.17E+24 )
15 3 ( 0.42E+23 , 0.83E+23 ) | ( 0.42E+31, 0.56E+31)
16 3 ( 0.11E+01 , 0.22E+01 ) | ( 0.42E+31, 0.56E+31)
17 3 ( 0.87E-30, 0.17E-29 ) | ( 0.42E+31, 0.56E+31 )
18 3 ( 0.87E-30, 0.17E-29 ) | ( 0.33E+01, 0.44E+01)
19 3 ( 0.87E-30, 0.17E-29 ) ( 0.87E-22, 0.12E-21)
20 3 ( 0.29E-22 | 0.58E-22 ) ( 0.29E-14 , 0.39E-14 )
21 3 ( 0.98E-15, 0.20E-14 ) ( 0.98E-07 , 0.13E-06 )
22 4 ( 0.37E+08 , 0.74E+08 ) | ( 0.11E+09, 0.15E409 )
23 4 ( 0.12E+16, 0.25E+16 ) | ( 0.37E+16 , 0.50E+16 )
24 4 ( 0.42E+23 , 0.83E+23 ) | ( 0.12E+24 , 0.17E+24 )
25 4 ( 0.14E+31, 0.28E+31) | ( 0.42E+31, 0.56E+31)
26 4 ( 0.33E-08 , 0.66E-08 ) ( 0.98E-08 , 0.13E-07 )
27 4 ( 0.98E-15, 0.20E-14 ) ( 0.29E-14 , 0.39E-14 )
28 4 ( 0.29E-22 | 0.58E-22 ) ( 0.87E-22, 0.12E-21)
29 4 ( 0.87E-30, 0.17E-29 ) ( 0.26E-29 , 0.35E-29 )

10 Computing real Givens Rotations

When both f and g are nonzero, the following algorithm minimizes the amount of work:

Algorithm 9: Real Given rotations when f and g are nonzero, without scaling

FG2 = F**2 + G*x*2
R = sqrt(FG2)
RR = 1/R
C = abs(F)*RR
S = G*RR
if F < 0 then

S =-S5

R = -R
endif

We may now apply the same kind of analysis that we applied to Algorithm 3. We just summarize the

results here.
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Time to compute complex Givens rotations
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Figure 5: Time to compute complex Givens rotations.

Algorithm 10: Real Given rotations when f and g are nonzero, with scaling

scale = max( abs(F) , abs(G) )
if scale > 22 then

scale F, G and scale down by powers of 272 until scale < 22
elseif scale < 272 then

scale F, G and scale up by powers of 2% until scale > 22

endif
FG2 = F**2 + G*x*2
R = sqrt(FG2)
RR = 1/R
C = abs(F)*RR
S = G*RR
if F < 0 then

S =-S5

R = -R
endif

unscale R if necessary

The worst case error, measured as in section 8 was 1.45 for r and 1.81 for ¢ and s, with or without
gradual underflow. The complete code is located in the Appendix. It contains 74 noncomment lines of code,
as opposed to 22 for the reference BLAS srotg.
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Time to compute complex Givens rotations, relative to new CLARTG
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Figure 6: Relative Time to compute complex Givens rotations.

11 Conclusions

We have justified the specification of Givens rotations put forth in the recent BLAS Technical Forum stan-
dard. We have shown how to implement the new specification in a way that is both faster than previous
implementations in the most common cases, and more reliable. We used a systematic design process for
such kernels that could be used whenever accuracy, reliability against over/underflow, and efficiency are
simultaneously desired. A side effect of our approach is that the algorithms are much longer than before.
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SUBROUTINE SLARTG( F, G, CS, SN, R )

—-- LAPACK auxiliary routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
July 23, 2000

. Scalar Arguments ..
REAL cs, F, G, R, SN

Purpose

SLARTG generate a plane rotation so that

[ ¢cs sN 1] [F] = [R] where CS**2 + SN*x2 = 1.
[ SN CS ] [G] [01]
This is a slower, more accurate version of the BLAS1 routine SROTG,
with the following other differences:
F and G are unchanged on return.
If F=0 and G=0, then CS=1, SN=0, and R=0.
If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.
If F=0 and G .ne. O, then CS=0, SN=sign(G), and R=abs(G).
If F .ne. 0 and (G .ne. 0), then
CS = abs(F)/sqrt(Fx*2 + G**2)
SN = sign(F)*G/sqrt (F**2 + G**2)
R sign(F)*sqrt (Fx*2 + G**2)

This is the only definition with the following properties:
1) CS is always nonnegative.

2) R is real and nonnegative if F=0.

3) CS=1 and SN=0 when F=G=0.

The complex routine CLARTG returns the same
CS and SN on complex inputs (F,0) and (G,0).

Arguments

F (input) REAL
The first component of vector to be rotated.

G (input) REAL
The second component of vector to be rotated.

Cs (output) REAL
The cosine of the rotation.

SN (output) REAL
The sine of the rotation.
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* X X X X X ¥

* X ¥

* X X X X X ¥

(output) REAL

The nonzero component of the rotated vector.

. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E0 )
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL TWO
PARAMETER ( TWO = 2.0E0 )

. Local Scalars ..

LOGICAL FIRST
INTEGER COUNT, I
REAL

REAL SCL

. External Functiomns ..
REAL SLAMCH
EXTERNAL SLAMCH

. Intrinsic Functions ..
INTRINSIC

. Save statement ..
SAVE FIRST, EPS, SAFMX2
SAVE SAFMX

. Data statements ..
DATA FIRST / .TRUE. /

. Executable Statements ..
IF( FIRST ) THEN

On first call to SLARTG, compute

ABS, INT, LOG, MAX,

EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE

SQRT, SIGN

, SAFMIN, SAFMN2, SAFMN

SAFMN2 = sqrt (SAFMIN/EPS) rounded down to the nearest power
of the floating point radix

This means that scaling by multiplication by SAFMN2 and its

reciprocal SAFMX2 cause no roundoff error

FIRST = .FALSE.
SAFMIN = SLAMCH( ’S’ )
EPS = SLAMCH( ’E’ )

SAFMN2 = SLAMCH( ’B’ )#**INT( LOG( SAFMIN / EPS ) /
LOG( SLAMCH( ’B’ ) ) / TWO )

SAFMN = SAFMN2%%2
SAFMX2 = ONE / SAFMN2
SAFMX = SAFMX2%%2

END IF

IF( G.EQ.ZERD ) THEN
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10

30

Includes the case F=G=0

CS = ONE
SN = ZERO
R=F

ELSE IF( F.EQ.ZERD ) THEN

G must be nonzero

CS = ZERO
SN = SIGN( ONE, G )
R = ABS(G)

ELSE

Both F and G must be nonzero

F1 =F

Gl =G

SCALE = MAX( ABS(C F1 ), ABS( G1 ) )
COUNT = 0O

IF( SCALE.GE.SAFMX2 ) THEN

Handle case where Flx*2 + G1%*2 might overflow

SCL = SAFMX2
CONTINUE
COUNT = COUNT + 1
F1 = F1*SAFMN2
Gl = G1*SAFMN2
SCALE = SCALEx*xSAFMN2
IF( SCALE.GE.SAFMX2 )
GO TO 10
ELSE IF( SCALE.LE.SAFMN2 ) THEN

Handle case where F1**2 + G1**2 might underflow

SCL = SAFMN2
CONTINUE
COUNT = COUNT + 1
F1 = F1*xSAFMX2
Gl = G1*SAFMX2
SCALE = SCALEx*SAFMX2
IF( SCALE.LE.SAFMN2 )
GO TO 30
ENDIF
R = SQRT( F1x*x2+G1**2 )
RR ONE/R
CS = ABS(F1) * RR
SN = G1 * RR
IF (F .LT. ZER0O) THEN
R = -R
SN = -SN
ENDIF
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40

DO 40 I = 1, COUNT

R = R*SCL
CONTINUE
ENDIF
RETURN

End of SLARTG

END
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SUBROUTINE CLARTG( F, G, CS, SN, R )

—-- LAPACK auxiliary routine (version 3.0) --

Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University

July 22, 2000

. Scalar Arguments ..

REAL CS
COMPLEX F, G, R, SN
Purpose

CLARTG generates a plane rotation so that

[ ¢S snN 1] [ F1] [R]
[ __ 1 . L 1 = T[ 1 where CS**2 + |SN|*x2 = 1,
[ -SN Cs 1 [ G1] [ 0]

This is a faster version of the BLAS1 routine CROTG, except for

the following differences:
F and G are unchanged on return.
If F=0 and G=0, then CS=1, SN=0, and R=0.
If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.

If F=0 and G .ne. O, then CS=0, SN=conj(G)/abs(G), and R=abs(G).

If F .ne. 0 and G .ne. 0, then

CS = abs(F)/sqrt(Fx*2 + G**2)
SN = (F/abs(F))*conj(G)/sqrt (F**2 + G**2)
R = (F/abs(F))*sqrt(F*x2 + G*x2)

This is the only definition with the following properties:
1) CS is always real and nonnegative.

2) R is real and nonnegative if F=0.

3) CS=1 and SN=0 when F=G=0.

The real routine SLARTG returns the same
CS and SN if the inputs F and G are real.

Arguments

F (input) COMPLEX
The first component of vector to be rotated.

G (input) COMPLEX
The second component of vector to be rotated.

Cs (output) REAL
The cosine of the rotation.
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SN (output) COMPLEX
The sine of the rotation.

R (output) COMPLEX
The nonzero component of the rotated vector.

. Parameters ..
REAL FOUR, ONE, ZERO
PARAMETER ( FOUR = 4.0E+0, ONE = 1.0E+0, ZERD = 0.0E+0 )
COMPLEX CZERD
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )

. Local Scalars ..

LOGICAL FIRST, AGAIN

INTEGER COUNT, I

REAL D1, EPS, F2, G2, SAFMIN,
$ SAFMN2, SAFMX2, SAFMN4, SAFMX4, SAFMN, SAFMX,
$ SCALEF, SCALEG, SCALEFG, FG2, SQREPS

COMPLEX FF, FS, GS

. External Functions ..
REAL SLAMCH, SLAPY2
EXTERNAL SLAMCH, SLAPY2

. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,
$ SQRT

. Statement Functions ..
REAL ABS1, ABSSQ

. Save statement ..
SAVE FIRST, SAFMIN, EPS, SQREPS
SAVE SAFMX2, SAFMX4, SAFMN2, SAFMN4, SAFMN, SAFMX

. Data statements ..
DATA FIRST / .TRUE. /

. Statement Function definitioms ..
ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )
ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )*x2
. Executable Statements ..
IF( FIRST ) THEN
On first call to SLARTG, compute
SAFMN4 = (SAFMIN/EPS)**.25 rounded down to the nearest power
of the floating point radix

SAFMN2 = (SAFMIN/EPS)*#*.5 rounded down to the nearest power
of the floating point radix
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* X X X

This means that scaling by SAFMN{2,4} and their
reciprocals SAFMX{2,4} causes no roundoff error

FIRST = .FALSE.
SAFMIN = SLAMCH( ’S’ )
EPS = SLAMCH( ’E’ )
SQREPS = SQRT( EPS )
SAFMN4 = SLAMCH( ’B’ )#**INT( LOG( SAFMIN / EPS ) /
LOG( SLAMCH( ’B’ ) ) / FOUR )
SAFMN2 = SAFMN4**2
SAFMN = SAFMN2%*2
SAFMX4 = ONE / SAFMN4
SAFMX2 = SAFMX4**2
SAFMX = SAFMX2%%2
ENDIF

SCALEF = ABS1( F )
SCALEG = ABS1( G )
IF( SCALEG.EQ.ZERO ) THEN

Includes the case F=G=0

CS = ONE
SN = CZERO
R=F

ELSEIF( SCALEF.EQ.ZERO ) THEN
G must be nonzero

CS = ZERO
GS = G
COUNT = 0
IF ( SCALEG .GT. SAFMX2 ) THEN
CONTINUE
COUNT = COUNT + 1
GS = GS * SAFMN
SCALEG = SCALEG * SAFMN
IF ( SCALEG .GT. SAFMX2 ) GOTO 1
SCALE = SAFMX
ELSEIF( SCALEG .LT. SAFMN2 ) THEN
CONTINUE
COUNT = COUNT + 1
GS = GS * SAFMX
SCALEG = SCALEG * SAFMX
IF ( SCALEG .LT. SAFMN2 ) GOTO 2
SCALE = SAFMN
ENDIF
D1 = SQRT( REAL(GS)*x2 + AIMAG(GS)*x*2 )
R =D1

1 = ONE/D1
SN = CMPLX( REAL(GS)*D1, -AIMAG(GS)*D1 )
DO 3 I =1, COUNT
R = CMPLX( REAL(R)*SCALE, AIMAG(R)*SCALE )
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* X ¥

CONTINUE
ELSE

Both F and G must be nonzero

IF( SCALEF.LE.SAFMX4 .AND. SCALEF.GE.SAFMN4 .AND.
SCALEG.LE.SAFMX4 ) THEN

Case 1: neither F nor G too big or too small, minimal work

F2 = ABSSQ(F)
G2 = ABSSQ(G)

FG2 = F2+G2
D1 = ONE/SQRT( F2xFG2 )
CS = F2xD1

FG2 = FG2 * D1
R = CMPLX( REAL(F)*FG2, AIMAG(F)*FG2 )
SN = CMPLX( REAL(F)*D1 , AIMAG(F)*D1 )
SN = CONJG(G) * SN

ELSEIF( SCALEG .LT. SQREPS*SCALEF ) THEN

Case 2: ABS(F)**2 + ABS(G)**2 rounds to ABS(F)*x*2

CS = ONE
R=F
FS = F
GS =G
COUNT = O
IF( SCALEF .GT. SAFMX2 ) THEN
CONTINUE
COUNT = COUNT + 1
FS = FS * SAFMN
SCALEF = SCALEF * SAFMN
IF ( SCALEF .GT. SAFMX2 ) GOTO 10
ELSEIF( SCALEF .LT. SAFMN2 ) THEN
CONTINUE
COUNT = COUNT - 1
FS = FS * SAFMX
SCALEF = SCALEF * SAFMX
IF ( SCALEF .LT. SAFMN2 ) GOTO 20
ENDIF
IF( SCALEG .GT. SAFMX2 ) THEN
CONTINUE
COUNT = COUNT - 1
GS = GS * SAFMN
SCALEG = SCALEG * SAFMN
IF ( SCALEG .GT. SAFMX2 ) GOTO 30
ELSEIF( SCALEG .LT. SAFMN2 ) THEN
CONTINUE
COUNT = COUNT + 1
GS = GS * SAFMX
SCALEG = SCALEG * SAFMX
IF ( SCALEG .LT. SAFMN2 ) GOTO 40
ENDIF
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D1 = ONE/(REAL(FS)*%2 + AIMAG (FS)*x*2)
SN = FS * CONJG(GS)
SN = CMPLX( REAL(SN)*D1 , AIMAG(SN)=*D1 )

IF( COUNT .GT. O ) THEN
DO 50 I = 1, COUNT
SN = CMPLX( REAL(SN)*SAFMN , AIMAG(SN)*SAFMN )
50 CONTINUE
ELSEIF( COUNT .LT. 0 ) THEN
DO 60 I = 1, -COUNT
SN = CMPLX( REAL(SN)*SAFMX , AIMAG(SN)*SAFMX )
60 CONTINUE
ENDIF
ELSEIF( SCALEF .LT. SQREPS*SCALEG ) THEN

Case 3: ABS(F)**2 + ABS(G)**2 rounds to ABS(G)*x*2

FS = F

GS =G

COUNTF = O

COUNTG = O

IF( SCALEF .GT. SAFMX4 ) THEN
70 CONTINUE

COUNTF = COUNTF + 1
FS = FS * SAFMN2
SCALEF = SCALEF * SAFMN2
IF ( SCALEF .GT. SAFMX4 ) GOTO 70
ELSEIF( SCALEF .LT. SAFMN4 ) THEN
80 CONTINUE
COUNTF = COUNTF - 1
FS = FS * SAFMX2
SCALEF = SCALEF * SAFMX2
IF ( SCALEF .LT. SAFMN4 ) GOTO 80
ENDIF
IF( SCALEG .GT. SAFMX4 ) THEN
90 CONTINUE
COUNTG = COUNTG + 1
GS = GS * SAFMN2
SCALEG = SCALEG * SAFMN2
IF ( SCALEG .GT. SAFMX4 ) GOTO 90
ELSEIF( SCALEG .LT. SAFMN4 ) THEN
100 CONTINUE
COUNTG = COUNTG - 1
GS = GS * SAFMX2
SCALEG = SCALEG * SAFMX2
IF ( SCALEG .LT. SAFMN4 ) GOTO 100
ENDIF
F2 = REAL(FS)**2 + AIMAG(FS)**2
G2 = REAL(GS)**2 + AIMAG(GS)**2
D1 = ONE/SQRT( F2xG2 )
CS = F2xD1
SN = FS * CONJG(GS)
SN = CMPLX( REAL(SN)*D1 , AIMAG(SN)=D1 )
D1 = G2*D1
R = CMPLX( REAL(FS)*D1 , AIMAG(FS)*D1 )
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COUNT = COUNTF - COUNTG
IF( COUNT .GT. O ) THEN
DO 110 I = 1, COUNT
CS = CS*xSAFMX2
110 CONTINUE
ELSEIF( COUNT .LT. O ) THEN
DO 120 I = 1, -COUNT
CS = CS*SAFMN2
120 CONTINUE
ENDIF
IF( COUNTG .GT. O ) THEN
DO 130 I = 1, COUNTG
R = CMPLX( REAL(R)*SAFMX2, AIMAG(R)*SAFMX2 )
130 CONTINUE
ELSEIF( COUNTG .LT. O ) THEN
DO 140 I = 1, -COUNTG
R = CMPLX( REAL(R)*SAFMN2, AIMAG(R)*SAFMN2 )
140 CONTINUE
ENDIF
ELSE

Case 4: Scale F and G up or down and use formula from Case 1

FS = F
GS = G
COUNT = O

AGAIN = .FALSE.
SCALEFG = MAX( SCALEF, SCALEG )
IF( SCALEFG .GT. ONE) THEN
SCALE = SAFMX2
150 CONTINUE
IF( SCALEFG .LE. SAFMX2 ) GOTO 151
COUNT = COUNT + 1
FS = FS x SAFMN2
GS = GS * SAFMN2
SCALEFG = SCALEFG * SAFMN2
GOTO 150
151 CONTINUE
IF( SCALEFG .GT. SAFMX4) THEN
SCALE2 = SAFMX4
AGAIN = .TRUE.

FS = FS * SAFMN4
GS = GS * SAFMN4
ENDIF
ELSE
SCALE = SAFMN2
160 CONTINUE

COUNT = COUNT + 1

FS = FS * SAFMX2

GS = GS * SAFMX2

SCALEF = SCALEF * SAFMX2

IF( SCALEF .LT. SAFMN2 ) GOTO 160

IF( SCALEF .LT. SAFMN4 ) THEN
SCALE2 = SAFMN4
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AGAIN = .TRUE.
FS = FS * SAFMX4
GS = GS * SAFMX4
ENDIF
ENDIF
F2 = ABSSQ(FS)
G2 = ABSSQ(GS)

FG2 = F2+G2
D1 = ONE/SQRT( F2xFG2 )
CS = F2xD1

FG2 = FG2 * D1
R = CMPLX( REAL(FS)*FG2, AIMAG(FS)*FG2 )
SN = CMPLX( REAL(FS)*D1 , AIMAG(FS)*D1 )
SN = CONJG(GS) * SN
DO 170 I = 1, COUNT
R = CMPLX( REAL(R) * SCALE, AIMAG(R) * SCALE )
170 CONTINUE
IF ( AGAIN )
$ R = CMPLX( REAL(R) * SCALE2, AIMAG(R) * SCALE2 )
ENDIF
ENDIF
RETURN

*
* End of CLARTG
*

END
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