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From this we see that jj2 + jsj2 = 1 and � � = 0; i:e:  is real (2)When f and g are real and positive, the widely aepted onvention is to let = f=pf2 + g2s = g=pf2 + g2r = pf2 + g2However, the negatives of , s and r also satisfy onditions (1) and (2). And when f = g = 0, any  and ssatisfying (2) also satisfy (1). So , s and r are not determined uniquely. This slight ambiguity has led to asurprising diversity of inonsistent de�nitions in the literature and in software. For example, the LAPACKroutines SLARTG, CLARTG, SLARGV and CLARGV, as well as Algorithm 5.1.5 in [3℄ an get signi�antlydi�erent answers for mathematially idential inputs.To avoid this unneessary diversity, the BLAS (Basi Linear Algebra Subroutines) Tehnial Forum, inits design of the new BLAS standard [1℄, hose to pik a single de�nition of Givens rotations. Setion 2below presents and justi�es the design.The BLAS Tehnial Forum is also providing referene implementations of the new standard. In the aseof omputing Givens rotation and a few other kernel routines, intermediate over/underows in straightfor-ward implementations an make the output inaurate (or perhaps even stop exeution) even though thetrue mathematial answer might be unexeptional. To ompute , s and r as eÆiently as possible andreliably despite over/underow ow is surprisingly ompliated, partiularly for omplex f and g.Square root and division are by far the most expensive real oating point operations on urrent mahines,and it is easy to see that one real square root and one real division (or perhaps a single reiproal-square-root operation) are neessary to ompute , s and r. With a little algebrai manipulation, we also showthat a single square root and division are also suÆient (along with several muh heaper additions andmultipliations) to ompute , s and r in the omplex ase.However, these formulas for , s and r that use just one square root and one division are suseptibleto over/underow, if we must store all intermediate results in the same preision as f and g. De�nekfk1 = max(jre f j; jim gj). We systematially identify the values of f and g for whih these formulasare reliable (i.e. guaranteed not to underow in suh a way that unneessarily loses relative preision, norto overow) by generating a set of simultaneous linear inequalities in log kfk1 and log kgk1, whih de�nea (nononvex) 2D polygonal region S (for Safe) in (log kfk1; log kgk1) spae in whih the formulas maybe used. This is the most ommon situation, whih we all Case 1 in the algorithm. In this ase, thenew algorithm runs 20% faster than LAPACK's CLARTG routine, and nearly 4 times faster than the rotgroutine in the vendor BLAS on a Sun Ultra-10, ATLAS BLAS, or Fortran referene BLAS.If (log kfk1; log kgk1) lies outside S, there are two possibilities: saling f and g by a onstant to �tinside S, or using di�erent formulas. Saling may be interpreted geometrially as shifting S parallel to thediagonal line log kfk1 = log kgk1 in (log kfk1; log kgk1) spae. The region overed by shifted images of S(S's \shadow") is the region in whih saling is possible. In part of this shadow (ase 4 in the algorithm),we do sale f and g to lie inside S and then use the previous formula.The remaining region of (log kfk1; log kgk1) spae, inluding spae outside S's shadow, onsists ofregions where log kfk1 and log kgk1 di�er so muh that jf j2 + jgj2 rounds either to jf j2 (Case 2 in thealgorithms) or jgj2 (Case 3). Replaing jf j2+ jgj2 by either jf j2 or jgj2 simpli�es the algorithm, and di�erentformulas are used.In addition to the new algorithm being signi�antly faster than previous routines, it is more aurate. Allearlier routines have inputs that exhibit large relative errors, whereas ours is always nearly fully aurate.When a format with a wider exponent range is available to store intermediate results, we may use our mainnew formula without fear of over/underow, drastially simplifying the algorithm. For example, IEEE doublepreision (with an 11-bit exponent) an be used when inputs f and g are IEEE single preision numbers(with 8-bit exponents). On a Sun Ultra-10, this mixed-preision algorithm is nearly exatly as fast in Case1 of the single preision algorithm desribed above, and usually rather faster in Cases 2 through 4, makingit the algorithm of hoie. On an Intel mahine double extended oating point (with 15-bit exponents)an be used for single or double preision inputs, and this would be the algorithm of hoie. However,2



with double preision inputs on a mahine like a Sun Ultra-10 without double-extended arithmeti, or whendouble preision is muh slower than single preision, our new algorithm with 4 ases is the best we know.The rest of this paper is organized as follows. Setion 2 presents and justi�es the proposed de�nition ofGivens rotations. Setion 3 details the di�erenes between the proposed de�nition and existing LAPACKode. Setion 4 desribes our assumptions about oating point arithmeti. Setion 5 presents the algorithmin the omplex ase, assuming that neither overow nor underow our (Case 1). Setion 6 shows alternateformulas for omplex Given rotations when f and g di�er greatly in magnitude (Cases 2 and 3). Setion 7desribes saling when f and g are omparable in magnitude but both very large or very small (Case 4).Setion 8 ompares the auray of our new omplex Givens routine and several alternatives; only ours isaurate in all ases. Setion 9 disusses performane of our omplex Givens routine. Setion 10 brieydisusses real Givens rotations, whih are rather easier. Setion 11 draws onlusions. The atual softwareis inluded in an appendix.2 De�ning Givens rotationsWe will use the following funtion, de�ned for a omplex variable x, in what follows:sign(x) � � x=jxj if x 6= 01 if x = 0sign(x) is learly a ontinuous funtion away from x = 0. When x is real the de�nition simplies tosign(x) � � �1 if x < 01 if x � 0As stated in the introdution, we need extra requirements besides (1) and (2) in order to determine and s (and hene r) uniquely. For when at least one of f and g are nonzero, the most that we an deduefrom the �rst omponent of R(; s)[f; g℄T = [r; 0℄T in (1) is that = ei� jf jpjf j2 + jgj2s = ei�sign(f) �gpjf j2 + jgj2r = ei�sign(f)pjf j2 + jgj2for i = p�1 and some real �. From the fat that  must be real we dedue that if f 6= 0 then = � jf jpjf j2 + jgj2s = �sign(f) �gpjf j2 + jgj2 (3)r = �sign(f)pjf j2 + jgj2and if f = 0 and g 6= 0 then  = 0s = ei� (4)r = ei�gAs stated before, when f = g = 0,  and s an be hosen arbitrarily, as long as they satisfy (2).The extra requirements initially hosen by the BLAS Tehnial Forum to help resolve the hoie of �sign in (3) and � in (4) are as follows.R1 The de�nitions for real and omplex data should be onsistent, so that real data passed to the omplexalgorithm should result in the same answers (modulo roundo�) as from the real algorithm.3



R2 Current LAPACK subroutines that use Givens rotations should ontinue to work orretly with the newde�nition.The urrent LAPACK subroutines SLARTG and CLARTG (whih ompute a single real and omplexGivens rotation, resp.) do not satisfy requirement 1. Furthermore, the LAPACK subroutines SLARGVand CLARGV for omputing multiple Givens rotations do not ompute the same answers as SLARTG andCLARTG, resp. The di�erenes are desribed in setion 3 below. So some hange in pratie is needed tohave onsistent de�nitions. (Indeed, this was the original motivation for BLAS Tehnial Forum not simplyadopting the LAPACK de�nitions unhanged.)However, R1 and R2 do not immediately resolve the hoie of sign in (1). To proeed we add requirementR3 The mapping from (f; g) to (; s; r) should be ontinuous whenever possible.Continuity of  and s as funtions of f and g is not possible everywhere, beause as real f and g approah(0; 0) along the real line g = f � tan�,  = � os� and �s = sin�, so  and s must be disontinuous at (0; 0).But onsider ; s; r as funtions of (f; g) = (ei�; 1) as � inreases from 0 to 2�, i.e. f traverses the unitirle in the omplex plane. At � = 0, (f; g) = (1; 1) and onsider the ommon onvention (; s) = ( 1p2 ; 1p2 ).As � inreases, jj = jsj remains equal to 1p2 . Sine  is real, ontinuity implies  stays �xed at  = 1p2 forall �, and hene s = ei�=p2 and r = ei�p2 are ontinuous as desired. Thus requirement R3 implies that must be nonnegative. Together with (3), this implies that when f 6= 0 we have � jf jpjf j2 + jgj2s � sign(f) �gpjf j2 + jgj2 (5)r � sign(f)pjf j2 + jgj2Formulas (5) obviously de�ne f , g and r ontinuously away from f = 0. When g = 0, they simplify to  = 1,s = 0 and r = f . This is attrative beause R(1; 0) is the identity matrix, so using it to multiply an arbitrarypair of vetors requires no work,When f = 0 but g 6= 0 we reexamine (4) in the light of requirement R3. Sine  and s are not ontinuousat f = 0, beause sign(f) an hange arbitrarily in a small omplex neighborhood of 0, we annot hopeto de�ne � by a ontinuity argument that inludes omplex f . Instead, we ask just that , s, and r beontinuous funtions of real f � 0 and and omplex g 6= 0, i.e. they should be ontinuous as f approaheszero from the right. This limit is easily seen to be � 0s � sign(�g) (6)r � jgjwhih we take as the de�nition for f = 0 and omplex g 6= 0.Finally we onsider the ase f = g = 0. This is impossible to de�ne by ontinuity, sine f and g anapproah 0 from any diretion, so instead we add requirementR4 Given a hoie of  and s, hoose those requiring the least work.Sine R(; s) is typially used to multiply a pair of vetors, and R(1; 0) = I requires no work to do this, weset  = 1 and s = 0 when f = g = 0.In summary, the algorithm for omplex or real f and g is as follows.Algorithm 1: Computing Givens Rotationsif g = 0 (inludes the ase f = g = 0) = 1s = 0r = f 4



elseif f = 0 (g must be nonzero) = 0s = sign(�g)r = jgjelse (f and g both nonzero) = jf j=pjf j2 + jgj2s = sign(f)�g=pjf j2 + jgj2r = sign(f)pjf j2 + jgj2endifWhen f and g are real, the algorithm an be slightly simplied by replaing �g by g.3 Di�erenes from urrent LAPACK odesHere is a short summary of the di�erenes between Algorithm 1 and the algorithms in LAPACK 3.0 andearlier versions. The LAPACK algorithms in question are SLARTG, CLARTG, SLARGV and CLARGV.All the LAPACK release 3.0 test ode passed as well with the new Givens rotations as with the old ones(indeed, one test failure in the old ode disappeared with the new rotations), so the new de�nition of Givensrotations satis�es requirement R2.SLARTG When f = 0 and g 6= 0, Algorithm 1 returns s = sign(g) whereas SLARTG returns s = 1. Theomment in SLARTG about \saving work" does not mean SBDSQR assumes s = 1. When jf j � jgjand f < 0 (so both f and g are nonzero), SLARTG returns the negatives of the values of , s and rreturned by Algorithm 1.CLARTG Algorithm 1 is mathematially idential to CLARTG. But it is not numerially idential, seesetion 8 below.SLARGV When f = g = 0, SLARGV returns  = 0 and s = 1 instead of  = 1 and s = 0. When f 6= 0and g = 0, SLARGV returns  = sign(f) instead of  = 1. When f = 0 and g 6= 0, SLARGV returnss = 1 instead of s = sign(g). When f 6= 0 and g 6= 0, SLARGV returns sign() = sign(f), instead of � 0.CLARGV When f = g = 0, CLARGV return  = 0 and s = 1 instead of  = 1 and s = 0. When f = 0and g 6= 0, CLARGV returns s = 1 instead of s = sign(�g).4 Assumptions about oating point arithmetiIn LAPACK, we have the routines SLAMCH and DLAMCH available, whih return various mahine on-stants that we will need. In partiular, we assume that " = mahine epsilon is available, whih is a powerof the mahine radix. On mahine with IEEE oating point arithmeti, it is either 2�24 in single or 2�53 indouble. Also, we use SAFMIN, whih is intended to be the smallest normalized power of the radix whosereiproal an be omputed without overow. On IEEE mahines this should be the underow threshold,2�126 in single and 2�1022 in double. However, on mahines where omplex division is implemented in theompiler by the fastest but risky algorithma+ ib+ id = a+ bd2 + d2 + i b� ad2 + d2the exponent range is e�etively halved, sine 2 + d2 an over/underow even though the true quotient isnear 1. On these mahines SAFMIN may be set to pSAFMIN to indiate this. As a result, our salingalgorithms make no assumptions about the proximity of SAFMIN to the atual underow threshold, andindeed any tiny value rather less than " will lead to orret ode, though the loser SAFMIN is to theunderow threshold the fewer saling steps are needed in extreme ases.5



Our algorithms also work orretly and aurately whether or not underow is gradual. This is importanton the proessors where default \fast mode" replaes all underowed quantities by zero. This means that thee�etive underow threshold is SAFMIN/", sine underow in x an ause a relative error in SAFMIN/"+xof at most ", the same as roundo�.In our saling algorithms we will use the quantity z = ("=SAFMIN)1=4 rounded to the nearest power ofthe radix. Thus we use z�4 = SAFMIN=" as the e�etive underow threshold, and z4 = "=SAFMIN as theoverow threshold. Note that we may safely add and subtrat many quantities bounded in magnitude by z4without inurring overow. We repeat that the algorithms work orretly, if more slowly, if a onservativeestimate of SAFMIN is used (i.e. one that is too large). The powers of z used by the software are omputedon the �rst all, and then saved and reused for later alls. The values of z and its powers for IEEE mahineswith SAFMIN equal to the underow threshold are as follows.Single Preision Double PreisionSAFMIN 2�126 � 1 � 10�38 2�1022 � 2 � 10�308" 2�24 � 6 � 10�8 2�53 � 1 � 10�16z 225 � 3 � 107 2242 � 7 � 1072z4 2100 � 1 � 1030 2968 � 2 � 10291z�1 2�25 � 3 � 10�8 2�242 � 1 � 10�73z�4 2�100 � 7 � 10�31 2�968 � 4 � 10�292The assiduous reader will have noted that Algorithm 1 leaves ambiguous how the sign of zero is treated.Di�erent implementations are free to return +0 or �0 whenever a zero is to be delivered. There seems tobe little to be gained by insisting, for example, that r = �0 when f = �0 and g = �0, whih is what wouldatually be omputed if R(1;+0) were multiplied by the vetor [�0;�0℄T .In later disussion we denote the atual overow threshold by OV, the underow threshold by UN, andthe smallest nonzero number bym, whih is 2�"�UN on a mahine with gradual underow, and UN otherwise.5 Complex AlgorithmIn what follows we use the onvention of apitalizing all variable names, so that C, S and R are the data tobe omputed from F and G. We use the notation re(F) and im(F) to mean the real and imaginary partsof F, and kwk1 = max(jrewj; jimwj) for any omplex number w. We begin by eliminating the easy aseswhere at least one of F and G is zero. Variables F, G, S and R are omplex, and the rest are real.Algorithm 2: Computing Givens Rotations when f = 0 or g = 0if G = 0... inludes the ase F = G = 0C = 1S = 0R = Felse if F = 0... G must be nonzeroC = 0sale G by powers of z�4 so that z�2 � kGk1 � z2D1 = sqrt(re(G)**2+im(G)**2)R = D1D1 = 1/D1S = onj(G)*D1unsale R by powers of z�4else ... both F and G are nonzero... use algorithm desribed belowendif 6



We note that even though F = 0 6= G is an \easy" ase we need to sale G to avoid over/underow whenomputing re(G)**2+im(G)**2.Now assume F and G are nonzero. We an ompute C, S and R with the following ode fragment,whih employs only one division and one square root. The last olumn shows the algebraially exat quan-tity omputed by eah line of ode. We assume that real*omplex multipliations are performed by tworeal multipliations (the Fortran implementation does this expliitly rather than relying on the ompiler).Variables F, G, R and S are omplex, and the rest are real.Algorithm 3: Fast Complex Givens Rotations when f and g are \well saled"1. F2 := re(F)**2 + im(F)**2 jf j22. G2 := re(G)**2 + im(G)**2 jgj23. FG2 := F2 + G2 jf j2 + jgj24. D1 := 1/sqrt(F2*FG2) 1=pjf j4 + jf j2jgj2 = 1=(jf jpjf j2 + jgj2)5. C := F2*D1 jf j=pjf j2 + jgj26. FG2 := FG2*D1 pjf j2 + jgj2=jf j =p1 + jgj2=jf j27. R := F*FG2 fp1 + jgj2=jf j2 = sign(f)pjf j2 + jgj28. S := F*D1 fjf j 1pjf j2+jgj29. S := onj(G)*S fjf j gpjf j2+jgj2Now reall z = ("=SAFMIN)1=4, so that z4 is an e�etive overow threshold and z�4 is an e�etiveunderow threshold. The region where the above algorithm an be run reliably is desribed by the followinginequalities, whih are numbered to orrespond to lines in the above algorithm. All logarithms are to thebase 2.1. We assume kfk1 � z2 to prevent overow in omputation of F22. We assume kgk1 � z2 to prevent overow in omputation of G23. This line is safe given previous assumptions.4a. We assume z�2 � kfk1 to prevent underow of F2 and onsequent division by zero in the omputationof D14b. We assume kfk1 � z to prevent overow from the jf j4 term in F2*FG2 in the omputation of D14. We assume kfk1kgk1 � z2 to prevent overow from the jf j2jgj2 term in F2*FG2 in the omputationof D1Either 4d. z�1 � kfk1or 4e. z�2 � kfk1kgk1to prevent underow of F2*FG2 and onsequent division by zero in the omputation of D15. This line is safe given previous assumptions. If C underows, it is deserved.6. kgk1=kfk1 � z4 to prevent overow of FG2 sine p1 + jgj2=jf j2 = O(jgj=jf j) if jgj=jf j is large.7. This line is safe given previous assumptions, returning jRj roughly between z�1 and z2. If the smalleromponent of R underows, it is deserved.8. This line is safe given previous assumptions, returning jSj roughly between z�2 and 1. The smalleromponent of S may underow, but this error is very small ompared to the other omponent of S.9. This line is safe given previous assumptions. If S underows, it is deserved.Note that all the inequalities in the above list desribe half planes in(log kfk1; log kgk1) spae. For example inequality 6 beomeslog kgk1 � log kfk1 � 4 log z.The region desribed by all inequalities is shown in �gure 1. Eah inequality is desribed by a thin linemarked by arrows indiating the side on whih the inequality holds. The heavy line borders the safe regionS satisfying all the inequalities, where the above algorithm an be safely used.7
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It remains to say how to deide whether a point lies in S. The boundary of S is ompliated, so thetime to test for membership in S an be nontrivial. Aordingly, we use the simplest tests that are likely tosueed �rst, and only then do we use more expensive tests. In partiular, the easiest tests are thresholdomparisons with kfk1 and kgk1. So we test for membership in the subset of S labeled (1) in Figure 2 bythe following algorithm:if kfk1 � z and kfk1 � z�1 and kgk1 � z thenf; g is in Region (1)endifThis is alled Case 1 in the software.Region (1) ontains all data where kfk1 and kgk1 are not terribly far from 1 in magnitude (betweenz�1 = 2�25 � 10�7 and in single between z�1 = 2�242 � 10�73 in double), whih we expet to be mostarguments, espeially in double.The omplement of Region (1) in S is shown bounded by dashed lines in Figure 2. It is harder to testfor, beause its boundaries require doing threshold tests on the produt kfk1 � kgk1, whih ould overow.So we will not test for membership in this region expliitly in the ase, but do something else instead.6 When f and g di�er greatly in magnitudeWhen jgj2 � "jf j2, then jf j2 + jgj2 rounds to jf j2, and the formulas for , s and r may be greatly simpli�edand very aurately approximated by  � 1s � sign(f) �gjf j = f � �gjf j2 (7)r � fThis region is losely approximated by the regions kgk1 � "1=2kfk1 marked (2) in Figure 2.When instead jf j2 � "jgj2, then jf j2+ jgj2 rounds to jgj2, and the formulas for , s and r may be greatlysimpli�ed and very aurately approximated by � jf jjgj = jf j2jf j � jgjs � sign(f) �gjgj = f � �gjf j � jgj (8)r � sign(f)jgj = f � jgj2jf j � jgjThis region is losely approximated by the region kfk1 � "1=2kgk1 marked (3) in Figure 2.An important di�erene between the formulas in (7) and (8) versus the formula (5) is that (7) and (8)are independently homogeneous in f and g. In other words, we an sale f and g independently instead ofby the same salar in order to evaluate them safely. Thus the \shadow" of the region in whih the aboveformulas are safe overs all (f; g) pairs. In ontrast in formula (5) f and g must be saled by the same value.Here are the algorithms implementing (7) and (8) without saling. Note that (7) does not even requirea square root.
9



Algorithm 4: Computing omplex Given rotations when kgk1 � p"kfk1, using formulas (7),without salingif kGk1 � p" � kFk1 thenC = 1R = FD1 = 1/sqrt(re(F)**2 + im(F)**2)S = F � onj(G)S = S � D1endifAlgorithm 5: Computing omplex Given rotations when kfk1 � p"kgk1, using formulas (8),without salingif kFk1 � p" � kGk1 thenF2 = re(F)**2 + im(F)**2G2 = re(G)**2 + im(G)**2FG2 = F2 * G2D1 = 1/sqrt(FG2)C = F2 * D1S = F * onj(G)S = S * D1D1 = D1 * G2R = D1 * FendifWe may now apply the same analysis as in the last setion to these formulas, deduing linear inequalitiesin log kfk1 and log kgk1 whih must be satis�es in order to guarantee safe and aurate exeution. Wesimply summarize the results here. In both ases, we get regions with boundaries that, like S, are sets ofline segments that may be vertial, horizontal or diagonal. We again wish to restrit ourselves to tests onkfk1 and kgk1 alone, rather than their produt (whih might overow). This means that we identify asmaller safe region (like region (1) within S in Figure 2) where membership an be easily tested. This saferegion for Algorithm 4 is the set satisfyingz�2 � kfk1 � z2 and z�2 � kgk1 � z2 (9)This safe region for Algorithm 5 is the smaller set satisfyingz�1 � kfk1 � z and z�1 � kgk1 � z (10)This leads to the following algorithms, whih inorporate saling.Algorithm 6: Computing omplex Given rotations when kgk1 � p"kfk1, using formulas (7),with salingif kGk1 � p" � kFk1 thenC = 1R = Fsale F by powers of z�4 so z�2 � kFk1 � z2sale G by powers of z�4 so z�2 � kGk1 � z2D1 = 1/sqrt(re(F)**2 + im(F)**2)S = F � onj(G)S = S � D1unsale S by powers of z�4 to undo saling of F and Gend if 10



Algorithm 7: Computing omplex Given rotations when kfk1 � p"kgk1, using formulas (8),with salingif kFk1 � p" � kGk1 thensale F by powers of z�2 so z�1 � kFk1 � zsale G by powers of z�2 so z�1 � kGk1 � zF2 = re(F)**2 + im(F)**2G2 = re(G)**2 + im(G)**2FG2 = F2 * G2D1 = 1/sqrt(FG2)C = F2 * D1S = F * onj(G)S = S * D1D1 = D1 * G2R = D1 * Funsale C and R by powers of z�2 to undo saling of F and GendifNote in Algorithm 7 that the value of S is une�eted by independent saling of F and G.7 Saling in Regions 4a and 4bFor any point (f; g) that does not lie in regions (1), (2) or (3) of Figure 2 we an use the following algorithm:1. Sale (f; g) to a point (sale � f; sale � g) that does lie in S.2. Apply Algorithm 3 to (sale � f; sale � g), yielding ; s; r̂.3. Unsale to get r = r̂=sale.This saling in Figure 2 orresponds to shifting f; g parallel to the diagonal line f = g by log sale untilit lies in S. It is geometrially apparent that the set of points salable in regions (4a) and (4b)of Figure 2lie in the set of all diagonal translates of S, i.e. the \shadow" of S, and an be saled to lie in S. Indeed, allpoint in region (2) and many (but not all) points in region (3) an be saled to lie in S, but in regions (2)and (3) heaper formulas disussed in the last setion are available.First suppose that (f; g) lies in region (4a). Let s = max(kfk1; kgk1). Then if s > z2, we an sale fand g down by z�2. Eventually (f; g) will lie in the union of the two arrow-shaped regions A1 and A2 inFigure 3. Then, if s still exeeds z, i.e. (f; g) is in A1, we multiply f and g by z�1, putting it into A2. Thus,we guarantee that the saled f and g are in A2, where it is safe to use Algorithm 3.Next suppose that (f; g) lies in region (4b). Now let s = kfk1. Then if s < z�2, we an sale f and gup by z2. Eventually (f; g) will like in the union of the two parallelograms B1 and B2 in Figure 4. Then, ifs is still less than z�1, i.e. (f; g) is in B1, we multiply f and g by z, putting it into B2. Thus, we guaranteethat the saled f and g are in B2, where it is safe to use Algorithm 3.These onsiderations lead to the following algorithm
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Figure 2: Cases in the ode when f 6= 0 and g 6= 0Algorithm 8: Computing omplex Givens rotations when (f; g) is in region (4a) or (4b), withsaling.... this ode is only exeuted if f and g are in region (4a) or (4b)if kFk1 > 1sale F and G down by powers of z�2 until max(kFk1; kGk1) � z2if max(kFk1; kGk1) > z, sale F and G down by z�1else sale F and G up by powers of z2 until kFk1 � z�2if kFk1 < z, sale F and G up by zendifompute the Givens rotation using Algorithm 3undo the saling of R aused by saling of F and GWe all the overall algorithm new CLARTG, to distinguish from old CLARTG, whih is part of theLAPACK 3.0 release. The entire soure ode in inluded in the Appendix. It ontains 237 nonommentlines, as opposed to 20 in the referene rotg implementation.
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8 Auray ResultsThe algorithm was run for 434 = 3418801 values of f and g, where the real and imaginary part of f and gindependently took on 43 di�erent values ranging from the smallest denormalized number to the overowthreshold, with intermediate values hosen just above and just below the threshold values determining all theedges and orners in Figures 1 through 4, and thus barely satisfying (or not satisfying) all possible branhesin the algorithm. The orret answer was omputed using a straightforward implementation of Algorithm 1using double preision arithmeti, in whih no overow nor underow is possible for the arguments tested.The maximum errors in r,  and s were omputed as follows, Here rs was omputed in single using the newalgorithm and rd was omputed straightforwardly in double preision; the subsripted  and s variables haveanalogous meanings. In the absene of gradual underow, the error metri for rs isjrs � rdj=max("jrdj; SAFMIN) (11)and with gradual underow it is jrs � rdj=max("jrdj; SAFMIN � 2 � ") (12)with the maximum taken over all 434 test ases. (The few values of f and g where the true answer overowedwere exluded from the error bound alulation.) Note that SAFMIN � 2 � " is the smallest denormalizednumber. Analogous metris were omputed for ss and s.The routines were �rst tested on a Sun Ultra-10 using f77 with the -fast -O5 ags, whih means gradualunderow is not used, i.e. results less than SAFMIN are replaed by 0. Therefore we expet the measure (11)to be at least 1, and hopefully just a little bigger than 1, meaning that the error jrs � rdj is either just morethan mahine epsilon " times the true result, or a small multiple of the underow threshold, whih is theinherent unertainty in the arithmeti.The routines were also tested without any optimization ags, whih means gradual underow is used, sowe expet the more stringent measure (12) to be lose to 1.The results are as follows: Without Gradual UnderowRoutine Max error in rs Max error in ss Max error in sNew CLARTG 3.04 2.96 2.46Old CLARTG 70588 70588 70292Referene rotg NAN NAN NANModi�ed Referene rotg 3.59 3.41 3.22ATLAS rotg NAN NAN NANLimited ATLAS rotg 2:88 1:7 � 107 3.11Vendor rotg NAN NAN NANLimited Vendor rotg 3.59 1:7 � 107 3.22With Gradual UnderowRoutine Max error in rs Max error in ss Max error in sNew CLARTG 3.04 2.96 3.04Old CLARTG 4.60 4.27 4913930Referene rotg NAN NAN NANModi�ed Referene rotg 6949350 6952960 6949350Here is why the old CLARTG fails to be aurate. First onsider the situation without gradual underow.When jgj is just above z�2, and jf j is just below, the algorithm will deide that saling is unneessary. Asa result jf j2 may have a nonnegligible relative error from underow, whih reates a nonnegligible relativeerror in r, s and . Now onsider the situation with gradual underow. The above error does not our, buta di�erent one ours. When 1 � jgj � jf j, and f is denormalized, then the algorithm will not sale. Asa result jf j su�ers a large loss of relative auray when it is rounded to the nearest denormalized number,and then  � jf j=jgj has the same large loss of auray.14



Here is why the referene BLAS rotg an fail, even though it tries to sale to avoid over/underow. Thesale fator jf j+ jgj omputed internally an overow even when jrj =pjf j2 + jgj2 does not. Now onsiderthe situation without gradual underow. The sine is omputed as s = ( fjf j) � (�g)=(pjf j2 + jgj2), where themultipliation is done �rst. All three quantities in parentheses are quite aurate, but the entries of f=jf jare both less than one, ausing the multipliation to underow to 0, when the true s exeeds .4. This anbe repaired by inserting parentheses s = ( fjf j) � ((�g)=(pjf j2 + jgj2)) so the division is done �rst. Exludingthese very large ases, and inserting parentheses, we get the errors on the line \Modi�ed Referene rotg".Now onsider the situation with gradual underow. Then rounding intermediate quantities to the nearestdenormalized number an ause large relative errors, suh as s and  both equaling 1 instead of 1=p2.The ATLAS and vendor version of rotg were only run with the full optimizations suggested by theirauthors, whih means gradual underow was not enabled. They also return NANs for large arguments evenwhen the true answer should have been representable. We did not modify these routines, but instead ranthem on the limited subset of examples where jf j + jgj was less than overow. They still oasionally hadlarge errors that we suspet are due to underow, sine they ourred for small arguments, between SAFMINand SAFMIN/".In summary, our systemati proedure produed a provably reliable implementation whereas there areerrors in all previous implementations that yield inaurate results without warning, or fail unneessarilydue to overow. The latter only ours when the true r is lose to overow, and so it is hard to omplainvery muh, but the former problem deserves to be orreted.9 Timing ResultsFor omplex Givens rotations, we ompared the new algorithm desribed above, the old CLARTG fromLAPACK, and rotg from the referenes BLAS. Timings were done on a Sun Ultra-10 using the f77 ompilerwith optimization ags -fast -O5. Eah routine was alled 106 times for arguments through the f; g planeshown in Figure 2. Indeed, 29 ases were tried in all, exerising all paths in the new CLARTG ode. Theinput data is shown in a table below. Eah input was run 10 times and the average time taken; the range oftimings for eah (f; g) input was typially only a few perent.The timing results are in the Figures 5 and 6. Five algorithms are ompared:1. New CLARTG is the algorithm presented in this report2. OLD CLARTG is the algorithm in LAPACK 3.03. Ref CROTG is the referene BLAS4. ATLAS CROTG is the ATLAS BLAS5. Vendor CROTG is Sun's vendor BLASFigure 5 shows absolute times in miroseonds, and Figure 6 shows times relative to new CLARTG. Thevertial tik marks delimit the ases in the ode, as desribed in the table below.The most ommon ase is Case 1, at the left of the plots. We see that the new CLARTG is about 20%faster than old CLARTG, and nearly 4 times faster than any version of CROTG.To get an absolute speed limit, we also ran a version of the algorithm that only works in Case 1; i.e. itomits all tests for saling of f and g and simply applies the algorithm appropriate for Case 1. This ultimateversion ran in about .243 miroseonds, about 68% of the time of the new CLARTG. This is the prie ofreliability. Alternatively, on a system with fast exeption handling, one ould run this algorithm and thenhek if an underow, overow, or division-by-zero exeption ourred, and only reompute in this rare ase[2℄. Here is an alternative approah that avoids all need to sale and is fastest overall on the above arhiteturefor IEEE single preision inputs: After testing for the ases f = 0 or g = 0, use Algorithm 3 in IEEE doublepreision. The three extra exponent bits eliminate over/underow. On this mahine, this algorithm takes.365 miroseonds for all nonzero inputs f and g, nearly exatly the same as Case 1 entirely in single. Thisalgorithm is the algorithm of hoie for single preision on this mahine, sine it is not only the fastest in15



most ases, but muh simpler. Of ourse it would not work if the input data were in double, sine a widerformat is not available on this arhiteture.Case Case in ode f g1 1 ( 0.11E+01 , 0.22E+01 ) ( 0.33E+01 , 0.44E+01 )2 2 ( 0.37E+08 , 0.74E+08 ) ( 0.33E+01 , 0.44E+01 )3 2 ( 0.12E+16 , 0.25E+16 ) ( 0.11E+09 , 0.15E+09 )4 2 ( 0.42E+23 , 0.83E+23 ) ( 0.37E+16 , 0.50E+16 )5 2 ( 0.14E+31 , 0.28E+31 ) ( 0.12E+24 , 0.17E+24 )6 2 ( 0.14E+31 , 0.28E+31 ) ( 0.33E+01 , 0.44E+01 )7 2 ( 0.14E+31 , 0.28E+31 ) ( 0.26E-29 , 0.35E-29 )8 2 ( 0.14E+31 , 0.28E+31 ) ( 0.26E-29 , 0.35E-29 )9 2 ( 0.29E-22 , 0.58E-22 ) ( 0.26E-29 , 0.35E-29 )10 2 ( 0.98E-15 , 0.20E-14 ) ( 0.87E-22 , 0.12E-21 )11 2 ( 0.33E-08 , 0.66E-08 ) ( 0.29E-14 , 0.39E-14 )12 3 ( 0.11E+01 , 0.22E+01 ) ( 0.11E+09 , 0.15E+09 )13 3 ( 0.37E+08 , 0.74E+08 ) ( 0.37E+16 , 0.50E+16 )14 3 ( 0.12E+16 , 0.25E+16 ) ( 0.12E+24 , 0.17E+24 )15 3 ( 0.42E+23 , 0.83E+23 ) ( 0.42E+31 , 0.56E+31 )16 3 ( 0.11E+01 , 0.22E+01 ) ( 0.42E+31 , 0.56E+31 )17 3 ( 0.87E-30 , 0.17E-29 ) ( 0.42E+31 , 0.56E+31 )18 3 ( 0.87E-30 , 0.17E-29 ) ( 0.33E+01 , 0.44E+01 )19 3 ( 0.87E-30 , 0.17E-29 ) ( 0.87E-22 , 0.12E-21 )20 3 ( 0.29E-22 , 0.58E-22 ) ( 0.29E-14 , 0.39E-14 )21 3 ( 0.98E-15 , 0.20E-14 ) ( 0.98E-07 , 0.13E-06 )22 4 ( 0.37E+08 , 0.74E+08 ) ( 0.11E+09 , 0.15E+09 )23 4 ( 0.12E+16 , 0.25E+16 ) ( 0.37E+16 , 0.50E+16 )24 4 ( 0.42E+23 , 0.83E+23 ) ( 0.12E+24 , 0.17E+24 )25 4 ( 0.14E+31 , 0.28E+31 ) ( 0.42E+31 , 0.56E+31 )26 4 ( 0.33E-08 , 0.66E-08 ) ( 0.98E-08 , 0.13E-07 )27 4 ( 0.98E-15 , 0.20E-14 ) ( 0.29E-14 , 0.39E-14 )28 4 ( 0.29E-22 , 0.58E-22 ) ( 0.87E-22 , 0.12E-21 )29 4 ( 0.87E-30 , 0.17E-29 ) ( 0.26E-29 , 0.35E-29 )
10 Computing real Givens RotationsWhen both f and g are nonzero, the following algorithm minimizes the amount of work:Algorithm 9: Real Given rotations when f and g are nonzero, without salingFG2 = F**2 + G**2R = sqrt(FG2)RR = 1/RC = abs(F)*RRS = G*RRif F < 0 thenS = -SR = -RendifWe may now apply the same kind of analysis that we applied to Algorithm 3. We just summarize theresults here. 16
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Figure 5: Time to ompute omplex Givens rotations.Algorithm 10: Real Given rotations when f and g are nonzero, with salingsale = max( abs(F) , abs(G) )if sale > z2 thensale F, G and sale down by powers of z�2 until sale � z2elseif sale < z�2 thensale F, G and sale up by powers of z2 until sale � z�2endifFG2 = F**2 + G**2R = sqrt(FG2)RR = 1/RC = abs(F)*RRS = G*RRif F < 0 thenS = -SR = -Rendifunsale R if neessaryThe worst ase error, measured as in setion 8 was 1.45 for r and 1.81 for  and s, with or withoutgradual underow. The omplete ode is loated in the Appendix. It ontains 74 nonomment lines of ode,as opposed to 22 for the referene BLAS srotg. 17
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Figure 6: Relative Time to ompute omplex Givens rotations.11 ConlusionsWe have justi�ed the spei�ation of Givens rotations put forth in the reent BLAS Tehnial Forum stan-dard. We have shown how to implement the new spei�ation in a way that is both faster than previousimplementations in the most ommon ases, and more reliable. We used a systemati design proess forsuh kernels that ould be used whenever auray, reliability against over/underow, and eÆieny aresimultaneously desired. A side e�et of our approah is that the algorithms are muh longer than before.Referenes[1℄ S. Blakford, G. Corliss, J. Demmel, J. Dongarra, I. Du�, S. Hammarling, G. Henry, M. Heroux, C. Hu,W. Kahan, L. Kaufman, B. Kearfott, F. Krogh, X. Li, Z. Maany, A. Petitet, R. Pozo, K. Remington,W. Walster, C. Whaley, and J. Wol� v. Gudenberg. Doument for the Basi Linear Algebra Subprograms(BLAS) Standard: BLAS Tehnial Forum. www.netlib.org/gi-bin/hekout/blast/blast.pl, 1999.[2℄ J. Demmel and X. Li. Faster numerial algorithms via exeption handling. IEEE Trans. Comp.,43(8):983{992, 1994. LAPACK Working Note 59.[3℄ G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore, MD, 3rdedition, 1996.
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A SLARTGSUBROUTINE SLARTG( F, G, CS, SN, R )** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rie University* July 23, 2000** .. Salar Arguments ..REAL CS, F, G, R, SN* ..** Purpose* =======** SLARTG generate a plane rotation so that** [ CS SN ℄ . [ F ℄ = [ R ℄ where CS**2 + SN**2 = 1.* [ -SN CS ℄ [ G ℄ [ 0 ℄** This is a slower, more aurate version of the BLAS1 routine SROTG,* with the following other differenes:* F and G are unhanged on return.* If F=0 and G=0, then CS=1, SN=0, and R=0.* If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.* If F=0 and G .ne. 0, then CS=0, SN=sign(G), and R=abs(G).* If F .ne. 0 and (G .ne. 0), then* CS = abs(F)/sqrt(F**2 + G**2)* SN = sign(F)*G/sqrt(F**2 + G**2)* R = sign(F)*sqrt(F**2 + G**2)** This is the only definition with the following properties:* 1) CS is always nonnegative.* 2) R is real and nonnegative if F=0.* 3) CS=1 and SN=0 when F=G=0.** The omplex routine CLARTG returns the same* CS and SN on omplex inputs (F,0) and (G,0).** Arguments* =========** F (input) REAL* The first omponent of vetor to be rotated.** G (input) REAL* The seond omponent of vetor to be rotated.** CS (output) REAL* The osine of the rotation.** SN (output) REAL* The sine of the rotation. 19



** R (output) REAL* The nonzero omponent of the rotated vetor.** =====================================================================** .. Parameters ..REAL ZEROPARAMETER ( ZERO = 0.0E0 )REAL ONEPARAMETER ( ONE = 1.0E0 )REAL TWOPARAMETER ( TWO = 2.0E0 )* ..* .. Loal Salars ..LOGICAL FIRSTINTEGER COUNT, IREAL EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALEREAL SCL* ..* .. External Funtions ..REAL SLAMCHEXTERNAL SLAMCH* ..* .. Intrinsi Funtions ..INTRINSIC ABS, INT, LOG, MAX, SQRT, SIGN* ..* .. Save statement ..SAVE FIRST, EPS, SAFMX2, SAFMIN, SAFMN2, SAFMNSAVE SAFMX* ..* .. Data statements ..DATA FIRST / .TRUE. /* ..* .. Exeutable Statements ..* IF( FIRST ) THEN** On first all to SLARTG, ompute* SAFMN2 = sqrt(SAFMIN/EPS) rounded down to the nearest power* of the floating point radix* This means that saling by multipliation by SAFMN2 and its* reiproal SAFMX2 ause no roundoff error* FIRST = .FALSE.SAFMIN = SLAMCH( 'S' )EPS = SLAMCH( 'E' )SAFMN2 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /$ LOG( SLAMCH( 'B' ) ) / TWO )SAFMN = SAFMN2**2SAFMX2 = ONE / SAFMN2SAFMX = SAFMX2**2END IFIF( G.EQ.ZERO ) THEN 20



** Inludes the ase F=G=0* CS = ONESN = ZEROR = FELSE IF( F.EQ.ZERO ) THEN** G must be nonzero* CS = ZEROSN = SIGN( ONE, G )R = ABS(G)ELSE** Both F and G must be nonzero* F1 = FG1 = GSCALE = MAX( ABS( F1 ), ABS( G1 ) )COUNT = 0IF( SCALE.GE.SAFMX2 ) THEN** Handle ase where F1**2 + G1**2 might overflow* SCL = SAFMX210 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMN2G1 = G1*SAFMN2SCALE = SCALE*SAFMN2IF( SCALE.GE.SAFMX2 )$ GO TO 10ELSE IF( SCALE.LE.SAFMN2 ) THEN** Handle ase where F1**2 + G1**2 might underflow* SCL = SAFMN230 CONTINUECOUNT = COUNT + 1F1 = F1*SAFMX2G1 = G1*SAFMX2SCALE = SCALE*SAFMX2IF( SCALE.LE.SAFMN2 )$ GO TO 30ENDIFR = SQRT( F1**2+G1**2 )RR = ONE/RCS = ABS(F1) * RRSN = G1 * RRIF (F .LT. ZERO) THENR = -RSN = -SNENDIF 21



DO 40 I = 1, COUNTR = R*SCL40 CONTINUEENDIFRETURN** End of SLARTG* END

22



B CLARTGSUBROUTINE CLARTG( F, G, CS, SN, R )** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rie University* July 22, 2000** .. Salar Arguments ..REAL CSCOMPLEX F, G, R, SN* ..** Purpose* =======** CLARTG generates a plane rotation so that** [ CS SN ℄ [ F ℄ [ R ℄* [ __ ℄ . [ ℄ = [ ℄ where CS**2 + |SN|**2 = 1.* [ -SN CS ℄ [ G ℄ [ 0 ℄** This is a faster version of the BLAS1 routine CROTG, exept for* the following differenes:* F and G are unhanged on return.* If F=0 and G=0, then CS=1, SN=0, and R=0.* If F .ne. 0 and G=0, then CS=1, SN=0, and R=F.* If F=0 and G .ne. 0, then CS=0, SN=onj(G)/abs(G), and R=abs(G).* If F .ne. 0 and G .ne. 0, then* CS = abs(F)/sqrt(F**2 + G**2)* SN = (F/abs(F))*onj(G)/sqrt(F**2 + G**2)* R = (F/abs(F))*sqrt(F**2 + G**2)** This is the only definition with the following properties:* 1) CS is always real and nonnegative.* 2) R is real and nonnegative if F=0.* 3) CS=1 and SN=0 when F=G=0.** The real routine SLARTG returns the same* CS and SN if the inputs F and G are real.** Arguments* =========** F (input) COMPLEX* The first omponent of vetor to be rotated.** G (input) COMPLEX* The seond omponent of vetor to be rotated.** CS (output) REAL* The osine of the rotation.* 23



* SN (output) COMPLEX* The sine of the rotation.** R (output) COMPLEX* The nonzero omponent of the rotated vetor.** =====================================================================** .. Parameters ..REAL FOUR, ONE, ZEROPARAMETER ( FOUR = 4.0E+0, ONE = 1.0E+0, ZERO = 0.0E+0 )COMPLEX CZEROPARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )* ..* .. Loal Salars ..LOGICAL FIRST, AGAININTEGER COUNT, IREAL D1, EPS, F2, G2, SAFMIN,$ SAFMN2, SAFMX2, SAFMN4, SAFMX4, SAFMN, SAFMX,$ SCALEF, SCALEG, SCALEFG, FG2, SQREPSCOMPLEX FF, FS, GS* ..* .. External Funtions ..REAL SLAMCH, SLAPY2EXTERNAL SLAMCH, SLAPY2* ..* .. Intrinsi Funtions ..INTRINSIC ABS, AIMAG, CMPLX, CONJG, INT, LOG, MAX, REAL,$ SQRT* ..* .. Statement Funtions ..REAL ABS1, ABSSQ* ..* .. Save statement ..SAVE FIRST, SAFMIN, EPS, SQREPSSAVE SAFMX2, SAFMX4, SAFMN2, SAFMN4, SAFMN, SAFMX* ..* .. Data statements ..DATA FIRST / .TRUE. /* ..* .. Statement Funtion definitions ..ABS1( FF ) = MAX( ABS( REAL( FF ) ), ABS( AIMAG( FF ) ) )ABSSQ( FF ) = REAL( FF )**2 + AIMAG( FF )**2* ..* .. Exeutable Statements ..* IF( FIRST ) THEN** On first all to SLARTG, ompute** SAFMN4 = (SAFMIN/EPS)**.25 rounded down to the nearest power* of the floating point radix* SAFMN2 = (SAFMIN/EPS)**.5 rounded down to the nearest power* of the floating point radix24



** This means that saling by SAFMN{2,4} and their* reiproals SAFMX{2,4} auses no roundoff error* FIRST = .FALSE.SAFMIN = SLAMCH( 'S' )EPS = SLAMCH( 'E' )SQREPS = SQRT( EPS )SAFMN4 = SLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) /$ LOG( SLAMCH( 'B' ) ) / FOUR )SAFMN2 = SAFMN4**2SAFMN = SAFMN2**2SAFMX4 = ONE / SAFMN4SAFMX2 = SAFMX4**2SAFMX = SAFMX2**2ENDIF* SCALEF = ABS1( F )SCALEG = ABS1( G )IF( SCALEG.EQ.ZERO ) THEN** Inludes the ase F=G=0* CS = ONESN = CZEROR = FELSEIF( SCALEF.EQ.ZERO ) THEN** G must be nonzero* CS = ZEROGS = GCOUNT = 0IF ( SCALEG .GT. SAFMX2 ) THEN1 CONTINUECOUNT = COUNT + 1GS = GS * SAFMNSCALEG = SCALEG * SAFMNIF ( SCALEG .GT. SAFMX2 ) GOTO 1SCALE = SAFMXELSEIF( SCALEG .LT. SAFMN2 ) THEN2 CONTINUECOUNT = COUNT + 1GS = GS * SAFMXSCALEG = SCALEG * SAFMXIF ( SCALEG .LT. SAFMN2 ) GOTO 2SCALE = SAFMNENDIFD1 = SQRT( REAL(GS)**2 + AIMAG(GS)**2 )R = D1D1 = ONE/D1SN = CMPLX( REAL(GS)*D1, -AIMAG(GS)*D1 )DO 3 I = 1, COUNTR = CMPLX( REAL(R)*SCALE, AIMAG(R)*SCALE )25



3 CONTINUEELSE** Both F and G must be nonzero* IF( SCALEF.LE.SAFMX4 .AND. SCALEF.GE.SAFMN4 .AND.$ SCALEG.LE.SAFMX4 ) THEN** Case 1: neither F nor G too big or too small, minimal work* F2 = ABSSQ(F)G2 = ABSSQ(G)FG2 = F2+G2D1 = ONE/SQRT( F2*FG2 )CS = F2*D1FG2 = FG2 * D1R = CMPLX( REAL(F)*FG2, AIMAG(F)*FG2 )SN = CMPLX( REAL(F)*D1 , AIMAG(F)*D1 )SN = CONJG(G) * SNELSEIF( SCALEG .LT. SQREPS*SCALEF ) THEN** Case 2: ABS(F)**2 + ABS(G)**2 rounds to ABS(F)**2* CS = ONER = FFS = FGS = GCOUNT = 0IF( SCALEF .GT. SAFMX2 ) THEN10 CONTINUECOUNT = COUNT + 1FS = FS * SAFMNSCALEF = SCALEF * SAFMNIF ( SCALEF .GT. SAFMX2 ) GOTO 10ELSEIF( SCALEF .LT. SAFMN2 ) THEN20 CONTINUECOUNT = COUNT - 1FS = FS * SAFMXSCALEF = SCALEF * SAFMXIF ( SCALEF .LT. SAFMN2 ) GOTO 20ENDIFIF( SCALEG .GT. SAFMX2 ) THEN30 CONTINUECOUNT = COUNT - 1GS = GS * SAFMNSCALEG = SCALEG * SAFMNIF ( SCALEG .GT. SAFMX2 ) GOTO 30ELSEIF( SCALEG .LT. SAFMN2 ) THEN40 CONTINUECOUNT = COUNT + 1GS = GS * SAFMXSCALEG = SCALEG * SAFMXIF ( SCALEG .LT. SAFMN2 ) GOTO 40ENDIF 26



D1 = ONE/(REAL(FS)**2 + AIMAG(FS)**2)SN = FS * CONJG(GS)SN = CMPLX( REAL(SN)*D1 , AIMAG(SN)*D1 )IF( COUNT .GT. 0 ) THENDO 50 I = 1, COUNTSN = CMPLX( REAL(SN)*SAFMN , AIMAG(SN)*SAFMN )50 CONTINUEELSEIF( COUNT .LT. 0 ) THENDO 60 I = 1, -COUNTSN = CMPLX( REAL(SN)*SAFMX , AIMAG(SN)*SAFMX )60 CONTINUEENDIFELSEIF( SCALEF .LT. SQREPS*SCALEG ) THEN** Case 3: ABS(F)**2 + ABS(G)**2 rounds to ABS(G)**2* FS = FGS = GCOUNTF = 0COUNTG = 0IF( SCALEF .GT. SAFMX4 ) THEN70 CONTINUECOUNTF = COUNTF + 1FS = FS * SAFMN2SCALEF = SCALEF * SAFMN2IF ( SCALEF .GT. SAFMX4 ) GOTO 70ELSEIF( SCALEF .LT. SAFMN4 ) THEN80 CONTINUECOUNTF = COUNTF - 1FS = FS * SAFMX2SCALEF = SCALEF * SAFMX2IF ( SCALEF .LT. SAFMN4 ) GOTO 80ENDIFIF( SCALEG .GT. SAFMX4 ) THEN90 CONTINUECOUNTG = COUNTG + 1GS = GS * SAFMN2SCALEG = SCALEG * SAFMN2IF ( SCALEG .GT. SAFMX4 ) GOTO 90ELSEIF( SCALEG .LT. SAFMN4 ) THEN100 CONTINUECOUNTG = COUNTG - 1GS = GS * SAFMX2SCALEG = SCALEG * SAFMX2IF ( SCALEG .LT. SAFMN4 ) GOTO 100ENDIFF2 = REAL(FS)**2 + AIMAG(FS)**2G2 = REAL(GS)**2 + AIMAG(GS)**2D1 = ONE/SQRT( F2*G2 )CS = F2*D1SN = FS * CONJG(GS)SN = CMPLX( REAL(SN)*D1 , AIMAG(SN)*D1 )D1 = G2*D1R = CMPLX( REAL(FS)*D1 , AIMAG(FS)*D1 )27



COUNT = COUNTF - COUNTGIF( COUNT .GT. 0 ) THENDO 110 I = 1, COUNTCS = CS*SAFMX2110 CONTINUEELSEIF( COUNT .LT. 0 ) THENDO 120 I = 1, -COUNTCS = CS*SAFMN2120 CONTINUEENDIFIF( COUNTG .GT. 0 ) THENDO 130 I = 1, COUNTGR = CMPLX( REAL(R)*SAFMX2, AIMAG(R)*SAFMX2 )130 CONTINUEELSEIF( COUNTG .LT. 0 ) THENDO 140 I = 1, -COUNTGR = CMPLX( REAL(R)*SAFMN2, AIMAG(R)*SAFMN2 )140 CONTINUEENDIFELSE** Case 4: Sale F and G up or down and use formula from Case 1* FS = FGS = GCOUNT = 0AGAIN = .FALSE.SCALEFG = MAX( SCALEF, SCALEG )IF( SCALEFG .GT. ONE) THENSCALE = SAFMX2150 CONTINUEIF( SCALEFG .LE. SAFMX2 ) GOTO 151COUNT = COUNT + 1FS = FS * SAFMN2GS = GS * SAFMN2SCALEFG = SCALEFG * SAFMN2GOTO 150151 CONTINUEIF( SCALEFG .GT. SAFMX4) THENSCALE2 = SAFMX4AGAIN = .TRUE.FS = FS * SAFMN4GS = GS * SAFMN4ENDIFELSESCALE = SAFMN2160 CONTINUECOUNT = COUNT + 1FS = FS * SAFMX2GS = GS * SAFMX2SCALEF = SCALEF * SAFMX2IF( SCALEF .LT. SAFMN2 ) GOTO 160IF( SCALEF .LT. SAFMN4 ) THENSCALE2 = SAFMN4 28



AGAIN = .TRUE.FS = FS * SAFMX4GS = GS * SAFMX4ENDIFENDIFF2 = ABSSQ(FS)G2 = ABSSQ(GS)FG2 = F2+G2D1 = ONE/SQRT( F2*FG2 )CS = F2*D1FG2 = FG2 * D1R = CMPLX( REAL(FS)*FG2, AIMAG(FS)*FG2 )SN = CMPLX( REAL(FS)*D1 , AIMAG(FS)*D1 )SN = CONJG(GS) * SNDO 170 I = 1, COUNTR = CMPLX( REAL(R) * SCALE, AIMAG(R) * SCALE )170 CONTINUEIF ( AGAIN )$ R = CMPLX( REAL(R) * SCALE2, AIMAG(R) * SCALE2 )ENDIFENDIFRETURN** End of CLARTG* END
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