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Abstract

In this paper, we investigate G-commerce —
computational economies for controlling resource
allocation in Computational Grid settings. We de-
fine hypothetical resource consumers (represent-
ing users and Grid-aware applications) and re-
source producers (representing resource owners
who “sell” their resources to the Grid). We then
measure the efficiency of resource allocation un-
der two different market conditions: commodities
markets and auctions. We compare both mar-
ket strategies in terms of price stability, market
equilibrium, consumer efficiency, and producer
efficiency. Our results indicate that commodities
markets are a better choice for controlling Grid
resources than previously defined auction strate-
gies.�This work was supported, in part, by NSF grants EIA-
9975020, EIA-9975015, ACI-9876895.

1 Introduction

With the proliferation of the Internet comes the
possibility of aggregating vast collections of com-
puters into large-scale computational platforms.
A new computing paradigm known as the Com-
putational Grid [15, 3] articulates a vision of dis-
tributed computing in which applications “plug”
into a “power grid” of computational resources
when they execute, dynamically drawing what
they need from the global supply. While a great
deal of research concerning the software mecha-
nisms that will be necessary to bring Computa-
tional Grids to fruition is underway [3, 14, 18, 8,
4, 20, 19, 1, 28], little work has focused on the re-
source control policies that are likely to succeed.
In particular, almost all Grid resource allocation
and scheduling and research espouses one of two
paradigms: centralized omnipotent resource con-
trol [16, 18, 24, 25] or localized application con-
trol [9, 4, 2, 17]. The first is certainly not a scal-
able solution and the second can lead to unsta-



ble resource assignments as “Grid-aware” appli-
cations adapt to compete for resources.

In this paper, we investigateG-commerce—
the problem of dynamic resource allocation on the
Grid in terms of computationalmarket economies
in which applications must buy the resources they
use from resource suppliers using an agreed-upon
currency. Framing the resource allocation prob-
lem in economic terms is attractive for several
reasons. First, resource usage is not free. While
burgeoning Grid systems are willing to make re-
sources readily available to early developers as
a way of cultivating a user community, resource
cost eventually must be considered if the Grid is
to become pervasive. Second, the dynamics of
Grid performance response are, as of yet, diffi-
cult to model. Application schedulers can make
resource acquisition decisions at machine speeds
in response to the perceived effects of contention.
As resource load fluctuates, applications can ad-
just their resource usage, forming a feedback con-
trol loop with a potentially non-linear response.
By formulating Grid resource usage in market
terms, we are able to draw upon a large-body of
analytical research from the field of economics
and apply it to the understanding of emergent
Grid behavior. Last, if resource owners are to be
convinced to federate their resources to the Grid,
they must be able to account for the relative costs
and benefits of doing so. Any market formulation
carries with it an inherent notion of relative worth
which can be used to quantify the cost-to-benefit
ratio for both Grid users and stake-holders.

While there are a number of different plausible
G-commerce market formulations for the Grid,
we focus on two broad categories:commodi-
ties markets andauctions. The overall goal of
the Computational Grid is to allow applications
to treat computational, network, and storage re-
sources as individual and interchangeable com-
modities, and not specific machines, networks,
and disk or tape systems. Modeling the Grid as a
commodities market is thus a natural choice. On
the other hand, auctions require little in the way

of global price information, and they are easy to
implement in a distributed setting. Both types of
economies have been studied as strategies for dis-
tributed resource brokering [11, 29, 21, 6, 7, 10].
Our goal is to enhance our deeper understanding
how these economies will fare as resource broker-
ing mechanisms for Computational Grids.

To investigate Computational Grid settings and
G-commerce resource allocation strategies, we
evaluate commodities markets and auctions with
respect to four criteria:

1. Grid-wide price stability

2. Market equilibrium

3. Application efficiency

4. Resource efficiency

Price stability is critical to ensure scheduling sta-
bility. If the price fluctuates wildly, application
and resource schedulers that base their decisions
on the state of the economy will follow suit, lead-
ing to poor performance, and therefore ineffec-
tiveness of the Grid as a computational infrastruc-
ture. Equilibrium measures the degree to which
prices are fair. If the overall market cannot be
brought into equilibrium, the relative expense or
worth of a particular transaction cannot be trusted,
and again the Grid is not doing its job. Applica-
tion efficiency measures how effective the Grid
is as a computational platform. Resource effi-
ciency measures how well the Grid manages its
resources. Poor application and/or resource ef-
ficiency will mean that the Grid is not succeed-
ing as a computational infrastructure. Thus, we
use these four criteria to evaluate how well each
G-commerce economy works as the basis for re-
source allocation in Computational Grids.

The remainder of this paper is organized as fol-
lows. In the next section, we discuss the specific
market formulations we use in this study. Sec-
tion 3 describes the simulation methodology we
use and the results we obtain for different hypo-
thetical market parameterizations. In Section 4
we conclude and point to future work.
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2 G-commerce — Market Economies
for the Grid

In formulating a computational economy for
the Grid, we make four assumptions.#1: The
relative worth of a resource is determined by its
supply and the demand for it.This assumption
is important because it rules out pricing schemes
that are based on arbitrarily decided priorities.
For example, it is not possible in an economy for
an organization to simply declare what the price
of its resources are and then decree that its users
pay that price even if cheaper, better alternatives
are available. While there are several plausible
scenarios in which such Draconian policies are
appropriate (e.g. users are funded to use a spe-
cific machine as part of their individual research
projects), from the perspective of the Grid, the re-
source allocation problem under these conditions
has been solved.

#2: Relative worth, and not price, are deter-
mined by supply and demand. Supply and de-
mand are functions of price, and relative worth
is determined by some optimization function over
the space of prices. For example, in this paper, we
will consider the price to be representative of rela-
tive worth at the price-point that equalizes supply
and demand – that is, at market equilibrium. Con-
versely, at a non-equilibrium price-point (where
supply does not equal demand), price either over-
states or understates relative worth.

#3: We do not restrict the definition of currency
or the rules governing its supply. If users or appli-
cations are given currency from outside the sys-
tem, we would expect inflationary price behavior,
but the market will remain intact. Also, it is pos-
sible to segregate computational consumers and
producers. In a “true” market, producers are ex-
pected to spend their profits (somewhere) within
the economy eventually. While we believe our re-
sults remain valid for this more restricted case, in
this work we model producers and consumers as
disjoint entities.

#4: Resource decisions based on self-interest
are inescapable in any federated resource system.
If we are to simulate a computational economy we
must ultimately hypothesize supply and demand
functions for our simulated producers and con-
sumers respectively. Individual supply and de-
mand functions are difficult to measure at best,
particularly since there are no existing Computa-
tional Grid economies at present. Our admittedly
less- satisfactory approach is to define supply and
demand functions that represent each simulated
producer and consumer’s “self-interest.” An in-
dividual consumer buys only if the purchase is a
“good deal” for that consumer. Analogously, pro-
ducers sell only when a sale is in their best inter-
est.

In the next section, Section 2.1 we detail the
specific functions we investigate, but generally
our approach assumes that individuals act only in
their own self-interest.

2.1 Producers and Consumers

To compare the efficacy of commodities mar-
kets and auctions as Grid resource allocation
schemes, we define a set of simulated Grid re-
source producers and consumers representing re-
source providers and applications respectively.
We then use the same set of producers and con-
sumers to compare commodity and auction-based
market settings.

We simulate two different commodity produc-
ers in this study: CPU and disk storage. That is,
from the perspective of a resource market, there
are two kinds of resources within our simulated
Grids: CPUs and disks. While the results should
generalize to include a variety other commodities,
networks present a special problem. Our con-
sumer model is that an application may request
a specified amount of CPU and disk (the units of
which we discuss below) and that these requests
may be serviced by any provider regardless of lo-
cation or network connectivity. Since network
links cannot be combined with other resources
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arbitrarily, they cannot be modeled as separate
commodities. We believe that network cost can
be represented in terms of “shipping” costs in
more complicated markets, but for the purposes
of this study, we consider network connectivity to
be uniform.

2.1.1 CPU Producer Model

In this study, a CPU represents a computational
engine with a fixed dedicated speed. A CPU pro-
ducer agrees to sell to the Grid some number of
fixed “shares” of the CPU it controls. The real-
world scenario for this model is for CPU owners
to agree to host a fixed number of processes from
the Grid in exchange for Grid currency. Each pro-
cess gets a fixed, pre-determined fraction of the
dedicated CPU speed, but the owner determines
how many fractions or “slots” he or she is willing
to sell. For example, in our study, the fraction is
10% so each CPU producer agrees to sell a fixed
number (less than 10) of 10%-sized slots to the
Grid. When a job occupies a CPU, it is guaran-
teed to get 10% of the available cycles for each
slot it consumes. Each CPU, however, differs in
the total number of slots it is willing to sell.

To determine supply at a given price-point,
each CPU calculatesmean pri
e = revenue=now=slots (1)

whererevenue is the total amount of Grid cur-
rency (heretofore to be referred to as $G which is
pronounced “Grid bucks”),now is an increment-
ing clock, andslots is the total number of pro-
cess slots the CPU owner is willing to support.
Themean pri
e value is the average $G per time
unit per slot the CPU has made from selling to
the Grid. In our study, CPU producers will only
sell if the current price of a CPU slot exceeds themean pri
e value, and when they sell, they sell
all unoccupied slots. That is, the CPU will sell all
of its available slots with it will turn a profit (per
slot) with respect to the average profit over time.

2.1.2 Disk Producer Model

The model we use for a disk producer is similar
to that for the CPU producer, except that disks
sell some number of fixed-sized “files” that ap-
plications may use for storage. Themean pri
e
calculation for disk files ismean pri
e = revenue=now=
apa
ity (2)

where
apa
ity is the total number of files a disk
producer is willing to sell to the Grid. If the cur-
rent price for a file is greater than themean pri
e,
a disk producer will sell all of its available files.

Note that the resolution of CPU slots and file
sizes is variable. It is possible to make a CPU slot
span the duration of a single clock cycle, and a
disk file be a single byte. Since our markets trans-
act business at the commodity level, however, we
hypothesize that any real implementation for the
Grid will need to work with larger-scale aggrega-
tions of resources for reasons of efficiency. For
the simulations described in Section 3 we choose
values for these aggregations that we believe re-
flect a market formulation that is currently imple-
mentable.

2.1.3 Consumers and Jobs

Consumers express their needs to the market in
the form of jobs. Each job specifies both a size
and an occupancy duration for each resource to
be consumed. Each consumer also sports a bud-
get of $G that it can use to pay for the resources
needed by its jobs. Consumers are given an initial
budget and a periodic allowance, but they are not
allowed to hold $G over from one period until the
next. This method of budget refresh is inspired by
the allocation policies currently in use at the NSF
Partnerships for Advanced Computational Infras-
tructure (PACIs). At these centers, allocations are
perishable.

When a consumer wishes to purchase resources
for a job, it declares the size of the request for
each commodity, but not the duration. Our model
is that job durations are relatively long, and that
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producers allow consumers occupancy without
knowing for how long the occupancy will last. At
the time a producer agrees to sell to a consumer,
a price is fixed that will be charged to the con-
sumer for each simulated time unit until the job
completes.

For example, consider a consumer wishing to
buy a CPU slot for 100 minutes and a disk file for
300 minutes to service a particular job. If the con-
sumer wishes to buy each for a particular price, it
declares to the market a demand of 1 CPU slot
and 1 disk slot, but does not reveal the 100 and
300 minute durations. A CPU producer wishing
to sell at the CPU price agrees to accept the job
until the job completes (as does the disk producer
for the disk job). Once the sales are transacted, the
consumer’s budget is decremented by the agreed-
upon price every simulated minute, and each pro-
ducer’s revenue account is incremented by the
same amount. If the job completes, the CPU pro-
ducer will have accrued 100 times the CPU price,
the disk producer will have accrued 300 times the
disk price, and the consumer’s budget will have
been decremented by the sum of 100 times the
CPU price and 300 times the disk price.

In defining this method of conducting resource
transactions, we make several assumptions. First,
we assume that in an actual Grid setting resource
producers or suppliers will commit some fraction
of their resources to the Grid, and that fraction is
slowly changing. Once committed, the fraction
“belongs” to the Grid so producers are not con-
cerned with occupancy. They are concerned, in
our models, with profit and they only sell if it is
profitable on the average. By including time in
the supply functions, producers consider past oc-
cupancy (in terms of profit) when deciding to sell.
We are also assuming that neither consumers nor
producers are malicious and that both honor their
commitments. In practice, this requirement as-
suredly may be difficult to enforce. If consumers
and producers must agree to use secure authenti-
cation methods and system provided libraries to
gain access to Grid resources, then it should be

possible.

2.1.4 Consumer Demand

The consumer demand function is more complex
than the CPU and disk supply functions. Con-
sumers must purchase enough CPU and disk re-
sources for each job they wish to run. If they can-
not satisfy the request for only one type, they do
not express demand for the other. That is, the de-
mand functions for CPU and disks are strongly
correlated (although the supply functions are not).
This relationship between supply and demand
functions constitutes the most difficult of market
conditions. Most market systems make weaker
assumptions about the difference in correlation.
By addressing the more difficult case, we believe
our work more closely resembles what can be re-
alized in practice.

To determine their demand at a given price,
each consumer first calculates the average rate at
which it would have spent $G for the jobs it has
run so far if it had been charged the current price.
It then computes how many $G it can spend per
simulated time unit until the next budget refresh.
That is, it computesavg rate = Pi total worki � pri
eiinow (3)
apable rate = remaining budget(refresh� now) (4)

where total worki is the total amount of
work performed so far using commodityi,pri
ei is the current price for commodityi,remaining budget is the amount left to spend be-
fore the budget refresh,refresh is the budget re-
fresh time, andnow is the current time. When
apable rate is greater than or equal toavg rate,
a consumer will express demand.

Unlike our supply functions, the consumer de-
mand function does not consider past price per-
formance directly when determining demand. In-
stead, consumers using this function act oppor-
tunistically based on the money they have left to
spend and when they will receive more. They use
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past behavior only as an indication of how much
work they expect to introduce and buy when they
believe they can afford to sustain this rate.

Consumers, in our simulations, generate work
as a function of time. We arbitrarily fix some sim-
ulated period to be a “simulated day.” At the be-
ginning of each day, every consumer generates a
random number of jobs. By doing so, we hope
to model the diurnal user behavior that is typi-
cal in large-scale computational settings. In ad-
dition, each consumer can generate a single new
job every time step with a pre-determined proba-
bility. Consumers maintain a queue of jobs wait-
ing for service before they are accepted by pro-
ducers. When calculating demand, they computeavg rate and
apable rate and demand as many
jobs from this queue as they can afford.

To summarize, for our G-commerce simula-
tions:� All entities except the market-maker act in-

dividually in their respective self-interests.� Producers consider long-term profit and past
performance when deciding to sell.� Consumers are given periodic budget replen-
ishments and spend opportunistically.� Consumers introduce work loads in bulk at
the beginning of each simulated day, and ran-
domly throughout the day.

We believe that this combination of characteris-
tics captures a reasonable set of producer and con-
sumer traits in real Grid settings.

2.2 Commodities Markets

In a real-world commodities market, a single
type of commodity is exchanged in a central lo-
cation. An important feature of the commodities
market is that the goods brought to market by the
various suppliers are regarded as interchangeable,
market price is publicly agreed upon for the com-
modity regarded as a whole, and all buyers and

sellers decide whether (and how much) to buy or
sell at this price. Contrast this type of commerce
with one based upon auctions, wherein each buyer
and seller acts independently and contracts to buy
or sell at a price agreed upon privately.

Since the goal of a computational Grid is to
provide users with resources without regard to the
particular supplier, it seems very natural to model
a Grid economy using commodities markets. To
do so, we require a pricing methodology that pro-
duces a system of price adjustments which bring
about market equilibrium (i.e. equalizes supply
and demand).

2.2.1 Dynamic Pricing in Commodities Mar-
kets

From a theoretical standpoint, amarket economy
is a system involving producers, consumers, sev-
eral commodities, and supply and demand func-
tions for each commodity which are determined
by the set of market prices for the various com-
modities. (For the exact formulation of the as-
sumptions made in a market economy, see Debreu
[13].)

A unique equilibrium price is guaranteed to ex-
ist in this framework by a theorem of Debreu
([13], Chapter 5), the proof of which is non-
constructive and involves topological methods.
Since Debreu’s result, there have been various
attempts to formulate rules for price adjustment
which can be guaranteed to produce a sequence of
prices which converges on the equilibrium price.
Most notably, a variation of Walras’tâtonnement
(“groping”; cf [31]), in which each price is ad-
justed individually in response to its own excess
demand, can be shown to converge to economic
equilibrium, but only under the restrictive hypoth-
esis of “gross substitutability.” By definition, a
market economy exhibits gross substitutability if
the demand for any good is non-decreasing in the
price of any other good; that is, if an increase in
price for goodi, all other prices remaining con-
stant, never causes the demand for goodj; j 6= i,
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to decrease. Gross substitutability is not present
in our market. For example, an increase in the
price of CPU leads to a decrease in demand for
CPU, which will also lead to a decrease in de-
mand for disk, since CPU and disk are used in
conjunction with one another. (A real-world ex-
ample might be livestock and feed corn, since
a higher price of cattle means fewer cattle pur-
chased, which in turn lessens the need for feed
corn.)

In [27], Smale produced a means for proving
the existence of equilibrium which also entails a
scheme for price adjustments which reaches it:

If commodity prices are represented as aprice

vectorp = 0BBBB� p1p2
...pn 1CCCCA, wherepi stands for the price

of the ith commodity, we can defineexcess de-
mandzj for thejth commodity as the demand mi-
nus the supply. As defined,zj may be positive
or negative; negative excess demand can be inter-
preted simply as excess supply. We assume that
the markets for these commodities may be inter-
related, so that eachzj is a function of all of the
pricespi, that is, of the vectorp. Smale’s theorem
says given a market consisting ofn interrelated
commodities with price vectorp and associated
excess demand vectorz(p) = z = anequilibrium
point with p� such thatz(p�) = 0 exists [33].
Moreover, for any value ofp, we can form then� n matrix of partial derivativesDz(p) =  �zi�pj! :
Then for any value of� which has the same sign
as the determinant ofDz(p), we can obtain eco-
nomic equilibrium by always obeying the differ-
ential equationDz(p)dpdt = ��z(p): (5)

2.2.2 Price Adjustment Schemes

Herein we examine the results of using several
price adjustment schemes in simulated computa-
tional market economies. Smale’s method is not
possible to use directly for a number of reasons.
First, any actual economy is inherently discrete,
so the partial derivatives in equation 5 do not ex-
ist, strictly speaking. Second, given the behavior
of the producers and consumers described above,
there are threshold prices for each agent that bring
about sudden radical changes in behavior, so that
a reasonable model for excess demand functions
would involve sizeable jump discontinuities. Fi-
nally, the assumptions in Smale’s model are that
supply and demand are functions of price only
and independent of time, whereas in practice there
are a number of ways for supply and demand to
change over time for a given price vector.

Observe that taking� = 1 and applying the
Euler discretization at positive integer values oft reduces this process to the Newton-Raphson
method for solvingz(p) = 0; for this reason,
Smale refers to this process as “global Newton.”

Implementing Smale’s method: As observed
above, obtaining the partial derivatives necessary
to carry out Smale’s process in an actual economy
is impossible; however, within the framework of
our simulated economy, we are able to get good
approximations for the partials at a given price
vector by polling the producers and consumers.
Starting with a price vector, we find their pref-
erences at price vectors obtained by fixing all but
one price and varying the remaining price slightly,
thus achieving a “secant-line” approximation for
each commodity separately; we then substitute
these approximations for the values of the partial
derivatives in the matrixDz(p), discretize with
respect to time, solve Equation 5 for the incre-
mentdp to get our new price vector, and iterate.
We will refer, conveniently but somewhat inaccu-
rately, to this price adjustment scheme asSmale’s
method.
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The First Bank of G: The drawback to the
above scheme is that it relies on polling aggregate
supply and demand repeatedly to obtain the par-
tial derivatives of the excess demand functions.
In practice, we do not wish to assume that such
polling information will be available.

A theoretically attractive way to circumvent
this difficulty is to approximate each excess de-
mand functionzi by a polynomial inp1; p2; :::; pn
which fits recent price and excess demand vec-
tors and to use the partial derivatives of these
polynomials in Equation 5. In simulations, this
method does not, in general, produce prices which
approach equilibrium. TheFirst Bank of G is
a price adjustment scheme which both is prac-
ticable and gives good results; this scheme in-
volves the usingtâtonnement(see above) until
prices get “close” to equilibrium, in the sense that
excess demands have sufficiently small absolute
value, and then using the polynomial method for
“fine tuning.” Thus, the First Bank of G approx-
imates Smale’s method but is implementable in
real-world Grid settings since it hypothesizes ex-
cess demand functions and need not poll the mar-
ket for them. Our experience is that fairly high-
degree polynomials are required to capture excess
demand behavior with the sharp discontinuities
decried above. For all simulations described in
Section 3, we use a degree 17 polynomial.

2.3 Auctions

Auctions have been extensively studied as re-
source allocation strategies for distributed com-
puting systems. In a typical auction system
(e.g. [11, 29, 21, 6]), resource producers (typi-
cally CPU producers) auction themselves using
a centralized auctioneer and sealed-bid, second-
price auctions. That is, consumers place one bid
with the auctioneer, and in each auction, the con-
sumer with the highest bid receives the resource
at the price of the second-highest bidder. This is
equivalent to “just” outbidding the second-highest
bidder in an open, multi-round auction, and en-

courages consumers to bid what the resource is
worth to them (see [6] for further description of
auction variants).

When consumers simply desire one commod-
ity, for example CPUs in Popcorn [21], auctions
provide a convenient, straightforward mechanism
for clearing the marketplace. However, the as-
sumptions of a Grid Computing infrastructure
pose a few difficulties to this model. First, when
an application (the consumer in a Grid Computing
scenario) desires multiple commodities, it must
place simultaneous bids in multiple auctions, and
may only be successful in a few of these. When
this happens, it must expend currency on the re-
sources that it has obtained while it waits to ob-
tain the others. This is expenditure is wasteful,
and the uncertain nature of auctions may lead to
inefficiency for both producers and consumers.

Second, while a commodities market presents
an application with a resource’s worth in terms of
its price, thus allowing the application to make
meaningful scheduling decisions, an auction is
more unreliable in terms of both pricing and the
ability to obtain a resource, and may therefore re-
sult in poor scheduling decisions and more ineffi-
ciency for consumers.

To gain a better understanding of how auc-
tions fare in comparison to commodities mar-
kets, we implement the following simulation of an
auction-based resource allocation mechanism for
computational grids. At each time step, CPU and
disk producers submit their unused CPU and file
slots to a CPU and a disk auctioneer. These are
accompanied by a minimum selling price, which
is the average profit per slot, as detailed in Sec-
tion 2.1.1 above. Consumers use the demand
function as described in Section 2.1.3 to define
their bid prices, and as long as they have money
to bid on a job, and a job for which to bid, they
bid on each commodity needed by their oldest un-
commenced job.

Once the auctioneers have received all bids
resource submissions for a time step, they cy-
cle through all the commodities in a random or-
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der, performing one auction per commodity. In
each auction, the highest-bidding consumer gets
the commodity if the bid price is greater than
the commodity’s minimum price. If there is a
second-highest bidder whose price is greater than
the commodity’s minimum price, then the price
for the transaction is the second-highest bidder’s
price. If there is no such second-highest bidder,
then the price of the commodity is the average
of the commodity’s minimum selling price and
the consumer’s bid price. When a consumer and
commodity have been matched, the commodity is
removed from the auctioneer’s list of commodi-
ties, as is the consumer’s bid. At that point, the
consumer can submit another bid to that or any
other auction, if desired. This occurs when a con-
sumer has obtained all commodities for its old-
est uncommenced job, and has another job to run.
Auctions are transacted in this manner for every
commodity, and this process is repeated at every
time step.

Note that this structuring of the auctions means
that each consumer may have at most one job for
which it is currently bidding. When it obtains all
the resources for that job, it immediately starts
bidding on its next job. When a time step expires
and all auctions for that time step have been com-
pleted, there may be several consumers whose
jobs have some resources allocated and some un-
allocated, as a result of failed bidding. These con-
sumers have to pay for their allocated resources
while they wait to start bidding in the next time
step.

While the auctions determine transaction prices
based on individual bids, the supply and demand
functions used by the producers and consumers
to set ask and bid price are the same functions
we use in the commodities market formulations.
Thus, we can compare the market behavior and
individual producer and consumer behavior in
both auction and commodity market settings.

3 Simulations and Results

We compare commodities markets and auc-
tions using the producers and consumers de-
scribed in Section 2.1 in two overall market set-
tings. In the first, which we termunder-demand,
producers are capable of supporting enough de-
mand to service all of the jobs consumers can
afford. Recall that our markets do not include
resale components. Consumers do not make
money. Instead, $G are given to them periodically
much the in the same way that PACIs dole out
machine-time allocations. Similarly, producers
do not spend money. Once gathered, it is hoarded.
The under-demand case corresponds to a working
Grid economy in which the allocations correctly
match the available resources. That is, when the
rate that $G are allocated to consumers roughly
matches the rate at which they introduce work to
the Grid. In theover-demandcase, consumers
wish to buy more resource than is available. That
is, they generate work fast enough to keep all pro-
ducers almost completely busy thereby creating a
work back-log.

Table 1 completely describes the invariant sim-
ulation parameters we chose for both cases. For
all ranges (e.g. slots per CPU), uniform pseudo-
random numbers were drawn from between the
given extrema. For the under-demand simulation,
we defined100 consumers to use the100 CPUs
and disks, where each consumer submitted a ran-
dom number of jobs (between1 and100) at every
day-break, and had a 10% chance of submitting a
new job every time unit. The over-demand simu-
lation specified500 of the same consumers, with
all other parameters held constant.

Using our simulated markets, we wish to inves-
tigate three questions with respect to commodities
markets and auctions.

1. Do the theoretical results from Smale’s
work [26] apply to plausible Grid simula-
tions?

2. Can we approximate Smale’s method with
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CPUs 100
disks 100
CPU slots per CPU [2 .. 10]
disk files per disk [1 .. 15]
CPU job length [1 .. 60] time units
disk job length [1 .. 60] time units
simulated day 1440 time units
allowance period [1 .. 10] days
jobs submitted at day-break [1 .. 100]
new job probability 10%
allowance 106 $G
Bank of G Polynomial Degree17� factor .01

Table 1. Invariant simulation parameters for
this study

one that is practically implementable?

3. Are auctions or commodities markets
a better choice for Grid computational
economies?

Question (1) is important because if Smale’s re-
sults apply, they dictate that an equilibrium price-
point must exist (in a commodity market formu-
lation), and they provide a methodology for find-
ing those prices that make up the price-point.
Assuming the answer to question (1) is affirma-
tive, we also wish to explore methodologies that
achieve or approximate Smale’s results, but which
are implementable in real Grid settings. Lastly,
recent work in Grid economies [1, 16, 24] and
much previous work in computational economic
settings [12, 22, 5, 30] has centered on auctions
as the appropriate market formulation. We wish
to investigate question (3) to determine whether
commodities markets are a better, or at least plau-
sible alternative.

3.1 Market Conditions

Figure 1 shows the CPU and disk prices for
Smale’s method in our simulated Grid economy

over10; 000 time units. The diurnal nature of con-
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Figure 1. Smale’s prices for the under-
demand case. Solid line is CPU price,’ and
dotted line is disk price in $G

sumer job submission is evident from the price
fluctuations. Every 1440 “minutes” each con-
sumer generates between 1 and 100 new jobs
causing demand and prices to spike. However,
Smale’s method is able to find an equilibrium
price for both commodities quickly, as is evi-
denced in Figure 2. Notice that the excess demand
spikes in conjunction with the diurnal load, but
is quickly brought to zero by the pricing shown
in Figure 1 where it hovers until the next cycle.
Figure 3 shows excess demand for disk during
the simulation period. Again, market equilibrium
is quickly achieved despite the cyclic and non-
smooth aggregate supply and demand functions
implemented by the producers and consumers.

In Figure 4 we show the pricing determined
by our engineering approximation to Smale’s
method — the First Bank of G The First Bank of
G pricing closely approximates the theoretically
achievable results generated by Smale’s method
in our simulated environment. However, The
Bank does not require polling to determine the
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Figure 2. Smale’s CPU excess demand for the
under-demand case. The units are CPU slots.

partial derivatives for the aggregate supply and
demand functions. Instead, it uses an iterative
polynomial approximation that it derives from
simple observations of purchasing and consump-
tion. As such, it is possible to implement the First
Bank of G for use in a real Grid setting. Fig-
ures 5 and 6 show excess demand measures gen-
erated by First Bank of G pricing over the simu-
lated period. While the excess demands for both
commodities are not as tightly controlled as with
Smale’s method, the First Bank of G keeps prices
very near equilibrium.

The pricing determined by auctions is quite dif-
ferent, however, as depicted in Figures 7 and 8
(we show CPU and disk price separately as they
are almost identical and obscure the graph when
overlayed). In the figure, we show the average
price paid by all consumers for CPU during each
auction round. We use the average price for all
auctions as being representative of the “global”
market price. Even though this price is smoothed
as an average (some consumers pay more and
some pay less during each time step), it shows
considerably more variance prices set by the com-
modities market. The spikes in workload are not
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Figure 3. Smale’s disk excess demand for the
under-demand case. The units are simulated
file units.

reflected in the price, and the variance seems to
increase (i.e. the price becomes less stable) over
time. Furthermore, disk pricing is virtually identi-
cal. Disk resources are more plentiful in out simu-
lations so disk prices should be lower in a healthy
economy. The auction fails to capture this rela-
tionship, but the commodities market (both the-
oretically an practically) correctly determines a
higher price for the scarce resource.

Excess demand for an auction is more difficult
to measure since prices are negotiated between
individual buyers and sellers. As an approxima-
tion, we consider the sum of unsatisfied bids and
the number of auctions that did not make a sale
as a measure of market equilibrium. Under this
assumption, the market is in equilibrium when
all bids are satisfied (demand is satisfied) and all
auctioned goods are sold (supply is exhausted).
Any surplus goods or unsatisfied bids are “ex-
cess.” While is does not make sense to assign a
sign to these surpluses (surplus supply, for exam-
ple, may not be undemanded supply) in the way
that we can with aggregate supply and demand in
a commodity market, in absolute value this mea-
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Figure 4. First Bank of G prices for the under-
demand case. Solid line is CPU price,’ and
dotted line is disk price in $G

sure captures distance from equilibrium. Hence
we term itabsolute excess demand.

In Figure 9 we show this measure of excess de-
mand for CPUs in the under-demanded auction.
Figure 10 shows the same data as in Figure 5 from
the First Bank of G, but in absolute value. While
the First bank of G shows more variance in ab-
solute excess demand, it achieves equilibrium at
times. Conversely, the auction sets prices that
never satisfy the market. Strangely, the auction
comes closest to equilibrium when demand spikes
at each day-break. We are working to understand
this behavior and will report on it as part of our
future endeavors.

From these graphs we conclude that Smale’s
method is appropriate for modeling hypothetical
Grid market and that the First Bank of G is a
reasonable (and implementable) approximation of
this method. These results are somewhat surpris-
ing given the discrete and sharply changing sup-
ply and demand functions used by our producers
and consumers. Smale’s proofs assume continu-
ous functions and readily available partial deriva-
tives. We also note that auctioneering, while at-
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Figure 5. First Bank of G CPU excess demand
for the under-demand case. The units are
CPU slots.

tractive from an implementation standpoint, does
not produce stable pricing or market equilibrium.
If Grid resource allocation decisions are based on
auctions, they will share this instability and lack
of fairness. Conversely, a commodities market
formulation, at least in simulation, performs bet-
ter from the standpoint of the Grid as a whole.
These results agree with those reported in [30]
which indicate that auctions are locally advanta-
geous, but may exhibit volatile emergent behavior
system wide.

For the over-demanded market case, we in-
creased the number of consumers to 500 leaving
all other parameters fixed. The results we similar
prompting us to omit their bulk in favor of space,
with one exception. Figure 11 shows the pricing
information using Smale’s method for the over-
demand market, and Figure 12 shows the prices
determined by the First Bank of G. Note that
Smale’s method determines a higher price for disk
than CPU and that the First Bank of G (which cor-
rectly identifies the CPU as the more expensive
commodity) chooses a significantly higher price
for CPU, but a lower price for disk. While it

12
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Figure 6. First Bank of G disk excess demand
for the under-demand case. The units are
simulated file units.

seems that one method or the other as determined
a non-equilibrium price, excess demand graphs
(Figures 13 and 14) for CPU show that they both
are centered on market equilibrium. While it is
difficult to read from the graphs (we use a uni-
form scale so that all graphs in this study of a
certain type may be compared), the mean excess
demand for the data shown in Figure 13 is52:4,
and the the First Bank of G data in Figure 14, the
mean excess demand is25:6. Both of these values
are near enough to zero to show equilibrium, we
believe, but the price inversion is difficult to ex-
plain. We conjecture that Smale’s method, which
relies upon probing the market to observe partial
derivatives, becomes insensitive to price fluctua-
tion near market saturation. That is, in the over-
demand case, small price changes to do not yield
meaningful changes in excess demand (the de-
mand is constant and high) so partial derivatives
may not be observed. The First Bank of G, how-
ever, uses tâtonnement when excess demand ex-
ceeds a pre-specified threshold causing it to drive
the price in the “right” direction. The First Bank
of G, then, will continue to raise the price until
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Figure 7. Auction prices for the under-
demand case, average CPU price only, in $G

demand is extinguished. It is worth noting, how-
ever, that neither method centers excess demand
far from zero and market equilibrium.

3.2 Efficiency

While commodities markets using Smale’s
method of price determination appear to offer bet-
ter theoretical and simulated economic properties
(equilibrium and price stability) than auctions do,
we also wish to consider the effect of the two
pricing schemes on producer and consumer effi-
ciency. To do so, we report the average percent-
age of time each resource is occupied as a utiliza-
tion metric for suppliers, and the average number
of jobs/minute each consumer was able to com-
plete as a consumer metric. Table 2 summarizes
these values for both the over- and under-demand
cases.

In terms of efficiency, Smale’s method is best
and the First Bank of G achieves almost the same
results. Both are significantly better than the auc-
tion in all metrics except disk utilization in the
over-demanded case. Since CPUs are the scarce
resource, disk price may fluctuate through a small

13



efficiency metric under demand over demand

Smaleconsumer jobs/min 0.14 j/m 0.05 j/m
B of G consumer jobs/min 0.13 j/m 0.04 j/m
auction consumer jobs/min 0.07 j/m 0.03 j/m

SmaleCPU utilization % 60.7% 98.2%
B of G CPU utilization % 60.4% 93.9%
auctionCPU utilization % 35.2% 85.5%

Smaledisk utilization % 54.7% 88.3%
B of G disk utilization % 54.3% 84.6%
auctiondisk utilization % 37.6% 85.1%

Table 2. Consumer and Producer efficiencies
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Figure 8. Auction prices for the under-
demand case, average disk price only, in $G

range without consequence when lack of CPU
supply throttles the system. The auction seems to
achieve slightly better disk utilization under these
conditions. In general, however, Smale’s method
and the First Bank of G approximation both out-
perform the auction in the simulated Grid setting.

4 Conclusions and Future Work

In this paper, we investigate G-commerce —
computational economies for controlling resource
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Figure 9. Auction absolute excess demand for
CPU in the under-demand case. The units are
CPU slots.

allocation Computational Grid settings. We de-
fine hypothetical resource consumers (represent-
ing users and Grid-aware applications) and re-
source producers (representing resource owners
who “sell” their resources to the Grid). While
there are an infinite number of ways to represent
individual resource supply and demand in simu-
lated setting, and none are completely accurate,
we have identified a set of traits that we believe
are realistic.
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Figure 10. First Bank of G absolute excess
demand for CPU in the under-demand case.
The units are CPU slots.� All entities except the market-maker act in-

dividually in their respective self-interests.� Producers consider long-term profit and past
performance when deciding to sell.� Consumers are given periodic budget replen-
ishments and spend opportunistically.� Consumers introduce work loads in bulk at
the beginning of each simulated day, and ran-
domly throughout the day.

Using simulated consumers and producers
obeying these constraints, we investigate two
market strategies for setting prices: commodi-
ties markets and auctions. Commodities mar-
kets are a natural choice given the fundamen-
tal tenets of the Grid [15]. Auctions, however,
are simple to implement and widely studied. We
are interested in which methodology is most ap-
propriate for Grid settings. To investigate this
question, we examine the overall price stability,
market equilibrium, producer efficiency,a nd con-
sumer efficiency achieved by three methods in
simulation. The first implements the theoretical
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Figure 11. Smale’s CPU and disk prices for the
over-demand case. Solid line is CPU price,
dotted line is disk price, and The units are
$G.

work of Smale [26] which describes how to ad-
just prices in a commodities market to achieve
equilibrium. It is viable in simulation, but im-
practical in the “real-world” as it relies on being
able to poll reliably producers and consumers for
supply and demand information. Often they do
not know, or will not say what their response to a
given price will be. The second method (The First
Bank of G) is an implementable approximation
to Smale’s method. It uses a large-degree poly-
nomial to approximate excess demand functions
instead of polling making it parameterizable by
observed market behavior only. Lastly, we simu-
late auctions in the style that has been investigated
previously.

Our results show that Smale’s results hold for
our simulated Grid environment, despite badly
behaved excess demand functions, and that the
First Bank of G achieves results only slightly less
desirable. In all cases, auctions are an inferior
choice.

As part of our future work, we plan two par-
allel thrusts. First, we are exploring the space of
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Figure 12. First Bank of G CPU and disk prices
for the over-demand case. Solid line is CPU
price, dotted line is disk price, and The units
are $G.

plausible G-commerce formulations. Our goal is
to identify and test, in simulation, different possi-
ble economies for the Grid. Secondly, we plan to
construct a working version of the First Bank of
G. Our previous work with the Network Weather
Service [32, 34] and IBP [23] leaves us with the
infrastructure necessary to build a large scale sup-
ply and demand information repository. Using the
First Bank of G, we can generate prices based on
“live” supply and demand information.
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