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Abstract

In this paper, we investigate G-commerce —
computational economies for controlling resource
allocation in Computational Grid settings. We de-
fine hypothetical resource consumers (represent-
ing users and Grid-aware applications) and re-
source producers (representing resource owners
who “sell” their resources to the Grid). We then
measure the efficiency of resource allocation un-
der two different market conditions: commodities
markets and auctions. We compare both mar-
ket strategies in terms of price stability, market
equilibrium, consumer efficiency, and producer
efficiency. Our results indicate that commodities
markets are a better choice for controlling Grid
resources than previously defined auction strate-
gies.�This work was supported in part by NSF grants EIA-
9975020, EIA-9975015, and ACI-9876895.

1 Introduction

With the proliferation of the Internet comes the
possibility of aggregating vast collections of com-
puters into large-scale computational platforms.
A new computing paradigm known as the Com-
putational Grid [17, 3] articulates a vision of dis-
tributed computing in which applications “plug”
into a “power grid” of computational resources
when they execute, dynamically drawing what
they need from the global supply. While a great
deal of research concerning the software mecha-
nisms that will be necessary to bring Computa-
tional Grids to fruition is underway [3, 16, 20, 8,
4, 24, 21, 1, 34], little work has focused on the
resource control policies that are likely to suc-
ceed. In particular, almost all Grid resource al-
location and scheduling research espouses one of
two paradigms: centralized omnipotent resource
control [18, 20, 28, 29] or localized application
control [9, 4, 2, 19]. The first is certainly not a
scalable solution and the second can lead to un-



stable resource assignments as “Grid-aware” ap-
plications adapt to compete for resources.

In this paper, we investigateG-commerce—
the problem of dynamic resource allocation on the
Grid in terms of computationalmarket economies
in which applications must buy the resources they
use from resource suppliers using an agreed-upon
currency. Framing the resource allocation prob-
lem in economic terms is attractive for several
reasons. First, resource usage is not free. While
burgeoning Grid systems are willing to make re-
sources readily available to early developers as
a way of cultivating a user community, resource
cost eventually must be considered if the Grid is
to become pervasive. Second, the dynamics of
Grid performance response are, as of yet, diffi-
cult to model. Application schedulers can make
resource acquisition decisions at machine speeds
in response to the perceived effects of contention.
As resource load fluctuates, applications can ad-
just their resource usage, forming a feedback con-
trol loop with a potentially non-linear response.
By formulating Grid resource usage in market
terms, we are able to draw upon a large body of
analytical research from the field of economics
and apply it to the understanding of emergent
Grid behavior. Last, if resource owners are to be
convinced to federate their resources to the Grid,
they must be able to account for the relative costs
and benefits of doing so. Any market formulation
carries with it an inherent notion of relative worth
which can be used to quantify the cost-to-benefit
ratio for both Grid users and stake-holders.

While there are a number of different plausible
G-commerce market formulations for the Grid,
we focus on two broad categories:commodi-
ties markets andauctions. The overall goal of
the Computational Grid is to allow applications
to treat computational, network, and storage re-
sources as individual and interchangeable com-
modities, and not specific machines, networks,
and disk or tape systems. Modeling the Grid as a
commodities market is thus a natural choice. On
the other hand, auctions require little in the way

of global price information, and they are easy to
implement in a distributed setting. Both types of
economies have been studied as strategies for dis-
tributed resource brokering [11, 35, 25, 6, 7, 10].
Our goal is to enhance our deeper understanding
of how these economies will fare as resource bro-
kering mechanisms for Computational Grids.

To investigate Computational Grid settings and
G-commerce resource allocation strategies, we
evaluate commodities markets and auctions with
respect to four criteria:

1. Grid-wide price stability

2. Market equilibrium

3. Application efficiency

4. Resource efficiency

Price stability is critical to ensure scheduling sta-
bility. If the price fluctuates wildly, application
and resource schedulers that base their decisions
on the state of the economy will follow suit, lead-
ing to poor performance, and therefore ineffec-
tiveness of the Grid as a computational infrastruc-
ture. Equilibrium measures the degree to which
prices are fair. If the overall market cannot be
brought into equilibrium, the relative expense or
worth of a particular transaction cannot be trusted,
and again the Grid is not doing its job. Applica-
tion efficiency measures how effective the Grid
is as a computational platform. Resource effi-
ciency measures how well the Grid manages its
resources. Poor application and/or resource ef-
ficiency will mean that the Grid is not succeed-
ing as a computational infrastructure. Thus, we
use these four criteria to evaluate how well each
G-commerce economy works as the basis for re-
source allocation in Computational Grids.

The remainder of this paper is organized as fol-
lows. In the next section, we discuss the specific
market formulations we use in this study. Sec-
tion 3 describes the simulation methodology we
use and the results we obtain for different hypo-
thetical market parameterizations. In Section 4
we conclude and point to future work.
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2 G-commerce — Market Economies
for the Grid

In formulating a computational economy for
the Grid, we make two assumptions.#1: The rel-
ative worth of a resource is determined by its sup-
ply and the demand for it.This assumption is im-
portant because it rules out pricing schemes that
are based on arbitrarily decided priorities. For ex-
ample, it is not possible in an economy for an
organization to simply declare what the price of
its resources are and then decree that its users
pay that price even if cheaper, better alternatives
are available. While there are several plausible
scenarios in which such Draconian policies are
appropriate (e.g. users are funded to use a spe-
cific machine as part of their individual research
projects), from the perspective of the Grid, the re-
source allocation problem under these conditions
has been solved.

Further, we assume that supply and demand are
functions of price, and that true relative worth is
represented at the price-point where supply equals
demand – that is, at market equilibrium. Con-
versely, at a non-equilibrium price-point (where
supply does not equal demand), price either over-
states or understates relative worth.

#2: Resource decisions based on self-interest
are inescapable in any federated resource system.
If we are to simulate a computational economy,
we must ultimately hypothesize supply and de-
mand functions for our simulated producers and
consumers respectively. Individual supply and
demand functions are difficult to measure at best,
particularly since there are no existing Compu-
tational Grid economies which we can observe.
Our admittedly less-satisfactory approach is to
define supply and demand functions that represent
each simulated producer and consumer’s “self-
interest.” An individual consumer buys only if
the purchase is a “good deal” for that consumer.
Analogously, producers sell only when a sale is in
their best interest.

In the next section, we detail the specific func-

tions we investigate, but generally our approach
relies on these two assumptions.

2.1 Producers and Consumers

To compare the efficacy of commodities mar-
kets and auctions as Grid resource allocation
schemes, we define a set of simulated Grid
producers and consumers representing resource
providers and applications respectively. We then
use the same set of producers and consumers to
compare commodity and auction-based market
settings.

We simulate two different kinds of producers
in this study: producers of CPUs and produc-
ers of disk storage. That is, from the perspec-
tive of a resource market, there are two kinds
of resources within our simulated Grids: CPUs
and disks. While the results should generalize
to include a variety other commodities, networks
present a special problem. Our consumer model
is that an application may request a specified
amount of CPU and disk (the units of which we
discuss below) and that these requests may be ser-
viced by any provider regardless of location or
network connectivity. Since network links can-
not be combined with other resources arbitrarily,
they cannot be modeled as separate commodities.
We believe that network cost can be represented
in terms of “shipping” costs in more complicated
markets, but for the purposes of this study, we
consider network connectivity to be uniform.

2.1.1 CPU Producer Model

In this study, a CPU represents a computational
engine with a fixed dedicated speed. A CPU pro-
ducer agrees to sell to the Grid some number of
fixed “shares” of the CPU it controls. The real-
world scenario for this model is for CPU owners
to agree to host a fixed number of processes from
the Grid in exchange for Grid currency. Each pro-
cess gets a fixed, pre-determined fraction of the
dedicated CPU speed, but the owner determines
how many fractions or “slots” he or she is willing
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to sell. For example, in our study, the fraction is
10% so each CPU producer agrees to sell a fixed
number (less than 10) of 10%-sized slots to the
Grid. When a job occupies a CPU, it is guaran-
teed to get 10% of the available cycles for each
slot it consumes. Each CPU, however, differs in
the total number of slots it is willing to sell.

To determine supply at a given price-point,
each CPU calculatesmean prie = revenue=now=slots (1)

whererevenue is the total amount of Grid cur-
rency (hereafter referred to as $G which is pro-
nounced “Grid bucks”),now is an incrementing
clock, andslots is the total number of process
slots the CPU owner is willing to support. Themean prie value is the average $G per time unit
per slot the CPU has made from selling to the
Grid. In our study, CPU producers will only sell
if the current price of a CPU slot exceeds themean prie value, and when they sell, they sell
all unoccupied slots. That is, the CPU will sell all
of its available slots with it will turn a profit (per
slot) with respect to the average profit over time.

2.1.2 Disk Producer Model

The model we use for a disk producer is similar
to that for the CPU producer, except that disks
sell some number of fixed-sized “files” that ap-
plications may use for storage. Themean prie
calculation for disk files ismean prie = revenue=now=apaity (2)

whereapaity is the total number of files a disk
producer is willing to sell to the Grid. If the cur-
rent price for a file is greater than themean prie,
a disk producer will sell all of its available files.

Note that the resolution of CPU slots and file
sizes is variable. It is possible to make a CPU
slot equivalent to the duration of a single clock
cycle, and a disk file be a single byte. Since our
markets transact business at the commodity level,

however, we hypothesize that any real implemen-
tation for the Grid will need to work with larger-
scale aggregations of resources for reasons of effi-
ciency. For the simulations described in Section 3
we choose values for these aggregations that we
believe reflect a market formulation that is cur-
rently implementable.

2.1.3 Consumers and Jobs

Consumers express their needs to the market in
the form of jobs. Each job specifies both a size
and an occupancy duration for each resource to
be consumed. Each consumer also sports a bud-
get of $G that it can use to pay for the resources
needed by its jobs. Consumers are given an initial
budget and a periodic allowance, but they are not
allowed to hold $G over from one period until the
next. This method of budget refresh is inspired by
the allocation policies currently in use at the NSF
Partnerships for Advanced Computational Infras-
tructure (PACIs). At these centers, allocations are
perishable.

When a consumer wishes to purchase resources
for a job, it declares the size of the request for
each commodity, but not the duration. Our model
is that job durations are relatively long, and that
producers allow consumers occupancy without
knowing for how long the occupancy will last. At
the time a producer agrees to sell to a consumer,
a price is fixed that will be charged to the con-
sumer for each simulated time unit until the job
completes.

For example, consider a consumer wishing to
buy a CPU slot for 100 minutes and a disk file for
300 minutes to service a particular job. If the con-
sumer wishes to buy each for a particular price, it
declares to the market a demand of 1 CPU slot
and 1 disk slot, but does not reveal the 100 and
300 minute durations. A CPU producer wishing
to sell at the CPU price agrees to accept the job
until the job completes (as does the disk producer
for the disk job). Once the sales are transacted, the
consumer’s budget is decremented by the agreed-
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upon price every simulated minute, and each pro-
ducer’s revenue account is incremented by the
same amount. If the job completes, the CPU pro-
ducer will have accrued 100 times the CPU price,
the disk producer will have accrued 300 times the
disk price, and the consumer’s budget will have
been decremented by the sum of 100 times the
CPU price and 300 times the disk price.

In defining this method of conducting resource
transactions, we make several assumptions. First,
we assume that in an actual Grid setting resource
producers or suppliers will commit some fraction
of their resources to the Grid, and that fraction is
slowly changing. Once committed, the fraction
“belongs” to the Grid so producers are not con-
cerned with occupancy. They are concerned, in
our models, with profit and they only sell if it is
profitable on the average. By including time in
the supply functions, producers consider past oc-
cupancy (in terms of profit) when deciding to sell.
We are also assuming that neither consumers nor
producers are malicious and that both honor their
commitments. In practice, this requirement as-
suredly will be difficult to enforce. However, if
consumers and producers must agree to use se-
cure authentication methods and system-provided
libraries to gain access to Grid resources, then it
will be possible.

2.1.4 Consumer Demand

The consumer demand function is more complex
than the CPU and disk supply functions. Con-
sumers must purchase enough CPU and disk re-
sources for each job they wish to run. If they can-
not satisfy the request for only one type, they do
not express demand for the other. That is, the de-
mand functions for CPU and disks are strongly
correlated (although the supply functions are not).
This relationship between supply and demand
functions constitutes the most difficult of mar-
ket conditions. Most theoretical market systems
make weaker assumptions about the difference in
correlation. By addressing the more difficult case,

we believe our work more closely resembles what
can be realized in practice.

To determine their demand at a given price,
each consumer first calculates the average rate at
which it would have spent $G for the jobs it has
run so far if it had been charged the current price.
It then computes how many $G it can spend per
simulated time unit until the next budget refresh.
That is, it computesavg rate = Pi total worki � prieiinow (3)apable rate = remaining budget(refresh� now) (4)

where total worki is the total amount of
work performed so far using commodityi,priei is the current price for commodityi,remaining budget is the amount left to spend be-
fore the budget refresh,refresh is the budget re-
fresh time, andnow is the current time. Whenapable rate is greater than or equal toavg rate,
a consumer will express demand.

Unlike our supply functions, the consumer de-
mand function does not consider past price per-
formance directly when determining demand. In-
stead, consumers using this function act oppor-
tunistically based on the money they have left to
spend and when they will receive more. They use
past behavior only as an indication of how much
work they expect to introduce and buy when they
believe they can afford to sustain this rate.

Consumers, in our simulations, generate work
as a function of time. We arbitrarily fix some sim-
ulated period to be a “simulated day.” At the be-
ginning of each day, every consumer generates a
random number of jobs. By doing so, we hope
to model the diurnal user behavior that is typi-
cal in large-scale computational settings. In ad-
dition, each consumer can generate a single new
job every time step with a pre-determined proba-
bility. Consumers maintain a queue of jobs wait-
ing for service before they are accepted by pro-
ducers. When calculating demand, they computeavg rate andapable rate and demand as many
jobs from this queue as they can afford.
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To summarize, for our G-commerce simula-
tions:� All entities except the market-maker act in-

dividually in their respective self-interests.� Producers consider long-term profit and past
performance when deciding to sell.� Consumers are given periodic budget replen-
ishments and spend opportunistically.� Consumers introduce work loads in bulk at
the beginning of each simulated day, and ran-
domly throughout the day.

We believe that this combination of characteris-
tics captures a reasonable set of producer and con-
sumer traits in real Grid settings.

2.2 Commodities Markets

In a real-world commodities market, commodi-
ties are exchanged in a central location. Impor-
tant features of a commodities market are that
the goods of the same type brought to market by
the various suppliers are regarded as interchange-
able, market price is publicly agreed upon for
each commodity regarded as a whole, and all buy-
ers and sellers decide whether (and how much)
to buy or sell at this price. Contrast this type of
commerce with one based upon auctions, wherein
each buyer and seller acts independently and con-
tracts to buy or sell at a price agreed upon pri-
vately.

Since the goal of a computational Grid is to
provide users with resources without regard to the
particular supplier, it seems very natural to model
a Grid economy using commodities markets. To
do so, we require a pricing methodology that pro-
duces a system of price adjustments which bring
about market equilibrium (i.e. equalizes supply
and demand).

2.2.1 Pricing in Commodities Markets: Re-
sults of Economic Research

Our model is an example of anexchange economy,
namely a system involvingagents(producers and
consumers), and several commodities. Each agent
is assumed to control a sufficiently small segment
of the market. In other words, the individual be-
havior of any one agent will not affect the system
as a whole appreciably. In particular, prices will
be regarded as beyond the control of the agents.
Given a system of prices, then, each agent decides
upon a course of action, which may consist of
the sale of some commodities and the purchase of
others with the proceeds. Thus we define supply
and demand functions for each commodity, which
are functions of the aggregate behavior of all the
agents. These are determined by the set of market
prices for the various commodities.

Naturally, we use the language of vectors for
price, supply, and demand; each of these will be
ann-vector, wheren is the number of commodi-
ties, of non-negative real numbers. Observe that
given acommodity bundle, that is ann � vetor
of quantitiesx = x1; :::; xn of the commodities,
and a price vectorp the value of the bundle is
equal top �x. For given price vectorp, define the
excess demandz = z(p) to be the difference of
the demand and supply vectors for this price level.
Equilibrium for the economy is established when
supply is equal to demand; in other words, a price
vectorp is an equilibrium price whenz(p) = 0.
It should be noted that, for our purposes, currency
will be regarded as another commodity. Thus a
producer of a non-currency commodity (CPU or
disk for the purposes of this paper) will simply be
regarded as a “consumer” of currency; presum-
ably, the currency will be used in some way for
the benefit of the producer.

In general equilibrium theory, there are three
hypotheses made on the functionz: homogeneity,
continuity, and adherence toWalras’ Law. Homo-
geneity means that only the ratios between prices
are important to how commodities are exchanged.
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That is,z(�p) = z(p) for any positive number�. This relationship is naturally true, since cur-
rency is regarded as a commodity. Continuity is
the property that excess demand is a continuous
function of the prices, which cannot hold liter-
ally in our situation, due to the indivisibility of the
commodities. However, we assume that the num-
ber of agents is large enough that all functions
may be approximated by continuous functions of
continuous variables. Finally, Walras’ Law states
that for any price,z(p) � p = 0. This assump-
tion is justified as follows: When each agent is
supplying the same total value as that agent is de-
manding, the value of the total supply bundles is
equal to that of the total demand bundled. Thus,
as observed above,p � s = p � d, and thereforep � z = p � (d � s) = 0. Walras’ Law will ap-
ply as long as demand islocally non-satiated, that
is, given a level of consumption, there is always a
preference for greater consumption (price not be-
ing an object).

When these assumptions have been met, an
equilibrium price vector has been proven to ex-
ist via topological methods, namely theBrouwer
fixed-point theorem(see [13], Chapter 5, for the
result in its original form, or a remarkably clear
exposition in [15], Chapter 6). These methods
are non-constructive, so that the problem remains
to find a method of price adjustment that brings
about equilibrium or at leastapproximates equi-
librium within reasonable tolerances.

A few words on this last point are in order.
From a purely “engineering” standpoint, reach-
ing precise economic equilibrium is surely im-
possible. Thus we must content ourselves with
the more modest goal of producing a price vec-
tor for which the excess demands are all close
to 0. Since the excess demand functions can
be quite general, it is always possible that there
exists a price vector which produces excess de-
mands which are all within a prescribed tolerance
of 0 and yet is not close to an actual equilibrium
point; further, there is no “engineering” method
which will distinguish this from a point which re-

ally is very near to an equilibrium price. Even
Scarf’s algorithm, described below, which has er-
roneously been called a “constructive version of
the Brouwer fixed-point theorem,” is only guar-
anteed to produce points which are approximate
equilibria in the first sense. Thus we will use
the phrase “approximate equilibrium” to refer to a
price which makes the excess demands all close to0 without judging whether it lives near a genuine
equilibrium point. In any event, the theoretical
existence of an equilibrium price guarantees the
existence of approximate equilibria. Moreover,
approximate equilibria are valuable: If the mar-
ket is approximately cleared, then the economy is
doing a good job of distributing goods.

Walras in [37] suggested a process called
tâtonnement(“groping”) by which real-world
markets come to equilibrium. Withtâtonnement,
each individual price is raised or lowered accord-
ing to whether that commodity’s excess demand is
positive or negative. Then, new excess demands
are measured, and the process is iterated. While
it was suggested only as a “behavioral” explana-
tion as to how real-world markets reach equilib-
rium, tâtonnementformed the basis for early at-
tempts to prove the existence of equilibrium. It is
now known thattâtonnementdoes not in general
lead to a convergent process; Scarf in [30] pro-
duced a very simple example for which there is a
unique equilibrium but for which, from almost ev-
ery starting point, thetâtonnementprocess oscil-
lates for all time. In fact,tâtonnementdoes bring
about convergence to an equilibrium price vector
under the very strong hypothesis ofgross substi-
tutes, which states that increasing thejth price
while holding the others constant will bring about
an increase in excess demand in all commodities
other than thejth. Unfortunately, for typical Grid
applications, the hypothesis of gross substitutes
does not hold, because different commodities are
often complementary. (For example, an applica-
tion may need both CPU and disk in order to ex-
ecute. If the price for CPUs is too high, then the
application’s demand for disks will be lower in-
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stead of higher.)
There are several different approaches to the

problem of finding an algorithm for adjusting
prices which will lead to equilibrium. Scarf ’s
algorithm (see [31]) works roughly as follows:
Suppose that there aren + 1 commodities, and
normalize the prices so that their sum is always
equal to1. The set of possible price vectors
thus forms ann-dimensionalsimplexinRn+1 (the
price simplex). Scarf then divides this simplex
into a large number of subsimplices and shows
that there exists a subsimplex any of whose points
provides an approximate equilibrium price. He
also provides an explicit formula for how fine
to make the subdivision in order to produce an
excess demand within a pre-specified tolerance.
Merrill [23] gives an important improvement to
Scarf’s algorithm which makes it far more attrac-
tive from a computational standpoint. A different
sort of refinement of this idea is to be found in
Eaves’ algorithm with “continuous refinement of
grid size” [14].

A second approach, advocated by Smale
in [32], is more in the spirit of multivariable cal-
culus and is more dynamic in the sense that it
aims to produce a trajectory for the prices to fol-
low. In Smale’s method, the prices are normal-
ized by fixing one of the commodities (thenu-
meraire) to have price1; in our case, this com-
modity will be the currency. Further, suppose that
there aren other commodities, so that the set of
possible prices forms the positive orthant inRn.
Form then� n matrixDz(p) =  �zi�pj! :
Now define theglobal Newtonordinary differen-
tial equation Dz(p)dpdt = ��z(p) (5)

where� is a constant which has sign equal to(�1)n times the sign of the determinant ofDz(p).
(For contrast, note that thetâtonnementprocess is

encapsulated in the differential equation
dpdt = z.

Thus the global Newton may be regarded as a
more sophisticated version oftâtonnementwhich
takes into account the interdependencies of the
way demands for the various commodities inter-
act with the various prices.) Smale proves that,
under boundary conditions which are justifiable
on the basis of the desirability of the commodi-
ties, almost every maximal solution of the global
Newton equation starting sufficiently near to the
boundary of the positive orthant ofRn (or to1)
will converge to the set of equilibrium prices.

Note that except under strong hypotheses, most
commonly gross substitutes, the theory does not
guarantee that there is auniqueequilibrium price
vector. However, there is a useful result along
these lines as follows: Define aregular equilib-
rium to be one for which the matrixDz(p) defined
above is nonsingular. Then according to [22],
Theorem 5.4.2, a regular equilibrium price islo-
cally unique in the sense that it is the only one in
some open subset of the space of price vectors.

2.2.2 Price Adjustment Schemes

Herein we examine the results of using several
price adjustment schemes in simulated computa-
tional market economies. Smale’s method is not
possible to use directly for a number of reasons.
First, any actual economy is inherently discrete,
so the partial derivatives in equation 5 do not ex-
ist, strictly speaking. Second, given the behavior
of the producers and consumers described above,
there are threshold prices for each agent that bring
about sudden radical changes in behavior, so that
a reasonable model for excess demand functions
would involve sizeable jump discontinuities. Fi-
nally, the assumptions in Smale’s model are that
supply and demand are functions of price only
and independent of time, whereas in practice there
are a number of ways for supply and demand to
change over time for a given price vector.

Observe that taking� = 1 and applying the
Euler discretization at positive integer values of
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t reduces this process to the Newton-Raphson
method for solvingz(p) = 0; this observation
explains the term “global Newton.”

Implementing Smale’s method: As observed
above, obtaining the partial derivatives necessary
to carry out Smale’s process in an actual economy
is impossible; however, within the framework of
our simulated economy, we are able to get good
approximations for the partials at a given price
vector by polling the producers and consumers.
Starting with a price vector, we find their pref-
erences at price vectors obtained by fixing all but
one price and varying the remaining price slightly,
thus achieving a “secant-line” approximation for
each commodity separately; we then substitute
these approximations for the values of the partial
derivatives in the matrixDz(p), discretize with
respect to time, solve Equation 5 for the incre-
mentdp to get our new price vector, and iterate.
We will refer, conveniently but somewhat inaccu-
rately, to this price adjustment scheme asSmale’s
method.

The First Bank of G: The drawback to the
above scheme is that it relies on polling the en-
tire market for aggregate supply and demand re-
peatedly to obtain the partial derivatives of the
excess demand functions. If we were to try and
implement Smale’s method directly, each individ-
ual producer and consumer would have to be able
to respond to the question “how much of com-
modityx would you buy (sell) at price vectorp?”
In practice, producers and consumers may not be
able to make such a determination accurately for
all possible values ofp. Furthermore, even if
explicit supply and demand functions are made
into an obligation that all agents must meet in or-
der to participate in an actual Grid economy, the
methodology clearly will not scale. For these rea-
sons, in practice, we do not wish to assume that
such polling information will be available.

A theoretically attractive way to circumvent
this difficulty is to approximate each excess de-

mand functionzi by a polynomial inp1; p2; :::; pn
which fits recent price and excess demand vectors
and to use the partial derivatives of these polyno-
mials in Equation 5. In simulations, this method
does not, in general, produce prices which ap-
proach equilibrium. TheFirst Bank of G is a
price adjustment scheme which both is practica-
ble and gives good results; this scheme involves
using tâtonnement(see above) until prices get
“close” to equilibrium, in the sense that excess
demands have sufficiently small absolute value,
and then using the polynomial method for “fine
tuning.” Thus, the First Bank of G approxi-
mates Smale’s method but is implementable in
real-world Grid settings since it hypothesizes ex-
cess demand functions and need not poll the mar-
ket for them. Our experience is that fairly high-
degree polynomials are required to capture excess
demand behavior with the sharp discontinuities
described above. For all simulations described in
Section 3, we use a degree 17 polynomial.

2.3 Auctions

Auctions have been extensively studied as re-
source allocation strategies for distributed com-
puting systems. In a typical auction system
(e.g. [11, 35, 25, 6]), resource producers (typi-
cally CPU producers) auction themselves using
a centralized auctioneer and sealed-bid, second-
price auctions. That is, consumers place one bid
with the auctioneer, and in each auction, the con-
sumer with the highest bid receives the resource
at the price of the second-highest bidder. This is
equivalent to “just” outbidding the second-highest
bidder in an open, multi-round auction, and en-
courages consumers to bid what the resource is
worth to them (see [6] for further description of
auction variants).

When consumers simply desire one commod-
ity, for example CPUs in Popcorn [25], auctions
provide a convenient, straightforward mechanism
for clearing the marketplace. However, the as-
sumptions of a Grid Computing infrastructure
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pose a few difficulties to this model. First, when
an application (the consumer in a Grid Computing
scenario) desires multiple commodities, it must
place simultaneous bids in multiple auctions, and
may only be successful in a few of these. To do
so, it must expend currency on the resources that
it has obtained while it waits to obtain the oth-
ers. This expenditure is wasteful, and the uncer-
tain nature of auctions may lead to inefficiency for
both producers and consumers.

Second, while a commodities market presents
an application with a resource’s worth in terms of
its price, thus allowing the application to make
meaningful scheduling decisions, an auction is
more unreliable in terms of both pricing and the
ability to obtain a resource, and may therefore re-
sult in poor scheduling decisions and more ineffi-
ciency for consumers.

To gain a better understanding of how auc-
tions fare in comparison to commodities mar-
kets, we implement the following simulation of an
auction-based resource allocation mechanism for
computational grids. At each time step, CPU and
disk producers submit their unused CPU and file
slots to a CPU and a disk auctioneer. These are
accompanied by a minimum selling price, which
is the average profit per slot, as detailed in Sec-
tion 2.1.1 above. Consumers use the demand
function as described in Section 2.1.3 to define
their bid prices, and as long as they have money
to bid on a job, and a job for which to bid, they
bid on each commodity needed by their oldest un-
commenced job.

Once the auctioneers have received all bids for
a time step, they cycle through all the commodi-
ties in a random order, performing one auction per
commodity. In each auction, the highest-bidding
consumer gets the commodity if the bid price
is greater than the commodity’s minimum price.
If there is a second-highest bidder whose price
is greater than the commodity’s minimum price,
then the price for the transaction is the second-
highest bidder’s price. If there is no such second-
highest bidder, then the price of the commodity

is the average of the commodity’s minimum sell-
ing price and the consumer’s bid price. When a
consumer and commodity have been matched, the
commodity is removed from the auctioneer’s list
of commodities, as is the consumer’s bid. At that
point, the consumer can submit another bid to that
or any other auction, if desired. This situation oc-
curs when a consumer has obtained all commodi-
ties for its oldest uncommenced job, and has an-
other job to run. Auctions are transacted in this
manner for every commodity, and the entire auc-
tion process is repeated at every time step.

Note that this structuring of the auctions means
that each consumer may have at most one job for
which it is currently bidding. When it obtains all
the resources for that job, it immediately starts
bidding on its next job. When a time step expires
and all auctions for that time step have been com-
pleted, there may be several consumers whose
jobs have some resources allocated and some un-
allocated, as a result of failed bidding. These con-
sumers have to pay for their allocated resources
while they wait to start bidding in the next time
step.

While the auctions determine transaction prices
based on individual bids, the supply and demand
functions used by the producers and consumers
to set ask and bid price are the same functions
we use in the commodities market formulations.
Thus, we can compare the market behavior and
individual producer and consumer behavior in
both auction and commodity market settings.

3 Simulations and Results

We compare commodities markets and auc-
tions using the producers and consumers de-
scribed in Section 2.1 using two overall mar-
ket settings. In the first, which we termunder-
demand, producers are capable of supplying
enough resource to service all of the jobs con-
sumers can afford. Recall that our markets do
not include resale components. Consumers do not
make money. Instead, $G are given to them pe-
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CPUs 100
disks 100
CPU slots per CPU [2 .. 10]
disk files per disk [1 .. 15]
CPU job length [1 .. 60] time units
disk job length [1 .. 60] time units
simulated day 1440 time units
allowance period [1 .. 10] days
jobs submitted at day-break [1 .. 100]
new job probability 10%
allowance 106 $G
Bank of G Polynomial Degree17� factor .01

Table 1. Invariant simulation parameters for
this study

riodically much the in the same way that PACIs
dole out machine-time allocations. Similarly,
producers do not spend money. Once gathered,
it is hoarded or, for the purposes of the econ-
omy, “consumed.” The under-demand case cor-
responds to a Grid economy in which the alloca-
tions exceed what is necessary (in terms of user
demand) to allocate all available resources. Such
a situation occurs when the rate that $G are al-
located to consumers is greater than the rate at
which they introduce work to the Grid. In the
over-demandcase, consumers wish to buy more
resource than is available. New jobs are generated
fast enough to keep all producers almost com-
pletely busy, thereby creating a work back-log.

Table 1 completely describes the invariant sim-
ulation parameters we use for both under- and
over-demand cases. For all ranges (e.g. slots
per CPU), uniform pseudo-random numbers are
drawn from between the given extrema. For the
under-demand simulation, we define100 con-
sumers to use the100 CPUs and disks. Each con-
sumer submits a random number of jobs (between1 and 100) at every day-break, and has a 10%
chance of submitting a new job every time unit.

The over-demand simulation specifies500 of the
same consumers, with all other parameters held
constant.

Using our simulated markets, we wish to inves-
tigate three questions with respect to commodities
markets and auctions.

1. Do the theoretical results from Smale’s
work [33] apply to plausible Grid simula-
tions?

2. Can we approximate Smale’s method with
one that is practically implementable?

3. Are auctions or commodities markets
a better choice for Grid computational
economies?

Question (1) is important because if Smale’s re-
sults apply, they dictate that an equilibrium price-
point must exist (in a commodity market formu-
lation), and they provide a methodology for find-
ing those prices that make up the price-point.
Assuming the answer to question (1) is affirma-
tive, we also wish to explore methodologies that
achieve or approximate Smale’s results, but which
are implementable in real Grid settings. Lastly,
recent work in Grid economies [1, 18, 28] and
much previous work in computational economic
settings [12, 26, 5, 36] has centered on auctions
as the appropriate market formulation. We wish
to investigate question (3) to determine whether
commodities markets are a viable alternative and
how they compare to auctions as a market-making
strategy.

3.1 Market Conditions, under-demand case

Figure 1 shows the CPU and disk prices for
Smale’s method in our simulated Grid economy
over10; 000 time units. The diurnal nature of con-
sumer job submission is evident from the price
fluctuations. Every 1440 “minutes” each con-
sumer generates between 1 and 100 new jobs
causing demand and prices to spike. However,
Smale’s method is able to find an equilibrium
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Figure 1. Smale’s prices for the under-
demand case. Solid line is CPU price, and
dotted line is disk price in $G

price for both commodities quickly, as is evi-
denced in Figure 2. Notice that the excess de-
mand spikes in conjunction with the diurnal load,
but is quickly brought near zero by the pricing
shown in Figure 1 where it hovers until the next
cycle. Figure 3 shows excess demand for disk
during the simulation period. Again, approximate
market equilibrium is quickly achieved despite
the cyclic and non-smooth aggregate supply and
demand functions implemented by the producers
and consumers.

In Figure 4 we show the pricing determined
by our engineering approximation to Smale’s
method — the First Bank of G. The First Bank of
G pricing closely approximates the theoretically
achievable results generated by Smale’s method
in our simulated environment. The Bank, though,
does not require polling to determine the partial
derivatives for the aggregate supply and demand
functions. Instead, it uses an iterative polynomial
approximation that it derives from simple obser-
vations of purchasing and consumption. Thus it
is possible to implement the First Bank of G for
use in a real Grid setting without polling Grid pro-
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Figure 2. Smale’s CPU excess demand for the
under-demand case. The units are CPU slots.

ducers or consumers for their supply and demand
functions explicitly. Figures 5 and 6 show ex-
cess demand measures generated by First Bank
of G pricing over the simulated period. While
the excess demands for both commodities are not
as tightly controlled as with Smale’s method, the
First Bank of G keeps prices very near equilib-
rium.

The pricing determined by auctions is quite dif-
ferent, however, as depicted in Figures 7 and 8
(we show CPU and disk price separately as they
are almost identical and obscure the graph when
overlayed). In the figure, we show the average
price paid by all consumers for CPU during each
auction round. We use the average price for all
auctions as being representative of the “global”
market price. Even though this price is smoothed
as an average (some consumers pay more and
some pay less during each time step), it shows
considerably more variance than prices set by the
commodities market. The spikes in workload are
not reflected in the price, and the variance seems
to increase (i.e. the price becomes less stable)
over time.

Excess demand for an auction is more difficult
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Figure 3. Smale’s disk excess demand for the
under-demand case. The units are simulated
file units.

to measure since prices are negotiated between in-
dividual buyers and sellers. As an approximation,
we consider the sum of unsatisfied bids and the
number of auctions that did not make a sale as
a measure of market disequilibrium. Under this
assumption, the market is in equilibrium when
all bids are satisfied (demand is satisfied) and all
auctioned goods are sold (supply is exhausted).
Any surplus goods or unsatisfied bids are “ex-
cess.” While is does not make sense to assign a
sign to these surpluses (surplus supply, for exam-
ple, may not be undemanded supply) in the way
that we can with aggregate supply and demand in
a commodity market, in absolute value this mea-
sure captures distance from equilibrium. Hence
we term itabsolute excess demand.

In Figure 9 we show this measure of excess de-
mand for CPUs in the under-demanded auction.
Figure 10 shows the same data as in Figure 5
from the First Bank of G, but in absolute value.
While the First Bank of G shows more variance

in absolute excess demand, it achieves approxi-
mate equilibrium and sustains it over relatively
long periods. By contrast, the auction sets prices
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Figure 4. First Bank of G prices for the under-
demand case. Solid line is CPU price, and
dotted line is disk price in $G

that never satisfy the market. Strangely, the auc-
tion comes closest to equilibrium when demand
spikes at each day-break. We are working to un-
derstand this behavior and will report on it as part
of our future work.

From these simulation data we conclude that
Smale’s method is appropriate for modeling a hy-
pothetical Grid market and that the First Bank of
G is a reasonable (and implementable) approxi-
mation of this method. These results are some-
what surprising given the discrete and sharply
changing supply and demand functions used by
our producers and consumers. Smale’s proofs
assume continuous functions and readily avail-
able partial derivatives. We also note that auc-
tioneering, while attractive from an implementa-
tion standpoint, does not produce stable pricing
or market equilibrium. If Grid resource allocation
decisions are based on auctions, they will share
this instability and lack of fairness. A commodi-
ties market formulation, at least in simulation,
performs betterfrom the standpoint of the Grid as
a whole. These results agree with those reported
in [36] which indicate that auctions are locally
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Figure 5. First Bank of G CPU excess demand
for the under-demand case. The units are
CPU slots.

advantageous, but may exhibit volatile emergent
behavior system wide.

3.2 Market Conditions, over-demand case

For the over-demand market case, we increase
the number of consumers to 500 leaving all other
parameters fixed. As in the under-demand case,
Smale’s method produces a stable price series
which the Bank of G is able to approximate but
which auctions are unable to match. We omit the
bulk of the results in favor of examining the be-
havior of both Smale’s method and the Bank of
G as they converge to an approximate economic
equilibrium.

Figure 11 shows the pricing information us-
ing Smale’s method for the over-demand market,
and Figure 12 shows the prices determined by the
First Bank of G. Note that Smale’s method deter-
mines a higher price for disk than CPU and that
the First Bank of G chooses a significantly higher
price for CPU, but a lower price for disk. Intu-
itively one expects a higher price for CPU than
disk since CPU is the “rarer” commodity in our
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Figure 6. First Bank of G disk excess demand
for the under-demand case. The units are
simulated file units.

simulation. The Bank of G would seem to cor-
rectly identify CPU as the scarcer commodity by
setting a higher price for it. Nonetheless, excess
demand graphs (Figures 13 and 14) for CPU in-
dicate that both solution methods are centered on
market equilibrium. While it is difficult to read
from the graphs (we use a uniform scale so that
all graphs of a certain type in this study may be
compared), the mean excess demand for the data
shown in Figure 13 is52:4, and the the First Bank
of G data in Figure 14, the mean excess demand
is 25:6. Both of these values are near enough to
zero to constitute approximate equilibria for our
purposes.

We wish to examine more closely the phe-
nomenon of apparent multiple economic equilib-
ria within our simulated market. In particular, we
claim that both the solutions arrived at by Smale’s
method and by the Bank of G are valid approxi-
mations of economic equilibria and may in fact
be approximations of actual equilibria. To facili-
tate our examination, we will examine the aggre-
gate supply and demand functions over all pro-
ducers and consumers at particular points in the
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Figure 7. Auction prices for the under-
demand case, average CPU price only, in $G

simulation. To do so, we freeze the simulation
after it has reached approximate equilibrium and
then query the producers and consumers for sup-
ply and demand values over a range of prices.
This technique produces a profile of the macroe-
conomic supply and demand curves which should
reveal equilibria at their intersection points.

Recall that, in our simulated economy, CPU
and disk are highly complementary. Since de-
mand for one commodity is not independent of
demand for the other, we must generate families
of aggregate demand curves, in which the price
of one commodity is held constant while the price
of the other commodity is varied over the spec-
ified range. Each generated demand curve in a
family is associated with a single fixed price for
the other commodity. Then, the fixed price is in-
cremented and another aggregate supply curve is
generated. This process continues until the fixed
price also reaches the upper limit of the speci-
fied price range. If generating aggregate demand
curves for the CPU commodity, for example, the
simulator produces one curve per price of the disk
commodity.

Note that, together, these families of curves
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Figure 8. Auction prices for the under-
demand case, average disk price only, in $G

form a three-dimensional surface for each com-
modity in which the axes are CPU price, disk
price, and demand. That is, for each ordered pair
of CPU and disk prices there is a corresponding
CPU demand value. Similarly, a second surface is
formed from the CPU price, disk price, and disk
demand coordinates.

In contrast, the supply of a commodity in our
economy is never correlated with the supply of
another commodity and varies only with price, so
it is not necessary to produce families of aggre-
gate supply curves. Instead, we produce a sin-
gle supply curve by freezing the simulation and
varying the price of a commodity over some range
while querying for aggregate supply at each new
price value.

Figures 15, 16, 17 and 18 show aggre-
gate supply and demand curves for CPU and disk
in the over-demand case. Both Smale’s method
and the Bank of G are shown. The simulation
freezes at time slice 2000 and produces aggre-
gate curves. Rather than representing the three-
dimensional surface of prices and demand (which
is difficult to represent without the use of color),
we depict the relationships in terms of a labeled
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Figure 9. Auction absolute excess demand for
CPU in the under-demand case. The units are
CPU slots.

two-dimensional projection.
In Figure 15, thex axis represents CPU price

and they axis corresponds to CPU units (either
of supply or demand). Each nearly vertical curve
is a CPU demand function relating CPU price to
CPU demand for a given disk price (shown as a
label on each curve at the top of the graph). We
only show CPU demand curves at 10 $G incre-
ments, although one exists for each possible price.
As a thick gray line, we show the CPU demand
curve that corresponds to the disk price ($G 211.4
in the figure) that Smale’s method determined at
the time we froze the simulation. The thick dot-
ted line near the bottom of the graph shows the
CPU supply curve as a function of price. Thex
coordinate of the price point where the CPU de-
mand curve (shown in thick gray) intersects the
CPU supply curve (dotted black) corresponds to
the approximate equilibrium price for CPU within
simulated economy at the given time step. The
solid circle on the graph shows the price-point
that Smale’s method determined for the same time
step. If the circle covers the intersection (as it
does in Figure 15) the price adjustment strategy
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Figure 10. First Bank of G absolute excess
demand for CPU in the under-demand case.
The units are CPU slots.

has correctly determined an approximate equilib-
rium price for the economy.

Similarly, in Figures 16, 17, and 18 the de-
mand curves are labeled with the fixed price of
the other commodity used to produce the curve:
for example, one CPU demand curve shown cor-
responds to holding the price of disk to $G 200
while varying the price of CPU. Since demand
for one type of commodity is tied to demand for
the other, the demand curve families for both disk
and CPU tend to be similar. Only a few demand
curves in the family are shown, but it is impor-
tant to note that an infinity of such curves exist,
forming a demand curve surface. Also shown
in Figures 16, 17 and 18 are the aggregate sup-
ply curves for each commodity, shown in a thick
dotted line. Supply of both commodities remains
constant across the price range shown, because all
simulated suppliers are “producing” at maximum
capacity. No matter how high the price may be
set, no more CPU or disk is available within the
economy.

Figures 15 and 16 have been obtained by run-
ning Smale’s method until it reaches an approx-
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Figure 11. Smale’s CPU and disk prices for the
over-demand case. Solid line is CPU price,
dotted line is disk price, and the units are $G.

imate equilibrium at a CPU price of about $G
161.8 and a disk price of about $G 211.4, which
are marked as heavy dots on the respective graphs.
For Figure 15, the disk prices were then artifi-
cially fixed at various values and the CPU demand
curves, labelled by disk price across the top of the
graph, were generated by polling the consumers.
Again, in principle there exist demand curves for
all possible disk prices; we have shown only mul-
tiples of $G 10. For Figure 16, the roles of the
commodities are reversed. Note that supply of
each commodity is a function of that commodity’s
price alone, so that only one supply curve exists
on each of the graphs.

Figure 15 shows that the CPU market is
cleared for a CPU price of about $G 161 (read
from the horizontal axis) and a disk price of about
$G 211 (read from the family of curves). Sim-
ilarly, one finds from the heavy dot in Figure
16 that the disk market is cleared for about the
same respective prices for disk and CPU. How-
ever, from the graphs it is possible to find other
price combinations which clear each market sep-
arately. For example, it is evident from Figure
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Figure 12. First Bank of G CPU and disk prices
for the over-demand case. Solid line is CPU
price, dotted line is disk price, and the units
are $G.

15 that a CPU price of about $G 175 and a disk
price of $G 200 will also clear the market, since
the CPU demand curve corresponding to a disk
price of $G 200 intersects the supply curve at a
point where the CPU price is about $G 175. Now
look at Figure 16. It seems that a disk price of
about $G 200 and a CPU price of $G 175 will
clear the disk market as well! Moreover, within
the range of prices shown on the two graphs, it
looks as thoughanyprice vector which clears one
market also clears the other market as well, or at
least very nearly so. Thus it would appear that
there is a whole connected curve of market equi-
libria for our economy.

From a “behavioral” standpoint, this set of rela-
tionships between supply, demand, and price may
be explained as follows: The two commodities
are extremely complementary, meaning that they
are used together rather than in competition with
one another. As long as the consumers have some
choice as to which jobs to perform (as they do
in the overdemand case, since job queues never
clear), and as long as the price of one commodity
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Figure 13. Smale’s CPU excess demand for
the over-demand case. The units are CPU
slots.

is lowered in conjunction with a rise in the price of
the other, it is always possible for the consumers
to make purchasing decisions which allow them
to spend their allotment, choosing, if the prices
are different, to complete jobs which are more in-
tensive in the commodity which is less expensive.

It is interesting to note that in this case one can
find the point in the theory where the hypothe-
ses which rule out non-locally-unique equilibria
break down. It is apparent that in our experi-
ments the two commodities are so complemen-
tary that the demand functions shift in the same
way in response to increases in either price. Thus
the columns of the Jacobian matrixDz(p) of par-
tial derivatives of the excess demand with respect
to price are (approximately) linearly dependent at
equilibrium. By definition, then, the equilibrium
is not regular, and therefore it need not be lo-
cally unique according to the theory (Cf. Section
2.2.1).

In any event, it would seem that these appar-
ent multiple equilibria arise not because of any
anomalies in our method per se, but rather be-
cause our experimental economy is so very sim-
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Figure 14. First Bank of G CPU excess de-
mand for the over-demand case. The units
are CPU slots.

ple as to consist of only two commodities (plus
currency) which are essentially in perfect comple-
mentarity. One would expect that, as the model
becomes more complex, this particular sort of dif-
ficulty will vanish. Further, even in the presence
of multiple equilibria, each of our price adjust-
ment schemes continued to behave in such a way
as to produce long-term stability and approximate
market-clearing. This is all that one can practi-
cally hope for, since even in well-behaved (“regu-
lar”) economies, there may be multiple (isolated)
equilibria with no rational basis for choice among
them.

Our implementation of Smale’s technique,
then, finds a valid equilibrium price from among
a space of possible equilibria. The Bank of G
also finds a valid price solution, albeit a different
one from Smale’s technique. In Figures 17 and
18, we show the supply and demand curve fam-
ilies as well as their price solutions for the Bank
of G. Note again that the prices correspond to a
global equilibrium; the CPU price point lies at
the intersection of the CPU supply curve and the
CPU demand curve corresponding to disk price
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Figure 15. CPU aggregate supply and demand
curves for Smale’s method, over-demand
case, iteration 2000.

of $G 166. Since the market is in an over-demand
situation, resource consumers have no choice in
the mix of jobs they run. Rather, they can run
only jobs for which some supply is available.
Consumers’ jobs queue waiting to be serviced,
and this queue contains a mixture of CPU- and
disk-intensive jobs. Thus, from the standpoint of
global equilibrium, additional disk supply and ad-
ditional CPU supply are interchangeable; there
is ample demand to utilize either. The market
is free to choose any balance between CPU and
disk price so long as the aggregate supply of ei-
ther commodity remains fully utilized.

From this basis the price inversion of CPU and
disk between the Smale and Bank of G over-
demand simulations is easy to understand. Both
methods clear the market and control excess de-
mand. Valid price solutions are necessary to ac-
complish such control, and both techniques find
such solutions. It is intuitively uncomfortable for
Smale’s technique to arrive at higher prices for
more plentiful commodities, but such behavior is
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Figure 16. Disk aggregate supply and demand
curves for Smale’s method, over-demand
case, iteration 2000.

sound from an economic standpoint.
Note that in every case (Figures 15, 16, 17,

and 18) the respective method (either Smale or
Bank of G) determines a price that is at or very
close an approximate equilibrium price for the
economy.

As noted above, the price vector solution space
for two commodities can effectively be viewed as
a 3 dimensional plot of total absolute excess de-
mand versus the price of both commodities. Total
absolute excess demand is in this case defined as
the sum of the absolute value of the excess de-
mand for both commodities, and can be used as a
measure of closeness to economic equilibrium. In
Figures 19 and 20 we show this space of price so-
lutions for the over-demand case. For clarity, only
the point of minimum excess demand for each de-
mand curve is shown. These points form a line in
price/excess demand space along which approxi-
mate market-clearing solutions may fall. We also
show the projection of this line of equilibria onto
the price plane, and note that the price solutions
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Figure 17. CPU aggregate supply and demand
curves for the Bank of G, over-demand case,
iteration 2000.

indeed fall very near or upon this line of min-
ima. Also important to note is that the projection
is near linear with slope= �1. This serves as
further confirmation that the two commodities are
almost perfectly complementary. We conclude,
based on this further evidence, that both our im-
plementation of Smale’s method and the First
Bank of G are functioning correctly and achiev-
ing the results expected by the general theoretical
formulation advanced by Smale as applied to our
simple Grid economy. The results are particularly
encouraging since they do not depend upon gross
substitutability restrictions and because they can
be achieved via an implementable system which
does not require market-wide polling.

3.3 Revisiting under-demand

Having seen that our simulated economy con-
verges to real equilibria in the overdemand case,
we can re-examine the under-demand case again
using our characterizations of its macroeconomic
behavior. Figures 21 and 22 show the economic
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Figure 18. Disk aggregate supply and demand
curves for the Bank of G, over-demand case,
iteration 2000.

state of the simulation using Smale’s method, it-
eration 3119. This timeslice occurs just after the
beginning of a simulated “day”, when jobs are in-
jected into the system. The state of the system
at this point is similar to the over-demand case,
and this is reflected by the similarity of Figures 21
and 22 to Figures 15 and 16.

However, once the consumers’ jobs for the day
become serviced, the system enters an under-
demanded state. Consumers get new jobs at an
average rate of one every ten time steps, and they
typically have plenty of $G with which to service
jobs. Producers on the other hand, are mostly idle.
However, since they base their supply functions
on average profit, they still refuse to sell until a
certain threshold price is met. The state of the sys-
tem during iteration 4000 is plotted in Figures 23
and 24, using the same linear scale for the y-axes
as in the other graphs, and in Figures 25 and 26,
using a more readable log scale.

Although it is difficult to discern from the fig-
ures, there is no equilibrium point for both com-
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Figure 19. Total absolute excess demand min-
ima, Smale’s Method, overdemand case. The
projection upon the price plane is also shown.
Filed circles represent equilibrium price solu-
tions at this iteration.

modities in this graph. This is because the system
at this point is not a well-behaved economy, since
the lowering of prices does not necessarily bring
about an increase in demand. Put another way, the
demand is so low that the assumption that individ-
ual agents do not make a significant difference is
violated. Regardless, both Smale’s method and
the Bank of G default to a “normal” price. The
market is not cleared – there is a supply glut –
but prices do not become abnormally depressed.
These results indicate that both Smale’s method
and the First Bank of G will be reasonably ro-
bust with respect to degeneration in the underly-
ing economic behavior of the systems to which
they are applied.

Probing further, the behavior of the banks in
this case can be accounted for by looking at the
supply and demand curves; note that the price that
each bank finds is one where the supply curve is
almost vertical and the demand curve horizontal,
indicating a large jump in producer behavior at or
near this price. This means that the excess de-
mand function for each commodity will locally
depend only on that commodity’s price and will
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Figure 20. Total absolute excess demand min-
ima, Bank of G, overdemand case.

be extremely sensitive to small changes in price.
Thus the Jacobian matrixDz(p) will have the
form0BBB� very large 0

negative number
very large0 negative number

1CCCA
The large diagonal entries will produce extremely
small values of�p for either price-adjustment
scheme. Note in this case that Smale’s method
reduces totâtonnement(Cf. Section 2.2.1) due to
the off-diagonal zeros.

It is reasonable to expect that in more realis-
tic simulations where true market behavior holds,
and in any meaningful implementation of either
of these price adjustment schemes, the behavior
of the agents will be sufficiently heterogeneous as
to preclude the existence of such large jumps in
cumulative supply.

3.4 Efficiency

While commodities markets using Smale’s
method of price determination appear to offer bet-
ter theoretical and simulated economic properties
(equilibrium and price stability) than auctions do,
we also wish to consider the effect of the two
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Figure 21. CPU aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 3119.

pricing schemes on producer and consumer effi-
ciency. To do so, we report the average percent-
age of time each resource is occupied as a utiliza-
tion metric for suppliers, and the average number
of jobs/minute each consumer was able to com-
plete as a consumer metric. Table 2 summarizes
these values for both the over- and under-demand
cases.

In terms of efficiency, Smale’s method is best
and the First Bank of G achieves almost the same
results. Both are significantly better than the auc-
tion in all metrics except disk utilization in the
over-demanded case. Since CPUs are the scarce
resource, disk price may fluctuate through a small
range without consequence when lack of CPU
supply throttles the system. The auction seems to
achieve slightly better disk utilization under these
conditions. In general, however, Smale’s method
and the First Bank of G approximation both out-
perform the auction in the simulated Grid setting.

0 50 100

Disk Price

0

50

100

150

R
es

ou
rc

e 
U

ni
ts

 

60708090

100

110

120

130

140

150

160

170

Price of CPU

C
P

U
 P

rice 119.27

Figure 22. Disk aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 3119.

4 Conclusions and Future Work

In this paper, we investigate G-commerce —
computational economies for controlling resource
allocation Computational Grid settings. We de-
fine hypothetical resource consumers (represent-
ing users and Grid-aware applications) and re-
source producers (representing resource owners
who “sell” their resources to the Grid). While
there are an infinite number of ways to represent
individual resource supply and demand in simu-
lated setting, and none are completely accurate,
we have identified a set of traits that we believe
are realistic.� All entities except the market-maker act in-

dividually in their respective self-interests.� Producers consider long-term profit and past
performance when deciding to sell.� Consumers are given periodic budget replen-
ishments and spend opportunistically.
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efficiency metric under-demand over-demand

Smaleconsumer jobs/min 0.14 j/m 0.05 j/m
B of G consumer jobs/min 0.13 j/m 0.04 j/m
auction consumer jobs/min 0.07 j/m 0.03 j/m

SmaleCPU utilization % 60.7% 98.2%
B of G CPU utilization % 60.4% 93.9%
auctionCPU utilization % 35.2% 85.5%

Smaledisk utilization % 54.7% 88.3%
B of G disk utilization % 54.3% 84.6%
auctiondisk utilization % 37.6% 85.1%

Table 2. Consumer and Producer efficiencies
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Figure 23. CPU aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 4000.� Consumers introduce work loads in bulk at

the beginning of each simulated day, and ran-
domly throughout the day.

Using simulated consumers and producers
obeying these constraints, we investigate two
market strategies for setting prices: commodi-
ties markets and auctions. Commodities mar-
kets are a natural choice given the fundamen-
tal tenets of the Grid [17]. Auctions, however,
are simple to implement and widely studied. We
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Figure 24. Disk aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 4000.

are interested in which methodology is most ap-
propriate for Grid settings. To investigate this
question, we examine the overall price stability,
market equilibrium, producer efficiency, and con-
sumer efficiency achieved by three methods in
simulation. The first implements the theoretical
work of Smale [33] which describes how to ad-
just prices in a commodities market to achieve
equilibrium. It is viable in simulation, but im-
practical in the “real-world” as it relies on being
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Figure 25. CPU aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 4000, log y axis scale.

able to poll reliably producers and consumers for
supply and demand information. Often they do
not know, or will not say what their response to a
given price will be. The second method (The First
Bank of G) is an implementable approximation
to Smale’s method. It uses a large-degree poly-
nomial to approximate excess demand functions
instead of polling making it parameterizable by
observed market behavior only. Lastly, we simu-
late auctions in the style that has been investigated
previously.

Our results show that Smale’s results hold for
our simulated Grid environment, despite badly
behaved excess demand functions, and that the
First Bank of G achieves results only slightly less
desirable. In all cases, auctions are an inferior
choice.

As part of our future work, we plan two par-
allel thrusts. First, we are exploring the space of
plausible G-commerce formulations. Our goal is
to identify and test, in simulation, different possi-
ble economies for the Grid. Secondly, we plan to
construct a working version of the First Bank of
G. Our previous work with the Network Weather
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Figure 26. Disk aggregate supply and demand
curves for Smale’s method, under-demand
case, iteration 4000, log y axis scale.

Service [38, 39] and IBP [27] leaves us with the
infrastructure necessary to build a large scale sup-
ply and demand information repository. Using the
First Bank of G, we can generate prices based on
“live” supply and demand information.
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