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Abstract

In this paper, we present a strategy for optimizing end-to-end TCP /IP perfor-
mance over long-haul networks. Our approach defines a Logistical Session Layer
(LSL) that uses intermediate process-level “depots” along the network route from
source to sink to implement an end-to-end communcation session. Despite the
additional processing overhead resulting from TCP/IP protocol stack Unix kernel
boundary traversals at each depot, our experiments show that dramatic end-to-end
bandwidth improvements are possible. We also describe the prototype implementa-
tion of LSL that does not require Unix kernel modification or root access privilege
that we used to generate the results, and discuss its utility in the context of extant
TCP/IP tuning methodologies.

1 Introduction

The need for flexible and high-performance access to distributed resources has driven
the development of networking since its inception. With the maturing of “The Internet”
this community continues to increase its demands for network performance to support
a raft of emerging applications including distributed collaboratoria, full-motion video,
and Computational Grid programs.

Traditional models of high-performance computing are evolving hand-in-hand with
advanced networking [14]. While distributed computation control and network resource
control [15] techniques are currently being developed, we have been studying the use
of time-limited, dynamically allocated network buffers [29] as a way of provisioning the
communication medium. We term this form of networking Logistical Networking [7] to
emphasize the higher-level control of buffer resources it entails.

In this paper, we present a novel approach to optimizing end-to-end TCP /IP perfor-
mance using Logistical Networking. Our methodology inserts application-level TCP /IP



“depots” along the route from source to destination and, despite having to doubly tra-
verse a full TCP/IP protocol stack at each depot, improves bandwidth performance. In
addition, we have implemented the the communication abstractions that are necessary
to manage each communication without kernel modifications as a set of session-layer
semantics over over the standard byte-stream semantics supported by TCP/IP sockets.

As a result, we term the abstractions we have implemented the Logistical Session Layer
(LSL).

LSL improves end-to-end network performance by breaking long-haul TCP/IP con-
nections into shorter TCP segments between depots stationed along the route. Staging
data at the session layer in a sequence of depots increases the overhead associated with
end-to-end communication. In the LSL case, data emanating from the source must
be processed twice (ingress and egress) at each depot thereby increasing the overall
protocol processing overhead. In this paper, we show that this performance penalty
is dramatically overshadowed by the performance improvement that comes from mov-
ing TCP end-points closer together. It is counter-intuitive that adding the processor
overhead incurred by traversing the protocol stack on an additional machine could ac-
tually improve performance. Indeed, for some time the networking community has
focused on TCP/IP overhead [9,22] and examined ways to mitigate it [23,33,38]. To
introduce additional protocol processing runs against the current optimization trends
in high-performance wide-area networking and computing. However, despite the addi-
tional processing overhead that comes from mowving the data in and out of the kernel at
each depot (including checksumming costs), moving TCP end-points closer together can
improve end-to-end performance.

We present this work in the context of recent networking trends that focus on state
management in the network fabric itself. While the Internet Protocol suite (as typically
implemented) mandates the communication state be managed at the end-points [35],
new “stateful” facilities [8,27] which relax this restriction have been proposed. In this
vein, we believe that there are several reasons that intermediate TCP processing helps,
rather than hurts, end-to-end bandwidth performance. First, since the round-trip time
(RTT) between any two depots is shorter than the end-to-end round-trip-time, LSL al-
lows the inherent TCP congestion-control mechanism to sense the maximally available
throughput more quickly. That is, even though the sum of the RTTs between depots
may be longer than the end-to-end RTT, because the maximum RTT between any two
depots is shorter, the congestion-control mechanisms adapt more rapidly. Secondly, a
retransmission that results from a lost packet need not originate at the source, but
rather, can be generated from the last depot to forward the data. Finally, recent ad-
vances in the processing speed, memory bandwidth, and I/O performance of commonly
available processors has lowered protocol processing and data movement costs relative
to available network performance. We describe, more completely, the confluence of these
effects in Section 3.

In Section 2, we describe the architecture of a prototype application-layer LSL imple-



mentation that we have developed. The advantage of providing a session-layer interface
is that applications do not need to employ their own customized buffer management
strategies in order to use Logistical Networking to enhance end-to-end network per-
formance. As such, our work not only provides a general methodology for improving
deliverable network performance, but it also constitutes an important early example of
a Grid-enabling network abstraction. At the same time, since our implementation does
not require kernel modification, it is portable and easy to deploy.

Finally, in Section 4 we detail the effect of using intermediate TCP depots and
LSL on end-to-end bandwidth, independent of end-point buffer settings, both with
and without the RFC 1323 [21] window-scaling. Our results show that, using LSL,
an application can gain a substantial end-to-end increase in bandwidth over standard
TCP/IP sockets, even if the socket connections have been “tuned” for performance.

2 Architecture

The Logistical Session Layer (LSL) is a “session” layer (layer 5) in terms of the OSI
protocol model. The session layer lies above the Transport layer (TCP, in the Internet
Protocol suite). Recall that a transport layer conversation consists of multiple hops of
network layer conversations. In an analogous fashion, a session layer conversation can
consist of multiple hops of transport layer conversations. [19]. A connection that is ini-
tiated through the LSL will pass through a number of LSL-aware routers, or “depots.”
These devices can actually be thought of as “transport layer switches” in that they mul-
tiplex session-layer conversations onto sets of transport layer conversations. While we
believe that a kernel-level implementation or dedicated system versions of these switches
will, ultimately, improve performance over the results we report in the next section, we
have chosen a non-privileged, application-level implementation initially. By doing so,
we are able to gain two important benefits. First, because the LSL depots use standard,
user-level sockets, our initial implementation of LSL does not (and, indeed, cannot)
violate the current TCP congestion-control mechanisms. From the perspective of the
network, an LSL session appears to be a series of user-level applications communicating
in a chain. All resource control mechanisms governing “normal” user-applications (such
as flow-control, congestion-control, memory-size, etc.) remain functional and need not

be disabled.

Secondly, because LSL depots can run under any user login id (i.e. do not require
root access), security and stability concerns are greatly reduced. It is not possible for
an LSL depot to be used as a vehicle for obtaining root access because it does not run
as root and it does not execute any functions not compiled into its binary image.

Additionally, our first implementation of the LSL client API closely mimics the
familiar Unix sockets interface. This design choice allows easy incorporation into legacy
applications. Users of the socket interface are familiar with the “Internet” address



family, denoted with AF_INET. We designate a new family, which we label AF_LSL.
So, for a given program to use LSL, a simple text substitution in the source code would
enable use of the system. The connection would “fall back” to using a direct TCP
connection if necessary to make the change less intrusive.
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Figure 1: Network communication with and without LSL

Observe Figure 1 for an illustration of this architecture. This depicts the network
communication between two hosts with and without LSL. A given session may pass
through one or more LSL depots.

An application should be able to direct the LSL session to use a given depot if
necessary to allow application-level tuning. In addition, we plan an end-to-end routing
service based on the Network Weather Service [42,43] that determines a “good” route
for each client. In either case, utilizing the Sockets interface for this simply entails
specifying a source routed path. When an LSL connection is initiated, a predicted path
may be specified or local forwarding decisions may be relied upon. To specify a path
explicitly, the sender will use the strict source route options with the LSL socket. In fact
a combination of local and global forwarding strategies may be employed by specifying
a loose source route in the same fashion.

To test out the effectiveness of LSL and begin to understand its potential perfor-
mance benefits, we have implemented and deployed a rudimentary prototype having
three components:

e a simple file server program called Isruv,

e a per-depot session-level daemon that establishes and releases TCP streams travers-
ing each depot called Isd, and

e a client (responsible for choosing end-to-end routes) called Iget.



Our intention is to use this framework to study both the performance character-
istics of LSL and how LSL may be implemented for computational Grid settings. By
thus modularizing the LSL system, we will be able to take advantage of the function-
ality provided by systems such a Globus [13], Legion [16], and the Network Weather
Service [43].

2.1 The End-to-End Argument and the Session Layer

The architecture of the current Internet Protocol suite has been guided by what is known
as the “end-to-end” argument [35]. This model (as commonly understood) dictates
that state be kept at the end nodes and that the core of the network be stateless
primarily for reasons of reliability. Recent trends in network service provision [8,27],
however, relax the requirement of statelessness in favor of better performance and service
quality control. Indeed, the general question of end-to-end versus stateful networking
is also being considered explicitly by many, including the original authors of the end-
to-end argument [8,32]. LSL is another example of how careful state management
within the network fabric itself can improve delivered network performance while, at
the same time, preserving the stability and reliability characteristics that the Internet
Protocol suite provides. In addition, the architecture we have defined is compatible the
current implementations of TCP/IP while offering a similar programming interface to
that provided by the Unix socket abstraction.

In short, the general application of the principle is somewhat different than the
networking community at large has come to understand. However, since we use the
semantics of a session layer to implement our system, even the most dogmatic network
engineer will be left without argument.

3 Observations

The key idea behind LSL is that, by allowing an application to temporarily and anony-
mously utilize buffers “in” the network, end-to-end performance will be enhanced. It
is intuitive that there is a fundamental cost associated with buffering unacknowledged
segments for retransmission. Moreover, it is clear that the problem is only exacerbated
as network speeds increase.

By its very definition LSL causes the end-to-end connection to have a larger aggregate
window. We define this to be the sum of the minimum of the congestion window (cwnd)
and the advertised window (rwnd) over each of the TCP connections. In exposing the
pipeline we have, in fact, increased the “capacity” of the network.

In addition, LSL optimizes the end-to-end bandwidth performance in two ways: by
improving the response of the congestion-control mechanisms that are currently in use,
and by exploiting locality for packet retransmission.



3.1 Congestion Control and Cascaded TCP

By cascading TCP streams, LSL affects TCP congestion control in two ways. First, it
shortens the RT'T that any constituent TCP stream uses to “clock” the rate at which
congestion-window modifications are made. Secondly, it isolates RT'T variance so that
retransmission times across low variance links are based on more accurate estimates of
variance.

By staging data above the transport layer at depots along the path from source to
sink, LSL reduces the bandwidth-delay product associated with any single TCP connec-
tion. As such, it allows the adaptive congestion-control mechanisms [2]) to achieve max-
imal throughput and recover from loss more quickly. The flow-control and congestion-
control mechanisms used by TCP require that an acknowledgement (ACK) be sent
from the receiver. This stream of ACKs acts as a clock for strobing packets into the
network [20]. The speed with which slow-start allows the TCP connection to approach
the advertised flow-control window is determined with the RT'T (measured as the sum of
the transit time of a packet and its ACK.) The effects of RT'T have been observed [24,26]
but intuitively, since increase in congestion window requires a full RT'T, the longer the
RTT, the longer it takes TCP to reach full link capacity. By using multiple LSL depots
with stream between each, TCP can discern the congestion-and flow-control-levels for
each communication and achieve maximal link capacity more quickly.

The second effect on TCP comes from a reduced variance in RTT. By shortening
the length of the links that TCP traverses, LSL potentially isolates variance in packet
delay. The TCP protocol uses an estimate of the variance in RTT to determine when a
retransmission is necessary in response to a lost packet. if the TCP stream traverses a
large number of hops, high variance in queue delay at any point along the route affects
the retransmission time out for the entire route. By breaking the end-to-end route up
into segments between depots, LSL allows TCP to better estimate RTT variance on a
link-by-link basis. The result is that retransmissions are more accurately triggered, and
performance is improved.

3.2 Locality and Packet Retransmission

By buffering data at intermediate points along the route from source to sink, LSL reduces
the overhead associated with retransmission. With the current TCP buffering model,
a lost packet at any point between source and sink requires a retransmission from the
communication source point. The retransmitted packet, then, must traverse the entire
network using valuable bandwidth along the entire route. For example, consider an end-
to-end communication between two hosts separated by 10 routers or gateways in which
packets are being dropped at the last gateway before the sink. Every time the 10th
router drops a packet, the resulting retransmission must traverse the other 9 routers,
taking up scarce buffer and bandwidth resources. By buffering data at the session layer,



LSL ensures that any retransmits traverse only the links between depots. The result
is a savings in the bandwidth that would otherwise be wasted from end-to-end moving
retransmitted data.

4 Results

The place that we expect the LSL optimization effects to be most apparent is in long-
running transfers over networks where the bandwidth-delay product is high. In this
section, we examine several example transfer paths that terminate at the University of
Tennessee, Knoxville (UTK). Since we had complete control over the UTK machines,
we were able to investigate the effects of different kernel-level TCP settings.

In the first test we study transfers from Argonne National Laboratory (ANL) to
the University of Tennessee (UTK). To do so, we deploy an LSL daemon at Oak Ridge
National Laboratory (ORNL) to serve as a depot between UTK and ANL. UTK is
directly connected to ORNL via an OC-3 (155 Mb/sec) link, and ORNL and ANL are
both connected to the Energy Sciences Network (ESnet) at OC-12 (622 Mb/sec) [11].
Appendix A is the output of the traceroute command from UTK to both other sites,
Appendix B and C are from ANL and ORNL, respectively.

The ANL, ORNL, and UTK machines were configured to use the RFC1323 [21]
window-scaling optimizations and large kernel buffers. For this experiment, we set the
kernel buffers (through the Unix setsockopt() command) to be eight megabytes at both
ends, and verified that the correct window size was bring quoted using getsockopt and
tepdump at the UTK end.

The results in Figure 2 represent roughly 280 experiments in total. Along the z-
axis we show a series of different transfer sizes. The y-axis of the figure indicates the
observed, end-to-end throughout in megabits per second. Each data point represents the
average throughput observed over 20 different transfers at transfer size corresponding
to its o coordinate.! In addition, the z-axis is shown on a log scale.

Figure 2 shows that the LSL does indeed optimize end-to-end transfers of 256 KBytes
and larger. For transfers of 32Mbytes, use of the LSL depot at ORNL increases the
average performance by well over a factor of 2.5.

While investigating these results, we observed that the route between UTK and ANL
is asymmetric as the traceroute from ANL to UTK (in Appendix B indicates. As this is
the case, part of this improvement can be attributed to the fact that by explicitly routing
through ORNL, we are enforcing symmetric paths. This “user-controlled” routing is
somewhat analogous to the IP “source route” option and we discuss similarities to this
and other approaches in Section 5.

! Appendix G shows some summary statistics and average transfer rates for each transfer size we
consider in this paper. For visual clarity, the figures we present depict the averages only.
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Figure 2: Data transfer from ANL to UTK

Since this might be viewed as a pathological case (although recent work [28] indicates
otherwise) we sought a case in which the LSL route corresponded with the non-LSL route
in both directions. We chose a path between the University of Tennessee (UTK) and the
University of California at San Diego (UCSD) using a machine located at Texas A&M
University, South Campus which is very near the Abilene [1] “Point of Presence” (POP)
in Houston. Traffic from UTK to UCSD and vice versa traverses this POP. Appendix
D shows the traceroute from UTK to UCSD and TAMUS. Appendix E and F show
traceroutes from UCSD and TAMUS, respectively.

Figure 3 illustrates the comparison of LSL-enabled and non-LSL-enabled end-to-end
bandwidth performance from UCSD to UTK, again using 8 MB buffers and windows.
Here, LSL offers as much as a %50 improvement over direct TCP despite adding to the
gross latency and protocol processing overhead along the path from source to sink.

For high-capacity long-haul networks (like Abilene), large window sizes are necessary
so that the sending side does not block due to flow-control before an acknowledgement
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Figure 3: Data transfer from UCSD to UTK

has time to return from the receiver. That is, the buffering must allow the amount of
data in flight to exceed the bandwidth-delay product. By choosing 8 MB windows and
buffers, we ensure that the LSL effects we observe not not simply due “bad” buffering
choices at the end points. We believe that an optimized TCP stream using large buffers
at either end would see similar performance improvements.

Although we recognize that buffers of this size may not be optimally tuned, this does
not effect our results. The danger in over-sizing buffers is in wasting resources on the
host, not in causing poor TCP performance [38]. We judged this to be acceptable for
this experiment, but we do await the products produced by groups like the Web100 [41]
and the Internet2 End-to-End Performance initiative [18].

However, not all hosts support (through design or configuration) large window sizes.
For this case, we wanted to investigate how using an LSL depot with large windows
might enhance the performance of “untuned” TCP streams. Figure 4 shows the average
transfer rates when the buffers at the sending and receiving ends are restricted to 64K



bytes.
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Figure 4: Data transfer from UCSD to UTK with 64KB buffers

As expected, the absolute performance is lower. However, the LSL-enabled stream
was still able to outperform the non-enabled stream by %43 for the largest transfer
size. As a non-intrusive optimization, however, we believe that such a performance
improvement will be useful in many application settings.

Finally, Figure 5 shows the effect of using LSL on a TCP stream that does no
setsockopt() buffer conditioning whatsoever.

Again, the performance is not as dramatic as in the tuned cases, but the LSL effect
is still present.

10
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Figure 5: Data transfer from UCSD to UTK with default (32KB) buffers

5 Related Work

There are many areas in which facets of our results and similar mindsets can be seen in
the community. Two broad categories are TCP effects (retransmission cost and locality)
and control over the topology.

Techniques developed for wireless networks [5,6] seek to mitigate the cost of retrans-
mission in lossy environments. However, they violate layering to do so. Systems to proxy
TCP have been developed with the same goals in mind. One example is TPOT [34],
which alters TCP to allow this mode of operation (and therefore has dubious possibility
for actual deployment in the global Internet.) A similar approach targeting caching of
web objects also proposes modifications to TCP [25].

There are many approaches to reducing the cost of retransmission with the network’s
assistance. One of the areas that has pushed this notion forward is the wireless commu-

11



nity. Since wireless links at the edges of the network tend to be much less reliable than
other parts of the network, the almost inevitable packet loss hampers the performance
of TCP. The “snoop” technique watches TCP traffic and can perform retransmits from
and intermediate point in the network. [6]. This protocol comes from a very similar
mindset, but could be considered inappropriate in that it violates layering. Further,
flow-level snooping is expensive, so the scalability of this approach for high-bandwidth
networks is questionable. Also targeting wireless is Indirect TCP [5], which is similar
to our approach. Another similar approach is that proposed for use in multicast video
transmission [39] in that it allows a data stream to take advantage of retransmit locality
and finer-grained adaptability.

The PSockets [12] work addresses the difficulty of getting high-bandwidth from long,
fat networks. This work is similar to LSL in that they preserve the syntax of the well-
known socket interface while taking liberties underneath. They differ in mechanism and
spirit, however. This approach to higher bandwidth uses multiple TCP streams and
keeps aggregate throughput high by amortizing loss over several streams. The parallel
sockets approach is to ignore TCP’s inefficiencies in the wide area and aim for better
average throughput. However, the streams are then inducing the congestion that the
other streams are sensing. So, Psockets provides better average performance but worse
link utilization. LSL allows the network to be “articulated” and allows TCP to respond
to congestion where it exists without introducing additional load.

The need to control the topology by tunneling from one host to another has been
identified by a body of engineering and by the sheer number of Virtual Private Networks
that are in use. Even outside the desire to provide an encrypted tunnel, virtual topology
systems are abundant [36,40]. The performance benefits of user-optimization of paths
has been discussed [3,31,37]. While LSL has the functionality of these systems, our
approach is different in that we consider this to be part of a “session” layer of services.
Our empirical evidence does establish the viability of this line of research.

Finally, within the networking community, the notion has long existed that the end
user will occasionally need to have explicit control over the route that traffic follows.
Loose and strict source routing were defined in RFC 791 [30], which defines the Internet
Protocol. Store and forward connectivity has been used for quite some time in the
networking community and there are many situations in which data transfer need not
be synchronous or connection-oriented. SMTP [10], USENET [17] and its successor
NNTP [4], all use hop-oriented, connectionless paradigms to send data.

6 Conclusion

With the maturing of network infrastructure, both in terms of ubiquity and quality,
comes the possibility of increasing the state held in the network, and the time duration
over which it is maintained. Logistical Networking [7] attempts to define the parameters

12



under which the added cost associated with maintaining state is overshadowed by an
increase in delivered network performance. The Logistical Session Layer (LSL) is an im-
plementation of Logistical Networking concepts to improve end-to-end communication
performance between applications that currently use the TCP socket interface. Our
early results show that LSL can result in dramatic throughput performance improve-
ments despite greater protocol processing overhead. In addition, our initial prototype is
serving as an architectural framework within which he hope to generalize these results.

Important research questions exist such as the permanence of the buffering, the
nature of the flow control mechanisms and alternate architectures for a mechanism such
as this. We believe that we have demonstrated the efficacy of this system and that it is
novel, viable approach.
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A Traceroute from UTK to ANL and UTK to ORNL

traceroute to pitcairn.mcs.anl.gov (140.221.9.180), 30 hops max, 38 byte packets

1 R6HMO1V150.NS.UTK.EDU (160.36.56.1) 0.220 ms 0.181 ms 0.168 ms
128.169.192.241 (128.169.192.241) 1.631 ms 0.711 ms 0.770 ms
R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 2.318 ms 2.021 ms 1.652 ms
UTK-GATECH.NS.UTK.EDU (128.169.50.246) 68.930 ms 65.490 ms 65.199 ms
esnet-sox-rtr.sox.net (199.77.192.6) 48.288 ms 48.575 ms 48.643 ms
orn-gsu.es.net (134.55.208.65) 48.211 ms 48.312 ms 48.502 ms
nyc-s-orn.es.net (134.55.205.109) 81.104 ms 81.595 ms 80.854 ms
chi-s-nyc.es.net (134.55.205.106) 101.551 ms 100.881 ms 101.062 ms
anl-chi-ds3.es.net (134.55.208.150) 102.894 ms 103.809 ms 102.939 ms
anl-esanl2.es.net (198.124.254.166) 105.927 ms 105.344 ms 105.025 ms
stardust-msfc-20.mcs.anl.gov (140.221.20.124) 106.386 ms 108.505 ms 106.758 ms
12 pitcairn.mcs.anl.gov (140.221.9.180) 106.309 ms * 105.946 ms

© 0N O WN

=
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traceroute to falconOj.ccs.ornl.gov (160.91.199.21), 30 hops max, 38 byte packets
1 R6HMO1V150.NS.UTK.EDU (160.36.56.1) 0.242 ms 0.184 ms 0.171 ms
128.169.192.241 (128.169.192.241) 0.942 ms 0.848 ms 0.664 ms
R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 1.743 ms 1.805 ms 1.657 ms
mmesgwya32.ctd.ornl.gov (192.31.96.17) 3.222 ms 3.219 ms 3.689 ms
192.31.96.225 (192.31.96.225) 2.203 ms 2.493 ms 2.061 ms
ornlgwy-ext.ens.ornl.gov (198.124.42.162) 2.358 ms 2.475 ms 2.736 ms
ccsrtr.ccs.ornl.gov (160.91.0.66) 2.198 ms 2.421 ms 2.094 ms
falcon0j.ccs.ornl.gov (160.91.199.21) 2.194 ms 2.574 ms 2.289 ms

O ~N O U WN

B Traceroute from ANL to UTK and ORNL

traceroute to modulus.cs.utk.edu (160.36.59.32): 1-30 hops, 38 byte packets
1 stardust-msfc-11.mcs.anl.gov (140.221.11.251) 6.49 ms 11.1 ms 4.73 ms
2 kiwi.anchor.anl.gov (140.221.20.97) 0.614 ms 0.721 ms 0.639 ms

3 abilene-anl.anchor.anl.gov (192.5.170.170) 5.97 ms 5.35 ms 5.29 ms
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atla-ipls.abilene.ucaid.edu (198.32.8.42) 15.7 ms 15.0 ms 15.2 ms
sox-rtr.abilene.sox.net (199.77.193.9) 41.1 ms 40.7 ms 40.2 ms
R7DHO3A1-0-2.NS.UTK.EDU (128.169.50.245) 107 ms 107 ms 107 ms

*  x %

128.169.192.242 (128.169.192.242) 107 ms 106 ms 106 ms
MODULUS.CS.UTK.EDU (160.36.59.32) 106 ms 106 ms 106 ms

© 00 N O O »

traceroute to falcon0j.ccs.ornl.gov (160.91.199.21): 1-30 hops, 38 byte packets
1 stardust-msfc-11.mcs.anl.gov (140.221.11.251) 0.728 ms 0.792 ms 0.515 ms
kiwi.anchor.anl.gov (140.221.20.97) 0.377 ms 0.315 ms 0.279 ms
esanl2-anl.es.net (198.124.254.165) 0.783 ms 0.989 ms 0.504 ms
chi-anl-ds3.es.net (134.55.208.149) 3.33 ms 2.34 ms 2.35 ms
nyc-s-chi.es.net (134.55.205.105) 23.1 ms 23.0 ms 22.7 ms
orn-s-nyc.es.net (134.55.205.110) 56.2 ms 55.8 ms 54.9 ms
ornl-orn.es.net (134.55.208.62) 76.0 ms 75.1 ms 75.0 ms
192.31.96.225 (192.31.96.225) 74.2 ms 74.8 ms 75.7 ms
ornlgwy-ext.ens.ornl.gov (198.124.42.162) 75.0 ms 75.5 ms 74.9 ms
ccsrtr.ccs.ornl.gov (160.91.0.66) 75.3 ms 74.6 ms 75.3 ms
falcon0j.ccs.ornl.gov (160.91.199.21) 75.5 ms 75.1 ms 74.7 ms

© 00 N U WN
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C Traceroute from ORNL to UTK and ANL

traceroute to modulus.cs.utk.edu (160.36.59.32): 1-30 hops, 38 byte packets
1 cecsrtr-003.ccs.ornl.gov (160.91.199.1) 0.341 ms 0.270 ms 0.418 ms
160.91.0.65 (160.91.0.65) 0.490 ms 0.299 ms 0.357 ms

orgwy2.ens.ornl.gov (198.124.42.185) 0.330 ms 0.385 ms 0.327 ms

mmesgwy-ext-fe.cind.ornl.gov (192.31.96.235) 2.5 ms 1.54 ms 1.95 ms

utk-rtr.ctd.ornl.gov (192.31.96.18) 3.54 ms 2.52 ms 3.8 ms

EE

128.169.192.242 (128.169.192.242) 3.27 ms 2.40 ms 2.19 ms

MODULUS.CS.UTK.EDU (160.36.59.32) 2.46 ms 2.30 ms 2.47 ms

O ~NO U WN

traceroute to pitcairn.mcs.anl.gov (140.221.9.180): 1-30 hops, 38 byte packets
1 cecsrtr-003.ccs.ornl.gov (160.91.199.1) 2.55 ms 0.575 ms 0.342 ms
160.91.0.65 (160.91.0.65) 0.338 ms 4.44 ms 0.796 ms
orgwy2.ens.ornl.gov (198.124.42.185) 1.69 ms 0.290 ms 0.410 ms
ornl-rt3-ge.cind.ornl.gov (192.31.96.230) 0.674 ms 0.503 ms 3.35 ms
orn-ornl.es.net (134.55.208.61) 18.4 ms 19.9 ms 19.6 ms
nyc-s-orn.es.net (134.55.205.109) 52.6 ms 52.5 ms 52.8 ms
chi-s-nyc.es.net (134.55.205.106) 73.1 ms 72.9 ms 72.4 ms
anl-chi-ds3.es.net (134.55.208.150) 73.5 ms 73.9 ms 81.2 ms
anl-esanl2.es.net (198.124.254.166) 75.8 ms 74.1 ms 74.1 ms
stardust-msfc-20.mcs.anl.gov (140.221.20.124) 74.5ms 76.1 ms 76.4 ms
pitcairn.mcs.anl.gov (140.221.9.180) 74.6 ms * 75.8 ms

© 00 N U WN

=
= O
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D Traceroutes from UTK to UCSD and TAMUS

traceroute to freak.ucsd.edu (132.239.95.142), 30 hops max, 38 byte packets

1 RBHMO1V277.NS.UTK.EDU (128.169.92.1) 95.333 ms 13.187 ms 3.477 ms
R7DHO3G11-0-0.NS.UTK.EDU (192.168.101.3) 6.608 ms 1.406 ms 2.253 ms
UTK-GATECH.NS.UTK.EDU (128.169.50.246) 65.648 ms 66.254 ms 66.578 ms
199.77.193.10 (199.77.193.10) 65.590 ms 65.773 ms 67.116 ms
hstn-atla.abilene.ucaid.edu (198.32.8.33) 86.127 ms 84.799 ms 85.412 ms
losa-hstn.abilene.ucaid.edu (198.32.8.21) 116.830 ms 117.402 ms 117.387 ms
USC--abilene.ATM.calren2.net (198.32.248.85) 117.384 ms 117.809 ms 117.693 ms
UCSD--USC.P0S.calren2.net (198.32.248.34) 120.569 ms 120.970 ms 120.841 ms
sdsc2--UCSD.ATM.calren2.net (198.32.248.65) 121.533 ms 122.205 ms 121.619 ms
cse-rs.ucsd.edu (132.239.254.45) 122.926 ms 122.876 ms 122.653 ms
11 freak.ucsd.edu (132.239.95.142) 122.757 ms 122.534 ms 122.110 ms

© 00N U WN
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traceroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte packets
1 R6HMO1V150.NS.UTK.EDU (160.36.56.1) 0.230 ms 0.189 ms 0.172 ms
128.169.192.241 (128.169.192.241) 0.890 ms 1.002 ms 0.939 ms
192.168.101.3 (192.168.101.3) 2.096 ms 1.592 ms 1.197 ms
UTK-GATECH.NS.UTK.EDU (128.169.50.246) 66.649 ms 66.018 ms 65.296 ms
atla.abilene.sox.net (199.77.193.10) 65.601 ms 65.199 ms 65.430 ms
hstn-atla.abilene.ucaid.edu (198.32.8.33) 84.666 ms 84.745 ms 84.695 ms
LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 85.458 ms 97.486 ms 87.325 ms
LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 86.562 ms 86.351 ms 86.420 ms
ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 87.595 ms 87.494 ms 87.433 ms
i2-dsi.ibt.tamus.edu (165.95.234.23) 87.476 ms 87.740 ms 87.811 ms

© 00 ~NO U WN

-
(@]

E Traceroutes from UCSD to UTK and TAMUS

traceroute to modulus.cs.utk.edu (128.169.94.246), 30 hops max, 38 byte packets
1 cse-danger-gateway.ucsd.edu (132.239.95.1) 0.723 ms 0.702 ms 0.622 ms
bigmama.ucsd.edu (132.239.254.5) 1.860 ms 1.321 ms 1.224 ms
UCSD--sdsc2.ATM.calren2.net (198.32.248.66) 1.270 ms 1.153 ms 1.542 ms
USC--UCSD.P0S.calren2.net (198.32.248.33) 4.997 ms 5.054 ms 5.961 ms
abilene--USC.ATM.calren2.net (198.32.248.86) 5.412 ms 5.223 ms 4.955 ms
hstn-losa.abilene.ucaid.edu (198.32.8.22) 37.056 ms 37.352 ms 37.429 ms
atla-hstn.abilene.ucaid.edu (198.32.8.34) 57.223 ms 56.851 ms 56.922 ms
199.77.193.9 (199.77.193.9) 56.819 ms 56.770 ms 57.155 ms
R7DHO3A1-0-2.NS.UTK.EDU (128.169.50.245) 124.427 ms 124.783 ms 124.299 ms
192.168.101.40 (192.168.101.40) 169.204 ms 125.048 ms 124.302 ms
11 MODULUS.CS.UTK.EDU (128.169.94.246) 122.207 ms 121.958 ms 122.852 ms

© 00 N U WN
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traceroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte packets
1 cse-danger-gateway.ucsd.edu (132.239.95.1) 0.765 ms 0.661 ms 0.657 ms
2 nodeb-rs-backbone.ucsd.edu (132.239.254.26) 1.099 ms 1.288 ms 2.827 ms
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nodeB-6500-5500-GE.ucsd.edu (132.239.255.150) 0.842 ms 0.643 ms 0.706 ms
ucsd-gw-nodeB.ucsd.edu (132.239.255.142) 0.872 ms 0.737 ms 0.714 ms
198.32.248.185 (198.32.248.185) 1.508 ms 0.826 ms 0.673 ms
USC--UCSD.P0S.calren2.net (198.32.248.33) 4.374 ms 4.206 ms 5.037 ms
Abilene--USC.ATM.calren2.net (198.32.248.86) 4.978 ms 5.411 ms 5.360 ms
hstn-losa.abilene.ucaid.edu (198.32.8.22) 36.870 ms 36.619 ms 36.987 ms
LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 38.636 ms 37.631 ms 37.596 ms
10 LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 38.995 ms 38.918 ms 38.093 ms

11 ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 40.486 ms 39.158 ms 39.347 ms
12 i2-dsi.ibt.tamus.edu (165.95.234.23) 41.655 ms 40.401 ms 39.469 ms

© 00N U bW

F Traceroutes from TAMUS to UTK and UCSD

traceroute to modulus.cs.utk.edu (160.36.59.32), 30 hops max, 40 byte packets
1 ibtx2-atm10-1 (165.95.234.254) 1.015 ms 0.802 ms 0.757 ms
ibtx1-atm10-401 (165.95.232.5) 1.451 ms 1.260 ms 1.239 ms
198.32.236.33 (198.32.236.33) 1.915 ms 1.997 ms 1.795 ms
ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.224 ms 2.279 ms 2.129 ms
atla-hstn.abilene.ucaid.edu (198.32.8.34) 22.184 ms 21.755 ms 21.754 ms
sox-rtr.abilene.sox.net (199.77.193.9) 21.936 ms 21.987 ms 21.861 ms
R7DHO3A1-0-2.NS.UTK.EDU (128.169.50.245) 87.940 ms 89.067 ms 87.372 ms
192.168.101.40 (192.168.101.40) 87.845 ms 87.509 ms 87.301 ms
128.169.192.242 (128.169.192.242) 86.897 ms 87.058 ms 87.171 ms
MODULUS.CS.UTK.EDU (160.36.59.32) 87.495 ms 87.104 ms 87.109 ms

© 00 N U WN
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traceroute to freak.ucsd.edu (132.239.95.186), 30 hops max, 40 byte packets
1 ibtx2-atml10-1 (165.95.234.254) 0.991 ms 0.793 ms 0.759 ms

2 ibtxl-atm10-401 (165.95.232.5) 1.413 ms 1.299 ms 1.273 ms

3 198.32.236.33 (198.32.236.33) 2.069 ms 1.811 ms 1.852 ms

4 ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.213 ms 2.260 ms 2.425 ms

5 198.32.8.21 (198.32.8.21) 34.722 ms 34.373 ms 34.278 ms

6 USC--abilene.ATM.calren2.net (198.32.248.85) 34.651 ms 34.705 ms 34.526 ms
7 UCSD--USC.P0S.calren2.net (198.32.248.34) 38.364 ms 38.095 ms 38.284 ms

8 198.32.248.186 (198.32.248.186) 38.489 ms 38.819 ms 38.191 ms

9 nodeB-ucsd-gw.ucsd.edu (132.239.255.141) 38.399 ms 38.286 ms 38.631 ms

10 nodeB-5500-6500-GE.ucsd.edu (132.239.255.149) 38.969 ms 41.245 ms 38.884 ms
11 cse-rs.ucsd.edu (132.239.254.45) 39.254 ms 39.132 ms 40.319 ms

12 freak.ucsd.edu (132.239.95.186) 39.194 ms 39.299 ms 39.676 ms
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G Statistics

anl-utk-8M
max min  average
Xfer Size
16K 0.40300 0.331250 0.377521
64K 0.782110 0.724233 0.763622
256K 2.041860 0.823960 1.551935
1M 3.820735 1.582323 2.998547
4M 6.075528 2.964298 4.455999
16M 7.172249 3.019620 4.323620
32M 5.590730 3.874349 4.711681
anl-1sl-utk-8M
max min average
Xfer Size
16K 0.329159 0.282999  0.324922
64K 0.821404 0.224252  0.778078
256K 2.358894 2.151340  2.260900
1M 6.806367 1.774656  6.182508
4M 15.474262 2.971618 12.317705
16M 22.538489  2.581877 11.362988
32M 24.572602 2.627871 11.447852
ucsd-utk-8M
max min  average
Xfer Size
16K 0.335828 0.327585  0.332399
64K 0.671300 0.612586 0.666729
256K 1.770170 0.976332 1.643167
1M 3.208707 1.604943 2.577704
4M 4.738750 2.086455 3.742402
16M 6.517446 2.972433 4.154653
32M 5.236016  2.906003 4.031742
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ucsd-Isl-utk-8M

max min

Xfer Size
16K 0.223686 0.033156
64K 0.602354 0.522283
256K 1.801070 0.755655
1M 5.168106 0.976739
4M 9.254006 2.622432

16M 14.895728  3.986542
32M 13.465528 4.960214

ucsd-utk-64K
max min
Xfer Size

16K 0.336283 0.240713
64K 0.670764 0.598264
256K 1.608678 0.688810
1M 2.913219 1.108043
4M 3.615189 1.866385
16M 3.529395  2.790902
32M 3.546387 2.623760

ucsd-Isl-utk-64K
max min
Xfer Size

16K 0.217576 0.206132
64K 0.599110 0.287751
256K 1.720705 1.681558
1M 3.533808 1.483824
4M 4.855747 1.464077
16M 5.212078 3.793412
32M 4.994041 3.914145

average

0.207426
0.588151
1.742145
4.173235
4.622810
6.343063
6.395069

average

0.315922
0.655689
1.478414
2.557631
3.074215
3.117535
3.170910

average

0.214729
0.563415
1.692182
3.257987
4.042588
4.471644
4.554841
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