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hg�
s.utk.eduAbstra
tIn this paper, we present a strategy for optimizing end-to-end TCP/IP perfor-man
e over long-haul networks. Our approa
h de�nes a Logisti
al Session Layer(LSL) that uses intermediate pro
ess-level \depots" along the network route fromsour
e to sink to implement an end-to-end 
ommun
ation session. Despite theadditional pro
essing overhead resulting from TCP/IP proto
ol sta
k Unix kernelboundary traversals at ea
h depot, our experiments show that dramati
 end-to-endbandwidth improvements are possible. We also des
ribe the prototype implementa-tion of LSL that does not require Unix kernel modi�
ation or root a

ess privilegethat we used to generate the results, and dis
uss its utility in the 
ontext of extantTCP/IP tuning methodologies.1 Introdu
tionThe need for 
exible and high-performan
e a

ess to distributed resour
es has driventhe development of networking sin
e its in
eption. With the maturing of \The Internet"this 
ommunity 
ontinues to in
rease its demands for network performan
e to supporta raft of emerging appli
ations in
luding distributed 
ollaboratoria, full-motion video,and Computational Grid programs.Traditional models of high-performan
e 
omputing are evolving hand-in-hand withadvan
ed networking [14℄. While distributed 
omputation 
ontrol and network resour
e
ontrol [15℄ te
hniques are 
urrently being developed, we have been studying the useof time-limited, dynami
ally allo
ated network bu�ers [29℄ as a way of provisioning the
ommuni
ation medium. We term this form of networking Logisti
al Networking [7℄ toemphasize the higher-level 
ontrol of bu�er resour
es it entails.In this paper, we present a novel approa
h to optimizing end-to-end TCP/IP perfor-man
e using Logisti
al Networking. Our methodology inserts appli
ation-level TCP/IP1



\depots" along the route from sour
e to destination and, despite having to doubly tra-verse a full TCP/IP proto
ol sta
k at ea
h depot, improves bandwidth performan
e. Inaddition, we have implemented the the 
ommuni
ation abstra
tions that are ne
essaryto manage ea
h 
ommuni
ation without kernel modi�
ations as a set of session-layersemanti
s over over the standard byte-stream semanti
s supported by TCP/IP so
kets.As a result, we term the abstra
tions we have implemented the Logisti
al Session Layer(LSL).LSL improves end-to-end network performan
e by breaking long-haul TCP/IP 
on-ne
tions into shorter TCP segments between depots stationed along the route. Stagingdata at the session layer in a sequen
e of depots in
reases the overhead asso
iated withend-to-end 
ommuni
ation. In the LSL 
ase, data emanating from the sour
e mustbe pro
essed twi
e (ingress and egress) at ea
h depot thereby in
reasing the overallproto
ol pro
essing overhead. In this paper, we show that this performan
e penaltyis dramati
ally overshadowed by the performan
e improvement that 
omes from mov-ing TCP end-points 
loser together. It is 
ounter-intuitive that adding the pro
essoroverhead in
urred by traversing the proto
ol sta
k on an additional ma
hine 
ould a
-tually improve performan
e. Indeed, for some time the networking 
ommunity hasfo
used on TCP/IP overhead [9, 22℄ and examined ways to mitigate it [23, 33, 38℄. Tointrodu
e additional proto
ol pro
essing runs against the 
urrent optimization trendsin high-performan
e wide-area networking and 
omputing. However, despite the addi-tional pro
essing overhead that 
omes from moving the data in and out of the kernel atea
h depot (in
luding 
he
ksumming 
osts), moving TCP end-points 
loser together 
animprove end-to-end performan
e.We present this work in the 
ontext of re
ent networking trends that fo
us on statemanagement in the network fabri
 itself. While the Internet Proto
ol suite (as typi
allyimplemented) mandates the 
ommuni
ation state be managed at the end-points [35℄,new \stateful" fa
ilities [8, 27℄ whi
h relax this restri
tion have been proposed. In thisvein, we believe that there are several reasons that intermediate TCP pro
essing helps,rather than hurts, end-to-end bandwidth performan
e. First, sin
e the round-trip time(RTT) between any two depots is shorter than the end-to-end round-trip-time, LSL al-lows the inherent TCP 
ongestion-
ontrol me
hanism to sense the maximally availablethroughput more qui
kly. That is, even though the sum of the RTTs between depotsmay be longer than the end-to-end RTT, be
ause the maximum RTT between any twodepots is shorter, the 
ongestion-
ontrol me
hanisms adapt more rapidly. Se
ondly, aretransmission that results from a lost pa
ket need not originate at the sour
e, butrather, 
an be generated from the last depot to forward the data. Finally, re
ent ad-van
es in the pro
essing speed, memory bandwidth, and I/O performan
e of 
ommonlyavailable pro
essors has lowered proto
ol pro
essing and data movement 
osts relativeto available network performan
e. We des
ribe, more 
ompletely, the 
on
uen
e of thesee�e
ts in Se
tion 3.In Se
tion 2, we des
ribe the ar
hite
ture of a prototype appli
ation-layer LSL imple-2



mentation that we have developed. The advantage of providing a session-layer interfa
eis that appli
ations do not need to employ their own 
ustomized bu�er managementstrategies in order to use Logisti
al Networking to enhan
e end-to-end network per-forman
e. As su
h, our work not only provides a general methodology for improvingdeliverable network performan
e, but it also 
onstitutes an important early example ofa Grid-enabling network abstra
tion. At the same time, sin
e our implementation doesnot require kernel modi�
ation, it is portable and easy to deploy.Finally, in Se
tion 4 we detail the e�e
t of using intermediate TCP depots andLSL on end-to-end bandwidth, independent of end-point bu�er settings, both withand without the RFC 1323 [21℄ window-s
aling. Our results show that, using LSL,an appli
ation 
an gain a substantial end-to-end in
rease in bandwidth over standardTCP/IP so
kets, even if the so
ket 
onne
tions have been \tuned" for performan
e.2 Ar
hite
tureThe Logisti
al Session Layer (LSL) is a \session" layer (layer 5) in terms of the OSIproto
ol model. The session layer lies above the Transport layer (TCP, in the InternetProto
ol suite). Re
all that a transport layer 
onversation 
onsists of multiple hops ofnetwork layer 
onversations. In an analogous fashion, a session layer 
onversation 
an
onsist of multiple hops of transport layer 
onversations. [19℄. A 
onne
tion that is ini-tiated through the LSL will pass through a number of LSL-aware routers, or \depots."These devi
es 
an a
tually be thought of as \transport layer swit
hes" in that they mul-tiplex session-layer 
onversations onto sets of transport layer 
onversations. While webelieve that a kernel-level implementation or dedi
ated system versions of these swit
heswill, ultimately, improve performan
e over the results we report in the next se
tion, wehave 
hosen a non-privileged, appli
ation-level implementation initially. By doing so,we are able to gain two important bene�ts. First, be
ause the LSL depots use standard,user-level so
kets, our initial implementation of LSL does not (and, indeed, 
annot)violate the 
urrent TCP 
ongestion-
ontrol me
hanisms. From the perspe
tive of thenetwork, an LSL session appears to be a series of user-level appli
ations 
ommuni
atingin a 
hain. All resour
e 
ontrol me
hanisms governing \normal" user-appli
ations (su
has 
ow-
ontrol, 
ongestion-
ontrol, memory-size, et
.) remain fun
tional and need notbe disabled.Se
ondly, be
ause LSL depots 
an run under any user login id (i.e. do not requireroot a

ess), se
urity and stability 
on
erns are greatly redu
ed. It is not possible foran LSL depot to be used as a vehi
le for obtaining root a

ess be
ause it does not runas root and it does not exe
ute any fun
tions not 
ompiled into its binary image.Additionally, our �rst implementation of the LSL 
lient API 
losely mimi
s thefamiliar Unix so
kets interfa
e. This design 
hoi
e allows easy in
orporation into lega
yappli
ations. Users of the so
ket interfa
e are familiar with the \Internet" address3



family, denoted with AF INET. We designate a new family, whi
h we label AF LSL.So, for a given program to use LSL, a simple text substitution in the sour
e 
ode wouldenable use of the system. The 
onne
tion would \fall ba
k" to using a dire
t TCP
onne
tion if ne
essary to make the 
hange less intrusive.

Without LSL With LSLFigure 1: Network 
ommuni
ation with and without LSLObserve Figure 1 for an illustration of this ar
hite
ture. This depi
ts the network
ommuni
ation between two hosts with and without LSL. A given session may passthrough one or more LSL depots.An appli
ation should be able to dire
t the LSL session to use a given depot ifne
essary to allow appli
ation-level tuning. In addition, we plan an end-to-end routingservi
e based on the Network Weather Servi
e [42, 43℄ that determines a \good" routefor ea
h 
lient. In either 
ase, utilizing the So
kets interfa
e for this simply entailsspe
ifying a sour
e routed path. When an LSL 
onne
tion is initiated, a predi
ted pathmay be spe
i�ed or lo
al forwarding de
isions may be relied upon. To spe
ify a pathexpli
itly, the sender will use the stri
t sour
e route options with the LSL so
ket. In fa
ta 
ombination of lo
al and global forwarding strategies may be employed by spe
ifyinga loose sour
e route in the same fashion.To test out the e�e
tiveness of LSL and begin to understand its potential perfor-man
e bene�ts, we have implemented and deployed a rudimentary prototype havingthree 
omponents:� a simple �le server program 
alled lsrv,� a per-depot session-level daemon that establishes and releases TCP streams travers-ing ea
h depot 
alled lsd, and� a 
lient (responsible for 
hoosing end-to-end routes) 
alled lget.4



Our intention is to use this framework to study both the performan
e 
hara
ter-isti
s of LSL and how LSL may be implemented for 
omputational Grid settings. Bythus modularizing the LSL system, we will be able to take advantage of the fun
tion-ality provided by systems su
h a Globus [13℄, Legion [16℄, and the Network WeatherServi
e [43℄.2.1 The End-to-End Argument and the Session LayerThe ar
hite
ture of the 
urrent Internet Proto
ol suite has been guided by what is knownas the \end-to-end" argument [35℄. This model (as 
ommonly understood) di
tatesthat state be kept at the end nodes and that the 
ore of the network be statelessprimarily for reasons of reliability. Re
ent trends in network servi
e provision [8, 27℄,however, relax the requirement of statelessness in favor of better performan
e and servi
equality 
ontrol. Indeed, the general question of end-to-end versus stateful networkingis also being 
onsidered expli
itly by many, in
luding the original authors of the end-to-end argument [8, 32℄. LSL is another example of how 
areful state managementwithin the network fabri
 itself 
an improve delivered network performan
e while, atthe same time, preserving the stability and reliability 
hara
teristi
s that the InternetProto
ol suite provides. In addition, the ar
hite
ture we have de�ned is 
ompatible the
urrent implementations of TCP/IP while o�ering a similar programming interfa
e tothat provided by the Unix so
ket abstra
tion.In short, the general appli
ation of the prin
iple is somewhat di�erent than thenetworking 
ommunity at large has 
ome to understand. However, sin
e we use thesemanti
s of a session layer to implement our system, even the most dogmati
 networkengineer will be left without argument.3 ObservationsThe key idea behind LSL is that, by allowing an appli
ation to temporarily and anony-mously utilize bu�ers \in" the network, end-to-end performan
e will be enhan
ed. Itis intuitive that there is a fundamental 
ost asso
iated with bu�ering una
knowledgedsegments for retransmission. Moreover, it is 
lear that the problem is only exa
erbatedas network speeds in
rease.By its very de�nition LSL 
auses the end-to-end 
onne
tion to have a larger aggregatewindow. We de�ne this to be the sum of the minimum of the 
ongestion window (
wnd)and the advertised window (rwnd) over ea
h of the TCP 
onne
tions. In exposing thepipeline we have, in fa
t, in
reased the \
apa
ity" of the network.In addition, LSL optimizes the end-to-end bandwidth performan
e in two ways: byimproving the response of the 
ongestion-
ontrol me
hanisms that are 
urrently in use,and by exploiting lo
ality for pa
ket retransmission.5



3.1 Congestion Control and Cas
aded TCPBy 
as
ading TCP streams, LSL a�e
ts TCP 
ongestion 
ontrol in two ways. First, itshortens the RTT that any 
onstituent TCP stream uses to \
lo
k" the rate at whi
h
ongestion-window modi�
ations are made. Se
ondly, it isolates RTT varian
e so thatretransmission times a
ross low varian
e links are based on more a

urate estimates ofvarian
e.By staging data above the transport layer at depots along the path from sour
e tosink, LSL redu
es the bandwidth-delay produ
t asso
iated with any single TCP 
onne
-tion. As su
h, it allows the adaptive 
ongestion-
ontrol me
hanisms [2℄) to a
hieve max-imal throughput and re
over from loss more qui
kly. The 
ow-
ontrol and 
ongestion-
ontrol me
hanisms used by TCP require that an a
knowledgement (ACK) be sentfrom the re
eiver. This stream of ACKs a
ts as a 
lo
k for strobing pa
kets into thenetwork [20℄. The speed with whi
h slow-start allows the TCP 
onne
tion to approa
hthe advertised 
ow-
ontrol window is determined with the RTT (measured as the sum ofthe transit time of a pa
ket and its ACK.) The e�e
ts of RTT have been observed [24,26℄but intuitively, sin
e in
rease in 
ongestion window requires a full RTT, the longer theRTT, the longer it takes TCP to rea
h full link 
apa
ity. By using multiple LSL depotswith stream between ea
h, TCP 
an dis
ern the 
ongestion-and 
ow-
ontrol-levels forea
h 
ommuni
ation and a
hieve maximal link 
apa
ity more qui
kly.The se
ond e�e
t on TCP 
omes from a redu
ed varian
e in RTT. By shorteningthe length of the links that TCP traverses, LSL potentially isolates varian
e in pa
ketdelay. The TCP proto
ol uses an estimate of the varian
e in RTT to determine when aretransmission is ne
essary in response to a lost pa
ket. if the TCP stream traverses alarge number of hops, high varian
e in queue delay at any point along the route a�e
tsthe retransmission time out for the entire route. By breaking the end-to-end route upinto segments between depots, LSL allows TCP to better estimate RTT varian
e on alink-by-link basis. The result is that retransmissions are more a

urately triggered, andperforman
e is improved.3.2 Lo
ality and Pa
ket RetransmissionBy bu�ering data at intermediate points along the route from sour
e to sink, LSL redu
esthe overhead asso
iated with retransmission. With the 
urrent TCP bu�ering model,a lost pa
ket at any point between sour
e and sink requires a retransmission from the
ommuni
ation sour
e point. The retransmitted pa
ket, then, must traverse the entirenetwork using valuable bandwidth along the entire route. For example, 
onsider an end-to-end 
ommuni
ation between two hosts separated by 10 routers or gateways in whi
hpa
kets are being dropped at the last gateway before the sink. Every time the 10throuter drops a pa
ket, the resulting retransmission must traverse the other 9 routers,taking up s
ar
e bu�er and bandwidth resour
es. By bu�ering data at the session layer,6



LSL ensures that any retransmits traverse only the links between depots. The resultis a savings in the bandwidth that would otherwise be wasted from end-to-end movingretransmitted data.4 ResultsThe pla
e that we expe
t the LSL optimization e�e
ts to be most apparent is in long-running transfers over networks where the bandwidth-delay produ
t is high. In thisse
tion, we examine several example transfer paths that terminate at the University ofTennessee, Knoxville (UTK). Sin
e we had 
omplete 
ontrol over the UTK ma
hines,we were able to investigate the e�e
ts of di�erent kernel-level TCP settings.In the �rst test we study transfers from Argonne National Laboratory (ANL) tothe University of Tennessee (UTK). To do so, we deploy an LSL daemon at Oak RidgeNational Laboratory (ORNL) to serve as a depot between UTK and ANL. UTK isdire
tly 
onne
ted to ORNL via an OC-3 (155 Mb/se
) link, and ORNL and ANL areboth 
onne
ted to the Energy S
ien
es Network (ESnet) at OC-12 (622 Mb/se
) [11℄.Appendix A is the output of the tra
eroute 
ommand from UTK to both other sites,Appendix B and C are from ANL and ORNL, respe
tively.The ANL, ORNL, and UTK ma
hines were 
on�gured to use the RFC1323 [21℄window-s
aling optimizations and large kernel bu�ers. For this experiment, we set thekernel bu�ers (through the Unix setso
kopt() 
ommand) to be eight megabytes at bothends, and veri�ed that the 
orre
t window size was bring quoted using getso
kopt andt
pdump at the UTK end.The results in Figure 2 represent roughly 280 experiments in total. Along the x-axis we show a series of di�erent transfer sizes. The y-axis of the �gure indi
ates theobserved, end-to-end throughout in megabits per se
ond. Ea
h data point represents theaverage throughput observed over 20 di�erent transfers at transfer size 
orrespondingto its x 
oordinate.1 In addition, the x-axis is shown on a log s
ale.Figure 2 shows that the LSL does indeed optimize end-to-end transfers of 256KBytesand larger. For transfers of 32Mbytes, use of the LSL depot at ORNL in
reases theaverage performan
e by well over a fa
tor of 2.5.While investigating these results, we observed that the route between UTK and ANLis asymmetri
 as the tra
eroute from ANL to UTK (in Appendix B indi
ates. As this isthe 
ase, part of this improvement 
an be attributed to the fa
t that by expli
itly routingthrough ORNL, we are enfor
ing symmetri
 paths. This \user-
ontrolled" routing issomewhat analogous to the IP \sour
e route" option and we dis
uss similarities to thisand other approa
hes in Se
tion 5.1Appendix G shows some summary statisti
s and average transfer rates for ea
h transfer size we
onsider in this paper. For visual 
larity, the �gures we present depi
t the averages only.7
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Figure 2: Data transfer from ANL to UTKSin
e this might be viewed as a pathologi
al 
ase (although re
ent work [28℄ indi
atesotherwise) we sought a 
ase in whi
h the LSL route 
orresponded with the non-LSL routein both dire
tions. We 
hose a path between the University of Tennessee (UTK) and theUniversity of California at San Diego (UCSD) using a ma
hine lo
ated at Texas A&MUniversity, South Campus whi
h is very near the Abilene [1℄ \Point of Presen
e" (POP)in Houston. TraÆ
 from UTK to UCSD and vi
e versa traverses this POP. AppendixD shows the tra
eroute from UTK to UCSD and TAMUS. Appendix E and F showtra
eroutes from UCSD and TAMUS, respe
tively.Figure 3 illustrates the 
omparison of LSL-enabled and non-LSL-enabled end-to-endbandwidth performan
e from UCSD to UTK, again using 8 MB bu�ers and windows.Here, LSL o�ers as mu
h as a %50 improvement over dire
t TCP despite adding to thegross laten
y and proto
ol pro
essing overhead along the path from sour
e to sink.For high-
apa
ity long-haul networks (like Abilene), large window sizes are ne
essaryso that the sending side does not blo
k due to 
ow-
ontrol before an a
knowledgement8
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Figure 3: Data transfer from UCSD to UTKhas time to return from the re
eiver. That is, the bu�ering must allow the amount ofdata in 
ight to ex
eed the bandwidth-delay produ
t. By 
hoosing 8 MB windows andbu�ers, we ensure that the LSL e�e
ts we observe not not simply due \bad" bu�ering
hoi
es at the end points. We believe that an optimized TCP stream using large bu�ersat either end would see similar performan
e improvements.Although we re
ognize that bu�ers of this size may not be optimally tuned, this doesnot e�e
t our results. The danger in over-sizing bu�ers is in wasting resour
es on thehost, not in 
ausing poor TCP performan
e [38℄. We judged this to be a

eptable forthis experiment, but we do await the produ
ts produ
ed by groups like the Web100 [41℄and the Internet2 End-to-End Performan
e initiative [18℄.However, not all hosts support (through design or 
on�guration) large window sizes.For this 
ase, we wanted to investigate how using an LSL depot with large windowsmight enhan
e the performan
e of \untuned" TCP streams. Figure 4 shows the averagetransfer rates when the bu�ers at the sending and re
eiving ends are restri
ted to 64K9
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Figure 4: Data transfer from UCSD to UTK with 64KB bu�ersAs expe
ted, the absolute performan
e is lower. However, the LSL-enabled streamwas still able to outperform the non-enabled stream by %43 for the largest transfersize. As a non-intrusive optimization, however, we believe that su
h a performan
eimprovement will be useful in many appli
ation settings.Finally, Figure 5 shows the e�e
t of using LSL on a TCP stream that does nosetso
kopt() bu�er 
onditioning whatsoever.Again, the performan
e is not as dramati
 as in the tuned 
ases, but the LSL e�e
tis still present.
10
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Figure 5: Data transfer from UCSD to UTK with default (32KB) bu�ers5 Related WorkThere are many areas in whi
h fa
ets of our results and similar mindsets 
an be seen inthe 
ommunity. Two broad 
ategories are TCP e�e
ts (retransmission 
ost and lo
ality)and 
ontrol over the topology.Te
hniques developed for wireless networks [5,6℄ seek to mitigate the 
ost of retrans-mission in lossy environments. However, they violate layering to do so. Systems to proxyTCP have been developed with the same goals in mind. One example is TPOT [34℄,whi
h alters TCP to allow this mode of operation (and therefore has dubious possibilityfor a
tual deployment in the global Internet.) A similar approa
h targeting 
a
hing ofweb obje
ts also proposes modi�
ations to TCP [25℄.There are many approa
hes to redu
ing the 
ost of retransmission with the network'sassistan
e. One of the areas that has pushed this notion forward is the wireless 
ommu-11



nity. Sin
e wireless links at the edges of the network tend to be mu
h less reliable thanother parts of the network, the almost inevitable pa
ket loss hampers the performan
eof TCP. The \snoop" te
hnique wat
hes TCP traÆ
 and 
an perform retransmits fromand intermediate point in the network. [6℄. This proto
ol 
omes from a very similarmindset, but 
ould be 
onsidered inappropriate in that it violates layering. Further,
ow-level snooping is expensive, so the s
alability of this approa
h for high-bandwidthnetworks is questionable. Also targeting wireless is Indire
t TCP [5℄, whi
h is similarto our approa
h. Another similar approa
h is that proposed for use in multi
ast videotransmission [39℄ in that it allows a data stream to take advantage of retransmit lo
alityand �ner-grained adaptability.The PSo
kets [12℄ work addresses the diÆ
ulty of getting high-bandwidth from long,fat networks. This work is similar to LSL in that they preserve the syntax of the well-known so
ket interfa
e while taking liberties underneath. They di�er in me
hanism andspirit, however. This approa
h to higher bandwidth uses multiple TCP streams andkeeps aggregate throughput high by amortizing loss over several streams. The parallelso
kets approa
h is to ignore TCP's ineÆ
ien
ies in the wide area and aim for betteraverage throughput. However, the streams are then indu
ing the 
ongestion that theother streams are sensing. So, Pso
kets provides better average performan
e but worselink utilization. LSL allows the network to be \arti
ulated" and allows TCP to respondto 
ongestion where it exists without introdu
ing additional load.The need to 
ontrol the topology by tunneling from one host to another has beenidenti�ed by a body of engineering and by the sheer number of Virtual Private Networksthat are in use. Even outside the desire to provide an en
rypted tunnel, virtual topologysystems are abundant [36, 40℄. The performan
e bene�ts of user-optimization of pathshas been dis
ussed [3, 31, 37℄. While LSL has the fun
tionality of these systems, ourapproa
h is di�erent in that we 
onsider this to be part of a \session" layer of servi
es.Our empiri
al eviden
e does establish the viability of this line of resear
h.Finally, within the networking 
ommunity, the notion has long existed that the enduser will o

asionally need to have expli
it 
ontrol over the route that traÆ
 follows.Loose and stri
t sour
e routing were de�ned in RFC 791 [30℄, whi
h de�nes the InternetProto
ol. Store and forward 
onne
tivity has been used for quite some time in thenetworking 
ommunity and there are many situations in whi
h data transfer need notbe syn
hronous or 
onne
tion-oriented. SMTP [10℄, USENET [17℄ and its su

essorNNTP [4℄, all use hop-oriented, 
onne
tionless paradigms to send data.6 Con
lusionWith the maturing of network infrastru
ture, both in terms of ubiquity and quality,
omes the possibility of in
reasing the state held in the network, and the time durationover whi
h it is maintained. Logisti
al Networking [7℄ attempts to de�ne the parameters12



under whi
h the added 
ost asso
iated with maintaining state is overshadowed by anin
rease in delivered network performan
e. The Logisti
al Session Layer (LSL) is an im-plementation of Logisti
al Networking 
on
epts to improve end-to-end 
ommuni
ationperforman
e between appli
ations that 
urrently use the TCP so
ket interfa
e. Ourearly results show that LSL 
an result in dramati
 throughput performan
e improve-ments despite greater proto
ol pro
essing overhead. In addition, our initial prototype isserving as an ar
hite
tural framework within whi
h he hope to generalize these results.Important resear
h questions exist su
h as the permanen
e of the bu�ering, thenature of the 
ow 
ontrol me
hanisms and alternate ar
hite
tures for a me
hanism su
has this. We believe that we have demonstrated the eÆ
a
y of this system and that it isnovel, viable approa
h.Referen
es[1℄ Abilene. http://www.u
aid.edu/abilene/.[2℄ M. Allman, V. Paxson, and W. Stevens. TCP 
ongestion 
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eroute from UTK to ANL and UTK to ORNLtra
eroute to pit
airn.m
s.anl.gov (140.221.9.180), 30 hops max, 38 byte pa
kets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.220 ms 0.181 ms 0.168 ms2 128.169.192.241 (128.169.192.241) 1.631 ms 0.711 ms 0.770 ms3 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 2.318 ms 2.021 ms 1.652 ms4 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 68.930 ms 65.490 ms 65.199 ms5 esnet-sox-rtr.sox.net (199.77.192.6) 48.288 ms 48.575 ms 48.643 ms6 orn-gsu.es.net (134.55.208.65) 48.211 ms 48.312 ms 48.502 ms7 ny
-s-orn.es.net (134.55.205.109) 81.104 ms 81.595 ms 80.854 ms8 
hi-s-ny
.es.net (134.55.205.106) 101.551 ms 100.881 ms 101.062 ms9 anl-
hi-ds3.es.net (134.55.208.150) 102.894 ms 103.809 ms 102.939 ms10 anl-esanl2.es.net (198.124.254.166) 105.927 ms 105.344 ms 105.025 ms11 stardust-msf
-20.m
s.anl.gov (140.221.20.124) 106.386 ms 108.505 ms 106.758 ms12 pit
airn.m
s.anl.gov (140.221.9.180) 106.309 ms * 105.946 mstra
eroute to fal
on0j.

s.ornl.gov (160.91.199.21), 30 hops max, 38 byte pa
kets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.242 ms 0.184 ms 0.171 ms2 128.169.192.241 (128.169.192.241) 0.942 ms 0.848 ms 0.664 ms3 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 1.743 ms 1.805 ms 1.657 ms4 mmesgwya32.
td.ornl.gov (192.31.96.17) 3.222 ms 3.219 ms 3.689 ms5 192.31.96.225 (192.31.96.225) 2.203 ms 2.493 ms 2.061 ms6 ornlgwy-ext.ens.ornl.gov (198.124.42.162) 2.358 ms 2.475 ms 2.736 ms7 

srtr.

s.ornl.gov (160.91.0.66) 2.198 ms 2.421 ms 2.094 ms8 fal
on0j.

s.ornl.gov (160.91.199.21) 2.194 ms 2.574 ms 2.289 msB Tra
eroute from ANL to UTK and ORNLtra
eroute to modulus.
s.utk.edu (160.36.59.32): 1-30 hops, 38 byte pa
kets1 stardust-msf
-11.m
s.anl.gov (140.221.11.251) 6.49 ms 11.1 ms 4.73 ms2 kiwi.an
hor.anl.gov (140.221.20.97) 0.614 ms 0.721 ms 0.639 ms3 abilene-anl.an
hor.anl.gov (192.5.170.170) 5.97 ms 5.35 ms 5.29 ms15



4 atla-ipls.abilene.u
aid.edu (198.32.8.42) 15.7 ms 15.0 ms 15.2 ms5 sox-rtr.abilene.sox.net (199.77.193.9) 41.1 ms 40.7 ms 40.2 ms6 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 107 ms 107 ms 107 ms7 * * *8 128.169.192.242 (128.169.192.242) 107 ms 106 ms 106 ms9 MODULUS.CS.UTK.EDU (160.36.59.32) 106 ms 106 ms 106 mstra
eroute to fal
on0j.

s.ornl.gov (160.91.199.21): 1-30 hops, 38 byte pa
kets1 stardust-msf
-11.m
s.anl.gov (140.221.11.251) 0.728 ms 0.792 ms 0.515 ms2 kiwi.an
hor.anl.gov (140.221.20.97) 0.377 ms 0.315 ms 0.279 ms3 esanl2-anl.es.net (198.124.254.165) 0.783 ms 0.989 ms 0.504 ms4 
hi-anl-ds3.es.net (134.55.208.149) 3.33 ms 2.34 ms 2.35 ms5 ny
-s-
hi.es.net (134.55.205.105) 23.1 ms 23.0 ms 22.7 ms6 orn-s-ny
.es.net (134.55.205.110) 56.2 ms 55.8 ms 54.9 ms7 ornl-orn.es.net (134.55.208.62) 76.0 ms 75.1 ms 75.0 ms8 192.31.96.225 (192.31.96.225) 74.2 ms 74.8 ms 75.7 ms9 ornlgwy-ext.ens.ornl.gov (198.124.42.162) 75.0 ms 75.5 ms 74.9 ms10 

srtr.

s.ornl.gov (160.91.0.66) 75.3 ms 74.6 ms 75.3 ms11 fal
on0j.

s.ornl.gov (160.91.199.21) 75.5 ms 75.1 ms 74.7 msC Tra
eroute from ORNL to UTK and ANLtra
eroute to modulus.
s.utk.edu (160.36.59.32): 1-30 hops, 38 byte pa
kets1 

srtr-003.

s.ornl.gov (160.91.199.1) 0.341 ms 0.270 ms 0.418 ms2 160.91.0.65 (160.91.0.65) 0.490 ms 0.299 ms 0.357 ms3 orgwy2.ens.ornl.gov (198.124.42.185) 0.330 ms 0.385 ms 0.327 ms4 mmesgwy-ext-fe.
ind.ornl.gov (192.31.96.235) 2.5 ms 1.54 ms 1.95 ms5 utk-rtr.
td.ornl.gov (192.31.96.18) 3.54 ms 2.52 ms 3.8 ms6 * * *7 128.169.192.242 (128.169.192.242) 3.27 ms 2.40 ms 2.19 ms8 MODULUS.CS.UTK.EDU (160.36.59.32) 2.46 ms 2.30 ms 2.47 mstra
eroute to pit
airn.m
s.anl.gov (140.221.9.180): 1-30 hops, 38 byte pa
kets1 

srtr-003.

s.ornl.gov (160.91.199.1) 2.55 ms 0.575 ms 0.342 ms2 160.91.0.65 (160.91.0.65) 0.338 ms 4.44 ms 0.796 ms3 orgwy2.ens.ornl.gov (198.124.42.185) 1.69 ms 0.290 ms 0.410 ms4 ornl-rt3-ge.
ind.ornl.gov (192.31.96.230) 0.674 ms 0.503 ms 3.35 ms5 orn-ornl.es.net (134.55.208.61) 18.4 ms 19.9 ms 19.6 ms6 ny
-s-orn.es.net (134.55.205.109) 52.6 ms 52.5 ms 52.8 ms7 
hi-s-ny
.es.net (134.55.205.106) 73.1 ms 72.9 ms 72.4 ms8 anl-
hi-ds3.es.net (134.55.208.150) 73.5 ms 73.9 ms 81.2 ms9 anl-esanl2.es.net (198.124.254.166) 75.8 ms 74.1 ms 74.1 ms10 stardust-msf
-20.m
s.anl.gov (140.221.20.124) 74.5 ms 76.1 ms 76.4 ms11 pit
airn.m
s.anl.gov (140.221.9.180) 74.6 ms * 75.8 ms16



D Tra
eroutes from UTK to UCSD and TAMUStra
eroute to freak.u
sd.edu (132.239.95.142), 30 hops max, 38 byte pa
kets1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 95.333 ms 13.187 ms 3.477 ms2 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 6.608 ms 1.406 ms 2.253 ms3 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 65.648 ms 66.254 ms 66.578 ms4 199.77.193.10 (199.77.193.10) 65.590 ms 65.773 ms 67.116 ms5 hstn-atla.abilene.u
aid.edu (198.32.8.33) 86.127 ms 84.799 ms 85.412 ms6 losa-hstn.abilene.u
aid.edu (198.32.8.21) 116.830 ms 117.402 ms 117.387 ms7 USC--abilene.ATM.
alren2.net (198.32.248.85) 117.384 ms 117.809 ms 117.693 ms8 UCSD--USC.POS.
alren2.net (198.32.248.34) 120.569 ms 120.970 ms 120.841 ms9 sds
2--UCSD.ATM.
alren2.net (198.32.248.65) 121.533 ms 122.205 ms 121.619 ms10 
se-rs.u
sd.edu (132.239.254.45) 122.926 ms 122.876 ms 122.653 ms11 freak.u
sd.edu (132.239.95.142) 122.757 ms 122.534 ms 122.110 mstra
eroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte pa
kets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.230 ms 0.189 ms 0.172 ms2 128.169.192.241 (128.169.192.241) 0.890 ms 1.002 ms 0.939 ms3 192.168.101.3 (192.168.101.3) 2.096 ms 1.592 ms 1.197 ms4 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 66.649 ms 66.018 ms 65.296 ms5 atla.abilene.sox.net (199.77.193.10) 65.601 ms 65.199 ms 65.430 ms6 hstn-atla.abilene.u
aid.edu (198.32.8.33) 84.666 ms 84.745 ms 84.695 ms7 LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 85.458 ms 97.486 ms 87.325 ms8 LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 86.562 ms 86.351 ms 86.420 ms9 ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 87.595 ms 87.494 ms 87.433 ms10 i2-dsi.ibt.tamus.edu (165.95.234.23) 87.476 ms 87.740 ms 87.811 msE Tra
eroutes from UCSD to UTK and TAMUStra
eroute to modulus.
s.utk.edu (128.169.94.246), 30 hops max, 38 byte pa
kets1 
se-danger-gateway.u
sd.edu (132.239.95.1) 0.723 ms 0.702 ms 0.622 ms2 bigmama.u
sd.edu (132.239.254.5) 1.860 ms 1.321 ms 1.224 ms3 UCSD--sds
2.ATM.
alren2.net (198.32.248.66) 1.270 ms 1.153 ms 1.542 ms4 USC--UCSD.POS.
alren2.net (198.32.248.33) 4.997 ms 5.054 ms 5.961 ms5 abilene--USC.ATM.
alren2.net (198.32.248.86) 5.412 ms 5.223 ms 4.955 ms6 hstn-losa.abilene.u
aid.edu (198.32.8.22) 37.056 ms 37.352 ms 37.429 ms7 atla-hstn.abilene.u
aid.edu (198.32.8.34) 57.223 ms 56.851 ms 56.922 ms8 199.77.193.9 (199.77.193.9) 56.819 ms 56.770 ms 57.155 ms9 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 124.427 ms 124.783 ms 124.299 ms10 192.168.101.40 (192.168.101.40) 169.204 ms 125.048 ms 124.302 ms11 MODULUS.CS.UTK.EDU (128.169.94.246) 122.207 ms 121.958 ms 122.852 mstra
eroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte pa
kets1 
se-danger-gateway.u
sd.edu (132.239.95.1) 0.765 ms 0.661 ms 0.657 ms2 nodeb-rs-ba
kbone.u
sd.edu (132.239.254.26) 1.099 ms 1.288 ms 2.827 ms17



3 nodeB-6500-5500-GE.u
sd.edu (132.239.255.150) 0.842 ms 0.643 ms 0.706 ms4 u
sd-gw-nodeB.u
sd.edu (132.239.255.142) 0.872 ms 0.737 ms 0.714 ms5 198.32.248.185 (198.32.248.185) 1.508 ms 0.826 ms 0.673 ms6 USC--UCSD.POS.
alren2.net (198.32.248.33) 4.374 ms 4.206 ms 5.037 ms7 Abilene--USC.ATM.
alren2.net (198.32.248.86) 4.978 ms 5.411 ms 5.360 ms8 hstn-losa.abilene.u
aid.edu (198.32.8.22) 36.870 ms 36.619 ms 36.987 ms9 LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 38.636 ms 37.631 ms 37.596 ms10 LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 38.995 ms 38.918 ms 38.093 ms11 ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 40.486 ms 39.158 ms 39.347 ms12 i2-dsi.ibt.tamus.edu (165.95.234.23) 41.655 ms 40.401 ms 39.469 msF Tra
eroutes from TAMUS to UTK and UCSDtra
eroute to modulus.
s.utk.edu (160.36.59.32), 30 hops max, 40 byte pa
kets1 ibtx2-atm10-1 (165.95.234.254) 1.015 ms 0.802 ms 0.757 ms2 ibtx1-atm10-401 (165.95.232.5) 1.451 ms 1.260 ms 1.239 ms3 198.32.236.33 (198.32.236.33) 1.915 ms 1.997 ms 1.795 ms4 ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.224 ms 2.279 ms 2.129 ms5 atla-hstn.abilene.u
aid.edu (198.32.8.34) 22.184 ms 21.755 ms 21.754 ms6 sox-rtr.abilene.sox.net (199.77.193.9) 21.936 ms 21.987 ms 21.861 ms7 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 87.940 ms 89.067 ms 87.372 ms8 192.168.101.40 (192.168.101.40) 87.845 ms 87.509 ms 87.301 ms9 128.169.192.242 (128.169.192.242) 86.897 ms 87.058 ms 87.171 ms10 MODULUS.CS.UTK.EDU (160.36.59.32) 87.495 ms 87.104 ms 87.109 mstra
eroute to freak.u
sd.edu (132.239.95.186), 30 hops max, 40 byte pa
kets1 ibtx2-atm10-1 (165.95.234.254) 0.991 ms 0.793 ms 0.759 ms2 ibtx1-atm10-401 (165.95.232.5) 1.413 ms 1.299 ms 1.273 ms3 198.32.236.33 (198.32.236.33) 2.069 ms 1.811 ms 1.852 ms4 ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.213 ms 2.260 ms 2.425 ms5 198.32.8.21 (198.32.8.21) 34.722 ms 34.373 ms 34.278 ms6 USC--abilene.ATM.
alren2.net (198.32.248.85) 34.651 ms 34.705 ms 34.526 ms7 UCSD--USC.POS.
alren2.net (198.32.248.34) 38.364 ms 38.095 ms 38.284 ms8 198.32.248.186 (198.32.248.186) 38.489 ms 38.819 ms 38.191 ms9 nodeB-u
sd-gw.u
sd.edu (132.239.255.141) 38.399 ms 38.286 ms 38.631 ms10 nodeB-5500-6500-GE.u
sd.edu (132.239.255.149) 38.969 ms 41.245 ms 38.884 ms11 
se-rs.u
sd.edu (132.239.254.45) 39.254 ms 39.132 ms 40.319 ms12 freak.u
sd.edu (132.239.95.186) 39.194 ms 39.299 ms 39.676 ms
18



G Statisti
sanl-utk-8Mmax min averageXfer Size16K 0.40300 0.331250 0.37752164K 0.782110 0.724233 0.763622256K 2.041860 0.823960 1.5519351M 3.820735 1.582323 2.9985474M 6.075528 2.964298 4.45599916M 7.172249 3.019620 4.32362032M 5.590730 3.874349 4.711681anl-lsl-utk-8Mmax min averageXfer Size16K 0.329159 0.282999 0.32492264K 0.821404 0.224252 0.778078256K 2.358894 2.151340 2.2609001M 6.806367 1.774656 6.1825084M 15.474262 2.971618 12.31770516M 22.538489 2.581877 11.36298832M 24.572602 2.627871 11.447852u
sd-utk-8Mmax min averageXfer Size16K 0.335828 0.327585 0.33239964K 0.671300 0.612586 0.666729256K 1.770170 0.976332 1.6431671M 3.208707 1.604943 2.5777044M 4.738750 2.086455 3.74240216M 6.517446 2.972433 4.15465332M 5.236016 2.906003 4.031742
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u
sd-lsl-utk-8Mmax min averageXfer Size16K 0.223686 0.033156 0.20742664K 0.602354 0.522283 0.588151256K 1.801070 0.755655 1.7421451M 5.168106 0.976739 4.1732354M 9.254006 2.622432 4.62281016M 14.895728 3.986542 6.34306332M 13.465528 4.960214 6.395069u
sd-utk-64Kmax min averageXfer Size16K 0.336283 0.240713 0.31592264K 0.670764 0.598264 0.655689256K 1.608678 0.688810 1.4784141M 2.913219 1.108043 2.5576314M 3.615189 1.866385 3.07421516M 3.529395 2.790902 3.11753532M 3.546387 2.623760 3.170910u
sd-lsl-utk-64Kmax min averageXfer Size16K 0.217576 0.206132 0.21472964K 0.599110 0.287751 0.563415256K 1.720705 1.681558 1.6921821M 3.533808 1.483824 3.2579874M 4.855747 1.464077 4.04258816M 5.212078 3.793412 4.47164432M 4.994041 3.914145 4.554841
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