
Data Logistis in Network Computing:The Logistial Session LayerMartin Swany and Rih WolskiComputer Siene DepartmentUniversity of Tennessee1122 Volunteer Avenue Knoxville, TN, 37996fswany,rihg�s.utk.eduAbstratIn this paper, we present a strategy for optimizing end-to-end TCP/IP perfor-mane over long-haul networks. Our approah de�nes a Logistial Session Layer(LSL) that uses intermediate proess-level \depots" along the network route fromsoure to sink to implement an end-to-end ommunation session. Despite theadditional proessing overhead resulting from TCP/IP protool stak Unix kernelboundary traversals at eah depot, our experiments show that dramati end-to-endbandwidth improvements are possible. We also desribe the prototype implementa-tion of LSL that does not require Unix kernel modi�ation or root aess privilegethat we used to generate the results, and disuss its utility in the ontext of extantTCP/IP tuning methodologies.1 IntrodutionThe need for exible and high-performane aess to distributed resoures has driventhe development of networking sine its ineption. With the maturing of \The Internet"this ommunity ontinues to inrease its demands for network performane to supporta raft of emerging appliations inluding distributed ollaboratoria, full-motion video,and Computational Grid programs.Traditional models of high-performane omputing are evolving hand-in-hand withadvaned networking [14℄. While distributed omputation ontrol and network resoureontrol [15℄ tehniques are urrently being developed, we have been studying the useof time-limited, dynamially alloated network bu�ers [29℄ as a way of provisioning theommuniation medium. We term this form of networking Logistial Networking [7℄ toemphasize the higher-level ontrol of bu�er resoures it entails.In this paper, we present a novel approah to optimizing end-to-end TCP/IP perfor-mane using Logistial Networking. Our methodology inserts appliation-level TCP/IP1



\depots" along the route from soure to destination and, despite having to doubly tra-verse a full TCP/IP protool stak at eah depot, improves bandwidth performane. Inaddition, we have implemented the the ommuniation abstrations that are neessaryto manage eah ommuniation without kernel modi�ations as a set of session-layersemantis over over the standard byte-stream semantis supported by TCP/IP sokets.As a result, we term the abstrations we have implemented the Logistial Session Layer(LSL).LSL improves end-to-end network performane by breaking long-haul TCP/IP on-netions into shorter TCP segments between depots stationed along the route. Stagingdata at the session layer in a sequene of depots inreases the overhead assoiated withend-to-end ommuniation. In the LSL ase, data emanating from the soure mustbe proessed twie (ingress and egress) at eah depot thereby inreasing the overallprotool proessing overhead. In this paper, we show that this performane penaltyis dramatially overshadowed by the performane improvement that omes from mov-ing TCP end-points loser together. It is ounter-intuitive that adding the proessoroverhead inurred by traversing the protool stak on an additional mahine ould a-tually improve performane. Indeed, for some time the networking ommunity hasfoused on TCP/IP overhead [9, 22℄ and examined ways to mitigate it [23, 33, 38℄. Tointrodue additional protool proessing runs against the urrent optimization trendsin high-performane wide-area networking and omputing. However, despite the addi-tional proessing overhead that omes from moving the data in and out of the kernel ateah depot (inluding heksumming osts), moving TCP end-points loser together animprove end-to-end performane.We present this work in the ontext of reent networking trends that fous on statemanagement in the network fabri itself. While the Internet Protool suite (as typiallyimplemented) mandates the ommuniation state be managed at the end-points [35℄,new \stateful" failities [8, 27℄ whih relax this restrition have been proposed. In thisvein, we believe that there are several reasons that intermediate TCP proessing helps,rather than hurts, end-to-end bandwidth performane. First, sine the round-trip time(RTT) between any two depots is shorter than the end-to-end round-trip-time, LSL al-lows the inherent TCP ongestion-ontrol mehanism to sense the maximally availablethroughput more quikly. That is, even though the sum of the RTTs between depotsmay be longer than the end-to-end RTT, beause the maximum RTT between any twodepots is shorter, the ongestion-ontrol mehanisms adapt more rapidly. Seondly, aretransmission that results from a lost paket need not originate at the soure, butrather, an be generated from the last depot to forward the data. Finally, reent ad-vanes in the proessing speed, memory bandwidth, and I/O performane of ommonlyavailable proessors has lowered protool proessing and data movement osts relativeto available network performane. We desribe, more ompletely, the onuene of thesee�ets in Setion 3.In Setion 2, we desribe the arhiteture of a prototype appliation-layer LSL imple-2



mentation that we have developed. The advantage of providing a session-layer interfaeis that appliations do not need to employ their own ustomized bu�er managementstrategies in order to use Logistial Networking to enhane end-to-end network per-formane. As suh, our work not only provides a general methodology for improvingdeliverable network performane, but it also onstitutes an important early example ofa Grid-enabling network abstration. At the same time, sine our implementation doesnot require kernel modi�ation, it is portable and easy to deploy.Finally, in Setion 4 we detail the e�et of using intermediate TCP depots andLSL on end-to-end bandwidth, independent of end-point bu�er settings, both withand without the RFC 1323 [21℄ window-saling. Our results show that, using LSL,an appliation an gain a substantial end-to-end inrease in bandwidth over standardTCP/IP sokets, even if the soket onnetions have been \tuned" for performane.2 ArhitetureThe Logistial Session Layer (LSL) is a \session" layer (layer 5) in terms of the OSIprotool model. The session layer lies above the Transport layer (TCP, in the InternetProtool suite). Reall that a transport layer onversation onsists of multiple hops ofnetwork layer onversations. In an analogous fashion, a session layer onversation anonsist of multiple hops of transport layer onversations. [19℄. A onnetion that is ini-tiated through the LSL will pass through a number of LSL-aware routers, or \depots."These devies an atually be thought of as \transport layer swithes" in that they mul-tiplex session-layer onversations onto sets of transport layer onversations. While webelieve that a kernel-level implementation or dediated system versions of these switheswill, ultimately, improve performane over the results we report in the next setion, wehave hosen a non-privileged, appliation-level implementation initially. By doing so,we are able to gain two important bene�ts. First, beause the LSL depots use standard,user-level sokets, our initial implementation of LSL does not (and, indeed, annot)violate the urrent TCP ongestion-ontrol mehanisms. From the perspetive of thenetwork, an LSL session appears to be a series of user-level appliations ommuniatingin a hain. All resoure ontrol mehanisms governing \normal" user-appliations (suhas ow-ontrol, ongestion-ontrol, memory-size, et.) remain funtional and need notbe disabled.Seondly, beause LSL depots an run under any user login id (i.e. do not requireroot aess), seurity and stability onerns are greatly redued. It is not possible foran LSL depot to be used as a vehile for obtaining root aess beause it does not runas root and it does not exeute any funtions not ompiled into its binary image.Additionally, our �rst implementation of the LSL lient API losely mimis thefamiliar Unix sokets interfae. This design hoie allows easy inorporation into legayappliations. Users of the soket interfae are familiar with the \Internet" address3



family, denoted with AF INET. We designate a new family, whih we label AF LSL.So, for a given program to use LSL, a simple text substitution in the soure ode wouldenable use of the system. The onnetion would \fall bak" to using a diret TCPonnetion if neessary to make the hange less intrusive.

Without LSL With LSLFigure 1: Network ommuniation with and without LSLObserve Figure 1 for an illustration of this arhiteture. This depits the networkommuniation between two hosts with and without LSL. A given session may passthrough one or more LSL depots.An appliation should be able to diret the LSL session to use a given depot ifneessary to allow appliation-level tuning. In addition, we plan an end-to-end routingservie based on the Network Weather Servie [42, 43℄ that determines a \good" routefor eah lient. In either ase, utilizing the Sokets interfae for this simply entailsspeifying a soure routed path. When an LSL onnetion is initiated, a predited pathmay be spei�ed or loal forwarding deisions may be relied upon. To speify a pathexpliitly, the sender will use the strit soure route options with the LSL soket. In fata ombination of loal and global forwarding strategies may be employed by speifyinga loose soure route in the same fashion.To test out the e�etiveness of LSL and begin to understand its potential perfor-mane bene�ts, we have implemented and deployed a rudimentary prototype havingthree omponents:� a simple �le server program alled lsrv,� a per-depot session-level daemon that establishes and releases TCP streams travers-ing eah depot alled lsd, and� a lient (responsible for hoosing end-to-end routes) alled lget.4



Our intention is to use this framework to study both the performane harater-istis of LSL and how LSL may be implemented for omputational Grid settings. Bythus modularizing the LSL system, we will be able to take advantage of the funtion-ality provided by systems suh a Globus [13℄, Legion [16℄, and the Network WeatherServie [43℄.2.1 The End-to-End Argument and the Session LayerThe arhiteture of the urrent Internet Protool suite has been guided by what is knownas the \end-to-end" argument [35℄. This model (as ommonly understood) ditatesthat state be kept at the end nodes and that the ore of the network be statelessprimarily for reasons of reliability. Reent trends in network servie provision [8, 27℄,however, relax the requirement of statelessness in favor of better performane and serviequality ontrol. Indeed, the general question of end-to-end versus stateful networkingis also being onsidered expliitly by many, inluding the original authors of the end-to-end argument [8, 32℄. LSL is another example of how areful state managementwithin the network fabri itself an improve delivered network performane while, atthe same time, preserving the stability and reliability harateristis that the InternetProtool suite provides. In addition, the arhiteture we have de�ned is ompatible theurrent implementations of TCP/IP while o�ering a similar programming interfae tothat provided by the Unix soket abstration.In short, the general appliation of the priniple is somewhat di�erent than thenetworking ommunity at large has ome to understand. However, sine we use thesemantis of a session layer to implement our system, even the most dogmati networkengineer will be left without argument.3 ObservationsThe key idea behind LSL is that, by allowing an appliation to temporarily and anony-mously utilize bu�ers \in" the network, end-to-end performane will be enhaned. Itis intuitive that there is a fundamental ost assoiated with bu�ering unaknowledgedsegments for retransmission. Moreover, it is lear that the problem is only exaerbatedas network speeds inrease.By its very de�nition LSL auses the end-to-end onnetion to have a larger aggregatewindow. We de�ne this to be the sum of the minimum of the ongestion window (wnd)and the advertised window (rwnd) over eah of the TCP onnetions. In exposing thepipeline we have, in fat, inreased the \apaity" of the network.In addition, LSL optimizes the end-to-end bandwidth performane in two ways: byimproving the response of the ongestion-ontrol mehanisms that are urrently in use,and by exploiting loality for paket retransmission.5



3.1 Congestion Control and Casaded TCPBy asading TCP streams, LSL a�ets TCP ongestion ontrol in two ways. First, itshortens the RTT that any onstituent TCP stream uses to \lok" the rate at whihongestion-window modi�ations are made. Seondly, it isolates RTT variane so thatretransmission times aross low variane links are based on more aurate estimates ofvariane.By staging data above the transport layer at depots along the path from soure tosink, LSL redues the bandwidth-delay produt assoiated with any single TCP onne-tion. As suh, it allows the adaptive ongestion-ontrol mehanisms [2℄) to ahieve max-imal throughput and reover from loss more quikly. The ow-ontrol and ongestion-ontrol mehanisms used by TCP require that an aknowledgement (ACK) be sentfrom the reeiver. This stream of ACKs ats as a lok for strobing pakets into thenetwork [20℄. The speed with whih slow-start allows the TCP onnetion to approahthe advertised ow-ontrol window is determined with the RTT (measured as the sum ofthe transit time of a paket and its ACK.) The e�ets of RTT have been observed [24,26℄but intuitively, sine inrease in ongestion window requires a full RTT, the longer theRTT, the longer it takes TCP to reah full link apaity. By using multiple LSL depotswith stream between eah, TCP an disern the ongestion-and ow-ontrol-levels foreah ommuniation and ahieve maximal link apaity more quikly.The seond e�et on TCP omes from a redued variane in RTT. By shorteningthe length of the links that TCP traverses, LSL potentially isolates variane in paketdelay. The TCP protool uses an estimate of the variane in RTT to determine when aretransmission is neessary in response to a lost paket. if the TCP stream traverses alarge number of hops, high variane in queue delay at any point along the route a�etsthe retransmission time out for the entire route. By breaking the end-to-end route upinto segments between depots, LSL allows TCP to better estimate RTT variane on alink-by-link basis. The result is that retransmissions are more aurately triggered, andperformane is improved.3.2 Loality and Paket RetransmissionBy bu�ering data at intermediate points along the route from soure to sink, LSL reduesthe overhead assoiated with retransmission. With the urrent TCP bu�ering model,a lost paket at any point between soure and sink requires a retransmission from theommuniation soure point. The retransmitted paket, then, must traverse the entirenetwork using valuable bandwidth along the entire route. For example, onsider an end-to-end ommuniation between two hosts separated by 10 routers or gateways in whihpakets are being dropped at the last gateway before the sink. Every time the 10throuter drops a paket, the resulting retransmission must traverse the other 9 routers,taking up sare bu�er and bandwidth resoures. By bu�ering data at the session layer,6



LSL ensures that any retransmits traverse only the links between depots. The resultis a savings in the bandwidth that would otherwise be wasted from end-to-end movingretransmitted data.4 ResultsThe plae that we expet the LSL optimization e�ets to be most apparent is in long-running transfers over networks where the bandwidth-delay produt is high. In thissetion, we examine several example transfer paths that terminate at the University ofTennessee, Knoxville (UTK). Sine we had omplete ontrol over the UTK mahines,we were able to investigate the e�ets of di�erent kernel-level TCP settings.In the �rst test we study transfers from Argonne National Laboratory (ANL) tothe University of Tennessee (UTK). To do so, we deploy an LSL daemon at Oak RidgeNational Laboratory (ORNL) to serve as a depot between UTK and ANL. UTK isdiretly onneted to ORNL via an OC-3 (155 Mb/se) link, and ORNL and ANL areboth onneted to the Energy Sienes Network (ESnet) at OC-12 (622 Mb/se) [11℄.Appendix A is the output of the traeroute ommand from UTK to both other sites,Appendix B and C are from ANL and ORNL, respetively.The ANL, ORNL, and UTK mahines were on�gured to use the RFC1323 [21℄window-saling optimizations and large kernel bu�ers. For this experiment, we set thekernel bu�ers (through the Unix setsokopt() ommand) to be eight megabytes at bothends, and veri�ed that the orret window size was bring quoted using getsokopt andtpdump at the UTK end.The results in Figure 2 represent roughly 280 experiments in total. Along the x-axis we show a series of di�erent transfer sizes. The y-axis of the �gure indiates theobserved, end-to-end throughout in megabits per seond. Eah data point represents theaverage throughput observed over 20 di�erent transfers at transfer size orrespondingto its x oordinate.1 In addition, the x-axis is shown on a log sale.Figure 2 shows that the LSL does indeed optimize end-to-end transfers of 256KBytesand larger. For transfers of 32Mbytes, use of the LSL depot at ORNL inreases theaverage performane by well over a fator of 2.5.While investigating these results, we observed that the route between UTK and ANLis asymmetri as the traeroute from ANL to UTK (in Appendix B indiates. As this isthe ase, part of this improvement an be attributed to the fat that by expliitly routingthrough ORNL, we are enforing symmetri paths. This \user-ontrolled" routing issomewhat analogous to the IP \soure route" option and we disuss similarities to thisand other approahes in Setion 5.1Appendix G shows some summary statistis and average transfer rates for eah transfer size weonsider in this paper. For visual larity, the �gures we present depit the averages only.7
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Figure 2: Data transfer from ANL to UTKSine this might be viewed as a pathologial ase (although reent work [28℄ indiatesotherwise) we sought a ase in whih the LSL route orresponded with the non-LSL routein both diretions. We hose a path between the University of Tennessee (UTK) and theUniversity of California at San Diego (UCSD) using a mahine loated at Texas A&MUniversity, South Campus whih is very near the Abilene [1℄ \Point of Presene" (POP)in Houston. TraÆ from UTK to UCSD and vie versa traverses this POP. AppendixD shows the traeroute from UTK to UCSD and TAMUS. Appendix E and F showtraeroutes from UCSD and TAMUS, respetively.Figure 3 illustrates the omparison of LSL-enabled and non-LSL-enabled end-to-endbandwidth performane from UCSD to UTK, again using 8 MB bu�ers and windows.Here, LSL o�ers as muh as a %50 improvement over diret TCP despite adding to thegross lateny and protool proessing overhead along the path from soure to sink.For high-apaity long-haul networks (like Abilene), large window sizes are neessaryso that the sending side does not blok due to ow-ontrol before an aknowledgement8
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Figure 3: Data transfer from UCSD to UTKhas time to return from the reeiver. That is, the bu�ering must allow the amount ofdata in ight to exeed the bandwidth-delay produt. By hoosing 8 MB windows andbu�ers, we ensure that the LSL e�ets we observe not not simply due \bad" bu�eringhoies at the end points. We believe that an optimized TCP stream using large bu�ersat either end would see similar performane improvements.Although we reognize that bu�ers of this size may not be optimally tuned, this doesnot e�et our results. The danger in over-sizing bu�ers is in wasting resoures on thehost, not in ausing poor TCP performane [38℄. We judged this to be aeptable forthis experiment, but we do await the produts produed by groups like the Web100 [41℄and the Internet2 End-to-End Performane initiative [18℄.However, not all hosts support (through design or on�guration) large window sizes.For this ase, we wanted to investigate how using an LSL depot with large windowsmight enhane the performane of \untuned" TCP streams. Figure 4 shows the averagetransfer rates when the bu�ers at the sending and reeiving ends are restrited to 64K9
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Figure 4: Data transfer from UCSD to UTK with 64KB bu�ersAs expeted, the absolute performane is lower. However, the LSL-enabled streamwas still able to outperform the non-enabled stream by %43 for the largest transfersize. As a non-intrusive optimization, however, we believe that suh a performaneimprovement will be useful in many appliation settings.Finally, Figure 5 shows the e�et of using LSL on a TCP stream that does nosetsokopt() bu�er onditioning whatsoever.Again, the performane is not as dramati as in the tuned ases, but the LSL e�etis still present.
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Figure 5: Data transfer from UCSD to UTK with default (32KB) bu�ers5 Related WorkThere are many areas in whih faets of our results and similar mindsets an be seen inthe ommunity. Two broad ategories are TCP e�ets (retransmission ost and loality)and ontrol over the topology.Tehniques developed for wireless networks [5,6℄ seek to mitigate the ost of retrans-mission in lossy environments. However, they violate layering to do so. Systems to proxyTCP have been developed with the same goals in mind. One example is TPOT [34℄,whih alters TCP to allow this mode of operation (and therefore has dubious possibilityfor atual deployment in the global Internet.) A similar approah targeting ahing ofweb objets also proposes modi�ations to TCP [25℄.There are many approahes to reduing the ost of retransmission with the network'sassistane. One of the areas that has pushed this notion forward is the wireless ommu-11



nity. Sine wireless links at the edges of the network tend to be muh less reliable thanother parts of the network, the almost inevitable paket loss hampers the performaneof TCP. The \snoop" tehnique wathes TCP traÆ and an perform retransmits fromand intermediate point in the network. [6℄. This protool omes from a very similarmindset, but ould be onsidered inappropriate in that it violates layering. Further,ow-level snooping is expensive, so the salability of this approah for high-bandwidthnetworks is questionable. Also targeting wireless is Indiret TCP [5℄, whih is similarto our approah. Another similar approah is that proposed for use in multiast videotransmission [39℄ in that it allows a data stream to take advantage of retransmit loalityand �ner-grained adaptability.The PSokets [12℄ work addresses the diÆulty of getting high-bandwidth from long,fat networks. This work is similar to LSL in that they preserve the syntax of the well-known soket interfae while taking liberties underneath. They di�er in mehanism andspirit, however. This approah to higher bandwidth uses multiple TCP streams andkeeps aggregate throughput high by amortizing loss over several streams. The parallelsokets approah is to ignore TCP's ineÆienies in the wide area and aim for betteraverage throughput. However, the streams are then induing the ongestion that theother streams are sensing. So, Psokets provides better average performane but worselink utilization. LSL allows the network to be \artiulated" and allows TCP to respondto ongestion where it exists without introduing additional load.The need to ontrol the topology by tunneling from one host to another has beenidenti�ed by a body of engineering and by the sheer number of Virtual Private Networksthat are in use. Even outside the desire to provide an enrypted tunnel, virtual topologysystems are abundant [36, 40℄. The performane bene�ts of user-optimization of pathshas been disussed [3, 31, 37℄. While LSL has the funtionality of these systems, ourapproah is di�erent in that we onsider this to be part of a \session" layer of servies.Our empirial evidene does establish the viability of this line of researh.Finally, within the networking ommunity, the notion has long existed that the enduser will oasionally need to have expliit ontrol over the route that traÆ follows.Loose and strit soure routing were de�ned in RFC 791 [30℄, whih de�nes the InternetProtool. Store and forward onnetivity has been used for quite some time in thenetworking ommunity and there are many situations in whih data transfer need notbe synhronous or onnetion-oriented. SMTP [10℄, USENET [17℄ and its suessorNNTP [4℄, all use hop-oriented, onnetionless paradigms to send data.6 ConlusionWith the maturing of network infrastruture, both in terms of ubiquity and quality,omes the possibility of inreasing the state held in the network, and the time durationover whih it is maintained. Logistial Networking [7℄ attempts to de�ne the parameters12
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[40℄ J. Touh. The xbone. Workshop on Researh Diretions for the Next Generation Internet,May 1997.[41℄ Web100. http://www.web100.org.[42℄ R. Wolski. Dynamially foreasting network performane using the network weatherservie. Cluster Computing, 1:119{132, January 1998. also available fromhttp://www.s.utk.edu/ rih/publiations/nws-tr.ps.gz.[43℄ R. Wolski, N. Spring, and J. Hayes. The network weather servie: A dis-tributed resoure performane foreasting servie for metaomputing. FutureGeneration Computer Systems, 15(5-6):757{768, Otober 1999. available fromhttp://www.s.utk.edu/~rih/publiations/nws-arh.ps.gz.A Traeroute from UTK to ANL and UTK to ORNLtraeroute to pitairn.ms.anl.gov (140.221.9.180), 30 hops max, 38 byte pakets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.220 ms 0.181 ms 0.168 ms2 128.169.192.241 (128.169.192.241) 1.631 ms 0.711 ms 0.770 ms3 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 2.318 ms 2.021 ms 1.652 ms4 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 68.930 ms 65.490 ms 65.199 ms5 esnet-sox-rtr.sox.net (199.77.192.6) 48.288 ms 48.575 ms 48.643 ms6 orn-gsu.es.net (134.55.208.65) 48.211 ms 48.312 ms 48.502 ms7 ny-s-orn.es.net (134.55.205.109) 81.104 ms 81.595 ms 80.854 ms8 hi-s-ny.es.net (134.55.205.106) 101.551 ms 100.881 ms 101.062 ms9 anl-hi-ds3.es.net (134.55.208.150) 102.894 ms 103.809 ms 102.939 ms10 anl-esanl2.es.net (198.124.254.166) 105.927 ms 105.344 ms 105.025 ms11 stardust-msf-20.ms.anl.gov (140.221.20.124) 106.386 ms 108.505 ms 106.758 ms12 pitairn.ms.anl.gov (140.221.9.180) 106.309 ms * 105.946 mstraeroute to falon0j.s.ornl.gov (160.91.199.21), 30 hops max, 38 byte pakets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.242 ms 0.184 ms 0.171 ms2 128.169.192.241 (128.169.192.241) 0.942 ms 0.848 ms 0.664 ms3 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 1.743 ms 1.805 ms 1.657 ms4 mmesgwya32.td.ornl.gov (192.31.96.17) 3.222 ms 3.219 ms 3.689 ms5 192.31.96.225 (192.31.96.225) 2.203 ms 2.493 ms 2.061 ms6 ornlgwy-ext.ens.ornl.gov (198.124.42.162) 2.358 ms 2.475 ms 2.736 ms7 srtr.s.ornl.gov (160.91.0.66) 2.198 ms 2.421 ms 2.094 ms8 falon0j.s.ornl.gov (160.91.199.21) 2.194 ms 2.574 ms 2.289 msB Traeroute from ANL to UTK and ORNLtraeroute to modulus.s.utk.edu (160.36.59.32): 1-30 hops, 38 byte pakets1 stardust-msf-11.ms.anl.gov (140.221.11.251) 6.49 ms 11.1 ms 4.73 ms2 kiwi.anhor.anl.gov (140.221.20.97) 0.614 ms 0.721 ms 0.639 ms3 abilene-anl.anhor.anl.gov (192.5.170.170) 5.97 ms 5.35 ms 5.29 ms15



4 atla-ipls.abilene.uaid.edu (198.32.8.42) 15.7 ms 15.0 ms 15.2 ms5 sox-rtr.abilene.sox.net (199.77.193.9) 41.1 ms 40.7 ms 40.2 ms6 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 107 ms 107 ms 107 ms7 * * *8 128.169.192.242 (128.169.192.242) 107 ms 106 ms 106 ms9 MODULUS.CS.UTK.EDU (160.36.59.32) 106 ms 106 ms 106 mstraeroute to falon0j.s.ornl.gov (160.91.199.21): 1-30 hops, 38 byte pakets1 stardust-msf-11.ms.anl.gov (140.221.11.251) 0.728 ms 0.792 ms 0.515 ms2 kiwi.anhor.anl.gov (140.221.20.97) 0.377 ms 0.315 ms 0.279 ms3 esanl2-anl.es.net (198.124.254.165) 0.783 ms 0.989 ms 0.504 ms4 hi-anl-ds3.es.net (134.55.208.149) 3.33 ms 2.34 ms 2.35 ms5 ny-s-hi.es.net (134.55.205.105) 23.1 ms 23.0 ms 22.7 ms6 orn-s-ny.es.net (134.55.205.110) 56.2 ms 55.8 ms 54.9 ms7 ornl-orn.es.net (134.55.208.62) 76.0 ms 75.1 ms 75.0 ms8 192.31.96.225 (192.31.96.225) 74.2 ms 74.8 ms 75.7 ms9 ornlgwy-ext.ens.ornl.gov (198.124.42.162) 75.0 ms 75.5 ms 74.9 ms10 srtr.s.ornl.gov (160.91.0.66) 75.3 ms 74.6 ms 75.3 ms11 falon0j.s.ornl.gov (160.91.199.21) 75.5 ms 75.1 ms 74.7 msC Traeroute from ORNL to UTK and ANLtraeroute to modulus.s.utk.edu (160.36.59.32): 1-30 hops, 38 byte pakets1 srtr-003.s.ornl.gov (160.91.199.1) 0.341 ms 0.270 ms 0.418 ms2 160.91.0.65 (160.91.0.65) 0.490 ms 0.299 ms 0.357 ms3 orgwy2.ens.ornl.gov (198.124.42.185) 0.330 ms 0.385 ms 0.327 ms4 mmesgwy-ext-fe.ind.ornl.gov (192.31.96.235) 2.5 ms 1.54 ms 1.95 ms5 utk-rtr.td.ornl.gov (192.31.96.18) 3.54 ms 2.52 ms 3.8 ms6 * * *7 128.169.192.242 (128.169.192.242) 3.27 ms 2.40 ms 2.19 ms8 MODULUS.CS.UTK.EDU (160.36.59.32) 2.46 ms 2.30 ms 2.47 mstraeroute to pitairn.ms.anl.gov (140.221.9.180): 1-30 hops, 38 byte pakets1 srtr-003.s.ornl.gov (160.91.199.1) 2.55 ms 0.575 ms 0.342 ms2 160.91.0.65 (160.91.0.65) 0.338 ms 4.44 ms 0.796 ms3 orgwy2.ens.ornl.gov (198.124.42.185) 1.69 ms 0.290 ms 0.410 ms4 ornl-rt3-ge.ind.ornl.gov (192.31.96.230) 0.674 ms 0.503 ms 3.35 ms5 orn-ornl.es.net (134.55.208.61) 18.4 ms 19.9 ms 19.6 ms6 ny-s-orn.es.net (134.55.205.109) 52.6 ms 52.5 ms 52.8 ms7 hi-s-ny.es.net (134.55.205.106) 73.1 ms 72.9 ms 72.4 ms8 anl-hi-ds3.es.net (134.55.208.150) 73.5 ms 73.9 ms 81.2 ms9 anl-esanl2.es.net (198.124.254.166) 75.8 ms 74.1 ms 74.1 ms10 stardust-msf-20.ms.anl.gov (140.221.20.124) 74.5 ms 76.1 ms 76.4 ms11 pitairn.ms.anl.gov (140.221.9.180) 74.6 ms * 75.8 ms16



D Traeroutes from UTK to UCSD and TAMUStraeroute to freak.usd.edu (132.239.95.142), 30 hops max, 38 byte pakets1 R5HM01V277.NS.UTK.EDU (128.169.92.1) 95.333 ms 13.187 ms 3.477 ms2 R7DH03G11-0-0.NS.UTK.EDU (192.168.101.3) 6.608 ms 1.406 ms 2.253 ms3 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 65.648 ms 66.254 ms 66.578 ms4 199.77.193.10 (199.77.193.10) 65.590 ms 65.773 ms 67.116 ms5 hstn-atla.abilene.uaid.edu (198.32.8.33) 86.127 ms 84.799 ms 85.412 ms6 losa-hstn.abilene.uaid.edu (198.32.8.21) 116.830 ms 117.402 ms 117.387 ms7 USC--abilene.ATM.alren2.net (198.32.248.85) 117.384 ms 117.809 ms 117.693 ms8 UCSD--USC.POS.alren2.net (198.32.248.34) 120.569 ms 120.970 ms 120.841 ms9 sds2--UCSD.ATM.alren2.net (198.32.248.65) 121.533 ms 122.205 ms 121.619 ms10 se-rs.usd.edu (132.239.254.45) 122.926 ms 122.876 ms 122.653 ms11 freak.usd.edu (132.239.95.142) 122.757 ms 122.534 ms 122.110 mstraeroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte pakets1 R6HM01V150.NS.UTK.EDU (160.36.56.1) 0.230 ms 0.189 ms 0.172 ms2 128.169.192.241 (128.169.192.241) 0.890 ms 1.002 ms 0.939 ms3 192.168.101.3 (192.168.101.3) 2.096 ms 1.592 ms 1.197 ms4 UTK-GATECH.NS.UTK.EDU (128.169.50.246) 66.649 ms 66.018 ms 65.296 ms5 atla.abilene.sox.net (199.77.193.10) 65.601 ms 65.199 ms 65.430 ms6 hstn-atla.abilene.uaid.edu (198.32.8.33) 84.666 ms 84.745 ms 84.695 ms7 LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 85.458 ms 97.486 ms 87.325 ms8 LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 86.562 ms 86.351 ms 86.420 ms9 ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 87.595 ms 87.494 ms 87.433 ms10 i2-dsi.ibt.tamus.edu (165.95.234.23) 87.476 ms 87.740 ms 87.811 msE Traeroutes from UCSD to UTK and TAMUStraeroute to modulus.s.utk.edu (128.169.94.246), 30 hops max, 38 byte pakets1 se-danger-gateway.usd.edu (132.239.95.1) 0.723 ms 0.702 ms 0.622 ms2 bigmama.usd.edu (132.239.254.5) 1.860 ms 1.321 ms 1.224 ms3 UCSD--sds2.ATM.alren2.net (198.32.248.66) 1.270 ms 1.153 ms 1.542 ms4 USC--UCSD.POS.alren2.net (198.32.248.33) 4.997 ms 5.054 ms 5.961 ms5 abilene--USC.ATM.alren2.net (198.32.248.86) 5.412 ms 5.223 ms 4.955 ms6 hstn-losa.abilene.uaid.edu (198.32.8.22) 37.056 ms 37.352 ms 37.429 ms7 atla-hstn.abilene.uaid.edu (198.32.8.34) 57.223 ms 56.851 ms 56.922 ms8 199.77.193.9 (199.77.193.9) 56.819 ms 56.770 ms 57.155 ms9 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 124.427 ms 124.783 ms 124.299 ms10 192.168.101.40 (192.168.101.40) 169.204 ms 125.048 ms 124.302 ms11 MODULUS.CS.UTK.EDU (128.169.94.246) 122.207 ms 121.958 ms 122.852 mstraeroute to i2-dsi.ibt.tamus.edu (165.95.234.23), 30 hops max, 38 byte pakets1 se-danger-gateway.usd.edu (132.239.95.1) 0.765 ms 0.661 ms 0.657 ms2 nodeb-rs-bakbone.usd.edu (132.239.254.26) 1.099 ms 1.288 ms 2.827 ms17



3 nodeB-6500-5500-GE.usd.edu (132.239.255.150) 0.842 ms 0.643 ms 0.706 ms4 usd-gw-nodeB.usd.edu (132.239.255.142) 0.872 ms 0.737 ms 0.714 ms5 198.32.248.185 (198.32.248.185) 1.508 ms 0.826 ms 0.673 ms6 USC--UCSD.POS.alren2.net (198.32.248.33) 4.374 ms 4.206 ms 5.037 ms7 Abilene--USC.ATM.alren2.net (198.32.248.86) 4.978 ms 5.411 ms 5.360 ms8 hstn-losa.abilene.uaid.edu (198.32.8.22) 36.870 ms 36.619 ms 36.987 ms9 LINK2ABILENE.GIGAPOP.GEN.TX.US (198.32.236.13) 38.636 ms 37.631 ms 37.596 ms10 LINK2IBT.GIGAPOP.GEN.TX.US (198.32.236.34) 38.995 ms 38.918 ms 38.093 ms11 ibtx2-atm10-401.ibt.tamus.edu (165.95.232.6) 40.486 ms 39.158 ms 39.347 ms12 i2-dsi.ibt.tamus.edu (165.95.234.23) 41.655 ms 40.401 ms 39.469 msF Traeroutes from TAMUS to UTK and UCSDtraeroute to modulus.s.utk.edu (160.36.59.32), 30 hops max, 40 byte pakets1 ibtx2-atm10-1 (165.95.234.254) 1.015 ms 0.802 ms 0.757 ms2 ibtx1-atm10-401 (165.95.232.5) 1.451 ms 1.260 ms 1.239 ms3 198.32.236.33 (198.32.236.33) 1.915 ms 1.997 ms 1.795 ms4 ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.224 ms 2.279 ms 2.129 ms5 atla-hstn.abilene.uaid.edu (198.32.8.34) 22.184 ms 21.755 ms 21.754 ms6 sox-rtr.abilene.sox.net (199.77.193.9) 21.936 ms 21.987 ms 21.861 ms7 R7DH03A1-0-2.NS.UTK.EDU (128.169.50.245) 87.940 ms 89.067 ms 87.372 ms8 192.168.101.40 (192.168.101.40) 87.845 ms 87.509 ms 87.301 ms9 128.169.192.242 (128.169.192.242) 86.897 ms 87.058 ms 87.171 ms10 MODULUS.CS.UTK.EDU (160.36.59.32) 87.495 ms 87.104 ms 87.109 mstraeroute to freak.usd.edu (132.239.95.186), 30 hops max, 40 byte pakets1 ibtx2-atm10-1 (165.95.234.254) 0.991 ms 0.793 ms 0.759 ms2 ibtx1-atm10-401 (165.95.232.5) 1.413 ms 1.299 ms 1.273 ms3 198.32.236.33 (198.32.236.33) 2.069 ms 1.811 ms 1.852 ms4 ABILENE.GIGAPOP.GEN.TX.US (198.32.236.14) 2.213 ms 2.260 ms 2.425 ms5 198.32.8.21 (198.32.8.21) 34.722 ms 34.373 ms 34.278 ms6 USC--abilene.ATM.alren2.net (198.32.248.85) 34.651 ms 34.705 ms 34.526 ms7 UCSD--USC.POS.alren2.net (198.32.248.34) 38.364 ms 38.095 ms 38.284 ms8 198.32.248.186 (198.32.248.186) 38.489 ms 38.819 ms 38.191 ms9 nodeB-usd-gw.usd.edu (132.239.255.141) 38.399 ms 38.286 ms 38.631 ms10 nodeB-5500-6500-GE.usd.edu (132.239.255.149) 38.969 ms 41.245 ms 38.884 ms11 se-rs.usd.edu (132.239.254.45) 39.254 ms 39.132 ms 40.319 ms12 freak.usd.edu (132.239.95.186) 39.194 ms 39.299 ms 39.676 ms
18



G Statistisanl-utk-8Mmax min averageXfer Size16K 0.40300 0.331250 0.37752164K 0.782110 0.724233 0.763622256K 2.041860 0.823960 1.5519351M 3.820735 1.582323 2.9985474M 6.075528 2.964298 4.45599916M 7.172249 3.019620 4.32362032M 5.590730 3.874349 4.711681anl-lsl-utk-8Mmax min averageXfer Size16K 0.329159 0.282999 0.32492264K 0.821404 0.224252 0.778078256K 2.358894 2.151340 2.2609001M 6.806367 1.774656 6.1825084M 15.474262 2.971618 12.31770516M 22.538489 2.581877 11.36298832M 24.572602 2.627871 11.447852usd-utk-8Mmax min averageXfer Size16K 0.335828 0.327585 0.33239964K 0.671300 0.612586 0.666729256K 1.770170 0.976332 1.6431671M 3.208707 1.604943 2.5777044M 4.738750 2.086455 3.74240216M 6.517446 2.972433 4.15465332M 5.236016 2.906003 4.031742
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usd-lsl-utk-8Mmax min averageXfer Size16K 0.223686 0.033156 0.20742664K 0.602354 0.522283 0.588151256K 1.801070 0.755655 1.7421451M 5.168106 0.976739 4.1732354M 9.254006 2.622432 4.62281016M 14.895728 3.986542 6.34306332M 13.465528 4.960214 6.395069usd-utk-64Kmax min averageXfer Size16K 0.336283 0.240713 0.31592264K 0.670764 0.598264 0.655689256K 1.608678 0.688810 1.4784141M 2.913219 1.108043 2.5576314M 3.615189 1.866385 3.07421516M 3.529395 2.790902 3.11753532M 3.546387 2.623760 3.170910usd-lsl-utk-64Kmax min averageXfer Size16K 0.217576 0.206132 0.21472964K 0.599110 0.287751 0.563415256K 1.720705 1.681558 1.6921821M 3.533808 1.483824 3.2579874M 4.855747 1.464077 4.04258816M 5.212078 3.793412 4.47164432M 4.994041 3.914145 4.554841
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