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lennan�
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tThis report presents syntheti
 ethology as a new tool for the investigation ofanimal 
ognition. In syntheti
 ethology a population of simulated organisms is
reated inside a 
omputer and allowed to evolve within a spe
i�ed environment.Sin
e we 
reate the organisms and the world they inhabit, we are free to makethem as simple or as 
omplex as required for the investigation. The me
hanismsunderlying the organisms' behavior is fully expli
it and a

essible to the inves-tigator; there 
an be no \ghost in the ma
hine." Syntheti
 ethology permitsinvestigations spanning a wide range of time and spa
e s
ales, from simulatednervous system a
tivity, to individual behavior, to group behavior and 
ommu-ni
ation, up to populations. Thus 
ognitive 
apa
ities 
an be investigated intheir full ethologi
al 
ontext.1 GoalsSyntheti
 ethology is based on several methodologi
al 
ommitments. First, it is basedon the 
onvi
tion that resear
h into 
ognition should investigate behavior and the�This report is an extended version of a 
hapter invited for The 
ognitive animal: Empiri
al andtheoreti
al perspe
tives on animal 
ognition, ed. by Colin Allen, Mar
 Beko� & Gordon Burghardt,MIT Press, in press. 1



me
hanisms underlying that behavior in the agents' environment of evolutionaryadaptiveness. Se
ond, this investigation should extend over stru
tural s
ales fromthe neurologi
al me
hanisms underlying behavior, through individual agents, to thebehavior of populations, and over time s
ales from neurologi
al pro
esses, throughagents' a
tions, to the evolutionary time s
ale. Obviously, su
h a wide range of s
alesis diÆ
ult to en
ompass in investigations of natural systems. Third is the observationthat the dis
overy of deep s
ienti�
 laws (espe
ially quantitative ones) requires thesort of 
ontrol of variables that 
an be a
hieved only in an arti�
ial experimentalsetup.Therefore we are fa
ed with 
on
i
ting demands. On the one hand, we needpre
ise experimental 
ontrol. On the other, e
ologi
al validity di
tates that agentsbe studied in their environment of evolutionary adaptiveness, where are there areinnumerable variables, whi
h are not amenable to independent 
ontrol. Syntheti
ethology intends to re
on
ile these 
on
i
ting requirements by 
onstru
ting a syntheti
world in whi
h the phenomena of interest may be investigated. Be
ause the world issyntheti
, it 
an be mu
h simpler than the natural world and thereby permit more
areful experimental 
ontrol. However, although the world is syntheti
 and simple, itis nevertheless 
omplete in that the agents exist, live, and evolve in it.The original motivation for syntheti
 ethology 
ame from one of the 
entral prob-lems in 
ognitive s
ien
e: the nature of intentionality, the property that makes mentalstates about something. We felt that an understanding of intentionality would haveto en
ompass both the underlying me
hanisms of intentional states and the so
ial-evolutionary stru
tures that lead to the 
reation of shared meaning. Our analysis ofintentionality 
on
luded that something is intrinsi
ally meaningful to an agent whenit is potentially relevant to an agent or to its group in its environment of evolution-ary adaptedness (Ma
Lennan 1992). Therefore intentionality must be studied in anevolutionary 
ontext.We began our investigation with 
ommuni
ation, sin
e it involves both inten-tionality and shared meaning. We will show in this 
hapter how syntheti
 ethologypermits the investigation of signals that are inherently meaningful to the signalers,as opposed to those to whi
h we, as observers, attribute meaning.2 MethodsThe agents that populate our syntheti
 worlds 
an be modeled in many di�erent ways;in parti
ular there are a variety of ways of governing their behavior, in
luding simu-lated neural networks and rule-based representations. In the experiments des
ribedhere, an agent's behavior was 
ontrolled by a set of stimulus-response rules (64 rules,in these experiments). These rules were determined by an agent's (simulated) geneti
string, but they 
ould be modi�ed by a simple learning me
hanism (des
ribed below).Sin
e our goal is to investigate the syntheti
 agents in their environment of evo-lutionary adaptedness, they must evolve. Therefore our world in
ludes a simpli�ed2



form of simulated evolution, whi
h pro
eeds as follows. Periodi
ally two agents are
hosen to breed, the probability of whi
h is proportional to their \�tness" (as de-s
ribed later). The geneti
 strings of the two parents are mixed so that ea
h of theo�spring's genes 
omes form one or the other of the parents. In addition, there isa small probability of a gene being mutated. The resulting geneti
 string is usedto 
reate the stimulus-response rules for the single o�spring, whi
h is added to thepopulation. In order to maintain a 
onstant population size (100, in these experi-ments), one agent was 
hosen to \die" (i.e. to be removed from the population), theprobability of dying being inversely related to \�tness."We take this opportunity to illustrate the sort of experimental 
ontrol permittedby syntheti
 ethology. Be
ause we have 
omplete 
ontrol over the experimental setupand the 
ourse of evolution, we may begin with geneti
ally identi
al populationsand observe their evolution under di�erent experimental 
onditions. If somethinginteresting is observed in the 
ourse of an experiment, we may rerun the exa
t 
ourseof the evolution of the population to that point, and then make additional observationsor experimental interventions to investigate the phenomena. Finally, whenever anyinteresting phenomena are observed, there 
an be no fundamental mystery, for all theme
hanisms are transparent. If some agent exhibits interesting behavior, its entireme
hanism is available for investigation. There 
an be no \ghost in the ma
hine."In syntheti
 ethology there is no requirement to model the natural world, so longas the syntheti
 world retains the essential 
hara
teristi
s of the natural world. Thatis, although determinate laws govern the evolution of our experimental populations,we are able to de
ide our world's \physi
al laws," whi
h determine whether an agent\lives" or \dies," and whi
h sele
t agents to reprodu
e. The goal, of 
ourse, is to
reate syntheti
 worlds that are like the natural world in relevant ways, but are mu
hsimpler to study. The following experiment will illustrate what 
an be a

omplished.3 Demonstrating the Evolution of Communi
ation3.1 MethodsOur �rst series of experiments investigated whether it was even possible for genuine,meaningful 
ommuni
ation to evolve in an arti�
ial system. Therefore we de
idedto 
onstru
t the simplest possible system that 
ould be expe
ted to lead to real
ommuni
ation.Although there are many purposes for whi
h an agent might be expe
ted to 
om-muni
ate, we de
ided to fo
us on 
ooperation. Our reasoning was that 
ommuni
ation
ould be expe
ted to evolve in a 
ontext in whi
h some agents have information thatother agents 
ould use to fa
ilitate 
ooperation. Therefore we gave ea
h agent a lo
alenvironment, whi
h 
ould be sensed by that agent but by no other. It 
an be thoughtof as the situation in an animal's immediate vi
inity, but to keep the model as simpleas possible, we limited the lo
al environments to be in a small number of dis
rete
3



states (eight, in these experiments).To make the state of one agent B's lo
al environment relevant to another agent A,we arranged that they 
ould 
ooperate only if A performed an a
tion suitable for B'senvironment. To make this 
ooperation as simple as possible, we made our agents
apable of produ
ing an a
tion from the same set as the lo
al-environment states.Thus A 
ould 
ooperate with B only by produ
ing the same item as was in B's lo
alenvironment, whi
h A 
ould not sense dire
tly.To sele
t for 
ooperation we simply measured the number of times, over a spe
i�edperiod, that ea
h agent was involved in su

essful 
ooperations. The probability ofan agent reprodu
ing was made proportional to this rate of 
ooperation, and itsprobability of dying was inversely related to the rate in a simple way. Thus we pla
edsele
tive pressure on 
ooperation but not dire
tly on 
ommuni
ation; indeed, limited
ooperation 
an be a
hieved by random a
tion (whi
h has a 1/8 
han
e of su

eeding).Our experiments implemented only mi
ro-evolution, so our agents were unable toevolve new sensor or e�e
tor organs. Therefore, we gave our agents organs that mightbe used for 
ommuni
ation, but we did not 
onstru
t the agents to use them in thisor any other way.Again, simpli
ity was our prin
iple aim. Therefore we equipped our syntheti
world with a simple global environment, shared by all the agents, whi
h 
ould bein one of a few dis
rete states (eight, in these experiments). The agents had thephysi
al 
apability of sensing and modifying this global environment. Spe
i�
ally,the state of the global environment is part of the stimulus to whi
h an agent rea
ts,and the response 
an be either a new state for the global environment or an attemptto 
ooperate.To test the potential e�e
ts of 
ommuni
ation on 
ooperative behavior, we im-plemented a me
hanism for making 
ommuni
ation impossible. Spe
i�
ally, when
ommuni
ation is being suppressed we periodi
ally randomize the state of the globalenvironment. This allowed us to measure the e�e
t of apparent 
ommuni
ation onthe �tness (rate of 
ooperation) of the population, sin
e genuine 
ommuni
ation isde�ned in terms of its e�e
t on the �tness of the 
ommuni
ators (Burghardt 1970).We also investigated a very simple form of single-
ase learning, whi
h 
ould beenabled or disabled. When enabled, learning took pla
e when an agent attemptedto 
ooperate, but failed. Spe
i�
ally, if agent A attempted 
ooperation L, but thelast signaler's lo
al-environment state was L0 6= L, then the rule of A that led tothis a
tion was 
hanged to try L0 instead. In other words, the rule used was 
hangedto what would have been 
orre
t in this situation (although there is no guaranteethat it would be the 
orre
t response in the future). This simple, single-
ase learningrule is potentially destabilizing, sin
e it allows o

asional errors to 
orrupt e�e
tive
ommuni
ators, but it is a start towards investigating learning.We initialized our population with 100 individuals with random geneti
 strings.Therefore, the stimulus-response rules governing their behavior, whi
h were deter-mined by their genomes, were also initially random.
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Figure 1: Degree of Coordination �: Communi
ation Permitted with Learning Dis-abled3.2 ResultsTo be able to measure the e�e
t of 
ommuni
ation on the �tness of a population, wequanti�ed the �tness by the number of su

essful 
ooperations per unit time, whi
hwe 
all the degree of 
oordination of the population. (The unit of time is a \breeding
y
le," in whi
h one individual dies and one is born.) Be
ause there is 
onsiderablerandom variation in the degree of 
oordination, the time series was smoothed bya moving average. Linear regression was used to establish the rate at whi
h thedegree of 
oordination (�tness) was in
reasing or de
reasing. Details 
an be found inMa
Lennan (1990, 1992) and Ma
Lennan & Burghardt (1993).The baseline for 
omparison is determined by suppressing all possible 
ommuni-
ation, as previously des
ribed. In this 
ase the degree of 
oordination stays near to6.25 
ooperations per unit time, the level predi
ted by analysis to o

ur in the ab-sen
e of 
ommuni
ation. Linear regression shows a slight upward trend in the degreeof 
ooperation, whi
h 
an be expressed as a rate of �tness in
rease: 3:67�10�5 
oop-erations per unit time per unit time. (The reason for this upward trend is dis
ussedin the papers 
ited).On the other hand, when 
ommuni
ation was not suppressed, we found that thedegree of 
oordination in
reased at a rate of 9:72 � 10�4 
ooperations / unit time /unit time, whi
h is 26 times faster than when 
ommuni
ation was suppressed. Over an
5



Figure 2: Degree of Coordination �: Communi
ation Permitted and Learning En-abledinterval of 5000 breeding 
y
les, the degree of 
oordination rea
hed 10.28 
ooperations/ unit time, whi
h is 60% higher than the 6.25 a
hieved when 
ommuni
ation wassuppressed (Fig. 1).When the agents were permitted to learn from their mistakes, �tness in
reasedeven faster: 3:71� 10�3 
ooperations / unit time / unit time, whi
h is 3.82 times therate when learning was disabled, and approximately 100 times the rate when 
ommu-ni
ation was suppressed. Furthermore, the degree of 
ooperation begins higher thanin the other 
ases, be
ause the population is given several opportunities to respond toa parti
ular situation before the lo
al environments are re-randomized. Therefore, anagent has the opportunity to learn from its mistake and to respond 
orre
tly severalmore times before the lo
al environments are 
hanged. Thus we observe the degreeof 
oordination to begin at approximately 45 
ooperations / unit time (as opposedto the 6.25 without learning), and to 
limb rapidly to 59.84 
ooperations / unit time,whi
h is 857% above the level a
hieved without 
ommuni
ation (Fig. 2).As would be expe
ted for experiments of this kind, there is 
onsiderable exper-imental variation from run to run. Nevertheless, the results we have des
ribed aretypi
al over more than one hundred experiments. Therefore, we 
an 
on
lude thatgenuine, meaningful 
ommuni
ation is taking pla
e, for it is enhan
ing signi�
antlythe �tness of the population. Furthermore, sin
e 
ommuni
ation evolves in our pop-ulation when it is not suppressed, we may investigate genuine 
ommuni
ation in its6



environment of evolutionary adaptedness.Sin
e it is genuine 
ommuni
ation, the signals passed among the agents are mean-ingful to them, but not ne
essarily to us as observers. That is, we have the oppositesituation from arti�
ial intelligen
e, in whi
h the 
omputer manipulates symbols thatare meaningful to us but meaningless to it (or, more pre
isely, have only derivedmeaning dependent on the meaning we attribute). Here we are in the same situationas in natural ethology: we are fa
ed with apparently meaningful 
ommuni
ation andmust dis
over its meaning for the 
ommuni
ators.Even in these simple experiments, signals and their interpretation are 
omplexfun
tions of the total situation. The signal emitted by an agent may depend onboth its lo
al environment and the shared global environment. Further, an agent'sinterpretation (use) of a signal may (and typi
ally is) in
uen
ed by its own lo
alenvironment.Nevertheless, we would expe
t that over time a simple meaning would emerge forthe signals; that is, that there would be a one-to-one 
orresponden
e between sig-nals and lo
al-environment states. To determine if this was o

urring, we 
ompiled a
o-o

urren
e table, whi
h re
orded the number of times parti
ular pairings of signal(global-environment state) with meaning (lo
al-environment state) o

urred in su
-
essful 
ooperations. So that we 
ould tra
k 
hanges over time, the table at any givenpoint of time re
e
ted only re
ent a
tivity by the agents.If no 
ommuni
ation were taking pla
e, one would expe
t all signal/meaning 
om-binations to be about equally likely, and that is what we found when 
ommuni
ationwas suppressed, and at the beginning of the simulations when it was not. How-ever, when 
ommuni
ation was not suppressed, the 
o-o

urren
e tables be
ame morestru
tured as the \language" self-organized.We quanti�ed the organization of the 
o-o

urren
e tables in a number of dif-ferent ways, in
luding entropy, a measure of disorder (so lower numbers representgreater organization). With our experimental design, the maximum entropy, whenall signal/meaning pairs are equally likely, is 6 bits, but when there is a one-to-onesymbol/meaning 
orresponden
e, the entropy is 3 bits. When 
ommuni
ation wassuppressed we observed an entropy of 4.95 bits, whi
h shows that it is not 
ompletelydisordered, but when 
ommuni
ation was not suppressed, the entropy de
reased (after5000 breeding 
y
les) to 3.87, representing a mu
h higher degree of organization.Visual inspe
tion of the evolved 
o-o

urren
e tables showed a number of 
asesin whi
h, almost always, a parti
ular signal 
orresponds to a parti
ular meaningand vi
e versa. However, we also observe 
ases of ambiguity, in whi
h a signal ismore or less equally likely to 
orrespond to two or more meanings, and 
ases ofsynonymy, in whi
h two or more signals are about equally likely to 
orrespond to aparti
ular meaning. These 
ases 
ould result from individual agents using ambiguousor synonymous symbols, or from two or more 
ompeting \diale
ts" in the population,but Noble & Cli� (1996) have eviden
e supporting the former hypothesis.The observations heretofore des
ribed 
an be 
alled behavioral and are analogous
7



to those made in natural ethology. However, syntheti
 ethology a�ords additionalpossibilities, for the stru
ture of the agents is 
ompletely transparent. At any time wemay \disse
t" the agents and analyze their behavioral programs (see Ma
Lennan 1990for examples). Thus we may relate the me
hanisms of behavior to their manifestationsin the population.3.3 Brief Overview of Other ExperimentsWe have been interested in whether a population would evolve to use sequen
es ofsymbols for 
ommuni
ation, were there sele
tive advantage in doing so. Thereforemy students and I have 
ondu
ted a number of experiments, similar to those alreadydes
ribed; details may be found in Ma
Lennan (in press) and in the referen
es 
itedtherein. In these experiments the agents evolved the ability to 
ommuni
ate withpairs of symbols displaying a very rudimentary \syntax," but the results have beenless than we expe
ted. One explanation may be that the very simple behavioral modelwe used (�nite-state ma
hines) is too weak for the sequential per
eption and 
ontrolrequired for more 
omplex 
ommuni
ation. Animals, in 
ontrast, have ri
h, highlystru
tured per
eptual-motor systems, whi
h evolution 
an re
ruit for 
ommuni
ation.Therefore, future experiments might need to use more 
omplex agent models, as wellas a more stru
tured environment about whi
h they might 
ommuni
ate.We have 
ondu
ted some experiments using neural networks as behavioral models,but they have not produ
ed substantially di�erent results. Most likely this is be
ausethe nets that we have used are about as unstru
tured as the �nite-state ma
hines.4 Dis
ussionOf ne
essity, our dis
ussion of related and future work and of impli
ations mustbe brief. Noble & Cli� (1996) have repli
ated our earliest studies and extendedthem in a number of informative ways. A somewhat di�erent approa
h 
an be foundin Werner & Dyer (1992), whi
h demonstrated the evolution of 
ommuni
ation bymaking it ne
essary for e�e
tive reprodu
tion. Steels (1997a, 1997b) has 
ondu
tedfundamental studies of the emergen
e of meaningful symbols.In dis
ussing related work, it may be worthwhile to make a few remarks aboutthe 
onne
tion between syntheti
 ethology and two related dis
iplines, arti�
ial lifeand arti�
ial language. First, it must be stressed that there is substantial overlapbetween the three, so that the di�eren
e is at most one of emphasis.Arti�
ial life studies arti�
ial systems that are signi�
antly \lively" in some sense.Some investigators are attempting to 
reate systems that are literally alive, whileothers are 
ontent with systems that faithfully imitate life. In ether 
ase, the arti�
ialsystems may exist as robots or as patterns of ele
tri
al a
tivity in a 
omputer'smemory. Syntheti
 ethology di�ers in that the agents need not be alive in either of
8



these senses, although they may be. Certainly, we make no 
laim that the agentsdes
ribed in this report are alive in any literal sense.Arti�
ial language resear
h, the newest dis
ipline of the three, uses 
omputers tostudy the formal pro
esses governing the formation and evolution of languages (e.g.Kirby 2000a, 2000b). It tends to 
on
entrate on the sorts of 
omplex synta
ti
 andsemanti
 stru
tures found in human languages, and tends to treat the languages asautonomous systems independent of the behavior and evolution of the agents thatuse them. Although one of the original goals of syntheti
 ethology was to studythe evolution of human-like languages, to date it has been limited to very simple
ommuni
ation systems. Another di�eren
e is that syntheti
 ethology may be appliedto other kinds of behavior besides 
ommuni
ation. Future work, however, might
ombine syntheti
 ethology and arti�
ial language te
hniques.Current experiments in syntheti
 ethology are too simple to exhibit psy
hologi
alstates, but future ones may be; we do 
laim that even the 
urrent experiments doexhibit genuine intentionality. Nevertheless, syntheti
 ethology indi
ates how psy
ho-logi
al states may be made a

essible to s
ienti�
 investigation.We have 
laimed that our agents (although they are not 
ons
ious, nor even alive)exhibit genuine intentionality. The point is 
ertainly arguable and depends on ouranalysis of intentionality. Nevertheless, all subtleties aside, we 
laim that the signalsare inherently meaningful to the agents be
ause the agents' 
ontinued persisten
e asorganized systems depends on their use of the signals.Are these syntheti
 worlds and agents so alien that results will not be seen asrelevant to nature? In parti
ular, we have argued that we 
an use abstra
t, adho
 sele
tion rules (sin
e the \laws of physi
s" are under our 
ontrol), but it 
anbe obje
ted that sele
tion should be more naturalisti
 (e.g. Werner & Dyer 1992).Certainly, this is an important issue, and in the long run we want to explore ever ri
hersyntheti
 worlds, but to introdu
e gratuitous 
omplexity would defeat the goals ofsyntheti
 ethology.One of the advantages of syntheti
 ethology is that we 
an make our worlds assimple as possible, so long as they in
lude the phenomena of interest. On the otherhand, we must 
onstru
t these worlds from s
rat
h; they are not given to us. Thisbe
omes a 
hallenge as we begin to investigate phenomena that require larger pop-ulations of more 
omplex agents a
ting in more 
omplex environments. Simulatingsu
h worlds requires ever more powerful 
omputers. Therefore syntheti
 ethologistsmust strike a deli
ate balan
e between the sophisti
ation of the syntheti
 world andthe resour
es required to implement it. Indeed, as we move in the dire
tion of greater
omplexity, syntheti
 ethology will fa
e some of the same problems as natural ethol-ogy. Nevertheless, by a�ording greater 
ontrol and an alternative to natural life, itwill remain a worthwhile approa
h.
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