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� the residuals are bounded by � , i. e.,R := maxi=1;2;:::;n Mpv̂i � �̂iv̂i2 � � ;(1.3)� the matrix V̂ is numerially orthogonal, i. e.,O := maxi=1;2;:::;n �V̂ >V̂ � I� ei2 = O("n);(1.4)where ei 2 Rn has omponents Æji and " denotes the mahine preision (unitroundo�).Moreover, the method developed for omputing (1.2) should have the feature thatlower auray requirements lead to a higher redution of the omputing time om-pared to omputing the spetral deomposition to full auray (only limited by therounding error and by the ondition of the problem).1.2. Motivation. The self-onsistent-�eld (SCF ) method, whih is used forsolving the Hartree-Fok Equations in Quantum Chemistry [24, h. 3℄, involves thefull-spetrum solution of a sequene of eigenvalue problems with very large and ingeneral dense matries. It has an inner-outer iterative struture. Very low auraymay be suÆient in early iterations of the SCF-method, and higher auray usuallybeomes more important as it proeeds.The matries arising in these eigenvalue problems are in general not blok-tri-diagonal, but they often have the property that the magnitudes of their elementsrapidly derease when moving away from the diagonal, and therefore they an beapproximated by matries of the form (1.1). Various approahes to performing suha blok-tridiagonal approximation of a general matrix will be summarized in a forth-oming paper.Sine the method developed in this paper has a variable auray parameter � ,it will be niely appliable to the SCF method, and, more general, to many otherproblems with similar properties. Moreover, we antiipate appliations in the ontextof preonditioning (for example, for approximating the spetrum of the inverse of agiven matrix).1.3. Related Work. The standard method for omputing eigenpairs of a sym-metri band matrix, as, for example, implemented in Lapak [1℄, is to tridiagonalizeit [22, 19, 5℄, to ompute eigenvalues and eigenvetors of the similar tridiagonal matrix,and �nally to transform the eigenvetors.The standard divide-and-onquer method for omputing eigenvalues and eigenve-tors of a tridiagonal symmetri matrix has been developed by Cuppen [7℄. The oreof this algorithm is a method for eÆiently �nding the spetral deomposition of arank-one modi�ation of a diagonal matrix whih has been given in [15, 6℄. Over timenumerially stable and eÆient implementations of Cuppen's method were developed[9, 23, 17, 18, 21℄. The routines LAPACK/dsyevd and LAPACK/dsbevd tridiagonalize agiven symmetri general or banded matrix, respetively, and, if eigenvetors are de-sired, then apply a divide-and-onquer algorithm to the resulting tridiagonal matrix.The divide-and-onquer approah not only has attrative parallelization proper-ties [25, 14℄, in ombination with tridiagonalization it is even sequentially one of thefastest methods urrently available if all eigenvalues and eigenvetors of a large denseor banded symmetri matrix are to be omputed [8, h. 5℄.In some situations, tridiagonalization of a band matrix an be omparatively ex-pensive relative to the total ost of the alulation of eigenpairs [20, h. 7℄. Moreover,2



unfavorable data aess patterns and bad data loality may ause ineÆienies in atridiagonalization proess [10℄. This fat motivates attempts to ompute eigenpairsof a band matrix without tridiagonalizing the entire matrix. One possible approahseems to be a generalization of the divide-and-onquer method to band matries.Several variants of suh a generalization have been investigated ([2℄ based on [4, 3℄;more reently [11, 12℄). One of the entral questions remains numerial stability andalthough promising advanes have been made no �nal method has been established(yet).A divide-and-onquer method for a speial ase of (1.1), i. e., for blok-tridiagonalmatries with rank-one o�-diagonal bloks Ci, has been investigated in [13℄. The resultis a very eÆient and numerially stable algorithm for this speial problem lass. Ingeneral, the o�-diagonal bloks Ci of the matries arising in appliation problems arenot rank-one matries, and there are instanes where approximating them with rank-one matries is not suÆiently aurate. The algorithm disussed in this paper is ableto handle o�-diagonal bloks with arbitrary ranks and therefore is able to ahieve fullauray.So far, the divide-and-onquer approah for eigenproblems has been used exlu-sively for omputing full auray solutions of the symmetri tridiagonal eigenprob-lem. The major innovation of the algorithm proposed here is the idea to investigatethe potential of methods based on the divide-and-onquer approah for omputingapproximate eigenpairs of a more general lass of matries. Our experiments, summa-rized in Setion 4, indiate that the resulting method is highly ompetitive omparedto other methods for omputing eigenpairs of symmetri matries, espeially if lowauray eigenpair approximations are suÆient and if the full spetrum of Mp needsto be approximated.2. Conept. The algorithm presented in this paper involves two main phases:1. Approximation ofMp by another blok-tridiagonal matrixM 0p 2 Rn�n , whoseo�-diagonal bloks C 0i are approximations of the original Ci. This phase isoutlined in Setion 2.1.2. Appliation of a blok-tridiagonal divide-and-onquer method to omputeeigenvalues and eigenvetors of M 0p. In analogy to Cuppen's tridiagonaldivide-and-onquer method, this phase onsists of (i) subdivision (see Se-tion 2.2.1), (ii) solution of the subproblems (see Setion 2.2.2), and (iii) syn-thesis of the solutions of the subproblems (see Setion 2.2.3). Depending onthe auray requirements of the appliation ontext, the synthesis step mayor may not be approximative (see Setion 2.3).Another variant of this algorithm, in whih the omputation of the eigenvetors isperformed separately in a third phase, will be disussed in a forthoming paper.2.1. Approximation of the O�-Diagonal Bloks. The natural extension ofthe algorithm disussed in [13℄ is to allow for higher rank approximations of the o�-diagonal bloks Ci. The singular value deompositions (see [16, h. 2℄)Ci = miXj=1 �ijuijvij>; i = 1; 2; : : : ; p� 1;with mi := min (ki; ki+1), �i1 � �i2 � : : : � �imi � 0 and kuijk2 = kvijk2 = 1 for alli and j an be used for onstruting approximations C 0i of rank ri (1 � ri � mi)3



orresponding to the �rst ri (largest) singular values:C 0i := riXj=1 �ijuijvij> = Ui�iV >i ; i = 1; 2; : : : ; p� 1;using the notation Ui := �ui1jui2j : : : juiri� 2 Rki+1�ri , �i := diag ��i1; �i2; : : : ; �iri� andVi := �vi1jvi2j : : : jviri� 2 Rki�ri .Approximation Error. The rank-ri approximations of the o�-diagonal bloksCi of Mp result in a matrixM 0p := 0BBBBBB� B1 C 01>C 01 B2 C 02>C 02 B3 . . .. . . . . . C 0p�1>C 0p�1 Bp
1CCCCCCA 2 Rn�n ;whih is related to Mp aording toMp =M 0p +E(1);where E(1) is a blok-tridiagonal matrix with the entries0�0; m1Xj=r1+1�1j v1ju1j>1Ain the �rst blok row, the entries0� mi�1Xj=ri�1+1�i�1j ui�1j vi�1j >;0; miXj=ri+1�ijvijuij>1Ain blok rows i = 2; 3; : : : ; p� 1, and the entries0� mp�1Xj=rp�1+1�p�1j up�1j vp�1j >;01Ain the last (pth) blok row.Invoking Weyl's theorem (see, for example, [8, h. 5℄), we an see that the absolutedi�erene between the eigenvalues � of Mp and the eigenvalues �0 of M 0p an bebounded aording to j�� �0j � kE(1)k2:Keeping in mind that for n-vetors k � k1 � pnk � k2 and that kuv>k1 � kuk1kvk1,we havekE(1)k1 � maxi=2;3;:::;p�10� m1Xj=r1+1�1ju1jv1j>1 ;  mp�1Xj=rp�1+1�p�1j vp�1j up�1j >1 ;4



 mi�1Xj=ri�1+1�i�1j vi�1j ui�1j >1 +  miXj=ri+1�ijuijvij>11A� 2pn maxi=1;2;:::;p�1 miXj=ri+1�ij :Sine E(1) is symmetri, its 2-norm equals the maximum of the absolute values of itseigenvalues, whih is smaller than any matrix norm indued by a vetor norm. Inpartiular, it is smaller than its 1-norm. Thus, kE(1)k2 � kE(1)k1, whih leads to theerror bound j�� �0j � 2pn maxi=1;2;:::;p�1 miXj=ri+1�ij =: �1(2.1)for the eigenvalues �0 of M 0p with respet to the eigenvalues � of Mp.2.2. Divide-and-Conquer Solution. The eigenpairs of M 0p an be omputedusing a divide-and-onquer approah outlined in the following.2.2.1. Subdivision. With the orretions~B1 := B1 � V1�1V >1 ;~Bi := Bi � Ui�1�i�1U>i�1 � Vi�iV >i ; i = 2; 3; : : : ; p� 1;~Bp := Bp � Up�1�p�1U>p�1;M 0p an be represented as a series of rank-ri modi�ations of the blok-diagonal matrix~M 0p := blok-diag� ~B1; ~B2; : : : ; ~Bp�:M 0p = ~M 0p + p�1Xi=1WiW>i :(2.2)The matries Wi 2 Rn�ri in (2.2) are given asW1 := 0BB� V1�1=21U1�1=2100 1CCA ; Wp�1 := 0BB� 00Vp�1�1=2p�1Up�1�1=2p�1 1CCA ;(2.3) Wi := 0BB� 0Vi�1=2iUi�1=2i0 1CCA ; i = 2; 3; : : : ; p� 2:2.2.2. Solution of the Subproblems. Next, the spetral deompositions~Bi = QiDiQ>i ; i = 1; 2; : : : ; p;of the p diagonal bloks of ~M 0p have to be omputed using the method whih ismost eÆient for the size, struture and sparsity pattern of eah matrix ~Bi. In the5



following, D := 0B� D1 . . . Dp 1CA 2 Rn�ndenotes the diagonal matrix onsisting of the eigenvalues of the diagonal bloks,Q := 0B� Q1 . . . Qp 1CA 2 Rn�nis a blok-diagonal matrix whih ontains the eigenvetor matries of the diagonalbloks, and thus ~M 0p = QDQ>:(2.4)2.2.3. Synthesis of the Solutions of the Subproblems. Substituting (2.4)into (2.2) and denoting Yi := Q>Wi yields the representationM 0p = Q D + p�1Xi=1 YiY >i !Q>;whih implies that M 0p is orthogonally similar to the synthesis matrixS := D + p�1Xi=1 YiY >i :(2.5)Denoting r :=Pp�1i=1 ri, the synthesis matrix S is a rank-r modi�ation of a diagonalmatrix. Computation of the eigendeomposition of S reveals the eigenvalues of M 0pand its eigenvetors in a fatored form.2.2.4. Eigenpairs of the Synthesis Matrix. There are several approahes foromputing eigenvalues and eigenvetors of S.Arbenz, Gander and Golub [3, 4℄ have developed a method for performing aneigenanalysis of the entire rank-r modi�ation (2.5) at one. We deided not to usetheir approah in our ontext for several reasons:� Its main advantage is the transformation of an n � n to an r � r problem.In our ase, r is often not signi�antly smaller than n, and therefore thisproblem transformation is not very bene�ial.� It is yet unlear how to generalize deation, whih often leads to signi�antredutions of the omputing time (see Setions 2.3 and 4), for a rank-r mod-i�ation.� Unsatisfatory numerial auray has been observed by Arbenz [2℄, in par-tiular, a loss of numerial orthogonality of the omputed eigenvetors. Avariant whih ombined divide-and-onquer for the eigenvalue omputationwith inverse iteration for the eigenvetor omputation showed improved a-uray, but turned out to be less eÆient [2℄.6



Instead, we represent S as a sequene of r rank-one modi�ations of D. In priniple,these rank-one modi�ations an be performed in any order. However, due to thesparsity struture in the modi�ation vetors (the olumns of the matries Yi, seeFig. 2.1) it is preferable to omplete all rank-one modi�ations orresponding to thesame o�-diagonal blok C 0i (represented by the olumns of the matrix Yi) beforestarting with a di�erent one. We will refer to the proess of performing the ri rank-onemodi�ations Yi orresponding to one o�-diagonal blok C 0i as one merging operation,beause it aounts for the dependenies represented by the o�-diagonal blok C 0i andtherefore \merges" two diagonal bloks. It will be disussed in Setion 3.2 how todetermine a good order for performing the individual merging operations.PSfrag replaements D +++ Y1Y >1 Y2Y >2 Y3Y >3Fig. 2.1. Sparsity struture of the matries Yi (n = 20, p = 4, ri = 2 for i = 1; 2; 3)A major advantage of our approah is that it is possible to utilize the tehnologyfor rank-one modi�ations developed for the tridiagonal divide-and-onquer method.In partiular, the onepts developed in [17℄ an be utilized in eah rank-one modi�-ation and therefore numerial stability and numerial orthogonality of the omputedeigenvetors an be guaranteed. A potential disadvantage, however, lies in the arith-meti omplexity of the eigenvetor omputation. Aumulation of the r eigenve-tor matries for the rank-one modi�ation problems (analogously to the tridiagonaldivide-and-onquer method) requires O(n3) ops in the worst ase (see Setion 3.1).Deation (see Setion 2.3) may, however, signi�antly redue the atual op ount.In partiular, if only approximate eigenpairs are needed, relaxing the deation riteriaan lead to a signi�ant redution of omputing times (f. Setions 4.1 and 4.2).Another algorithmi variant for omputing the eigenvetors of S whih has thepotential of reduing the order of the arithmeti omplexity to O(n2) is urrentlyunder investigation and will be disussed in a forthoming paper.2.3. Relaxing Deation. It has been shown in [6, 9℄ that there are two speialsituations in whih eigenpairs of a rank-one modi�ation problem D + xx> with adiagonal matrix D an be found very eÆiently:� If there is a zero omponent xi in x then the orresponding entry di of D isan eigenvalue and the vetor ei is an eigenvetor of D + xx>.� If there are two equal entries in D then one of the orresponding omponentsof x an be eliminated using Givens rotations. After this transformation theorresponding eigenpairs are given as in the previous ase.This proess is alled deation. It not only redues the problem size for the eigenvalueomputation, it also introdues a blok struture in the eigenvetor matries whihredues the work required for aumulating them (see Fig. 3.2).So far, the divide-and-onquer approah has only been used for omputing eigen-pairs to full auray. In this ase, only \nearly zero" omponents of x or \nearly7



equal" entries of D may be deated. Typially, the deation tolerane �2 is hosen asa moderate multiple of the mahine preision " times the norm of the matrix of theeigenproblem. For example, in Lapak [1℄, it is set to�2 = �L2 := 8"max� maxi=1;2;:::;n jdij; maxi=1;2;:::;n jxij� :For lower auray requirements, as onsidered in this paper, it is possible to re-lax the deation riteria aordingly by inreasing the deation tolerane �2 (relaxeddeation). This establishes an approximate synthesis step. In most situations theamount of deation is signi�antly inreased and therefore the omputational e�ortfor aumulating the eigenvetor matries of the rank-one modi�ation problems issigni�antly redued (f. Setions 4.1 and 4.2).Approximation Error. Let the parameters of a Givens rotation used for elim-inating a omponent of a modi�ation vetor x orresponding to two entries di anddi+1 of D for whih jdi � di+1j = Æ be denoted by  and �. It has been shown in [9℄,that deating omponents xi of modi�ation vetors x ifjxij � �2and onsidering diagonal entries di and di+1 as equal ifjÆ�j � �2throughout the synthesis step of a divide-and-onquer method results in the ompu-tation of an eigendeomposition V̂ �̂V̂ > whih di�ers from the original matrix M 0p byan error matrix E(2), for whih kE(2)k2 � ��2where � is a onstant of order unity.Applying this result to our algorithm and again using Weyl's theorem shows thatthe deviation of the omputed eigenvalues �̂ from the exat eigenvalues �0 of M 0p anbe bounded as j�0 � �̂j � ��2:(2.6)2.4. Numerial Properties of the Algorithm. At this point, we are able toshow that the �rst two objetives stated in Setion 1.1, whih relate to the numerialauray of the method, are ahieved.Putting together the error bounds (2.1) and (2.6) shows that the distane of theomputed eigenvalues �̂ of M 0p from the exat eigenvalues � of Mp, whih is due tolower rank approximation of the o�-diagonal bloks and relaxed deation, an bebounded as j�� �̂j � j�� �0j+ j�0 � �̂j � �1 + ��2:Given a blok-tridiagonal matrix Mp and an auray parameter � , this implies that(for example) hoosing lower rank approximations of the o�-diagonal bloks in (2.1)suh that �1 � �=2 and setting the deation tolerane �2 suh that ��2 � �=2 makesit possible to satisfy ondition (1.3). Condition (1.4) is satis�ed by utilizing the stablemethod for omputing numerially orthogonal eigenvetors of a rank-one modi�ationproblem developed by Gu and Eisenstat [17℄.8



3. Implementation. In this setion, we will disuss the arithmeti omplex-ity of the algorithm presented and related implementation aspets. The ahievedeÆieny may strongly depend on these aspets.3.1. Arithmeti Complexity. In this setion, we analyze the dominating termsof the arithmeti omplexity of a single merging operation with a ut point , where a� and an (l�)�(l�) diagonal blok are to be onneted by a rank-ri o�-diagonalblok. In suh a rank-ri merging operation, the eigendeomposition ofD + y(1)i y(1)i > + y(2)i y(2)i > + : : :+ y(ri)i y(ri)i >(3.1)with a diagonal matrix D has to be omputed. As disussed in Setion 2.2.4, thisrank-ri modi�ation is handled as a sequene of ri rank-one modi�ations aordingto D(0) := Ddo j = 1; 2; : : : ; rifatorize D(j�1) + y(j)i y(j)i > = Q(j)D(j)Q(j)>do k = j + 1; j + 2; : : : ; riupdate y(k)i := Q(j)>y(k)iend doend doFor eah rank-ri merging operation, the ri eigenvetor matries Q(1), Q(2), . . . , Q(ri)of the rank-one modi�ation problems have to be multiplied onto the blok-diagonaleigenvetor matrix Q of the two subproblems to be merged as illustrated in Figs. 3.1and 3.2. Asymptotially, the eigenvetor aumulation over all rank-one modi�a-PSfrag replaements l�  Q Q(1) Q(2) Q(3)���
Fig. 3.1. Sparsity struture in the eigenvetor aumulation for a merging operation with rankri = 3 (no deation)tion problems tends to be the most expensive part of the entire divide-and-onqueralgorithm desribed in this paper (f. [8, 11, 13℄).Order of Rank-One Modi�ations. The atual op ount of the eigenvetor au-mulation for a single merging operation depends on how muh deation ours in eahrank-one modi�ation (f. Fig. 3.2). Additionally, it also depends on whether moreor less deation tends to happen in later rank-one modi�ations of a single mergingoperation. In Fig. 3.2 we hose to depit a ase where more deation ours in laterrank-one modi�ations. There are two reasons for that:� In our experiments the rank-one modi�ations of (3.1) orresponding to largersingular values of the o�-diagonal blok are performed �rst. This tends toause smaller entries in the modi�ation vetors orresponding to later rank-one modi�ations with smaller singular values (f. (2.3)), whih in turn leads9



PSfrag replaements
l�  Q Q(1) Q(2) Q(3)��� d1 d2 d3

Fig. 3.2. Sparsity struture in the eigenvetor aumulation for a merging operation with rankri = 3; di eigenvalues are deated in rank-one modi�ation ito to more deation (f. Setion 2.3). In general, we observed more deationin later rank-one modi�ations of a single merging operation.� Obviously, one might onsider going through the singular values in reverseorder (from the smallest to the largest) and thereby performing rank-onemodi�ations orresponding to smaller singular values �rst. This ould leadto more deation earlier and less deation later in a merging operation. How-ever, investigation of a speial ase indiates that in most situations this is notbene�ial, beause it tends to require slightly more oating point operationsfor the eigenvetor aumulation than the situation depited in Fig. 3.2. Thisis summarized in the following.First it should be pointed out that the ri +1 eigenvetor matries to be aumulatedin a single merging operation have to be multiplied from left to right , beause Q(i+1)an only be omputed after Q(i) is known and usually it is not feasible to providestorage for all the intermediate matries instead of aumulating them immediately.Multiplying a blok-diagonal matrix Q as shown in Figs. 3.1 and 3.2 with a matrixQ(1) and the result with a matrix Q(2), where d1 < d2 (more deation ours later)and  < n� d1, requires2l3 � 2l2 (+d1+d2) + l �22+3d1+d21+d22�� d1 (2+d1) ops:(3.2)When more deation ours earlier, i. e., Q is �rst multiplied with a matrix Q(2) andthe result with a matrix Q(1), where d1 < d2 and  < n� d2, the op ount is2l3 � 2l2 (+d1+d2�1=2) + l �22+d1+2d2�+d21+d22�d1�(3.3) �d2 (2+d2) + d1 (d2�d1+1) :Subtrating (3.3) from (3.2) yields�l2 + l (2d1 � 2d2 + + d1) +  ((2+ d2) (d2 � d1)� d1) :(3.4)Sine d2 > d1, the onstant term in (3.4) is always positive, but the oeÆient of thelinear term is negative whenever d1 < . Moreover, the dominating quadrati term isalways negative. Therefore, in most situations more deation later in eah mergingoperation tends to lead to slightly fewer oating point operations in the eigenvetoraumulation.In the following we ount the oating point operations required for the eigenvetoraumulation in the worst ase where no deation ours.10



3.1.1. Eigenvetor Update for the First Rank Modi�ation. The blok-diagonal eigenvetor matrix of the two subproblems (ontaining a full �  blok anda full (l � ) � (l � ) blok, see Fig. 3.1) has to be multiplied from the right withthe eigenvetor matrix of the �rst rank modi�ation, whih is a full l� l matrix if nodeation ours. The result of this operation is also a full l � l matrix.This operation requires (f. [13℄)(2� 1)l+ (2 (l � )� 1) (l � ) l = 2l3 � l2(4+ 1) + 42l ops:(3.5)In ase the merging operation is perfetly balaned ( = l=2) this yields a ount of2l3 � l2(2l+ 1) + 4l2=4l = l3 � l2 ops:(3.6)3.1.2. Eigenvetor Updates for Later Rank Modi�ations. In the mul-tiple rank ase under onsideration, the eigenvetor updates orresponding to thefollowing ri � 1 rank modi�ations involve the multipliation of two full l � l matri-es (the matrix aumulated so far is multiplied with the eigenvetor matrix of theurrent rank modi�ation), independently of the ut point  (see Fig. 3.1).Eah suh operation requires(2l� 1)ll = 2l3 � l2 ops:(3.7)3.1.3. Comparison to a Rank-One Modi�ation Problem. Flop ounts(3.6) and (3.7) allow us to quantify the work inrease due to a multiple rank mod-i�ation ompared to a rank-one modi�ation as disussed in [13℄. If the mergingoperation is perfetly balaned, the aumulation strategy for omputing the eigen-vetors orresponding to a rank-ri modi�ation leads to an inrease of the requiredops ompared to a rank-one modi�ation by a fator ofl3 � l2 + (ri � 1) �2l3 � l2�l3 � l2 = 1 + (ri � 1)�1 + l3l3 � l2� ;(3.8)For large l, (3.8) approahes 2ri � 1;(3.9)whih indiates that high ranks ri of the o�-diagonal bloks C 0i may beome thelimiting fator in the eÆieny of the method presented here. Obviously, the �nalmerging operations of the synthesis step dominate the work, beause they involve thelargest matries. In partiular, if the rank of the o�-diagonal blok orresponding tothe �nal merging operation is rf , then up to (rf � 1) 2n3 ops may be required forthe orresponding eigenvetor aumulations. This is learly not attrative for largevalues of rf .Fortunately, there are many situations where this worst-ase senario is too pes-simisti. Firstly, deation often greatly improves the situation. In partiular, if au-ray requirements are low, deation toleranes may be relaxed strongly, as shown inSetion 2.3. In most ases this will lead to a large amount of deation and thereforederease the size of the matries to be multiplied (see Setion 4.1).Seondly, if a proper merging order is hosen, the work is dominated by theminimum of the ranks ri, whih will be disussed in more detail in the following.11



3.2. Merging Order. When all the o�-diagonal bloks are approximated withthe same rank, then the analysis given in [13℄ is appliable and shows that the mergingorder should be determined suh that the merging operations, in partiular the late(r)ones, are as balaned as possible.In the most general situation, where the ranks of the o�-diagonal bloks C 0i di�er,the ri have to be taken into aount when determining the merging order, sine ahigher rank implies signi�antly more arithmeti work for performing the mergingoperation, as (3.9) illustrates.Using the op ounts derived in Setion 3.1 it is possible to justify putting highestpriority on hoosing lower rank modi�ations for later merging operations, indepen-dently of how unbalaned they may be. In partiular, it an be shown that thedominating �nal merging operation (l = n) should orrespond to the o�-diagonalblok C 0i with the lowest rank:� Let us onsider a �nal merging operation whih involves a rank-ri modi�ationand is as unbalaned as possible ( = 1). Flop ounts (3.5) and (3.7) yield2n3 � 5n2 + 4n+ (ri � 1)(2n3 � n2) = 2rin3 � (ri + 4)n2 + 4n(3.10)ops. Note that this is an overestimation of the atual op ount sine evenin an unbalaned merging operation the ut point always has to be greaterthan or equal to the rank ri. More preisely, min(; l � ) � ri � 1 alwaysholds.� If the same merging operation was perfetly balaned ( = n=2), but involveda modi�ation with higher rank (ri+x) (x = 1; 2; : : :), its op ount aordingto (3.6) and (3.7) would ben3 � n2 + (ri+x�1)(2n3�n2) = (2ri+2x�1)n3 � (ri+x)n2:(3.11)The di�erene between (3.11) and (3.10)(2x� 1)n3 + (4� x)n2 � 4nis positive for all x = 1; 2; : : : and for suÆiently large n. This shows that a modi�a-tion with higher rank implies more oating point operations, even if it is ompletelybalaned. (For x = 0 the di�erene is negative, beause for the same number ri ofrank-one modi�ations a perfetly balaned merging operation is less expensive thanany unbalaned one, as has been shown in [13℄.)In our ode, we use the following strategy for determining the merging order:First, we determine all the ut points whih orrespond to the o�-diagonal blokswith the minimum rank rmin := mini=1;2;:::;p�1frig. Among these, we selet the �nalut point as the one with the least imbalane in the merging operation. Then weontinue this strategy reursively for determining the previous ut points in the partsabove and below the �nal ut point.4. Experiments. The blok-tridiagonal divide-and-onquer method has beenimplemented in Fortran (dsbtd) and evaluated experimentally. In Setion 4.1 itis illustrated that in most ases a signi�ant amount of deation an be expeted,whih inreases with inreasing deation toleranes. In Setion 4.2 the redution ofruntimes for dereasing auray requirements is illustrated. In Setion 4.3 runtimesand numerial results of the new routine are ompared with a orresponding Lapakroutine when full auray is required. 12



For the experiments summarized in Setion 4.1, test matries with spei�ed eigen-value distributions were reated. For the experiments summarized in Setions 4.2and 4.3, random blok-tridiagonal matries with presribed ranks of the o�-diagonalbloks were generated by reating random symmetri bloks Bi (i = 1; 2; : : : ; p) aswell as ri (i = 1; 2; : : : ; p� 1) random vetors ui and vi, whih determine the rank-rio�-diagonal bloks C 0i. The singular values of the o�-diagonal bloks were hosen as�ji = 1:D0=j (j = 1; 2; : : : ; ri, i = 1; 2; : : : ; p� 1) for these test matries.The omputations were done on a SUN Ultra 5 Workstation with a 400 MHzUltraSPARC-IIi proessor in double preision with a mahine preision " � 1:1�10�16.The auray of eah method is measured by the saled residual error R and bythe departure from orthogonality O of the eigenvetors, de�ned byR := maxi=1;2;:::;n Mpv̂i � �̂iv̂i2kMpk2 andO := maxi=1;2;:::;n �V̂ >V̂ � I� ei2 :4.1. Relaxing Deation. In order to illustrate how muh deation an beexpeted on average, dsbtd was run on randomly reated blok-tridiagonal testmatries with three di�erent presribed eigenvalue distributions:1. uniform: �i = 1� (i� 1) 2n�1 , i = 1; 2; : : : ; n;2. random: �i = rand[�1; 1℄; and3. lustered around 0: �i = � 12(i�1)=k , i = 1; 2; : : : ; n, where k = n80 was hosenin order to guarantee some minimum distane between lustered eigenvalues.Results are shown for one matrix for eah eigenvalue distribution, eah with n = 3000,p = 600, blok sizes ki = 5 (i = 1; 2; : : : ; p), and all o�-diagonal bloks with fullrank. All three matries generated had the harateristi that the magnitude of theirelements dereased when moving away from the diagonal. For omparison, we alsoshow the amount of deation whih ourred for the matrixM5300 (one of the matriesused in the runtime omparisons of Setion 4.2) with the label \blok random".We reorded the deation for eah rank-one modi�ation problem in the synthesisstep, whih gives �ve numbers for the last merging operation (n = 3000), ten numbersfor the two merging operations before that (n = 1500), et. Figs. 4.1 and 4.2 show twographs for eah of the four matries: They are lower and upper bounds of deationfor the rank-one modi�ations of blok sizes greater or equal to n = 180. The atualdeation values for all the rank-one modi�ation problems lie between these bounds.Fig. 4.1 illustrates that for a small deation tolerane �2 = 10�10 the test matri-es with lustered eigenvalues and also those with random eigenvalues showed veryhigh amounts of deation (the upper bounds are at or lose to 100%). As expeted,signi�antly less deation ourred for the matrix with a uniform eigenvalue distri-bution. However, even in that ase almost 25% of the eigenvalues ould be deatedfor large bloks, whih are the most time onsuming merges. The amount of deationourring for M5300 tends to lie between the bounds of the other three matries withknown eigenvalue distribution, whih was also to be expeted.With a higher deation tolerane �2 = 10�4 muh more deation ours for allfour matries, as Fig. 4.2 illustrates. In this ase the upper bounds for all threematries with presribed eigenvalue distributions are at or very lose to 100% andtherefore annot be distinguished in the piture. Again, least deation ours for thematrix with a uniform eigenvalue distribution. The lower bound for this matrix is13



uniformblok randomrandomlustered
Components deated

Blok size 300025002000150010005000
100%75%50%25%0%Fig. 4.1. Lower and upper bounds for the deation observed in eah merging operation for�2 = 10�10muh lower than that for the other three matries, but it is at a signi�antly higherlevel than the orresponding one in Fig. 4.1.

uniformblok randomrandomlustered
Components deated

Blok size 300025002000150010005000
100%75%50%25%0%Fig. 4.2. Lower and upper bounds for the deation observed in eah merging operation for�2 = 10�44.2. Variable Auray Requirements. Table 4.1 illustrates the e�et ofrelaxing the deation tolerane �2 on the runtimes of dsbtd. Results are shownfor the matries Mr300 with n = 3000, p = 300, and the blok sizes ki = 10 (i =1; 2; : : : ; p). The ranks of the o�-diagonal bloks ri were all hosen equal (ri = r fori = 1; 2; : : : ; p� 1) and indiated in the supersript. Construting o�-diagonal blokswith presribed rank r (no approximation of the o�-diagonal bloks, �1 = 0) made itpossible to isolate the inuene of the deation tolerane �2 on the runtimes.Fig. 4.3 shows the same data as ratios TBT=TLB of the runtimes TBT for dsbtdand TLB for the routine LAPACK/dsbevd, whih omputes eigenpairs of a banded sym-metri matrix by performing tridiagonalization, the tridiagonal divide-and-onquermethod, and �nally the baktransformation of the eigenvetors.14



Table 4.1Runtimes (in seonds) for inreasing deation toleranes.�2 M1300 M2300 M5300 M6300 M7300 M10300dsbtd�L2 (full auray) 30.2 154.3 942.6 1239.6 1557.2 2344.610�14 29.4 142.2 931.5 1142.6 1472.9 2224.010�10 23.1 95.3 582.6 732.3 922.5 1429.610�6 17.5 50.9 229.4 279.8 359.5 498.810�4 14.5 31.6 83.2 95.8 103.9 130.110�2 11.0 17.0 34.8 40.7 46.5 64.1LAPACK/dsbevd 1501.7 1539.4 1529.7 1566.4 1550.9 1551.4
rank 1rank 2rank 5rank 6rank 7rank 10Runtimes relative to LAPACK/dsbevd

Deation tolerane �2
TBT=TLB

10�210�410�610�1010�14�L2
1:61:41:210:80:60:40:20Fig. 4.3. Runtimes of dsbtd relative to LAPACK/dsbevd for di�erent ranks of the o�-diagonalbloks and for varying deation toleranes4.3. Comparison with Other Approahes. There is no standard routine foromputing eigenpairs of a blok-tridiagonal matrix and therefore a diret omparisonis not possible. However, it is possible to ompare dsbtd with a routine for omput-ing eigenvalues and eigenvetors of a banded symmetri matrix, suh as the routineLAPACK/dsbevd mentioned before.As input for LAPACK/dsbevd the narrowest band matrix whih fully ontains therespetive blok-tridiagonal matrix Mp was used. This matrix ontains 2(p� 2) zeron=p�n=p triangles in addition to the blok-tridiagonal matrixMp. These triangles �llup during the tridiagonalization performed by LAPACK/dsbevd. However, espeiallyfor large values of p the overhead is negligible.The experiments are summarized in Table 4.2. It an be seen that due to improveddata-loality, whih is important for the memory hierarhies of modern omputersystems and also expeted to be extremely important for any implementation on aparallel omputer, for low and medium rank o�-diagonal bloks the blok-tridiagonaldivide-and-onquer algorithm is more eÆient than the standard method for bandedeigenvalue problems, even if the eigensystem of the approximate matrix M 0p is om-puted to full auray.5. Conlusion. A divide-and-onquer based method for approximating eigen-pairs of symmetri blok-tridiagonal matries has been proposed. The entral ideas15



Table 4.2Comparison with standard Lapak-routine (full auray).Routine M1300 M2300 M5300 M6300 M7300 M10300dsbtdTBT [s℄ 30.2 154.3 942.6 1239.6 1557.2 2344.6R 9:0 � 10�15 6:7 � 10�15 8:7 � 10�15 1:3 � 10�14 1:2 � 10�14 1:5 � 10�14O 2:5 � 10�15 4:9 � 10�15 4:2 � 10�15 6:7 � 10�15 5:2 � 10�15 3:7 � 10�15dsbevdTLB [s℄ 1501.7 1548.0 1529.7 1566.4 1550.9 1551.4R 7:8 � 10�15 7:4 � 10�15 7:2 � 10�15 8:0 � 10�15 7:5 � 10�15 7:3 � 10�15O 5:7 � 10�15 7:6 � 10�15 6:4 � 10�15 5:8 � 10�15 5:3 � 10�15 5:6 � 10�15whih allow to redue omputing times at the ost of gradually redued aurayare (i) lower rank approximation of the o�-diagonal bloks, (ii) a generalized divide-and-onquer method for blok-tridiagonal matries, and (iii) relaxing the deationtolerane in the synthesis step of this divide-and-onquer method. It has been shownthat espeially for medium and low auray requirements the proposed method isvery eÆient ompared to the standard method for band matries used in Lapak.Future Work. In order to omplete a framework for approximating eigenpairsof arbitrary symmetri matries, we will investigate several alternatives for approxi-mating full matries by blok-tridiagonal matries of the general form (1.1).Not in all situations the full approximate spetral deomposition (1.2) is needed.In many important appliations only k < n eigenpairs are to be omputed. For suhases it would be desirable to have an eÆient method with a proportionally reduedomputational e�ort. We are investigating alternative approahes for omputing theeigenvetors of a blok-tridiagonal matrix given its eigenvalues with this feature andomparing them to ompeting methods, suh as Krylov subspae methods.Aknowlegdements. We would like to thank Robert Day for his help in per-forming the experiments.Referenes.[1℄ E. Anderson, Z. Bai, C. H. Bishof, S. Blakford, J. W. Demmel, J. J.Dongarra, J. DuCroz, A. Greenbaum, S. Hammarling, A. MKenney,and D. C. Sorensen, Lapak Users' Guide, SIAM Press, Philadelphia, PA,3rd ed., 1999.[2℄ P. Arbenz, Divide and onquer algorithms for the bandsymmetri eigenvalueproblem, Parallel Comput., 18 (1992), pp. 1105{1128.[3℄ P. Arbenz, W. Gander, and G. H. Golub, Restrited rank modi�ation ofthe symmetri eigenvalue problem: Theoretial onsiderations, Linear AlgebraAppl., 104 (1988), pp. 75{95.[4℄ P. Arbenz and G. H. Golub, On the spetral deomposition of Hermitianmatries modi�ed by low rank perturbations with appliations, SIAM J. MatrixAnal. Appl., 9 (1988), pp. 40{58.[5℄ C. H. Bishof, B. Lang, and X. Sun, A framework for symmetri bandredution, ACM Trans. Math. Software, 26 (2000), pp. 581{601.[6℄ J. R. Bunh, C. P. Nielsen, and D. C. Sorensen, Rank-one modi�ationof the symmetri eigenproblem, Numer. Math., 31 (1978), pp. 31{48.[7℄ J. J. M. Cuppen, A divide and onquer method for the symmetri tridiagonaleigenproblem, Numer. Math., 36 (1981), pp. 177{195.16
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