COMPUTING APPROXIMATE EIGENPAIRS OF SYMMETRIC
BLOCK TRIDIAGONAL MATRICES

WILFRIED N. GANSTERER*! AND ROBERT C. WARD*$

Technical Report UT-CS-01-463 !
University of Tennessee

July 19, 2001

Abstract. A divide-and-conquer method for computing approximate eigenvalues and eigen-
vectors of a block-tridiagonal matrix is presented. In contrast to a method described earlier [13]
the off-diagonal blocks can have arbitrary ranks. It is shown that lower rank approximations of
the off-diagonal blocks as well as relaxation of deflation criteria permit the computation of approxi-
mate eigenpairs with prescribed accuracy at significantly reduced computational costs compared to
standard methods as, for example, implemented in LAPACK.

1. Introduction. We consider the problem of computing approximate eigenval-
ues and eigenvectors of an irreducible symmetric block tridiagonal matrix

B, Cf
C, By C)
(].].) Mp = 02 B3 € RXn
.o,
Cp—l Bp

with p > 1. The blocks B; € RF:**i (; =1,2,...,p) along the diagonal are symmetric,
and the off-diagonal blocks C; € RFi+1 %k (j = 1,2, ... p—1) are arbitrary. The block
sizes k; have to satisfy 1 < k; < n and Zle k; = n, but are otherwise arbitrary.

It should be emphasized that the class of matrices of the form (1.1) comprises
banded symmetric matrices, a very important type of matrices arising in numerous ap-
plications. For banded matrices with upper and lower bandwidth b, a block-tridiagonal
structure can be chosen, for example, by setting k; = b+ 1 for all ¢+ with all the subdi-
agonal blocks C; being upper triangular. However, other possibilities for imposing a
block-tridiagonal structure on a banded matrix exist, which may be more appropriate
in some situations.

1.1. Objectives. Given a (variable) accuracy parameter 7, the goal is to find
an approximate spectral decomposition

(1.2) M, ~ VAV,

The diagonal matrix A contains the approximations S\i to the eigenvalues A; of M,
and the column vectors 9; of V' are the approximations to the eigenvectors v; of M.
The computed approximate eigenpairs (A;, 0;) have to satisfy that
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e the residuals are bounded by 7, i.e.,

(13) R := . Imax Mpﬁi — 5\,"[7,‘

i=1,2,...,n

<
2

’

e the matrix V is numerically orthogonal, i.e.,

(1.4) O := max (VTV - I) €

i=1,2,...,n

_=0(en),
where e; € R™ has components 6{ and e denotes the machine precision (unit
roundoff).
Moreover, the method developed for computing (1.2) should have the feature that
lower accuracy requirements lead to a higher reduction of the computing time com-
pared to computing the spectral decomposition to full accuracy (only limited by the
rounding error and by the condition of the problem).

1.2. Motivation. The self-consistent-field (SCF) method, which is used for
solving the Hartree-Fock Equations in Quantum Chemistry [24, ch. 3], involves the
full-spectrum solution of a sequence of eigenvalue problems with very large and in
general dense matrices. It has an inner-outer iterative structure. Very low accuracy
may be sufficient in early iterations of the SCF-method, and higher accuracy usually
becomes more important as it proceeds.

The matrices arising in these eigenvalue problems are in general not block-tri-
diagonal, but they often have the property that the magnitudes of their elements
rapidly decrease when moving away from the diagonal, and therefore they can be
approximated by matrices of the form (1.1). Various approaches to performing such
a block-tridiagonal approximation of a general matrix will be summarized in a forth-
coming paper.

Since the method developed in this paper has a variable accuracy parameter 7,
it will be nicely applicable to the SCF method, and, more general, to many other
problems with similar properties. Moreover, we anticipate applications in the context
of preconditioning (for example, for approximating the spectrum of the inverse of a
given matrix).

1.3. Related Work. The standard method for computing eigenpairs of a sym-
metric band matrix, as, for example, implemented in LAPACK [1], is to tridiagonalize
it [22, 19, 5], to compute eigenvalues and eigenvectors of the similar tridiagonal matrix,
and finally to transform the eigenvectors.

The standard divide-and-conquer method for computing eigenvalues and eigenvec-
tors of a tridiagonal symmetric matrix has been developed by Cuppen [7]. The core
of this algorithm is a method for efficiently finding the spectral decomposition of a
rank-one modification of a diagonal matrix which has been given in [15, 6]. Over time
numerically stable and efficient implementations of Cuppen’s method were developed
[9, 23, 17, 18, 21]. The routines LAPACK/dsyevd and LAPACK/dsbevd tridiagonalize a
given symmetric general or banded matrix, respectively, and, if eigenvectors are de-
sired, then apply a divide-and-conquer algorithm to the resulting tridiagonal matrix.

The divide-and-conquer approach not only has attractive parallelization proper-
ties [25, 14], in combination with tridiagonalization it is even sequentially one of the
fastest methods currently available if all eigenvalues and eigenvectors of a large dense
or banded symmetric matrix are to be computed [8, ch. 5].

In some situations, tridiagonalization of a band matrix can be comparatively ex-
peunsive relative to the total cost of the calculation of eigenpairs [20, ch. 7]. Moreover,
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unfavorable data access patterns and bad data locality may cause inefficiencies in a
tridiagonalization process [10]. This fact motivates attempts to compute eigenpairs
of a band matrix without tridiagonalizing the entire matrix. One possible approach
seems to be a generalization of the divide-and-conquer method to band matrices.
Several variants of such a generalization have been investigated ([2] based on [4, 3];
more recently [11, 12]). One of the central questions remains numerical stability and
although promising advances have been made no final method has been established
(vet).

A divide-and-conquer method for a special case of (1.1), i.e., for block-tridiagonal
matrices with rank-one off-diagonal blocks C;, has been investigated in [13]. The result
is a very efficient and numerically stable algorithm for this special problem class. In
general, the off-diagonal blocks C; of the matrices arising in application problems are
not rank-one matrices, and there are instances where approximating them with rank-
one matrices is not sufficiently accurate. The algorithm discussed in this paper is able
to handle off-diagonal blocks with arbitrary ranks and therefore is able to achieve full
accuracy.

So far, the divide-and-conquer approach for eigenproblems has been used exclu-
sively for computing full accuracy solutions of the symmetric tridiagonal eigenprob-
lem. The major innovation of the algorithm proposed here is the idea to investigate
the potential of methods based on the divide-and-conquer approach for computing
approzimate eigenpairs of a more general class of matrices. Our experiments, summa-
rized in Section 4, indicate that the resulting method is highly competitive compared
to other methods for computing eigenpairs of symmetric matrices, especially if low
accuracy eigenpair approximations are sufficient and if the full spectrum of M), needs
to be approximated.

2. Concept. The algorithm presented in this paper involves two main phases:

1. Approximation of M, by another block-tridiagonal matrix M, € R**", whose
off-diagonal blocks C; are approximations of the original C;. This phase is
outlined in Section 2.1.

2. Application of a block-tridiagonal divide-and-conquer method to compute
eigenvalues and eigenvectors of M}. In analogy to Cuppen’s tridiagonal
divide-and-conquer method, this phase consists of (i) subdivision (see Sec-
tion 2.2.1), (ii) solution of the subproblems (see Section 2.2.2), and (iii) syn-
thesis of the solutions of the subproblems (see Section 2.2.3). Depending on
the accuracy requirements of the application context, the synthesis step may
or may not be approximative (see Section 2.3).

Another variant of this algorithm, in which the computation of the eigenvectors is
performed separately in a third phase, will be discussed in a forthcoming paper.

2.1. Approximation of the Off-Diagonal Blocks. The natural extension of
the algorithm discussed in [13] is to allow for higher rank approximations of the off-
diagonal blocks C;. The singular value decompositions (see [16, ch. 2])

my T
Ci:E ojuv; , 1=1,2,...,p—1,
i=1

with m; := min (ki, kit1), of > ob > ... >0l >0 and ||u;||2 = ||'U;||2 =1 for all
i and j can be used for constructing approximations C] of rank r; (1 < r; < my)
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corresponding to the first r; (largest) singular values:
T T
Ci:=> olufi =USV,", i=12...,p-1,
j=1

using the notation U; := (ui|ud]...|ul ) € RF+1 %7 %; := diag (0,0%,...,07 ) and
Vi = (vf[vd]. .. |vi) € RF T,

Approximation Error. The rank-r; approximations of the off-diagonal blocks
C; of M, result in a matrix

B, '
¢, B, C'
M, = C,  Bs € R,
. T
.
!
Cp 1 BP

which is related to M,, according to
M, =M, +EW,

where E() is a block-tridiagonal matrix with the entries

my T
0, E a;v;u;

Jj=ri+1
in the first block row, the entries
mi;—1 T m; T
i—1,i—1,i—1 i,
Do o a0, Y ojulu;
j=ri—1+1 j=ri+1
in block rows ¢ = 2,3,...,p — 1, and the entries
Mp—1
p—1 p-1 p-1T
Y. of e 0
j=rp—1+1

in the last (pth) block row.

Invoking Weyl’s theorem (see, for example, [8, ch. 5]), we can see that the absolute
difference between the eigenvalues A of M, and the eigenvalues A" of M, can be
bounded according to

A= X< IED ..

Keeping in mind that for n-vectors || - |1 < /7| - ||z and that ||uv |1 < |Jull1]|v]|co,
we have
— T e T
@) E Lutol E p—1,p=1,p=1
IE ]l < i:2g1f_}fp_1 g U;U; e g v Y ’
j=ri+1 J=rp-1+1
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j=ri—1+1 1 Jj=ri+l 1
m;
<2v/n  max E o;.
i=1,2,...,p—1

J=ri+l

Since EM) is symmetric, its 2-norm equals the maximum of the absolute values of its
eigenvalues, which is smaller than any matrix norm induced by a vector norm. In
particular, it is smaller than its 1-norm. Thus, ||E™M||; < ||[EM)||;, which leads to the
error bound

m;
’ i
(2.1) A= N|< 2‘/’71-:13?,?.’5,)4 | Zﬂaj =7
J=Ti

for the eigenvalues A" of M, with respect to the eigenvalues A of M,

2.2. Divide-and-Conquer Solution. The eigenpairs of M, can be computed
using a divide-and-conquer approach outlined in the following.

2.2.1. Subdivision. With the corrections
By =B - Visi VT,
Bi:=B; - U151 UL —VisV;T, i=23,...,p—1,
Bp = Bp - Up,lEp,lUpT_l,
M;, can be represented as a series of rank-r; modifications of the block-diagonal matrix
M’p := block-diag (Bl, Bs, ..., Bp):

p—1
(2.2) M) =M, + > WW,".

i=1

The matrices W; € R"*" in (2.2) are given as

Vlziiz g
U El 2
2. = 1= = :
I A B e R
0 Up1%,”)
0
RS .
W; == L , 1=23,...,p—2.
' U2

0
2.2.2. Solution of the Subproblems. Next, the spectral decompositions
Bz:QzDzQ;ra i:1727"'7p7

of the p diagonal blocks of M’p have to be computed using the method which is
most efficient for the size, structure and sparsity pattern of each matrix B;. In the
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following,

D,
D = E ]Rnxn
Dp

denotes the diagonal matrix consisting of the eigenvalues of the diagonal blocks,

Q1
Q = e ]RTLX’I’L

Qp

is a block-diagonal matrix which contains the eigenvector matrices of the diagonal
blocks, and thus

(2.4) M', =QDQ".

2.2.3. Synthesis of the Solutions of the Subproblems. Substituting (2.4)
into (2.2) and denoting Y; := QT W; yields the representation

p—1
M, =Q (D + ZYJF) QT
=1

which implies that Ml’) is orthogonally similar to the synthesis matriz

p—1
(2.5) S:=D+> VY.
i=1
Denoting r := f;ll r;, the synthesis matrix S is a rank-r modification of a diagonal

matrix. Computation of the eigendecomposition of S reveals the eigenvalues of M),
and its eigenvectors in a factored form.

2.2.4. Eigenpairs of the Synthesis Matrix. There are several approaches for
computing eigenvalues and eigenvectors of S.

Arbenz, Gander and Golub [3, 4] have developed a method for performing an
eigenanalysis of the entire rank-r modification (2.5) at once. We decided not to use
their approach in our context for several reasons:

e Its main advantage is the transformation of an n X n to an r x r problem.
In our case, r is often not significantly smaller than n, and therefore this
problem transformation is not very beneficial.

e It is yet unclear how to generalize deflation, which often leads to significant
reductions of the computing time (see Sections 2.3 and 4), for a rank-r mod-
ification.

e Unsatisfactory numerical accuracy has been observed by Arbenz [2], in par-
ticular, a loss of numerical orthogonality of the computed eigenvectors. A
variant which combined divide-and-conquer for the eigenvalue computation
with inverse iteration for the eigenvector computation showed improved ac-
curacy, but turned out to be less efficient [2].
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Instead, we represent S as a sequence of r rank-one modifications of D. In principle,
these rank-one modifications can be performed in any order. However, due to the
sparsity structure in the modification vectors (the columns of the matrices Y;, see
Fig. 2.1) it is preferable to complete all rank-one modifications corresponding to the
same off-diagonal block C! (represented by the columns of the matrix Y;) before
starting with a different one. We will refer to the process of performing the r; rank-one
modifications Y; corresponding to one off-diagonal block C! as one merging operation,
because it accounts for the dependencies represented by the off-diagonal block C} and
therefore “merges” two diagonal blocks. It will be discussed in Section 3.2 how to
determine a good order for performing the individual merging operations.

E— 2 ) [ e ) [ 2

+ + +

D Ylle YQYJ YgYS—r
Fi1G. 2.1. Sparsity structure of the matrices Y; (n =20, p =4, r; =2 fori=1,2,3)

A major advantage of our approach is that it is possible to utilize the technology
for rank-one modifications developed for the tridiagonal divide-and-conquer method.
In particular, the concepts developed in [17] can be utilized in each rank-one modifi-
cation and therefore numerical stability and numerical orthogonality of the computed
eigenvectors can be guaranteed. A potential disadvantage, however, lies in the arith-
metic complexity of the eigenvector computation. Accumulation of the r eigenvec-
tor matrices for the rank-one modification problems (analogously to the tridiagonal
divide-and-conquer method) requires O(n?®) flops in the worst case (see Section 3.1).
Deflation (see Section 2.3) may, however, significantly reduce the actual flop count.
In particular, if only approximate eigenpairs are needed, relaxing the deflation criteria
can lead to a significant reduction of computing times (cf. Sections 4.1 and 4.2).

Another algorithmic variant for computing the eigenvectors of S which has the
potential of reducing the order of the arithmetic complexity to O(n?) is currently
under investigation and will be discussed in a forthcoming paper.

2.3. Relaxing Deflation. It has been shown in [6, 9] that there are two special
situations in which eigenpairs of a rank-one modification problem D + zz " with a
diagonal matrix D can be found very efficiently:

o If there is a zero component z; in z then the corresponding entry d; of D is
an eigenvalue and the vector e; is an eigenvector of D + zz .

o If there are two equal entries in D then one of the corresponding components
of x can be eliminated using Givens rotations. After this transformation the
corresponding eigenpairs are given as in the previous case.

This process is called deflation. It not only reduces the problem size for the eigenvalue
computation, it also introduces a block structure in the eigenvector matrices which
reduces the work required for accumulating them (see Fig. 3.2).

So far, the divide-and-conquer approach has only been used for computing eigen-

pairs to full accuracy. In this case, only “nearly zero” components of x or “nearly
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equal” entries of D may be deflated. Typically, the deflation tolerance 12 is chosen as
a moderate multiple of the machine precision ¢ times the norm of the matrix of the
eigenproblem. For example, in LAPACK [1], it is set to

5 = T 1= 8e max < max |d;|, max |a:z|> .
1=1,2,....,n 1=1,2,...,n

For lower accuracy requirements, as considered in this paper, it is possible to re-
lax the deflation criteria accordingly by increasing the deflation tolerance 1 (relazed
deflation). This establishes an approximate synthesis step. In most situations the
amount of deflation is significantly increased and therefore the computational effort
for accumulating the eigenvector matrices of the rank-one modification problems is
significantly reduced (cf. Sections 4.1 and 4.2).

Approximation Error. Let the parameters of a Givens rotation used for elim-
inating a component of a modification vector x corresponding to two entries d; and
di+1 of D for which |d; — d;y1] = § be denoted by v and o. It has been shown in [9],
that deflating components x; of modification vectors z if

|lzi| < 72
and considering diagonal entries d; and d;11 as equal if
|0vo| < 7

throughout the synthesis step of a divide-and-conquer method results in the compu-
tation of an eigendecomposition VAV T which differs from the original matrix M, by

an error matrix £, for which
IE@ ||y < nro

where 7 is a constant of order unity.

Applying this result to our algorithm and again using Weyl’s theorem shows that
the deviation of the computed eigenvalues ) from the exact eigenvalues ' of M, can
be bounded as

(2.6) N = A < .

2.4. Numerical Properties of the Algorithm. At this point, we are able to
show that the first two objectives stated in Section 1.1, which relate to the numerical
accuracy of the method, are achieved.

Putting together the error bounds (2.1) and (2.6) shows that the distance of the
computed eigenvalues \ of M, from the exact eigenvalues A of M, which is due to
lower rank approximation of the off-diagonal blocks and relaxed deflation, can be
bounded as

A=A <IA=N|+|N =) <71 4 7.

Given a block-tridiagonal matrix M, and an accuracy parameter 7, this implies that
(for example) choosing lower rank approximations of the off-diagonal blocks in (2.1)
such that 7 < 7/2 and setting the deflation tolerance 7 such that nm < 7/2 makes
it possible to satisfy condition (1.3). Condition (1.4) is satisfied by utilizing the stable
method for computing numerically orthogonal eigenvectors of a rank-one modification
problem developed by Gu and Eisenstat [17].
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3. Implementation. In this section, we will discuss the arithmetic complex-
ity of the algorithm presented and related implementation aspects. The achieved
efficiency may strongly depend on these aspects.

3.1. Arithmetic Complexity. In this section, we analyze the dominating terms
of the arithmetic complexity of a single merging operation with a cut point ¢, where a
excand an (I—c) x (I—c) diagonal block are to be connected by a rank-r; off-diagonal
block. In such a rank-r; merging operation, the eigendecomposition of

1 17T 2) (2)T D (r) T
(3.1) D +yMyM 4@y gyl )
with a diagonal matrix D has to be computed. As discussed in Section 2.2.4, this
rank-r; modification is handled as a sequence of r; rank-one modifications according
to

D©®.=D
do j=1,2,...,1
factorize DU~V -|-y(]) @7 Q(j)D(j)Q(j)T
do k=j+1,j+2,...,m;
update yi(k) = Q(j)Tyi(k’)
end do
end do
For each rank-r; merging operation, the r; eigenvector matrices Q), Q?, ..., Q{9

of the rank-one modification problems have to be multiplied onto the block-diagonal
eigenvector matrix ) of the two subproblems to be merged as illustrated in Figs. 3.1
and 3.2. Asymptotically, the eigenvector accumulation over all rank-one modifica-

=HEE

QW Q® Q®

Fic. 3.1. Sparsity structure in the eigenvector accumulation for a merging operation with rank
ri = 3 (no deflation)

tion problems tends to be the most expensive part of the entire divide-and-conquer
algorithm described in this paper (cf. [8, 11, 13]).

Order of Rank-One Modifications. The actual flop count of the eigenvector accu-
mulation for a single merging operation depends on how much deflation occurs in each
rank-one modification (cf. Fig. 3.2). Additionally, it also depends on whether more
or less deflation tends to happen in later rank-one modifications of a single merging
operation. In Fig. 3.2 we chose to depict a case where more deflation occurs in later
rank-one modifications. There are two reasons for that:

e In our experiments the rank-one modifications of (3.1) corresponding to larger
singular values of the off-diagonal block are performed first. This tends to
cause smaller entries in the modification vectors corresponding to later rank-
one modifications with smaller singular values (cf. (2.3)), which in turn leads

9



d3

Q Q(l) Q(Z) Q(3)

F1Gc. 3.2. Sparsity structure in the eigenvector accumulation for a merging operation with rank
r; = 3; d; eigenvalues are deflated in rank-one modification i

to to more deflation (cf. Section 2.3). In general, we observed more deflation
in later rank-one modifications of a single merging operation.

e Obviously, one might consider going through the singular values in reverse
order (from the smallest to the largest) and thereby performing rank-one
modifications corresponding to smaller singular values first. This could lead
to more deflation earlier and less deflation later in a merging operation. How-
ever, investigation of a special case indicates that in most situations this is not
beneficial, because it tends to require slightly more floating point operations
for the eigenvector accumulation than the situation depicted in Fig. 3.2. This
is summarized in the following.

First it should be pointed out that the r; + 1 eigenvector matrices to be accumulated
in a single merging operation have to be multiplied from left to right, because QU+
can only be computed after Q¥ is known and usually it is not feasible to provide
storage for all the intermediate matrices instead of accumulating them immediately.

Multiplying a block-diagonal matrix @) as shown in Figs. 3.1 and 3.2 with a matrix
QW and the result with a matrix Q(®), where d; < dy (more deflation occurs later)
and ¢ < n — dy, requires

(3.2)  20® =21 (c+di+ds) +1(2¢° +3cdy +d; +d5) — dic(2c+d;)  flops.

When more deflation occurs earlier, i. e., @ is first multiplied with a matrix Q) and
the result with a matrix Q), where d; < dy and ¢ < n — d, the flop count is

(3.3) 2° = 21 (c+di+dy —1/2) + 1 (2¢° +cdy +2cdy —c +di +d3 — dy)
—dQC (2C+dz) + dlc (dz —d1+1) .

Subtracting (3.3) from (3.2) yields
(34) —12 + l (26d1 — 26d2 +c + dl) +c ((20 + dz) (dz — dl) — dl) .

Since d» > dj, the constant term in (3.4) is always positive, but the coefficient of the
linear term is negative whenever d; < c. Moreover, the dominating quadratic term is
always negative. Therefore, in most situations more deflation later in each merging
operation tends to lead to slightly fewer floating point operations in the eigenvector
accumulation.

In the following we count the floating point operations required for the eigenvector
accumulation in the worst case where no deflation occurs.
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3.1.1. Eigenvector Update for the First Rank Modification. The block-
diagonal eigenvector matrix of the two subproblems (containing a full ¢ x ¢ block and
a full (I —c¢) x (I — ¢) block, see Fig. 3.1) has to be multiplied from the right with
the eigenvector matrix of the first rank modification, which is a full I x I matrix if no
deflation occurs. The result of this operation is also a full [ x [ matrix.

This operation requires (cf. [13])

(3.5) (2c—=1Del+2(1—c)=1) (I —c)l =20*—1*(4c+ 1) + 4c*l flops.
In case the merging operation is perfectly balanced (¢ = [/2) this yields a count of
(3.6) 203 — 1221 + 1) + 41 /4l = 1> — I flops.

3.1.2. Eigenvector Updates for Later Rank Modifications. In the mul-
tiple rank case under consideration, the eigenvector updates corresponding to the
following r; — 1 rank modifications involve the multiplication of two full [ x [ matri-
ces (the matrix accumulated so far is multiplied with the eigenvector matrix of the
current rank modification), independently of the cut point ¢ (see Fig. 3.1).

Each such operation requires

(3.7) (20 — )Il = 21> —1* flops.

3.1.3. Comparison to a Rank-One Modification Problem. Flop counts
(3.6) and (3.7) allow us to quantify the work increase due to a multiple rank mod-
ification compared to a rank-one modification as discussed in [13]. If the merging
operation is perfectly balanced, the accumulation strategy for computing the eigen-
vectors corresponding to a rank-r; modification leads to an increase of the required
flops compared to a rank-one modification by a factor of

B =124 (r; — 1) (203 = 2)

13
(38) B _ 2 :1+(T,'—1) <1+m>,

For large [, (3.8) approaches
(39) 27'1' - ]-7

which indicates that high ranks r; of the off-diagonal blocks C! may become the
limiting factor in the efficiency of the method presented here. Obviously, the final
merging operations of the synthesis step dominate the work, because they involve the
largest matrices. In particular, if the rank of the off-diagonal block corresponding to
the final merging operation is ry, then up to (ry — 1) 2n® flops may be required for
the corresponding eigenvector accumulations. This is clearly not attractive for large
values of 7.

Fortunately, there are many situations where this worst-case scenario is too pes-
simistic. Firstly, deflation often greatly improves the situation. In particular, if accu-
racy requirements are low, deflation tolerances may be relaxed strongly, as shown in
Section 2.3. In most cases this will lead to a large amount of deflation and therefore
decrease the size of the matrices to be multiplied (see Section 4.1).

Secondly, if a proper merging order is chosen, the work is dominated by the
minimum of the ranks r;, which will be discussed in more detail in the following.
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3.2. Merging Order. When all the off-diagonal blocks are approximated with
the same rank, then the analysis given in [13] is applicable and shows that the merging
order should be determined such that the merging operations, in particular the late(r)
ones, are as balanced as possible.

In the most general situation, where the ranks of the off-diagonal blocks C! differ,
the r; have to be taken into account when determining the merging order, since a
higher rank implies significantly more arithmetic work for performing the merging
operation, as (3.9) illustrates.

Using the flop counts derived in Section 3.1 it is possible to justify putting highest
priority on choosing lower rank modifications for later merging operations, indepen-
dently of how unbalanced they may be. In particular, it can be shown that the
dominating final merging operation (I = n) should correspond to the off-diagonal
block C! with the lowest rank:

e Let us consider a final merging operation which involves a rank-r; modification
and is as unbalanced as possible (¢ = 1). Flop counts (3.5) and (3.7) yield

(3.10) 2n® —5n% +4n + (r; — 1)(2n® —n?) = 2r;n® — (r; + 4)n” +4n

flops. Note that this is an overestimation of the actual flop count since even
in an unbalanced merging operation the cut point always has to be greater
than or equal to the rank r;. More precisely, min(c,l —¢) > r; > 1 always
holds.

e If the same merging operation was perfectly balanced (¢ = n/2), but involved
a modification with higher rank (r;+z) (z = 1,2, ...), its flop count according
to (3.6) and (3.7) would be

(3.11) n® —n® + (ri+z—1)2n°—n?) = (2r;+22—1)n® — (r;+2)n°.
The difference between (3.11) and (3.10)
(22 — 1)n® + (4 — 2)n® — 4n

is positive for all x = 1,2, ... and for sufficiently large n. This shows that a modifica-
tion with higher rank implies more floating point operations, even if it is completely
balanced. (For x = 0 the difference is negative, because for the same number r; of
rank-one modifications a perfectly balanced merging operation is less expensive than
any unbalanced one, as has been shown in [13].)

In our code, we use the following strategy for determining the merging order:
First, we determine all the cut points which correspond to the off-diagonal blocks
with the minimum rank rmin := min;—1 > p—1{7;}. Among these, we select the final
cut point as the one with the least imbalance in the merging operation. Then we
continue this strategy recursively for determining the previous cut points in the parts
above and below the final cut point.

4. Experiments. The block-tridiagonal divide-and-conquer method has been
implemented in Fortran (dsbtdc) and evaluated experimentally. In Section 4.1 it
is illustrated that in most cases a significant amount of deflation can be expected,
which increases with increasing deflation tolerances. In Section 4.2 the reduction of
runtimes for decreasing accuracy requirements is illustrated. In Section 4.3 runtimes
and numerical results of the new routine are compared with a corresponding LAPACK
routine when full accuracy is required.
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For the experiments summarized in Section 4.1, test matrices with specified eigen-
value distributions were created. For the experiments summarized in Sections 4.2
and 4.3, random block-tridiagonal matrices with prescribed ranks of the off-diagonal
blocks were generated by creating random symmetric blocks B; (i = 1,2,...,p) as
well as r; (i = 1,2,...,p— 1) random vectors u; and v;, which determine the rank-r;
off-diagonal blocks C}. The singular values of the off-diagonal blocks were chosen as
o/ =1D0/j (j =1,2,...,r,i=1,2,...,p— 1) for these test matrices.

The computations were done on a SUN Ultra 5 Workstation with a 400 MHz
UltraSPARC-IIi processor in double precision with a machine precision € ~ 1.1-10716.

The accuracy of each method is measured by the scaled residual error R and by
the departure from orthogonality O of the eigenvectors, defined by

(et |
R:= max ————= and
TG,
O := max (VTV—I) e;
i=1,2,...,n 2

4.1. Relaxing Deflation. In order to illustrate how much deflation can be
expected on average, dsbtdc was run on randomly created block-tridiagonal test
matrices with three different prescribed eigenvalue distributions:

1. wniform: \;=1— (i — 1)%, 1=1,2,....m;

2. random: \; = rand[—1,1]; and

3. clustered around 0: \; = ﬂ:ﬁ, i =1,2,...,n, where k = g was chosen

in order to guarantee some minimum distance between clustered eigenvalues.

Results are shown for one matrix for each eigenvalue distribution, each with n = 3000,
p = 600, block sizes k; = 5 (i = 1,2,...,p), and all off-diagonal blocks with full
rank. All three matrices generated had the characteristic that the magnitude of their
elements decreased when moving away from the diagonal. For comparison, we also
show the amount of deflation which occurred for the matrix M3y, (one of the matrices
used in the runtime comparisons of Section 4.2) with the label “block random”.

We recorded the deflation for each rank-one modification problem in the synthesis
step, which gives five numbers for the last merging operation (n = 3000), ten numbers
for the two merging operations before that (n = 1500), etc. Figs. 4.1 and 4.2 show two
graphs for each of the four matrices: They are lower and upper bounds of deflation
for the rank-one modifications of block sizes greater or equal to n = 180. The actual
deflation values for all the rank-one modification problems lie between these bounds.

Fig. 4.1 illustrates that for a small deflation tolerance 75 = 10719 the test matri-
ces with clustered eigenvalues and also those with random eigenvalues showed very
high amounts of deflation (the upper bounds are at or close to 100%). As expected,
significantly less deflation occurred for the matrix with a uniform eigenvalue distri-
bution. However, even in that case almost 25% of the eigenvalues could be deflated
for large blocks, which are the most time consuming merges. The amount of deflation
occurring for M3y, tends to lie between the bounds of the other three matrices with
known eigenvalue distribution, which was also to be expected.

With a higher deflation tolerance 7, = 10~™* much more deflation occurs for all
four matrices, as Fig. 4.2 illustrates. In this case the upper bounds for all three
matrices with prescribed eigenvalue distributions are at or very close to 100% and
therefore cannot be distinguished in the picture. Again, least deflation occurs for the
matrix with a uniform eigenvalue distribution. The lower bound for this matrix is
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much lower than that for the other three matrices, but it is at a significantly higher

level than the corresponding one in Fig. 4.1.
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Fic. 4.2. Lower and upper bounds for the deflation observed in each merging operation for
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4.2. Variable Accuracy Requirements. Table 4.1 illustrates the effect of
relaxing the deflation tolerance 7 on the runtimes of dsbtdc. Results are shown
for the matrices Mj,, with n = 3000, p = 300, and the block sizes k; = 10 (i =
1,2,...,p). The ranks of the off-diagonal blocks r; were all chosen equal (r; = r for
i=1,2,...,p—1) and indicated in the superscript. Constructing off-diagonal blocks
with prescribed rank r (no approximation of the off-diagonal blocks, 71 = 0) made it
possible to isolate the influence of the deflation tolerance 75 on the runtimes.

Fig. 4.3 shows the same data as ratios Tpr/TLp of the runtimes Tpt for dsbtdc
and Ty p for the routine LAPACK/dsbevd, which computes eigenpairs of a banded sym-
metric matrix by performing tridiagonalization, the tridiagonal divide-and-conquer
method, and finally the backtransformation of the eigenvectors.
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TABLE 4.1
Runtimes (in seconds) for increasing deflation tolerances.

H 72 H Ms}oo ‘ M§00 ‘ M:?oo ‘ M??oo ‘ M3700 ‘ M?}(())o H

dsbtdc

£ (full accuracy) 30.2 | 154.3 | 942.6 | 1239.6 | 1557.2 | 2344.6
10— 29.4 142.2 | 931.5 | 1142.6 | 1472.9 | 2224.0
1010 23.1 95.3 582.6 732.3 922.5 | 1429.6
106 17.5 50.9 229.4 | 279.8 359.5 | 498.8
1074 14.5 31.6 83.2 95.8 103.9 130.1
102 11.0 17.0 34.8 40.7 46.5 64.1
LAPACK/dsbevd 1501.7 | 1539.4 | 1529.7 | 1566.4 | 1550.9 | 1551.4

Runtimes relative to LAPACK/dsbevd

IR ran SRR
14 rank 7 ----~-
1.2 A N rank 6 —-—-—

|

Ter/Tus 0.8
0.6
0.4
0.2

Deflation tolerance 72

Fic. 4.3. Runtimes of dsbtdc relative to LAPACK/dsbevd for different ranks of the off-diagonal
blocks and for varying deflation tolerances

4.3. Comparison with Other Approaches. There is no standard routine for
computing eigenpairs of a block-tridiagonal matrix and therefore a direct comparison
is not possible. However, it is possible to compare dsbtdc with a routine for comput-
ing eigenvalues and eigenvectors of a banded symmetric matrix, such as the routine
LAPACK/dsbevd mentioned before.

As input for LAPACK/dsbevd the narrowest band matrix which fully contains the
respective block-tridiagonal matrix M, was used. This matrix contains 2(p — 2) zero
n/pxn/p triangles in addition to the block-tridiagonal matrix M,. These triangles fill
up during the tridiagonalization performed by LAPACK/dsbevd. However, especially
for large values of p the overhead is negligible.

The experiments are summarized in Table 4.2. It can be seen that due to improved
data-locality, which is important for the memory hierarchies of modern computer
systems and also expected to be extremely important for any implementation on a
parallel computer, for low and medium rank off-diagonal blocks the block-tridiagonal
divide-and-conquer algorithm is more efficient than the standard method for banded
eigenvalue problems, even if the eigensystem of the approximate matrix MI’) is com-
puted to full accuracy.

5. Conclusion. A divide-and-conquer based method for approximating eigen-
pairs of symmetric block-tridiagonal matrices has been proposed. The central ideas
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TABLE 4.2
Comparison with standard LAPACK-routine (full accuracy).

‘ Routine H M3y, M3y, M3y ‘ Mgy ‘ Mo ‘ M3zd,

dsbtdc

Ts [s] 30.2 154.3 942.6 1239.6 1557.2 2344.6
R 9.0-10-1% | 6.7-10°1% | 8.7-10715 | 1.3-10714 | 1.2.10714 | 1.5.10 14
o 2.5-10"1% | 4.9-10715 | 4.2-10"1% | 6.7-10715 | 5.2-10"15 | 3.7-10"1®
dsbevd

T [s] 1501.7 1548.0 1529.7 1566.4 1550.9 1551.4
R 7.8-1071% | 7.4.10~1% | 7.2.107% | 8.0-1071 | 7.5.1071% | 7.3.10"1!°
o 5.7-1071% | 7.6.-1071% | 6.4-10715 | 5.8-10715 | 5.3.1071% | 5.6.10"1°

which allow to reduce computing times at the cost of gradually reduced accuracy
are (i) lower rank approximation of the off-diagonal blocks, (ii) a generalized divide-
and-conquer method for block-tridiagonal matrices, and (iii) relaxing the deflation
tolerance in the synthesis step of this divide-and-conquer method. It has been shown
that especially for medium and low accuracy requirements the proposed method is
very efficient compared to the standard method for band matrices used in LAPACK.

Future Work. In order to complete a framework for approximating eigenpairs
of arbitrary symmetric matrices, we will investigate several alternatives for approxi-
mating full matrices by block-tridiagonal matrices of the general form (1.1).

Not in all situations the full approximate spectral decomposition (1.2) is needed.
In many important applications only k < n eigenpairs are to be computed. For such
cases it would be desirable to have an efficient method with a proportionally reduced
computational effort. We are investigating alternative approaches for computing the
eigenvectors of a block-tridiagonal matrix given its eigenvalues with this feature and
comparing them to competing methods, such as Krylov subspace methods.

Acknowlegdements. We would like to thank Robert Day for his help in per-
forming the experiments.
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