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hni
al Report UT-CS-01-463 1University of TennesseeJuly 19, 2001Abstra
t. A divide-and-
onquer method for 
omputing approximate eigenvalues and eigen-ve
tors of a blo
k-tridiagonal matrix is presented. In 
ontrast to a method des
ribed earlier [13℄the o�-diagonal blo
ks 
an have arbitrary ranks. It is shown that lower rank approximations ofthe o�-diagonal blo
ks as well as relaxation of de
ation 
riteria permit the 
omputation of approxi-mate eigenpairs with pres
ribed a

ura
y at signi�
antly redu
ed 
omputational 
osts 
ompared tostandard methods as, for example, implemented in Lapa
k.1. Introdu
tion. We 
onsider the problem of 
omputing approximate eigenval-ues and eigenve
tors of an irredu
ible symmetri
 blo
k tridiagonal matrixMp := 0BBBBBB� B1 C>1C1 B2 C>2C2 B3 . . .. . . . . . C>p�1Cp�1 Bp
1CCCCCCA 2 Rn�n(1.1)with p > 1. The blo
ks Bi 2 Rki�ki (i = 1; 2; : : : ; p) along the diagonal are symmetri
,and the o�-diagonal blo
ks Ci 2 Rki+1�ki (i = 1; 2; : : : ; p�1) are arbitrary. The blo
ksizes ki have to satisfy 1 � ki < n and Ppi=1 ki = n, but are otherwise arbitrary.It should be emphasized that the 
lass of matri
es of the form (1.1) 
omprisesbanded symmetri
 matri
es, a very important type of matri
es arising in numerous ap-pli
ations. For banded matri
es with upper and lower bandwidth b, a blo
k-tridiagonalstru
ture 
an be 
hosen, for example, by setting ki = b+1 for all i with all the subdi-agonal blo
ks Ci being upper triangular. However, other possibilities for imposing ablo
k-tridiagonal stru
ture on a banded matrix exist, whi
h may be more appropriatein some situations.1.1. Obje
tives. Given a (variable) a

ura
y parameter � , the goal is to �ndan approximate spe
tral de
ompositionMp � V̂ �̂V̂ >:(1.2)The diagonal matrix �̂ 
ontains the approximations �̂i to the eigenvalues �i of Mpand the 
olumn ve
tors v̂i of V̂ are the approximations to the eigenve
tors vi of Mp.The 
omputed approximate eigenpairs (�̂i; v̂i) have to satisfy that�Department of Computer S
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� the residuals are bounded by � , i. e.,R := maxi=1;2;:::;n 


Mpv̂i � �̂iv̂i


2 � � ;(1.3)� the matrix V̂ is numeri
ally orthogonal, i. e.,O := maxi=1;2;:::;n 


�V̂ >V̂ � I� ei


2 = O("n);(1.4)where ei 2 Rn has 
omponents Æji and " denotes the ma
hine pre
ision (unitroundo�).Moreover, the method developed for 
omputing (1.2) should have the feature thatlower a

ura
y requirements lead to a higher redu
tion of the 
omputing time 
om-pared to 
omputing the spe
tral de
omposition to full a

ura
y (only limited by therounding error and by the 
ondition of the problem).1.2. Motivation. The self-
onsistent-�eld (SCF ) method, whi
h is used forsolving the Hartree-Fo
k Equations in Quantum Chemistry [24, 
h. 3℄, involves thefull-spe
trum solution of a sequen
e of eigenvalue problems with very large and ingeneral dense matri
es. It has an inner-outer iterative stru
ture. Very low a

ura
ymay be suÆ
ient in early iterations of the SCF-method, and higher a

ura
y usuallybe
omes more important as it pro
eeds.The matri
es arising in these eigenvalue problems are in general not blo
k-tri-diagonal, but they often have the property that the magnitudes of their elementsrapidly de
rease when moving away from the diagonal, and therefore they 
an beapproximated by matri
es of the form (1.1). Various approa
hes to performing su
ha blo
k-tridiagonal approximation of a general matrix will be summarized in a forth-
oming paper.Sin
e the method developed in this paper has a variable a

ura
y parameter � ,it will be ni
ely appli
able to the SCF method, and, more general, to many otherproblems with similar properties. Moreover, we anti
ipate appli
ations in the 
ontextof pre
onditioning (for example, for approximating the spe
trum of the inverse of agiven matrix).1.3. Related Work. The standard method for 
omputing eigenpairs of a sym-metri
 band matrix, as, for example, implemented in Lapa
k [1℄, is to tridiagonalizeit [22, 19, 5℄, to 
ompute eigenvalues and eigenve
tors of the similar tridiagonal matrix,and �nally to transform the eigenve
tors.The standard divide-and-
onquer method for 
omputing eigenvalues and eigenve
-tors of a tridiagonal symmetri
 matrix has been developed by Cuppen [7℄. The 
oreof this algorithm is a method for eÆ
iently �nding the spe
tral de
omposition of arank-one modi�
ation of a diagonal matrix whi
h has been given in [15, 6℄. Over timenumeri
ally stable and eÆ
ient implementations of Cuppen's method were developed[9, 23, 17, 18, 21℄. The routines LAPACK/dsyevd and LAPACK/dsbevd tridiagonalize agiven symmetri
 general or banded matrix, respe
tively, and, if eigenve
tors are de-sired, then apply a divide-and-
onquer algorithm to the resulting tridiagonal matrix.The divide-and-
onquer approa
h not only has attra
tive parallelization proper-ties [25, 14℄, in 
ombination with tridiagonalization it is even sequentially one of thefastest methods 
urrently available if all eigenvalues and eigenve
tors of a large denseor banded symmetri
 matrix are to be 
omputed [8, 
h. 5℄.In some situations, tridiagonalization of a band matrix 
an be 
omparatively ex-pensive relative to the total 
ost of the 
al
ulation of eigenpairs [20, 
h. 7℄. Moreover,2



unfavorable data a

ess patterns and bad data lo
ality may 
ause ineÆ
ien
ies in atridiagonalization pro
ess [10℄. This fa
t motivates attempts to 
ompute eigenpairsof a band matrix without tridiagonalizing the entire matrix. One possible approa
hseems to be a generalization of the divide-and-
onquer method to band matri
es.Several variants of su
h a generalization have been investigated ([2℄ based on [4, 3℄;more re
ently [11, 12℄). One of the 
entral questions remains numeri
al stability andalthough promising advan
es have been made no �nal method has been established(yet).A divide-and-
onquer method for a spe
ial 
ase of (1.1), i. e., for blo
k-tridiagonalmatri
es with rank-one o�-diagonal blo
ks Ci, has been investigated in [13℄. The resultis a very eÆ
ient and numeri
ally stable algorithm for this spe
ial problem 
lass. Ingeneral, the o�-diagonal blo
ks Ci of the matri
es arising in appli
ation problems arenot rank-one matri
es, and there are instan
es where approximating them with rank-one matri
es is not suÆ
iently a

urate. The algorithm dis
ussed in this paper is ableto handle o�-diagonal blo
ks with arbitrary ranks and therefore is able to a
hieve fulla

ura
y.So far, the divide-and-
onquer approa
h for eigenproblems has been used ex
lu-sively for 
omputing full a

ura
y solutions of the symmetri
 tridiagonal eigenprob-lem. The major innovation of the algorithm proposed here is the idea to investigatethe potential of methods based on the divide-and-
onquer approa
h for 
omputingapproximate eigenpairs of a more general 
lass of matri
es. Our experiments, summa-rized in Se
tion 4, indi
ate that the resulting method is highly 
ompetitive 
omparedto other methods for 
omputing eigenpairs of symmetri
 matri
es, espe
ially if lowa

ura
y eigenpair approximations are suÆ
ient and if the full spe
trum of Mp needsto be approximated.2. Con
ept. The algorithm presented in this paper involves two main phases:1. Approximation ofMp by another blo
k-tridiagonal matrixM 0p 2 Rn�n , whoseo�-diagonal blo
ks C 0i are approximations of the original Ci. This phase isoutlined in Se
tion 2.1.2. Appli
ation of a blo
k-tridiagonal divide-and-
onquer method to 
omputeeigenvalues and eigenve
tors of M 0p. In analogy to Cuppen's tridiagonaldivide-and-
onquer method, this phase 
onsists of (i) subdivision (see Se
-tion 2.2.1), (ii) solution of the subproblems (see Se
tion 2.2.2), and (iii) syn-thesis of the solutions of the subproblems (see Se
tion 2.2.3). Depending onthe a

ura
y requirements of the appli
ation 
ontext, the synthesis step mayor may not be approximative (see Se
tion 2.3).Another variant of this algorithm, in whi
h the 
omputation of the eigenve
tors isperformed separately in a third phase, will be dis
ussed in a forth
oming paper.2.1. Approximation of the O�-Diagonal Blo
ks. The natural extension ofthe algorithm dis
ussed in [13℄ is to allow for higher rank approximations of the o�-diagonal blo
ks Ci. The singular value de
ompositions (see [16, 
h. 2℄)Ci = miXj=1 �ijuijvij>; i = 1; 2; : : : ; p� 1;with mi := min (ki; ki+1), �i1 � �i2 � : : : � �imi � 0 and kuijk2 = kvijk2 = 1 for alli and j 
an be used for 
onstru
ting approximations C 0i of rank ri (1 � ri � mi)3




orresponding to the �rst ri (largest) singular values:C 0i := riXj=1 �ijuijvij> = Ui�iV >i ; i = 1; 2; : : : ; p� 1;using the notation Ui := �ui1jui2j : : : juiri� 2 Rki+1�ri , �i := diag ��i1; �i2; : : : ; �iri� andVi := �vi1jvi2j : : : jviri� 2 Rki�ri .Approximation Error. The rank-ri approximations of the o�-diagonal blo
ksCi of Mp result in a matrixM 0p := 0BBBBBB� B1 C 01>C 01 B2 C 02>C 02 B3 . . .. . . . . . C 0p�1>C 0p�1 Bp
1CCCCCCA 2 Rn�n ;whi
h is related to Mp a

ording toMp =M 0p +E(1);where E(1) is a blo
k-tridiagonal matrix with the entries0�0; m1Xj=r1+1�1j v1ju1j>1Ain the �rst blo
k row, the entries0� mi�1Xj=ri�1+1�i�1j ui�1j vi�1j >;0; miXj=ri+1�ijvijuij>1Ain blo
k rows i = 2; 3; : : : ; p� 1, and the entries0� mp�1Xj=rp�1+1�p�1j up�1j vp�1j >;01Ain the last (pth) blo
k row.Invoking Weyl's theorem (see, for example, [8, 
h. 5℄), we 
an see that the absolutedi�eren
e between the eigenvalues � of Mp and the eigenvalues �0 of M 0p 
an bebounded a

ording to j�� �0j � kE(1)k2:Keeping in mind that for n-ve
tors k � k1 � pnk � k2 and that kuv>k1 � kuk1kvk1,we havekE(1)k1 � maxi=2;3;:::;p�10�
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11A� 2pn maxi=1;2;:::;p�1 miXj=ri+1�ij :Sin
e E(1) is symmetri
, its 2-norm equals the maximum of the absolute values of itseigenvalues, whi
h is smaller than any matrix norm indu
ed by a ve
tor norm. Inparti
ular, it is smaller than its 1-norm. Thus, kE(1)k2 � kE(1)k1, whi
h leads to theerror bound j�� �0j � 2pn maxi=1;2;:::;p�1 miXj=ri+1�ij =: �1(2.1)for the eigenvalues �0 of M 0p with respe
t to the eigenvalues � of Mp.2.2. Divide-and-Conquer Solution. The eigenpairs of M 0p 
an be 
omputedusing a divide-and-
onquer approa
h outlined in the following.2.2.1. Subdivision. With the 
orre
tions~B1 := B1 � V1�1V >1 ;~Bi := Bi � Ui�1�i�1U>i�1 � Vi�iV >i ; i = 2; 3; : : : ; p� 1;~Bp := Bp � Up�1�p�1U>p�1;M 0p 
an be represented as a series of rank-ri modi�
ations of the blo
k-diagonal matrix~M 0p := blo
k-diag� ~B1; ~B2; : : : ; ~Bp�:M 0p = ~M 0p + p�1Xi=1WiW>i :(2.2)The matri
es Wi 2 Rn�ri in (2.2) are given asW1 := 0BB� V1�1=21U1�1=2100 1CCA ; Wp�1 := 0BB� 00Vp�1�1=2p�1Up�1�1=2p�1 1CCA ;(2.3) Wi := 0BB� 0Vi�1=2iUi�1=2i0 1CCA ; i = 2; 3; : : : ; p� 2:2.2.2. Solution of the Subproblems. Next, the spe
tral de
ompositions~Bi = QiDiQ>i ; i = 1; 2; : : : ; p;of the p diagonal blo
ks of ~M 0p have to be 
omputed using the method whi
h ismost eÆ
ient for the size, stru
ture and sparsity pattern of ea
h matrix ~Bi. In the5



following, D := 0B� D1 . . . Dp 1CA 2 Rn�ndenotes the diagonal matrix 
onsisting of the eigenvalues of the diagonal blo
ks,Q := 0B� Q1 . . . Qp 1CA 2 Rn�nis a blo
k-diagonal matrix whi
h 
ontains the eigenve
tor matri
es of the diagonalblo
ks, and thus ~M 0p = QDQ>:(2.4)2.2.3. Synthesis of the Solutions of the Subproblems. Substituting (2.4)into (2.2) and denoting Yi := Q>Wi yields the representationM 0p = Q D + p�1Xi=1 YiY >i !Q>;whi
h implies that M 0p is orthogonally similar to the synthesis matrixS := D + p�1Xi=1 YiY >i :(2.5)Denoting r :=Pp�1i=1 ri, the synthesis matrix S is a rank-r modi�
ation of a diagonalmatrix. Computation of the eigende
omposition of S reveals the eigenvalues of M 0pand its eigenve
tors in a fa
tored form.2.2.4. Eigenpairs of the Synthesis Matrix. There are several approa
hes for
omputing eigenvalues and eigenve
tors of S.Arbenz, Gander and Golub [3, 4℄ have developed a method for performing aneigenanalysis of the entire rank-r modi�
ation (2.5) at on
e. We de
ided not to usetheir approa
h in our 
ontext for several reasons:� Its main advantage is the transformation of an n � n to an r � r problem.In our 
ase, r is often not signi�
antly smaller than n, and therefore thisproblem transformation is not very bene�
ial.� It is yet un
lear how to generalize de
ation, whi
h often leads to signi�
antredu
tions of the 
omputing time (see Se
tions 2.3 and 4), for a rank-r mod-i�
ation.� Unsatisfa
tory numeri
al a

ura
y has been observed by Arbenz [2℄, in par-ti
ular, a loss of numeri
al orthogonality of the 
omputed eigenve
tors. Avariant whi
h 
ombined divide-and-
onquer for the eigenvalue 
omputationwith inverse iteration for the eigenve
tor 
omputation showed improved a
-
ura
y, but turned out to be less eÆ
ient [2℄.6



Instead, we represent S as a sequen
e of r rank-one modi�
ations of D. In prin
iple,these rank-one modi�
ations 
an be performed in any order. However, due to thesparsity stru
ture in the modi�
ation ve
tors (the 
olumns of the matri
es Yi, seeFig. 2.1) it is preferable to 
omplete all rank-one modi�
ations 
orresponding to thesame o�-diagonal blo
k C 0i (represented by the 
olumns of the matrix Yi) beforestarting with a di�erent one. We will refer to the pro
ess of performing the ri rank-onemodi�
ations Yi 
orresponding to one o�-diagonal blo
k C 0i as one merging operation,be
ause it a

ounts for the dependen
ies represented by the o�-diagonal blo
k C 0i andtherefore \merges" two diagonal blo
ks. It will be dis
ussed in Se
tion 3.2 how todetermine a good order for performing the individual merging operations.PSfrag repla
ements D +++ Y1Y >1 Y2Y >2 Y3Y >3Fig. 2.1. Sparsity stru
ture of the matri
es Yi (n = 20, p = 4, ri = 2 for i = 1; 2; 3)A major advantage of our approa
h is that it is possible to utilize the te
hnologyfor rank-one modi�
ations developed for the tridiagonal divide-and-
onquer method.In parti
ular, the 
on
epts developed in [17℄ 
an be utilized in ea
h rank-one modi�-
ation and therefore numeri
al stability and numeri
al orthogonality of the 
omputedeigenve
tors 
an be guaranteed. A potential disadvantage, however, lies in the arith-meti
 
omplexity of the eigenve
tor 
omputation. A

umulation of the r eigenve
-tor matri
es for the rank-one modi�
ation problems (analogously to the tridiagonaldivide-and-
onquer method) requires O(n3) 
ops in the worst 
ase (see Se
tion 3.1).De
ation (see Se
tion 2.3) may, however, signi�
antly redu
e the a
tual 
op 
ount.In parti
ular, if only approximate eigenpairs are needed, relaxing the de
ation 
riteria
an lead to a signi�
ant redu
tion of 
omputing times (
f. Se
tions 4.1 and 4.2).Another algorithmi
 variant for 
omputing the eigenve
tors of S whi
h has thepotential of redu
ing the order of the arithmeti
 
omplexity to O(n2) is 
urrentlyunder investigation and will be dis
ussed in a forth
oming paper.2.3. Relaxing De
ation. It has been shown in [6, 9℄ that there are two spe
ialsituations in whi
h eigenpairs of a rank-one modi�
ation problem D + xx> with adiagonal matrix D 
an be found very eÆ
iently:� If there is a zero 
omponent xi in x then the 
orresponding entry di of D isan eigenvalue and the ve
tor ei is an eigenve
tor of D + xx>.� If there are two equal entries in D then one of the 
orresponding 
omponentsof x 
an be eliminated using Givens rotations. After this transformation the
orresponding eigenpairs are given as in the previous 
ase.This pro
ess is 
alled de
ation. It not only redu
es the problem size for the eigenvalue
omputation, it also introdu
es a blo
k stru
ture in the eigenve
tor matri
es whi
hredu
es the work required for a

umulating them (see Fig. 3.2).So far, the divide-and-
onquer approa
h has only been used for 
omputing eigen-pairs to full a

ura
y. In this 
ase, only \nearly zero" 
omponents of x or \nearly7



equal" entries of D may be de
ated. Typi
ally, the de
ation toleran
e �2 is 
hosen asa moderate multiple of the ma
hine pre
ision " times the norm of the matrix of theeigenproblem. For example, in Lapa
k [1℄, it is set to�2 = �L2 := 8"max� maxi=1;2;:::;n jdij; maxi=1;2;:::;n jxij� :For lower a

ura
y requirements, as 
onsidered in this paper, it is possible to re-lax the de
ation 
riteria a

ordingly by in
reasing the de
ation toleran
e �2 (relaxedde
ation). This establishes an approximate synthesis step. In most situations theamount of de
ation is signi�
antly in
reased and therefore the 
omputational e�ortfor a

umulating the eigenve
tor matri
es of the rank-one modi�
ation problems issigni�
antly redu
ed (
f. Se
tions 4.1 and 4.2).Approximation Error. Let the parameters of a Givens rotation used for elim-inating a 
omponent of a modi�
ation ve
tor x 
orresponding to two entries di anddi+1 of D for whi
h jdi � di+1j = Æ be denoted by 
 and �. It has been shown in [9℄,that de
ating 
omponents xi of modi�
ation ve
tors x ifjxij � �2and 
onsidering diagonal entries di and di+1 as equal ifjÆ
�j � �2throughout the synthesis step of a divide-and-
onquer method results in the 
ompu-tation of an eigende
omposition V̂ �̂V̂ > whi
h di�ers from the original matrix M 0p byan error matrix E(2), for whi
h kE(2)k2 � ��2where � is a 
onstant of order unity.Applying this result to our algorithm and again using Weyl's theorem shows thatthe deviation of the 
omputed eigenvalues �̂ from the exa
t eigenvalues �0 of M 0p 
anbe bounded as j�0 � �̂j � ��2:(2.6)2.4. Numeri
al Properties of the Algorithm. At this point, we are able toshow that the �rst two obje
tives stated in Se
tion 1.1, whi
h relate to the numeri
ala

ura
y of the method, are a
hieved.Putting together the error bounds (2.1) and (2.6) shows that the distan
e of the
omputed eigenvalues �̂ of M 0p from the exa
t eigenvalues � of Mp, whi
h is due tolower rank approximation of the o�-diagonal blo
ks and relaxed de
ation, 
an bebounded as j�� �̂j � j�� �0j+ j�0 � �̂j � �1 + ��2:Given a blo
k-tridiagonal matrix Mp and an a

ura
y parameter � , this implies that(for example) 
hoosing lower rank approximations of the o�-diagonal blo
ks in (2.1)su
h that �1 � �=2 and setting the de
ation toleran
e �2 su
h that ��2 � �=2 makesit possible to satisfy 
ondition (1.3). Condition (1.4) is satis�ed by utilizing the stablemethod for 
omputing numeri
ally orthogonal eigenve
tors of a rank-one modi�
ationproblem developed by Gu and Eisenstat [17℄.8



3. Implementation. In this se
tion, we will dis
uss the arithmeti
 
omplex-ity of the algorithm presented and related implementation aspe
ts. The a
hievedeÆ
ien
y may strongly depend on these aspe
ts.3.1. Arithmeti
 Complexity. In this se
tion, we analyze the dominating termsof the arithmeti
 
omplexity of a single merging operation with a 
ut point 
, where a
�
 and an (l�
)�(l�
) diagonal blo
k are to be 
onne
ted by a rank-ri o�-diagonalblo
k. In su
h a rank-ri merging operation, the eigende
omposition ofD + y(1)i y(1)i > + y(2)i y(2)i > + : : :+ y(ri)i y(ri)i >(3.1)with a diagonal matrix D has to be 
omputed. As dis
ussed in Se
tion 2.2.4, thisrank-ri modi�
ation is handled as a sequen
e of ri rank-one modi�
ations a

ordingto D(0) := Ddo j = 1; 2; : : : ; rifa
torize D(j�1) + y(j)i y(j)i > = Q(j)D(j)Q(j)>do k = j + 1; j + 2; : : : ; riupdate y(k)i := Q(j)>y(k)iend doend doFor ea
h rank-ri merging operation, the ri eigenve
tor matri
es Q(1), Q(2), . . . , Q(ri)of the rank-one modi�
ation problems have to be multiplied onto the blo
k-diagonaleigenve
tor matrix Q of the two subproblems to be merged as illustrated in Figs. 3.1and 3.2. Asymptoti
ally, the eigenve
tor a

umulation over all rank-one modi�
a-PSfrag repla
ements 
l� 
 Q Q(1) Q(2) Q(3)���
Fig. 3.1. Sparsity stru
ture in the eigenve
tor a

umulation for a merging operation with rankri = 3 (no de
ation)tion problems tends to be the most expensive part of the entire divide-and-
onqueralgorithm des
ribed in this paper (
f. [8, 11, 13℄).Order of Rank-One Modi�
ations. The a
tual 
op 
ount of the eigenve
tor a

u-mulation for a single merging operation depends on how mu
h de
ation o

urs in ea
hrank-one modi�
ation (
f. Fig. 3.2). Additionally, it also depends on whether moreor less de
ation tends to happen in later rank-one modi�
ations of a single mergingoperation. In Fig. 3.2 we 
hose to depi
t a 
ase where more de
ation o

urs in laterrank-one modi�
ations. There are two reasons for that:� In our experiments the rank-one modi�
ations of (3.1) 
orresponding to largersingular values of the o�-diagonal blo
k are performed �rst. This tends to
ause smaller entries in the modi�
ation ve
tors 
orresponding to later rank-one modi�
ations with smaller singular values (
f. (2.3)), whi
h in turn leads9



PSfrag repla
ements

l� 
 Q Q(1) Q(2) Q(3)��� d1 d2 d3

Fig. 3.2. Sparsity stru
ture in the eigenve
tor a

umulation for a merging operation with rankri = 3; di eigenvalues are de
ated in rank-one modi�
ation ito to more de
ation (
f. Se
tion 2.3). In general, we observed more de
ationin later rank-one modi�
ations of a single merging operation.� Obviously, one might 
onsider going through the singular values in reverseorder (from the smallest to the largest) and thereby performing rank-onemodi�
ations 
orresponding to smaller singular values �rst. This 
ould leadto more de
ation earlier and less de
ation later in a merging operation. How-ever, investigation of a spe
ial 
ase indi
ates that in most situations this is notbene�
ial, be
ause it tends to require slightly more 
oating point operationsfor the eigenve
tor a

umulation than the situation depi
ted in Fig. 3.2. Thisis summarized in the following.First it should be pointed out that the ri +1 eigenve
tor matri
es to be a

umulatedin a single merging operation have to be multiplied from left to right , be
ause Q(i+1)
an only be 
omputed after Q(i) is known and usually it is not feasible to providestorage for all the intermediate matri
es instead of a

umulating them immediately.Multiplying a blo
k-diagonal matrix Q as shown in Figs. 3.1 and 3.2 with a matrixQ(1) and the result with a matrix Q(2), where d1 < d2 (more de
ation o

urs later)and 
 < n� d1, requires2l3 � 2l2 (
+d1+d2) + l �2
2+3
d1+d21+d22�� d1
 (2
+d1) 
ops:(3.2)When more de
ation o

urs earlier, i. e., Q is �rst multiplied with a matrix Q(2) andthe result with a matrix Q(1), where d1 < d2 and 
 < n� d2, the 
op 
ount is2l3 � 2l2 (
+d1+d2�1=2) + l �2
2+
d1+2
d2�
+d21+d22�d1�(3.3) �d2
 (2
+d2) + d1
 (d2�d1+1) :Subtra
ting (3.3) from (3.2) yields�l2 + l (2
d1 � 2
d2 + 
+ d1) + 
 ((2
+ d2) (d2 � d1)� d1) :(3.4)Sin
e d2 > d1, the 
onstant term in (3.4) is always positive, but the 
oeÆ
ient of thelinear term is negative whenever d1 < 
. Moreover, the dominating quadrati
 term isalways negative. Therefore, in most situations more de
ation later in ea
h mergingoperation tends to lead to slightly fewer 
oating point operations in the eigenve
tora

umulation.In the following we 
ount the 
oating point operations required for the eigenve
tora

umulation in the worst 
ase where no de
ation o

urs.10



3.1.1. Eigenve
tor Update for the First Rank Modi�
ation. The blo
k-diagonal eigenve
tor matrix of the two subproblems (
ontaining a full 
� 
 blo
k anda full (l � 
) � (l � 
) blo
k, see Fig. 3.1) has to be multiplied from the right withthe eigenve
tor matrix of the �rst rank modi�
ation, whi
h is a full l� l matrix if node
ation o

urs. The result of this operation is also a full l � l matrix.This operation requires (
f. [13℄)(2
� 1)
l+ (2 (l � 
)� 1) (l � 
) l = 2l3 � l2(4
+ 1) + 4
2l 
ops:(3.5)In 
ase the merging operation is perfe
tly balan
ed (
 = l=2) this yields a 
ount of2l3 � l2(2l+ 1) + 4l2=4l = l3 � l2 
ops:(3.6)3.1.2. Eigenve
tor Updates for Later Rank Modi�
ations. In the mul-tiple rank 
ase under 
onsideration, the eigenve
tor updates 
orresponding to thefollowing ri � 1 rank modi�
ations involve the multipli
ation of two full l � l matri-
es (the matrix a

umulated so far is multiplied with the eigenve
tor matrix of the
urrent rank modi�
ation), independently of the 
ut point 
 (see Fig. 3.1).Ea
h su
h operation requires(2l� 1)ll = 2l3 � l2 
ops:(3.7)3.1.3. Comparison to a Rank-One Modi�
ation Problem. Flop 
ounts(3.6) and (3.7) allow us to quantify the work in
rease due to a multiple rank mod-i�
ation 
ompared to a rank-one modi�
ation as dis
ussed in [13℄. If the mergingoperation is perfe
tly balan
ed, the a

umulation strategy for 
omputing the eigen-ve
tors 
orresponding to a rank-ri modi�
ation leads to an in
rease of the required
ops 
ompared to a rank-one modi�
ation by a fa
tor ofl3 � l2 + (ri � 1) �2l3 � l2�l3 � l2 = 1 + (ri � 1)�1 + l3l3 � l2� ;(3.8)For large l, (3.8) approa
hes 2ri � 1;(3.9)whi
h indi
ates that high ranks ri of the o�-diagonal blo
ks C 0i may be
ome thelimiting fa
tor in the eÆ
ien
y of the method presented here. Obviously, the �nalmerging operations of the synthesis step dominate the work, be
ause they involve thelargest matri
es. In parti
ular, if the rank of the o�-diagonal blo
k 
orresponding tothe �nal merging operation is rf , then up to (rf � 1) 2n3 
ops may be required forthe 
orresponding eigenve
tor a

umulations. This is 
learly not attra
tive for largevalues of rf .Fortunately, there are many situations where this worst-
ase s
enario is too pes-simisti
. Firstly, de
ation often greatly improves the situation. In parti
ular, if a

u-ra
y requirements are low, de
ation toleran
es may be relaxed strongly, as shown inSe
tion 2.3. In most 
ases this will lead to a large amount of de
ation and thereforede
rease the size of the matri
es to be multiplied (see Se
tion 4.1).Se
ondly, if a proper merging order is 
hosen, the work is dominated by theminimum of the ranks ri, whi
h will be dis
ussed in more detail in the following.11



3.2. Merging Order. When all the o�-diagonal blo
ks are approximated withthe same rank, then the analysis given in [13℄ is appli
able and shows that the mergingorder should be determined su
h that the merging operations, in parti
ular the late(r)ones, are as balan
ed as possible.In the most general situation, where the ranks of the o�-diagonal blo
ks C 0i di�er,the ri have to be taken into a

ount when determining the merging order, sin
e ahigher rank implies signi�
antly more arithmeti
 work for performing the mergingoperation, as (3.9) illustrates.Using the 
op 
ounts derived in Se
tion 3.1 it is possible to justify putting highestpriority on 
hoosing lower rank modi�
ations for later merging operations, indepen-dently of how unbalan
ed they may be. In parti
ular, it 
an be shown that thedominating �nal merging operation (l = n) should 
orrespond to the o�-diagonalblo
k C 0i with the lowest rank:� Let us 
onsider a �nal merging operation whi
h involves a rank-ri modi�
ationand is as unbalan
ed as possible (
 = 1). Flop 
ounts (3.5) and (3.7) yield2n3 � 5n2 + 4n+ (ri � 1)(2n3 � n2) = 2rin3 � (ri + 4)n2 + 4n(3.10)
ops. Note that this is an overestimation of the a
tual 
op 
ount sin
e evenin an unbalan
ed merging operation the 
ut point always has to be greaterthan or equal to the rank ri. More pre
isely, min(
; l � 
) � ri � 1 alwaysholds.� If the same merging operation was perfe
tly balan
ed (
 = n=2), but involveda modi�
ation with higher rank (ri+x) (x = 1; 2; : : :), its 
op 
ount a

ordingto (3.6) and (3.7) would ben3 � n2 + (ri+x�1)(2n3�n2) = (2ri+2x�1)n3 � (ri+x)n2:(3.11)The di�eren
e between (3.11) and (3.10)(2x� 1)n3 + (4� x)n2 � 4nis positive for all x = 1; 2; : : : and for suÆ
iently large n. This shows that a modi�
a-tion with higher rank implies more 
oating point operations, even if it is 
ompletelybalan
ed. (For x = 0 the di�eren
e is negative, be
ause for the same number ri ofrank-one modi�
ations a perfe
tly balan
ed merging operation is less expensive thanany unbalan
ed one, as has been shown in [13℄.)In our 
ode, we use the following strategy for determining the merging order:First, we determine all the 
ut points whi
h 
orrespond to the o�-diagonal blo
kswith the minimum rank rmin := mini=1;2;:::;p�1frig. Among these, we sele
t the �nal
ut point as the one with the least imbalan
e in the merging operation. Then we
ontinue this strategy re
ursively for determining the previous 
ut points in the partsabove and below the �nal 
ut point.4. Experiments. The blo
k-tridiagonal divide-and-
onquer method has beenimplemented in Fortran (dsbtd
) and evaluated experimentally. In Se
tion 4.1 itis illustrated that in most 
ases a signi�
ant amount of de
ation 
an be expe
ted,whi
h in
reases with in
reasing de
ation toleran
es. In Se
tion 4.2 the redu
tion ofruntimes for de
reasing a

ura
y requirements is illustrated. In Se
tion 4.3 runtimesand numeri
al results of the new routine are 
ompared with a 
orresponding Lapa
kroutine when full a

ura
y is required. 12



For the experiments summarized in Se
tion 4.1, test matri
es with spe
i�ed eigen-value distributions were 
reated. For the experiments summarized in Se
tions 4.2and 4.3, random blo
k-tridiagonal matri
es with pres
ribed ranks of the o�-diagonalblo
ks were generated by 
reating random symmetri
 blo
ks Bi (i = 1; 2; : : : ; p) aswell as ri (i = 1; 2; : : : ; p� 1) random ve
tors ui and vi, whi
h determine the rank-rio�-diagonal blo
ks C 0i. The singular values of the o�-diagonal blo
ks were 
hosen as�ji = 1:D0=j (j = 1; 2; : : : ; ri, i = 1; 2; : : : ; p� 1) for these test matri
es.The 
omputations were done on a SUN Ultra 5 Workstation with a 400 MHzUltraSPARC-IIi pro
essor in double pre
ision with a ma
hine pre
ision " � 1:1�10�16.The a

ura
y of ea
h method is measured by the s
aled residual error R and bythe departure from orthogonality O of the eigenve
tors, de�ned byR := maxi=1;2;:::;n 


Mpv̂i � �̂iv̂i


2kMpk2 andO := maxi=1;2;:::;n 


�V̂ >V̂ � I� ei


2 :4.1. Relaxing De
ation. In order to illustrate how mu
h de
ation 
an beexpe
ted on average, dsbtd
 was run on randomly 
reated blo
k-tridiagonal testmatri
es with three di�erent pres
ribed eigenvalue distributions:1. uniform: �i = 1� (i� 1) 2n�1 , i = 1; 2; : : : ; n;2. random: �i = rand[�1; 1℄; and3. 
lustered around 0: �i = � 12(i�1)=k , i = 1; 2; : : : ; n, where k = n80 was 
hosenin order to guarantee some minimum distan
e between 
lustered eigenvalues.Results are shown for one matrix for ea
h eigenvalue distribution, ea
h with n = 3000,p = 600, blo
k sizes ki = 5 (i = 1; 2; : : : ; p), and all o�-diagonal blo
ks with fullrank. All three matri
es generated had the 
hara
teristi
 that the magnitude of theirelements de
reased when moving away from the diagonal. For 
omparison, we alsoshow the amount of de
ation whi
h o

urred for the matrixM5300 (one of the matri
esused in the runtime 
omparisons of Se
tion 4.2) with the label \blo
k random".We re
orded the de
ation for ea
h rank-one modi�
ation problem in the synthesisstep, whi
h gives �ve numbers for the last merging operation (n = 3000), ten numbersfor the two merging operations before that (n = 1500), et
. Figs. 4.1 and 4.2 show twographs for ea
h of the four matri
es: They are lower and upper bounds of de
ationfor the rank-one modi�
ations of blo
k sizes greater or equal to n = 180. The a
tualde
ation values for all the rank-one modi�
ation problems lie between these bounds.Fig. 4.1 illustrates that for a small de
ation toleran
e �2 = 10�10 the test matri-
es with 
lustered eigenvalues and also those with random eigenvalues showed veryhigh amounts of de
ation (the upper bounds are at or 
lose to 100%). As expe
ted,signi�
antly less de
ation o

urred for the matrix with a uniform eigenvalue distri-bution. However, even in that 
ase almost 25% of the eigenvalues 
ould be de
atedfor large blo
ks, whi
h are the most time 
onsuming merges. The amount of de
ationo

urring for M5300 tends to lie between the bounds of the other three matri
es withknown eigenvalue distribution, whi
h was also to be expe
ted.With a higher de
ation toleran
e �2 = 10�4 mu
h more de
ation o

urs for allfour matri
es, as Fig. 4.2 illustrates. In this 
ase the upper bounds for all threematri
es with pres
ribed eigenvalue distributions are at or very 
lose to 100% andtherefore 
annot be distinguished in the pi
ture. Again, least de
ation o

urs for thematrix with a uniform eigenvalue distribution. The lower bound for this matrix is13



uniformblo
k randomrandom
lustered
Components de
ated

Blo
k size 300025002000150010005000
100%75%50%25%0%Fig. 4.1. Lower and upper bounds for the de
ation observed in ea
h merging operation for�2 = 10�10mu
h lower than that for the other three matri
es, but it is at a signi�
antly higherlevel than the 
orresponding one in Fig. 4.1.

uniformblo
k randomrandom
lustered
Components de
ated

Blo
k size 300025002000150010005000
100%75%50%25%0%Fig. 4.2. Lower and upper bounds for the de
ation observed in ea
h merging operation for�2 = 10�44.2. Variable A

ura
y Requirements. Table 4.1 illustrates the e�e
t ofrelaxing the de
ation toleran
e �2 on the runtimes of dsbtd
. Results are shownfor the matri
es Mr300 with n = 3000, p = 300, and the blo
k sizes ki = 10 (i =1; 2; : : : ; p). The ranks of the o�-diagonal blo
ks ri were all 
hosen equal (ri = r fori = 1; 2; : : : ; p� 1) and indi
ated in the supers
ript. Constru
ting o�-diagonal blo
kswith pres
ribed rank r (no approximation of the o�-diagonal blo
ks, �1 = 0) made itpossible to isolate the in
uen
e of the de
ation toleran
e �2 on the runtimes.Fig. 4.3 shows the same data as ratios TBT=TLB of the runtimes TBT for dsbtd
and TLB for the routine LAPACK/dsbevd, whi
h 
omputes eigenpairs of a banded sym-metri
 matrix by performing tridiagonalization, the tridiagonal divide-and-
onquermethod, and �nally the ba
ktransformation of the eigenve
tors.14



Table 4.1Runtimes (in se
onds) for in
reasing de
ation toleran
es.�2 M1300 M2300 M5300 M6300 M7300 M10300dsbtd
�L2 (full a

ura
y) 30.2 154.3 942.6 1239.6 1557.2 2344.610�14 29.4 142.2 931.5 1142.6 1472.9 2224.010�10 23.1 95.3 582.6 732.3 922.5 1429.610�6 17.5 50.9 229.4 279.8 359.5 498.810�4 14.5 31.6 83.2 95.8 103.9 130.110�2 11.0 17.0 34.8 40.7 46.5 64.1LAPACK/dsbevd 1501.7 1539.4 1529.7 1566.4 1550.9 1551.4
rank 1rank 2rank 5rank 6rank 7rank 10Runtimes relative to LAPACK/dsbevd

De
ation toleran
e �2
TBT=TLB

10�210�410�610�1010�14�L2
1:61:41:210:80:60:40:20Fig. 4.3. Runtimes of dsbtd
 relative to LAPACK/dsbevd for di�erent ranks of the o�-diagonalblo
ks and for varying de
ation toleran
es4.3. Comparison with Other Approa
hes. There is no standard routine for
omputing eigenpairs of a blo
k-tridiagonal matrix and therefore a dire
t 
omparisonis not possible. However, it is possible to 
ompare dsbtd
 with a routine for 
omput-ing eigenvalues and eigenve
tors of a banded symmetri
 matrix, su
h as the routineLAPACK/dsbevd mentioned before.As input for LAPACK/dsbevd the narrowest band matrix whi
h fully 
ontains therespe
tive blo
k-tridiagonal matrix Mp was used. This matrix 
ontains 2(p� 2) zeron=p�n=p triangles in addition to the blo
k-tridiagonal matrixMp. These triangles �llup during the tridiagonalization performed by LAPACK/dsbevd. However, espe
iallyfor large values of p the overhead is negligible.The experiments are summarized in Table 4.2. It 
an be seen that due to improveddata-lo
ality, whi
h is important for the memory hierar
hies of modern 
omputersystems and also expe
ted to be extremely important for any implementation on aparallel 
omputer, for low and medium rank o�-diagonal blo
ks the blo
k-tridiagonaldivide-and-
onquer algorithm is more eÆ
ient than the standard method for bandedeigenvalue problems, even if the eigensystem of the approximate matrix M 0p is 
om-puted to full a

ura
y.5. Con
lusion. A divide-and-
onquer based method for approximating eigen-pairs of symmetri
 blo
k-tridiagonal matri
es has been proposed. The 
entral ideas15



Table 4.2Comparison with standard Lapa
k-routine (full a

ura
y).Routine M1300 M2300 M5300 M6300 M7300 M10300dsbtd
TBT [s℄ 30.2 154.3 942.6 1239.6 1557.2 2344.6R 9:0 � 10�15 6:7 � 10�15 8:7 � 10�15 1:3 � 10�14 1:2 � 10�14 1:5 � 10�14O 2:5 � 10�15 4:9 � 10�15 4:2 � 10�15 6:7 � 10�15 5:2 � 10�15 3:7 � 10�15dsbevdTLB [s℄ 1501.7 1548.0 1529.7 1566.4 1550.9 1551.4R 7:8 � 10�15 7:4 � 10�15 7:2 � 10�15 8:0 � 10�15 7:5 � 10�15 7:3 � 10�15O 5:7 � 10�15 7:6 � 10�15 6:4 � 10�15 5:8 � 10�15 5:3 � 10�15 5:6 � 10�15whi
h allow to redu
e 
omputing times at the 
ost of gradually redu
ed a

ura
yare (i) lower rank approximation of the o�-diagonal blo
ks, (ii) a generalized divide-and-
onquer method for blo
k-tridiagonal matri
es, and (iii) relaxing the de
ationtoleran
e in the synthesis step of this divide-and-
onquer method. It has been shownthat espe
ially for medium and low a

ura
y requirements the proposed method isvery eÆ
ient 
ompared to the standard method for band matri
es used in Lapa
k.Future Work. In order to 
omplete a framework for approximating eigenpairsof arbitrary symmetri
 matri
es, we will investigate several alternatives for approxi-mating full matri
es by blo
k-tridiagonal matri
es of the general form (1.1).Not in all situations the full approximate spe
tral de
omposition (1.2) is needed.In many important appli
ations only k < n eigenpairs are to be 
omputed. For su
h
ases it would be desirable to have an eÆ
ient method with a proportionally redu
ed
omputational e�ort. We are investigating alternative approa
hes for 
omputing theeigenve
tors of a blo
k-tridiagonal matrix given its eigenvalues with this feature and
omparing them to 
ompeting methods, su
h as Krylov subspa
e methods.A
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