
Users’ Guide to NetSolve V1.4

(http://icl.cs.utk.edu/netsolve/)

Dorian Arnold

Sudesh Agrawal

Susan Blackford

Jack Dongarra

Michelle Miller

Kiran Sagi

Zhiao Shi

Sathish Vadhiyar
Innovative Computing Laboratory, Department of Computer S cience, University of

Tennessee

Knoxville, TN 37996-3450

Users’ Guide to NetSolve V1.4: (http://icl.cs.utk.edu/ne tsolve/)
by Dorian Arnold, Sudesh Agrawal, Susan Blackford, Jack Dongarra, Michelle Miller, Kiran Sagi, Zhiao Shi, and
Sathish Vadhiyar

version 1.4 Edition
Copyright © 1995-2001 by The NetSolve Project, University of Tennessee

Legal Restrictions

Allowed Usage: Users may use NetSolve in any capacity they wish. We only ask that proper credit and citations be
used when the NetSolve system is being leveraged in other software systems.

Redistribution: Users are allowed to freely distribute the NetSolve system in unmodified form. At no time is a user
to accept monetary or other compensation for redistributing parts or all of the NetSolve system.

Modification of Code: Users are free to make whatever changes they wish to the NetSolve system to suit their
personal needs. We mandate, however, that you clearly highlight which portions are of the original system and which
are a result of the third-party modification.

Warranty Disclaimer: USER ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE NetSolveTEAM
NOR THE BOARD OF REGENTS OF THE UNIVERSITY OF TENNESSEE SYSTEM (REGENTS) MAKE ANY
REPRESENTATIONS OR WARRANTIES WHATSOEVER ABOUT THE SUITABILITY OF NetSolve FOR ANY
PURPOSE; (B) NetSolve IS PROVIDED ON AN "AS IS, WITH ALL DEFECTS" BASIS WITHOUT EXPRESS
OR IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE NetSolve TEAM NOR THE
REGENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISING OUT OF OR
RESULTING FROM USER’S POSSESSION OR USE OF NetSolve (INCLUDING DATA LOSS OR
CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITY IS BASEDIN TORT, CONTRACT, OR
OTHERWISE; AND (D) NEITHER THE NetSolve TEAM NOR THE REGENTSHAVE AN OBLIGATION TO
PROVIDE DEBUGGING, MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS
EXCEPT WHERE EXPLICIT WRITTEN ARRANGEMENTS HAVE BEEN PRE-ARRANGED.

Damages Disclaimer: USER ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL THE NetSolve
TEAM OR THE REGENTS BE LIABLE TO USER FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT OR
SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR LOST DATA ARISING OUT OF THE USE OR
INABILITY TO USE NetSolve EVEN IF THE NetSolve TEAM OR THE REGENTS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Attribution Requirement: User agrees that any reports, publications, or other disclosure of results obtained with
NetSolve will attribute its use by an appropriate citation.The appropriate reference for NetSolve is "The NetSolve
Software Program (NetSolve) was developed by the NetSolve Team at the Computer Science Department of the
University of Tennessee, Knoxville. All rights, title, andinterest in NetSolve are owned by the NetSolve Team."

Compliance with Applicable Laws: User agrees to abide by copyright law and all other applicable laws of the
United States including, but not limited to, export controllaws.

Table of Contents
Preface ..9

Who Should Read This Document...9
Organization of This Document...9
Document Conventions ..10
Request for Comments...11

I. Introduction ..12

1. A NetSolve Overview ..13
An Introduction to Distributed Computing ..13
What is NetSolve? ..13

Background...13
Overview and Architecture ...13

Who is the NetSolve User?...15
The Status of NetSolve...16

2. Related Projects and Systems ..17

II. The User’s Manual ...19

3. Downloading, Installing, and Testing the Client..20
Installation on Unix Systems..20
Testing the Unix installation...23
Installation on Windows systems ...23
Testing the Windows installation..25

Using NetSolve from Windows Matlab..25
Using the NetSolve Management Tools in Windows ...26

4. Introduction to the NetSolve Client ...27
NetSolve Problem Specification...27
Available Client Interfaces ...27
Problems that can be solved with NetSolve ...28
Naming Scheme for a NetSolve problem...28

5. C and Fortran77 Interfaces...30
Introduction ..30
What is the Calling Sequence?...30
Blocking Call..33
Nonblocking Call..34
Catching errors ...35
Row- or column-major ...35
Limitations of the Fortran77 interface..36
Built-in examples..36

6. Matlab Interface ...37

4

Introduction ..37
What to Do First ...37
Callingnetsolve() to perform computation...39
Callingnetsolve_nb() ...41
What Can Go Wrong? ..43
Catching NetSolve errors..44
Demo ..45
Optional: Testing the NetSolve BLAS interfaces...45
Optional: Testing the NetSolve LAPACK interfaces..45
Optional: Testing the NetSolve ScaLAPACK interfaces..46
Optional: Testing the NetSolve ’sparse_iterative_solve’interface...46
Optional: Testing the NetSolve ’sparse_direct_solve’ interface...47

7. Mathematica Interface..49
Introduction ..49
What to do first ...49
Blocking call to NetSolve...53
Nonblocking Call to NetSolve..54
Catching Errors...55
Demo ..55
Optional: Testing the NetSolve BLAS interfaces...56
Optional: Testing the NetSolve LAPACK interfaces..56

8. NetSolve Request Farming ..57
How to call farming..57
An example...58
Catching errors ...59
Current Implementation and Future Improvements ...60

9. NetSolve Request Sequencing ...61
Goals and Methodologies ...61
The Application Programming Interface..61
Execution Scheduling at the Server..62

10. Security in NetSolve Client..64
Introduction ..64
Compiling a Kerberized Server ..65
Running a Kerberized NetSolve Client ..65

11. The User-Supplied Function Feature ...66
Motivation...66
Solution...66
For the Client ..66

Determining the Format of the Function to Supply ..66
From Matlab, Mathematica, C and Fortran ..67

5

From the NetSolve Java API...67
From the Java GUI..67

For the Server ...68
Conclusion..68

12. Troubleshooting ...69
Details of the Makefile.NETSOLVE_ARCH.inc File..69

III. The Administrator’s Manual ...76

13. Downloading, Installing, and Testing the Agent and Server..77
Installation on Unix Systems..77
Testing the Software ...79

Agent-Server-Client Test ..80
Expanding the Server Capabilities ...80

Enabling the LAPACK library ..81
Enabling the ScaLAPACK library ..82
Enabling Sparse Iterative Solvers (PETSc, Aztec, and ITPACK)83
Enabling Sparse Direct Solvers (SuperLU and MA28)..83

14. Running the NetSolve Agent ...85
15. Running the NetSolve Server...87

Starting a Server ...87
The Server Configuration File ..88

16. NetSolve Management Tools for Administrators...90
NS_conf..90
NS_problems...90
NS_probdesc..91
NS_killagent..91
NS_killserver...92
NS_killall ...92

17. The Problem Description File ..93
Contents of a Problem Description File ...93

NetSolve Objects ..93
Sparse Matrix Representation in NetSolve ...94

Mnemonics..96
Sections of a Problem Description..97

Problem ID and General Information..97
Input Specification...98
Output Specification..98
Additional Information..99

Calling Sequence ..99
Pseudo-Code..101

A Simple Example ..102

6

PDF Generator ..104
18. Security in NetSolve ..105

Introduction ..105
Compiling a Kerberized Server ..106
Installing a Kerberized Server ..106
Running a Kerberized Server ...107

IV. Miscellaneous Features ...108

19. Using the Network Weather Service ..109
Introduction ..109
To Use NWS:..109
NWS Components utilized in NetSolve ...109
NetSolve agent and the NWS nameserver, memory and forecast ..110
NetSolve server and the NWS sensor...111

20. Distributed Storage Infrastructure (DSI) in NetSolve..112
Introduction ..112
To Use DSI: ..112
DSI APIs:..112
Example..115

V. References..118

21. Matlab Reference Manual ..119
22. C Reference Manual...121
23. Fortran Reference Manual..122
24. Error Handling in NetSolve ...123

VI. Appendices ...126

A. Complete C Example ..127
B. Complete Fortran77 Example..132

Bibliography...137

7

List of Tables
17-1. Available data types..93
17-2. Available object types...94
24-1. Error Codes...123

List of Figures
1-1. The NetSolve System ...14
9-1. Sample C Code Using Request Sequencing Constructs...62
20-1. Example 1 (without using DSI)..116
20-2. Example 2 (using DSI) ...116

8

Preface

Who Should Read This Document
This Document is intended to provide the reader with a discussion of how to use the different
components of the NetSolve System and to serve as a referencemanual for the commands and functions
made available by NetSolve. Although we offer a brief discussion of the NetSolve System, this document
is not necessarily intended to provide details about the NetSolve components. The reader should refer to
the NetSolve documents in the reference list and refer to theDocumentationsection of the NetSolve
homepage (http://icl.cs.utk.edu/netsolve/) for more appropriate discussion of the NetSolve system.

The reader is expected to have some level of familiarity withprogramming and at least one programming
languages, preferably the C language. Rudimentary knowledge of the UNIX™ operating system
environment and themake utility will prove handy if installing and configuring NetSolve for the UNIX
environment.

Organization of This Document
This users’ guide is divided into six parts. Thesepartsare aimed at the needs of different types of users.
Therefore, it is not necessary for a user to read all chaptersof this users’ guide.

Part I: Introduction

This part of the users’ guide provides a general overview of the NetSolve system, as well as a
discussion of related projects.

Part II: The User’s Manual

These chapters are aimed at the average user of NetSolve who is only interested in utilizing the
client interfaces. They provide installation instructions for the client software, a discussion of the
available client interfaces and how to utilize specific features of the NetSolve system such as request
farming, security, and user-supplied functions, and a troubleshooting section to explain
error-handling within the NetSolve system.

Part III: The Administrator’s Manual

These chapters are aimed at the user who will be installing and customizing a stand-alone NetSolve
system. They give installation instructions for the agent and server software and the management
tools, explanations of how to enable new software into the NetSolve system, and a thorough

9

Preface

explanation of the design of features in the NetSolve systemsuch as request farming, security, and
the user-supplied function.

Part IV: Miscellaneous Features

These chapters provide detailed information on miscellaneous features of the NetSolve system such
as the Network Weather Service (NWS).

Part V: Reference

These sections provide reference manuals for the client interfaces, as well as a listing of
error-handling messages within the NetSolve system.

Part VI: Appendices

These appendices provides example programs calling the Fortran77 and C NetSolve interfaces.

Document Conventions

Program Output

Text that is output from a program.

UNIX>

The UNIX prompt at which commands can be entered.

User Input

Data to be entered by the user.

Replaceable

Content that may or must be replaced by the user.

Action

A response to a user event.

Constant

A program or system constant.

Function

The name of a function or subroutine.

10

Preface

Parameter

A value or symbolic reference to a value.

Type

The classification of a value.

Variable

The name of a variable.

Application

The name of a software program.

Command

The name of an executable program or other software command.

ENVAR

A software environment variable.

Filename

The name of a file.

Request for Comments
Please help us improve future editions of this document by reporting any errors, inaccuracies, bugs,
misleading or confusing statements, and typographical errors that you find. Email your bug reports and
comments to us at netsolve@cs.utk.edu. (mailto:netsolve@cs.utk.edu) Your help is greatly appreciated.

11

I. Introduction

Chapter 1. A NetSolve Overview

An Introduction to Distributed Computing
The efficient solution of large problems is an ongoing threadof research in scientific computing. An
increasingly popular method of solving these types of problems is to harness disparate computational
resources and use their aggregate power as if it were contained in a single machine. This mode of using
computers that may be distributed in geography, as well as ownership, has been termedDistributed
Computing. Some of the major issues concerned with Distributed Computing are resource discovery,
resource allocation and resource management, fault-tolerance, security and access control, scalability,
flexibility and performance. Various organizations have developed mechanisms that attempt to address
these issues, each with their own perspectives of how to resolve them.

What is NetSolve?
NetSolve (http://icl.cs.utk.edu/netsolve/) is an example of a Distributed Computing system that hopes to
present functionalities and features that a wide variety ofscientists will find highly useful and helpful.

Background
Various mechanisms have been developed to perform computations across diverse platforms. The most
common mechanism involves software libraries. Unfortunately, the use of such libraries presents several
difficulties. Some software libraries are highly optimizedfor only certain platforms and do not provide a
convenient interface to other computer systems. Other libraries demand considerable programming effort
from the user. While several tools have been developed to alleviate these difficulties, such tools
themselves are usually available on only a limited number ofcomputer systems and are rarely freely
distributed. Matlab [matlab] and Mathematica [mathematica] are examples of such tools.

These considerations motivated the establishment of the NetSolve project.NetSolve
(http://icl.cs.utk.edu/netsolve) project. The basic philosophy of NetSolve is to provide a uniform,
portable and efficient way to access computational resources over a network.

Overview and Architecture
The NetSolve project is being developed at the University ofTennessee’s Computer Science Department.
It provides remote access to computational resources, bothhardware and software. Built upon standard

13

Chapter 1. A NetSolve Overview

Internet protocols, like TCP/IP sockets, it is available for all popular variants of the UNIX™ operating
system, and parts of the system are available for the Microsoft Windows 95™, Windows 98™, Windows
NT™, and Windows 2000™ platforms. Testing has not yet been conducted on the Windows ME™
operating system.

The NetSolve system is comprised of a set of loosely connected machines. Bylooselyconnected, we
mean that these machines are on the same local, wide or globalarea network, and may be administrated
by different institutions and organizations. Moreover, the NetSolve system is able to support these
interactions in aheterogeneousenvironment, i.e. machines of different architectures, operating systems
and internal data representations can participate in the system at the same time.

Figure 1-1. The NetSolve System

UsersApplications

Fault Tolerance
Load Balancing

Server
NS

Server
NS

Client Library
NS

Server
NS

Resource Allocation
Resource Discovery

NS Agent

Figure 1-1 shows the global conceptual picture of the NetSolve system. In this figure, we can see the
three major components of the system:

• The NetSolve client,

• The NetSolve agent,

• The NetSolve computational resources (or servers).

The figure also shows the relation NetSolve has to the applications that use it. NetSolve and systems like
it are often referred to as Grid Middleware; this figure helpsto make the reason for this terminology

14

Chapter 1. A NetSolve Overview

clearer. The shaded parts of the figure represent the NetSolve system. It can be seen that NetSolve acts as
a glue layer that brings the application or user together with the hardware and/or software it needs to
complete useful tasks.

At the top tier, the NetSolve client library is linked in withthe user’s application. The application then
makes calls to NetSolve’s application programming interface (API) for specific services. Through the
API, NetSolve client-users gain access to aggregate resources without the users needing to know
anything about computer networking or distributed computing. In fact, the user does not even have to
know remote resources are involved.

The NetSolve agent maintains a database of NetSolve serversalong with their capabilities (hardware
performance and allocated software) and dynamic usage statistics. It uses this information to allocate
server resources for client requests. The agent finds servers that will service requests the quickest,
balances the load amongst its servers and keeps track of failed ones.

The NetSolve server is a daemon process that awaits client requests. The server can run on single
workstations, clusters of workstations, symmetric multi-processors or machines with massively parallel
processors. A key component of the NetSolve server is a source code generator which parses a NetSolve
problem description file (PDF). This PDF contains information that allows the NetSolve system to create
new modules and incorporate new functionalities. In essence, the PDF defines a wrapper that NetSolve
uses to call functions being incorporated.

The (hidden) semantics of a NetSolve request are:

i. Client contacts the agent for a list of capable servers.

ii. Client contacts server and sends input parameters.

iii. Server runs appropriate service.

iv. Server returns output parameters or error status to client.

No root/superuser privileges are needed to install or use any component of the NetSolve system.

Who is the NetSolve User?
There are two types of NetSolve users. The first type of user isone who installs and accesses only the
client interface(s) and utilizes existing pools of resources (agent(s) and server(s)). The second type of
NetSolve user installs and administrates his own NetSolve system (client, agent(s), server(s)), and
potentially enables his software to be used by NetSolve. This Users’ Guide addresses the needs of both
types of users. If the user wishes to only install the client interface(s), he should follow instructions in
Part II. The User’s Manual. However, if the users wishes to install client, agent(s), and server(s), he
should follow the instructions inPart III. The Administrator’s Manual.

15

Chapter 1. A NetSolve Overview

Note that the term "administrates" or "administrator" heresimply refers to the person setting up and
maintaining the NetSolve agent and server components -- NO ROOT PRIVILEGES ARE NEEDED TO
INSTALL OR USE ANY COMPONENT OF THE NetSolve SYSTEM.

The Status of NetSolve
The official release of NetSolve-1.4 is July, 2001. Featuresimplemented in this release include a new
Java GUI to aid in the creation of PDFs, IBP-enabled clients and servers, and more server modules for
sparse matrix computations. The Java interface and the Globus proxy are currently being updated and are
not available for this release. A Microsoft Excel interfaceis also under development. NetSolve has been
recognized as a significant effort in research and development, and was named inR & D Magazine’s top
100 list for 1999.

16

Chapter 2. Related Projects and Systems
There are a variety of related projects.

CONDOR

Condor (http://www.cs.wisc.edu/condor/)is a software system that runs on a cluster of workstations
to harness wasted CPU cycles. A Condor pool consists of any number of machines, of possibly
different architectures and operating systems, that are connected by a network.

NetSolve currently has the ability to access CONDOR pools asits computational resource. With
little effort, the server can be configured to submit the client’s request to an existing CONDOR pool,
collect the results, and send them to the client.

Globus

The Globus project (http://www.globus.org/) is developing the fundamental technology that is
needed to build computational grids, execution environments that enable an application to integrate
geographically-distributed instruments, displays, and computational and information resources.
Such computations may link tens of hundreds of these resources.

In its testing phase is a new NetSolve client which implements a Globus proxy to allow the client to
utilize the Globus grid infrastructure if available. If not, the client resorts to its present behavior.

IBP (Internet Backplane Protocol)

IBP (http://icl.cs.utk.edu/ibp/) is a storage managementsystem which serves up writable storage as
a wide-area network resource, allows for the remote direction of storage activities, and decouples
the notion of user identification from storage.

Currently available in NetSolve are IBP-enabled clients and servers that allow NetSolve to allocate
and schedule storage resources as part of its resource brokering. This leads to much improved
performance and fault-tolerance when resources fail.

Legion

Legion (http://legion.virginia.edu/) has been incorporated in such a way to allow the client-user to
program using the NetSolve interface while leveraging the Legion meta-computing resources. The
NetSolve client side uses Legion data-flow graphs to keep track of data dependencies. This effort
has been extended only to the FORTRAN interfaces and was doneby the Legion group at the
University of Virginia.

17

Chapter 2. Related Projects and Systems

metaNEOS

The metaNEOS project (http://www-unix.mcs.anl.gov/metaneos/) integrates fundamental
algorithmic research in optimization with research and infrastructure tool development in
distributed systems management. Algorithms that can exploit the powerful but heterogeneous,
high-latency and possibly failure-prone virtual hardwareplatform typical of metacomputing
platforms have been developed in such areas as global optimization, integer linear optimization,
integer nonlinear optimization, combinatorial optimization, and stochastic optimization.

Ninf

Ninf (http://ninf.etl.go.jp) and NetSolve are remote computing systems which are oriented to
provide numerical computations. These two systems are verysimilar to each other in their design
and motivation. Adapters have been implemented to enable each system to use numerical routines
installed on the other.

NWS (Network Weather Service)

NWS (http://www.nws.npaci.edu/NWS/) is a system that usessensor processes on workstations to
monitor the cpu and network connection. It constantly collects statistics on these entities and has the
ability to incorporate statistical models to run on the collected data to generate a forecast of future
behavior.

NetSolve has integrated NWS into its agent to help its efforts of determining which computational
servers would yield results to the client most efficiently.

18

II. The User’s Manual
The user has two choices when installing NetSolve. He can install only the client software and use
existing pools of resources (agent(s) and server(s)), or hecan install his own stand-alone NetSolve
system (client, agent(s) and server(s)). If the user wishesto only install the client interface(s), he should
follow instructions inPart II. The User’s Manual. However, if the users wishes to install client, agent(s),
and server(s), he should follow the instructions inPart III. The Administrator’s Manual.

19

Chapter 3. Downloading, Installing, and Testing
the Client

The NetSolve client software is available for UNIX/UNIX-like operating systems and Windows
environments. All of the client, agent, and server softwareis bundled into one tar-gzipped file. There is a
separate distribution tar file for Unix and Windows installations. No root/superuser privileges are needed
to install or use any component of the NetSolve system.

Installation on Unix Systems
The NetSolve distribution tar file is available from the NetSolve homepage.
(http://icl.cs.utk.edu/netsolve/download/NetSolve-1.4.tgz) Once the file has been downloaded, the
following UNIX commands will create theNetSolve directory:

gunzip -c NetSolve-1.4.tgz | tar xvf -

From this point forward, we assume that the UNIX SHELL is fromthecsh family.

The installation of NetSolve is configured for a given architecture using the GNU toolconfigure.

UNIX> cd NetSolve
UNIX> ./configure

For a list of all options that can be specified to configure, type

UNIX> ./configure --help

Usage: configure [--with-cc=C_COMPILER] [--with-cnooptflags=C_NOOPT_FLAGS]
[--with-coptflags=C_OPT_FLAGS] [--with-fc=F77_COMPILER]
[--with-fnooptflags=F77_NOOPT_FLAGS]
[--with-foptflags=F77_OPT_FLAGS]
[--with-ldflags=LOADER_FLAGS]
[--with-nws=NWSDIR]
[--with-ibp=IBPDIR]
[--with-kerberos]
[--with-proxy=PROXY_TYPE]
[--with-outputlevel=OUTPUT_LEVEL]
[--enable-infoserver=INFOSERVER]
[--with-mpi=MPI_DIR]
[--with-petsc=PETSCDIR]

20

Chapter 3. Downloading, Installing, and Testing the Client

[--with-aztec=AZTEC_DIR]
[--with-azteclib=AZTEC_LIB]
[--with-superlu=SUPERLU_DIR]
[--with-superlulib=SUPERLU_LIB]
[--with-scalapacklib=SCALAPACK_LIB]
[--with-blacslib=BLACS_LIB]
[--with-lapacklib=LAPACK_LIB]
[--with-blaslib=BLAS_LIB]
[--with-mldk=MLDK_PATH]

where
C_COMPILER = default is to use gcc
C_NOOPT_FLAGS = C compiler flags to be used on files that

must be compiled without optimization
C_OPT_FLAGS = C compiler optimization flags (e.g., -O)
F77_COMPILER = default is to use g77
F77_NOOPT_FLAGS = Fortran77 compiler flags to be used on files that

must be compiled without optimization
F77_OPT_FLAGS = Fortran77 compiler optimization flags (e.g., -O)
LOADER_FLAGS = Flags to be passed only to the loader
NWSDIR = directory where NWS is installed (optional)
IBPDIR = directory where IBP is installed (optional)
PROXY_TYPE = currently supported values are netsolve

and globus (default is netsolve)
OUTPUT_LEVEL = currently supported values are debug, view,

and none (default is view)
INFOSERVER = currently supported values are alone and

nothing specified (default is not alone,
where nothing is specified).

MPI_DIR = location of the MPI directory (optional,
assumes MPICH directory structure)
(default is /usr/local/mpich-1.2.1).

PETSCDIR = location of PETSc installation directory (optional)
AZTEC_DIR = location of Aztec installation directory (optional)
AZTEC_LIB = Aztec link line (optional)
SUPERLU_DIR = location of SuperLU installation directory (optional)
SUPERLU_LIB = SuperLU link line (optional)
SCALAPACK_LIB = ScaLAPACK link line (optional)
BLACS_LIB = MPIBLACS link line (optional)
LAPACK_LIB = LAPACK link line (optional)
BLAS_LIB = BLAS link line (optional)
MLDK_PATH = Path to MathLink Development Kit (optional)

All arguments are optional. The options particularly pertinent to NetSolve are:

21

Chapter 3. Downloading, Installing, and Testing the Client

--with-nws=NWSDIR location of NWS installation dir
--with-ibp=IBPDIR location of IBP installation dir
--with-kerberos use Kerberos5 client authentication
--with-proxy which Proxy? (netsolve, globus)
--with-outputlevel output level (debug,view,none)
--enable-infoserver[=alone] use InfoServer [alone]

The NetSolve service options are:

--with-petsc=PETSCDIR location of PETSc installation dir
--with-petsclibdir=PETSC_LIB_DIR location of PETSc library
--with-aztec=AZTEC_DIR location of Aztec installation dir
--with-azteclib=AZTEC_LIB Aztec link line
--with-superlu=SUPERLU_DIR location of SuperLU installation dir
--with-superlulib=SUPERLU_LIB SuperLU link line
--with-mpi=MPI_DIR location of MPI Root Directory
--with-lapacklib=LAPACK_LIB LAPACK link line
--with-scalapacklib=SCALAPACK_LIB ScaLAPACK link line
--with-blacslib=BLACS_LIB MPIBLACS link line
--with-blaslib=BLAS_LIB BLAS link line
--with-mldk=MLDK_PATH Path to MathLink Development Kit

The configure script creates two main files, ./conf/Makefile.$NETSOLVE_ARCH.inc and
./conf/Makefile.inc. These files are created from the templates ./conf/Makefile.generic-arch and
./conf/Makefile.inc.in respectively. $NETSOLVE_ARCH is the string printed by the command
./conf/config.guess, with all ’-’ and ’.’ characters converted to ’_’ characters. The variable
$NETSOLVE_ROOT is the complete path name to the installed NetSolve directory and defined in
./conf/Makefile.inc. These *.inc files are included by the Makefiles that build theNetSolve system.
Manually editing these configuration files is strongly discouraged. However, if the user prefers to edit
this file, details of the$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc file are explained
in the section calledDetails of the Makefile.NETSOLVE_ARCH.inc Filein Chapter 12.

Typingmake in theNetSolve directory will give instructions to complete the compilation. A typical
client compilation includes:

UNIX> make C Fortran tools test

to build the C and Fortran client interfaces, NetSolve management tools (see Chapter 16), and NetSolve
test suite (see the section calledTesting the Softwarein Chapter 13). To build the Matlab client interface
to NetSolve, type

UNIX> make matlab

and to build the Mathematica client interface to NetSolve, type

22

Chapter 3. Downloading, Installing, and Testing the Client

UNIX> make mathematica

As previously stated, the Java client interface is in the process of being updated, and is not available in
release 1.4 of NetSolve. After a successful compilation process, the appropriate binaries and/or libraries
can be found in the$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH and/or
$NETSOLVE_ROOT/lib/$NETSOLVE_ARCH directories respectively. Thus, to execute a NetSolve binary,
the user must either execute the command from within the$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH

directory, or add this directory name to his UNIXpath variable.

Testing the Unix installation
Testing solely the client software means that a pre-existing NetSolve system will be contacted, possibly
the default agent and servers running at the University of Tennessee. That system can be contacted via
the hostnetsolve.cs.utk.eduwhich should always be running an agent. The step-by-step
procedure to test your NetSolve client installation is as follows:

1. cd NetSolve

2. make test

3. setenv NETSOLVE_AGENT netsolve.cs.utk.edu

4. Test

While the tester is running, it prints messages about its execution. This test tests only the C and
Fortran77 interfaces. Details of this process are explained in the following chapters. For more
information on the C and Fortran77 interfaces, see Chapter 5. Chapter 6 and Chapter 7 detail how to test
the Matlab and Mathematica interfaces, respectively.

If an error is encountered during testing, refer to the Troubleshooting section of theErrata file
(http://icl.cs.utk.edu/netsolve/errata.html) for NetSolve.

Installation on Windows systems
This section describes the installation and testing of the Windows version of the NetSolve client
software. At present, the software is distributed in the form of a self-extracting exe file. AnInstallShield
setup is being developed to simplify the installation instructions, and this setup will be available soon.

The contents of the self-extracting exe file are as follows, whereNETSOLVE_DIR refers to the directory
where you have unzipped the distribution.

23

Chapter 3. Downloading, Installing, and Testing the Client

NETSOLVE_DIR\

This directory contains the readme file and an installation script.

NETSOLVE_DIR\lib

This directory contains the NetSolve client library.

NETSOLVE_DIR\matlab

This directory contains the matlab binaries.

NETSOLVE_DIR\tools

This directory contains various tools for managing NetSolve.

NETSOLVE_DIR\testing

This directory contains various sample binary test programs that you can run to verify your
installation.

The installation process is quite simple.

a. Run the exe you downloaded from the NetSolve webpage.

To determine the agent host name, the user can issue the following command:

a.cd NETSOLVE_DIR\tools

b. getagent

To set a new agent host name, the user must issue the followingcommand:

a.cd NETSOLVE_DIR\tools

b. setagent [agent host name]

If the agent host name is not specified on the command line, youwill be prompted for a host name.
You will have the option of specifying a name or accepting thecurrent agent name set in the registry.

The de-installation process is quite similar.

a.cd NETSOLVE_DIR

b. netsolve_install -uninstall

The above program removes the keys from the Windows registry.

24

Chapter 3. Downloading, Installing, and Testing the Client

c.delete NETSOLVE_DIR

Testing the Windows installation
You can use the various programs in theNETSOLVE_DIR\testing directory to test your NetSolve
installation. Remember that a valid NetSolve agent and server should already be running, and the
required problems should be installed on the servers. Here is a list of test programs and the problems
they make use of:

c_test

chartest, doubletest, inttest, stringlisttest, stringtest, totaltest

farming_test

doubletest

sequence_test

mpass, vpass, pass, multipass

For example, to perform a sample run ofc_test, the user must do the following:

a. Usesetagentto point to the correct agent host

b. Runc_test.exe

Using NetSolve from Windows Matlab
A user new to Netsolve will find the Matlab interface very simple. The matlab interface is in
NETSOLVE_DIR\matlab. To access the interface

a. Start up Matlab

b. Click on File -> Set Path ...

c. Add theNETSOLVE_DIR\matlab directory to the path

The interface consists of 4 NetSolve calls

25

Chapter 3. Downloading, Installing, and Testing the Client

netsolve.dll
netsolve_nb.dll
netsolve_err.dll
netsolve_errmsg.dll

Testing NetSolve within Matlab involves the following steps:

netsolve(’?’)

This command prints the agent and servers currently available.

netsolve

This command prints the list of problems that can be solved.

Help on any call can be obtained by typing just the call on the Matlab prompt.

Using the NetSolve Management Tools in Windows
There are various tools in theNETSOLVE_DIR\tools directory that allow the user to explore the
NetSolve metacomputing system.

netsolveconfig.exe [agent_name]

provides a list of agents and servers as seen by agent_name

netsolveproblems.exe [agent_name]

provides a list of problems that can be solved within the NetSolve framework as seen by
agent_name

26

Chapter 4. Introduction to the NetSolve Client

NetSolve Problem Specification
Solving a computational problem with NetSolve is a functionevaluation:

<output> = <name>(<input>)

where

• <name> is a character string containing the name of the problem,

• <input> is a list of input objects,

• <output> is a list of output objects.

An object is itself described by anobject typeand adata type. The types available in the current version
of NetSolve are shown in Table 17-1 and Table 17-2. Rather than giving examples for each object type,
we refer the reader to the programs in:$NETSOLVE_ROOT/src/Examples and
$NETSOLVE_ROOT/src/Testing. The user can also refer to the section calledMnemonicsin Chapter
17 for a description of the requirements for each NetSolveobject typeas it relates to the problem
description file.

Available Client Interfaces
NetSolve provides a variety of client interfaces:

• C, Fortran interfaces are detailed in Chapter 5.

• Matlab interface is detailed in Chapter 6.

• Mathematica interface is detailed in Chapter 7.

We are in the process of updating ourJava interface, thus this interface is not available in version 1.4 of
NetSolve. We are also developing anExcel interface.

In the section calledNetSolve Problem Specification, we described the input and output arguments of a
NetSolve problem as lists ofobjects. The Matlab, Mathematica, and Java interfaces to NetSolve can
manipulate objects directly and it is therefore very easy tocall NetSolve from their interfaces once

27

Chapter 4. Introduction to the NetSolve Client

problem descriptions are known. From interfaces that are not object-oriented (C and Fortran), it is
necessary to use acalling sequencethat describes the objects’ features individually. For complete details,
the user should refer to Chapter 5 and the section calledSparse Matrix Representation in NetSolvein
Chapter 17.

Problems that can be solved with NetSolve
In order for a problem to be solved (i.e., a function or library routine to be invoked) using NetSolve,
there must exist a problem description file (PDF) corresponding to the problem/routine. A variety of
PDFs are included with the NetSolve distribution. A user canalso write his own PDF for his function, as
described in Chapter 17.

The default NetSolve distribution provides only a limited subset of enabled software to test the various
client interfaces. Interfaces have been written for a variety of software libraries (refer to
$NETSOLVE_ROOT/problems/), but as the libraries themselves are not included in the NetSolve
distribution, the library interfaces are not enabled. The user can, therefore, customize his installation to
include these existing interfaces and/or new interfaces. Refer to the section calledInstallation on Unix
Systemsin Chapter 13 for further details.

It is possible to query a NetSolve agent to obtain a list and descriptions of the problems that can be
solved by its respective servers. There are several ways of sending such queries.

1. From the NetSolve homepage, it is possible to specify an agent name and run CGI scripts to obtain
detailed information about NetSolve problems, including Cand Fortran calling sequence
specifications.

2. Problem lists and descriptions are also directly available from the Matlab interface, the Mathematica
interface, and the Java GUI.

3. The NetSolve management tools described in Chapter 16 give access to that information from the
UNIX prompt.

Naming Scheme for a NetSolve problem
The full name of a NetSolve problem has two parts:

i. thepath, and

ii. the nickname.

28

Chapter 4. Introduction to the NetSolve Client

Let us demonstrate this with an example. The problem nicknamedddot, which computes the inner
product of two double-precision vectors, has the full name/BLAS/Level1/ddot. This problem can be
found in$NETSOLVE_ROOT/problems/blas. This full name has two purposes. First, when we display
a list of problems, they are sorted alphabetically by their full name, and the problems are grouped by
"directory". Second, by convention, the first element of thefull name (e.g.,BLAS) is the name of the
numerical library containing the operation (problem). This convention has proven to be useful, as seen in
the section calledWhat is the Calling Sequence?in Chapter 5.

29

Chapter 5. C and Fortran77 Interfaces

Introduction
As previously mentioned in the section calledInstallation on Unix Systemsin Chapter 3, the C/Fortran77
client interfaces for NetSolve are built by typing

UNIX> make C Fortran

in the directory$NETSOLVE_ROOT. This compilation produces the following two archive files:

• $NETSOLVE_ROOT/lib/$NETSOLVE_ARCH/libnetsolve.a : the C library

• $NETSOLVE_ROOT/lib/$NETSOLVE_ARCH/libfnetsolve.a : the Fortran77 library

where NETSOLVE_ROOT is the full path name to the NetSolve directory and NETSOLVE_ARCH is
the architecture name generated by configure.

Before linking to one of these libraries, the user must include the appropriate header file in his program:

• $NETSOLVE_ROOT/include/netsolve.h in C,

• $NETSOLVE_ROOT/include/fnetsolve.h in Fortran77.

The Fortran77 include file is not mandatory, but increases the source program readability by allowing
calling subroutines to manipulate the NetSolve error codesby variable name rather than by integer value.

The Fortran77 interface is built on top of the C interface since all of the networking underneath NetSolve
is written in C. However, we chose to write the Fortran77 interface with subroutines instead of functions
(for reasons of compiler compatibilities). The C functionsall return a NetSolveerror codeequal to0 if
the call was successful or to a negative value in case of error. Chapter 24 contains the list of all possible
error codes. The Fortran77 subroutines take an extra outputinteger argument (passed by reference) at the
end of the calling sequence that contains the error code after completion of the call. The reference
manuals for C and Fortran77 are in Chapter 22 and Chapter 23.

The basic concepts here are the same as the ones we have introduced in Chapter 6 for the Matlab
interface, especially the ability to call NetSolve in a blocking or nonblocking fashion.

We describe the C and Fortran77 interfaces by the means of an example. In the following section we start
developing the example by demonstrating how a user can obtain information about the calling sequence
to a given problem.

30

Chapter 5. C and Fortran77 Interfaces

What is the Calling Sequence?
As described in the section calledNetSolve Problem Specificationin Chapter 4, the C and Fortran77
interfaces, as they are not object-capable, need to use specific calling sequences that are more involved
than the ones used from Matlab or Mathematica.

Let us take a very simple example: the user wants to perform a dense linear system solve. The first thing
to know, as stated in earlier chapters, is the name or IP address of a host running a NetSolve agent. The
default NetSolve agent running at the University of Tennessee is aware of many servers that can perform
the computation. In fact, a dense linear system solve is provided with the NetSolve distribution as default
numerical software for the server. The user has now two possible courses of action to find out about the
problem. Let us assume that the user chooses to use the UNIX command line management tools (see
Chapter 16 for a complete description of these tools). The alternative would be to use the CGI scripts on
the NetSolve homepage.

the section calledExpanding the Server Capabilitiesin Chapter 13 shows how the servers specify the
calling sequence to a given problem. It is usual for servers to enforce the same calling sequence as the
original numerical software and to give a problem the name ofthe original library function. In the
example,dgesv() is the name of an LAPACK subroutine and the user can thereforeexpect the calling
sequence for the problemdgesv to match the one of the subroutine. One can see in the problem list
returned byNS_problemsa problem calledlinsol. In this example,linsol is a simplified version of
dgesv and has a simplified calling sequence chosen by whomever started the first server that provides
access to that problem. Sincelinsol is not the name of an LAPACK subroutine, its calling sequence
can be arbitrary.

UNIX> NS_problems netsolve.cs.utk.edu
/ImageProcessing/Filters/blur
/LAPACK/LinearSystems/dgesv
/LAPACK/LinearSystems/linsol

Next, two situations are possible. First, the user already knows the numerical software (e.g., LAPACK)
and may even have code already written in terms of this software. In this case, theswitchingto NetSolve
is immediate. The second possibility is that the user does not know the software. If this is the case, he
needs to pay close attention to the output given byNS_probdesc. The output from this command first
gives the calling sequence as it would be invoked from Matlab, and then gives the calling sequence from
C/Fortran.

UNIX> NS_probdesc netsolve.cs.utk.edu dgesv
-- dgesv -- From LAPACK -
Compute the solution to a real system of linear equations

A * X = b
where A is an N-by-B matrix and X and B are N-by-NRHS matrices.
Matlab Example : [x y z info] = netsolve(’dgesv’,a,b)

31

Chapter 5. C and Fortran77 Interfaces

http://www.netlib.org/lapack/index.html
* 2 objects in INPUT
- input 0: Matrix Double Precision Real.
Matrix A
- input 1: Matrix Double Precision Real.
Right hand side

* 4 objects in OUTPUT
- output 0: Matrix Double Precision Real.
LU factors (A = P*L*U)
- output 1: Vector Integer.
Vector of pivots (defines the P matrix)
- output 2: Matrix Double Precision Real.
Solution
- output 3: Scalar Integer.
INFO
0 successful
<0 error on calling ?
>0 QR algorithm failed

* Calling sequence from C or Fortran
8 arguments
- Argument #0:

- number of rows of input object #0 (A)
- number of columns of input object #0 (A)
- number of rows of input object #1 (RHS)

- Argument #1:
- number of columns of input object #1 (RHS)

- Argument #2:
- pointer to input object #0 (A)
- pointer to output object #0 (LU)
- pointer to output object #0 (LU)

- Argument #3:
- leading dimension of input object #0 (A)

- Argument #4:
- pointer to output object #1 (PIVOT)

- Argument #5:
- pointer to input object #1 (RHS)
- pointer to output object #1 (PIVOT)
- pointer to output object #2 (SOLUTION)

- Argument #6:
- leading dimension of input object #1 (RHS)

- Argument #7:
- pointer to output object #3 (INFO)

32

Chapter 5. C and Fortran77 Interfaces

This output can appear rather cryptic at first. Let us work through it step by step. First, the number of
arguments in the calling sequence is 8. This means that the call from C will look like:

status = netsl(’dgesv()’,X0,X1,X2,X3,X4,X5,X6,X7);

And from Fortran77, the call to NetSolve would be:

CALL FNETSL(’dgesv()’,STATUS,X0,X1,X2,X3,X4,X5,X6,X7)

Now, each argument is described in the information returnedby NS_probdescand this description can
be translated into meaningful variable names in the user source code. For instance,X2 should be a pointer
to the matrix of the linear system, andX3 should be an integer that is the leading dimension of the matrix.
We can now move on to the descriptions of the different ways ofcalling NetSolve from C or Fortran77.

Blocking Call
The blocking call to NetSolve from C or Fortran77 is the easiest to implement. Specifically, if the main
program is in C, one calls the function,netsl(), and if the main program is in Fortran77, one calls the
function,FNETSL(). This C function returns an error code. It takes as argumentsthe name of a problem
and the list of input data. These inputs are listed accordingto the calling sequence discussed in the
section calledWhat is the Calling Sequence?. The C prototype of the function is

int netsl(char *problem_name, ... < argument list > ...)

and the Fortran77 prototype is

SUBROUTINE FNETSL(PROBLEM_NAME, STATUS, ...
& < argument list > ...)

wherePROBLEM_NAME is a string andSTATUS is the integer status code returned by NetSolve.

Let us resume our example of the call todgesv. In Fortran77, the direct call to LAPACK looks like

CALL DGESV(N, 1, A, LDA, IPIV, B, LDB, INFO)

The equivalent blocking call to NetSolve is

CALL FNETSL(’DGESV()’, STATUS, N, 1, A, LDA, IPIV,
& B, LDB, INFO)

The call in C is

status = netsl(’dgesv()’,n,1,a,lda,ipiv,b,ldb,&info);

33

Chapter 5. C and Fortran77 Interfaces

Notice that the name of the problem iscase insensitiveand that it is appended by an opening and a
closing parenthesis. The parentheses are used by NetSolve to handle Fortran/C interoperability on certain
platforms. In Fortran77, every identifier represents a pointer, but in C we actually had the choice to use
pointers or not. We chose to use integer (int) for the sizes ofthe matrices/vectors, but pointers for
everything else.

From the user’s point of view, the call to NetSolve is exactlyequivalent to a call to LAPACK. One detail,
however, needs to be mentioned. Most numerical software is written in Fortran77 and requires users to
provide workspace arrays as well as data, since there is no possibility for dynamic memory allocation.
Because we preserved the exact calling sequence of the numerical software, we require the user to pass
those arrays. But, since the computation is performed remotely, workspace on the client side is
meaningless. It will, in fact, be dynamically created on theserver side. Therefore, when the numerical
software would require workspace, the NetSolve user may provide a one-length array for workspace.

This is signaled in the output ofNS_probdescby an argument description such as:

- Argument #6:
- ignored

Nonblocking Call
We developed this nonblocking call for the same reason we developed one for Matlab (see the section
calledCalling netsolve_nb() in Chapter 6): to allow the user to have someNetSolve-parallelism. The
nonblocking version ofnetsl() is netslnb(). Similarly, the nonblocking version ofFNETSL() is
FNETSLNB(). The user calls it exactly as he would callnetsl() or FNETSL(). If the call to
netslnb() or FNETSLNB() is successful, it returns a request handler in the form of a (positive) integer.
If it is not successful, it returns an error code. Continuingwith our example:

CALL FNETSLNB(’DGESV()’, REQUEST, N, 1, A, LDA, IPIV,
& B, LDB, INFO)

and in C :

request = netslnb(’dgesv()’,n,1,a,max,ipiv,b,max,&info);

In case of an error, the request handler actually contains the (negative) NetSolve error code.

The next step is to check the status of the request. As in the Matlab interface, the user can choose to
probe or to wait for the request. Probing is done by callingnetslpr() or FNETSLPR() which returns a
NetSolve error code:

34

Chapter 5. C and Fortran77 Interfaces

CALL FNETSLPR(REQUEST, INFO)

and in C :

info = netslpr(request);

Typical error codes returned areNetSolveNotReady andNetSolveOK (see Chapter 24). Waiting is
done by usingnetslwt() or FNETSLWT(). This function blocks until the computation is complete and
the result is available. Here is the Fortran77 call:

CALL FNETSLWT(REQUEST, INFO)

and the C call :

info = netslwt(request);

If the call is successful, the function/subroutine returnsthe error codeNetSolveOK and the result is in
the user memory space.

Catching errors
Given a NetSolve error code, there is a function in the C and Fortran77 interface that prints explicit error
messages to the standard error. The C call is :

netslerr(info);

and in Fortran77

CALL FNETSLERR(INFO)

The user should refer to Chapter 24 for a list of all possible error codes.

Row- or column-major
To allow the NetSolve user to store her/his matrices either in row-wise or column-wise fashion, we also
provide the functionnetslmajor() in C andFNETSLMAJOR() in Fortran77. This function can be
called at any time in the user’s program in C:

netslmajor("col");
netslmajor("row");

35

Chapter 5. C and Fortran77 Interfaces

or in Fortran77:

CALL FNETSLMAJOR(’col’)
CALL FNETSLMAJOR(’row’)

All of the subsequent calls to NetSolve will assume the corresponding major. The default values are of
course row-wise for C and column-wise for Fortran77.

Limitations of the Fortran77 interface
Due to Fortran77’s restrictions for the use of pointer and its inability to dynamically allocate memory,
the Fortran77 interface to NetSolve does not support the PACKEDFILES and STRINGLIST object type.
It also does not support output objects of type STRING.

Built-in examples
C and Fortran77 and Java examples are included in the NetSolve distribution in
$NETSOLVE_ROOT/src/Examples. To build them, the user simply typesmake examples in the top
directory. The examples use different problems that have been given servers at the University of
Tennessee. They should help the user to understand how the system works. We also have full examples in
C and Fortran in Appendix A and Appendix B.

36

Chapter 6. Matlab Interface

Introduction
Building the Matlab interface by typing

UNIX> make matlab

in the directory$NETSOLVE_ROOT produces the four followingmex-files:

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/netsolve.mex###

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/netsolve_nb.mex###

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/netsolve_err.mex###

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/netsolve_errmsg.mex###

The### part of the extension depends on the architecture (for instance, the extension is.mexsol for
the Solaris Operating System). These four files alone are theMatlab interface to NetSolve. To make these
four files accessible to Matlab, the user must modify the MATLABPATH environment variable as:

UNIX> setenv MATLABPATH $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH

It is also possible to use the Matlab commandaddpath. For more information about mex-files, the user
can refer to [matlab]. In the following sections, the user will learn to call four new functions from
Matlab:netsolve(), netsolve_nb(), netsolve_err(), andnetsolve_errmsg().

What to Do First
Let us assume that the user has compiled the Matlab interface, set an agent name, started a Matlab
session and is now ready to use NetSolve. In this section we describe those features of the interface that
allow the user to obtain information about the currently available NetSolve system.

As stated briefly in the section calledProblems that can be solved with NetSolvein Chapter 4, it is
possible to obtain the list of solvable problems from Matlab, as well as from the homepage CGI scripts
or the management tools. In the case of Matlab, this information is obtained by typing the following
command

>> netsolve
NetSolve - List of available problems -

37

Chapter 6. Matlab Interface

/BLAS-wrappers/Level3/dmatmul
/BLAS-wrappers/Level3/zmatmul
/BLAS/Level1/daxpy
/BLAS/Level1/ddot
/BLAS/Level1/zaxpy
/BLAS/Level2/dgemv
/BLAS/Level3/dgemm
/BLAS/Level3/zgemm
/LAPACK-wrapper/Simple/Eig_and_Singular/eig
/LAPACK-wrapper/Simple/Linear_Equations/linsol
/LAPACK/Simple/Linear_Equations/dgesv
/LAPACK/Auxiliary/dlacpy
/Mandelbrot/mandelbrot
/QuickSort/DoublePrecision/dqsort
/QuickSort/Integer/iqsort
/SCALAPACK/LinearSystem/pdgesv
/SCALAPACK/LinearSystem/pdposv
/SCALAPACK/LinearSystem/plinsol
/SuperLU-MA28/sparse_direct_solve

[output args] = netsolve(problem name, input args)

Information on a specific problem : netsolve(problem name)
Information on the servers : netsolve(’?’)

>>

where each line contains a full problem name. If the user would like more detailed information on a
specific problem, e.g.,eig, he can type

>> netsolve(’eig’)
-- eig -- Wrapper around the LAPACK routine DGEEV --
Simplified version of DGEEV.
Computes the eigenvalues of a double precision real
matrix A. Returns two double precision real
vectors containing respectively the real parts and
the imaginary parts of the eigenvalues.

MATLAB Example : [r i] = netsolve(’eig’,a)

* 1 objects in INPUT
- input 0: Matrix Double Precision Real.
Matrix A

* 2 objects in OUTPUT
- output 0: Vector Double Precision Real.

38

Chapter 6. Matlab Interface

Real parts of the eigen values
- output 1: Vector Double Precision Real.
Imaginary parts of the eigen values

Output Objects 0 and 1 can be merged.
>>

This output gives a short description of the problem, an example in Matlab usingnetsolve(), theinput
objects that must be supplied by the user, and theoutputthat will be returned to the user. This particular
problem requires only one double-precision matrix on input. Notice that this matrix must be square (as
stated in the description of the problem). If the user tries to call NetSolve for this problem with a
rectangular matrix, he will receive an error message stating that the dimensions of the input are invalid.
On output, the problemeig will return two vectors, the real and imaginary parts of the eigenvalues of
the input matrix, respectively.

Since Matlab provides a mechanism to manipulate complex objects, it is probable that the user would
like to haveeig return one single complex vector instead of two separate real vectors. Thus, in the
Matlab interface it is possible tomergethese two real output vectors into one complex vector. This point
is further developed in the next section.

The Matlab interface has another feature that is concerned not with the actual problem solving but with
providing information about the NetSolve configuration itself. We have just seen how to get information
about the problems handled by the NetSolve servers; it is also possible to obtain the physical locations of
these servers. Let us assume that our NETSOLVE_AGENT environment variable is set to
netsolve.cs.utk.edu (see Chapter 14). The command

>> netsolve(’?’)

produces the following output:

NetSolve - List of available agents -
netsolve.cs.utk.edu(128.169.93.161)
NetSolve - List of available servers -
maruti.cs.berkeley.edu(128.32.36.83)
cupid.cs.utk.edu(128.169.94.221)
torc3.cs.utk.edu(128.169.93.74) (0 failures)

The same information can be obtained from the homepage CGI scripts or the management tools.

Calling netsolve() to perform computation

39

Chapter 6. Matlab Interface

The easiest way to perform a numerical computation in NetSolve is to call the functionnetsolve().
With this function, the user sends a blocking request to NetSolve. Byblockingwe mean that after typing
the command in the Matlab session, the user resumes control only when the computation has been
successfully completed on a server. The other way to performcomputation is to send anonblocking
request as described in the section calledCalling netsolve_nb().

Let us continue with theeig example we started to develop in the preceding section. The user now
knows that he has to provide a double-precision square matrix to NetSolve, and he knows that he is going
to get two real vectors back (or one single complex vector). He first creates a 300 × 300 matrix, for
instance,

>> a = rand(300);

The call to NetSolve is now

>> [x y] = netsolve(’eig’,a)

All the calls tonetsolve() will look the same. The left-hand side must contain the output arguments,
in the same order as listed in theoutput description(see the section calledWhat to Do First). The first
argument tonetsolve() is always the name of the problem. After this first argument the input
arguments are listed, in the same order as they are listed in the input description(see the section called
What to Do First). This function does not have a fixed calling sequence, sincethe number of inputs and
outputs depends on the problem the user wishes to solve.

Let us see what happens when we type:

>> [x y] = netsolve(’eig’,a)
Sending Input to Server zoot.cs.utk.edu
Downloading Output from Server zoot.cs.utk.edu

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511
... ...
... ...

As mentioned earlier, the user can decide to regroupx andy into one single complex vector. Let us make
it clear again that this possibility is a specificity ofeig and is not available in general for all problems.
To mergex andy, the user has to type:

>> [x] = netsolve(’eig’,a)

40

Chapter 6. Matlab Interface

Sending Input to Server zoot.cs.utk.edu
Downloading Output from Server zoot.cs.utk.edu

x =
10.1204
-0.9801 + 0.8991i
-0.9801 - 0.8991i
-1.0195
-0.6416 + 0.6511i

.........

.........

Calling netsolve_nb()

The obvious drawback of the functionnetsolve() is that while the computation is being performed
remotely, the user must wait to regain control of the prompt.To address this drawback, we provide a
nonblockingfunction,netsolve_nb(). The user can then do work inparallel and check for the
completion of the request later. He can even send multiple requests to NetSolve. Thanks to the
load-balancing strategy implemented in the NetSolve agent, all these requests will be solved on different
machines if possible, achieving someNetSolve-parallelism. Let us now describe this function with the
eig example.

As in the section calledCalling netsolve() to perform computation, the user creates a 300 × 300
matrix and calls NetSolve:

>> a = rand(300);
>> [r] = netsolve_nb(’send’,’eig’,a)

Obviously, the calling sequence tonetsolve_nb() is a little different from the one tonetsolve().
The left-hand side always contains one single argument. Upon completion of this call, it will contain a
NetSolve request handler. The right-hand side is composed of two parts: theactionto perform and the
arguments that would be passed tonetsolve(). In this example, the action to perform is’send’,
which means that we send a request to NetSolve. Throughout this section, we will encounter all of the
possible actions, and they will be summarized in Chapter 21.

Let us resume our example and see what NetSolve answers to thefirst call tonetsolve_nb():

>> [r] = netsolve_nb(’send’,’eig’,a)
Sending Input to Server zoot.cs.utk.edu
rd->request_id = 0

r =

41

Chapter 6. Matlab Interface

0

>>

netsolve_nb() returns a request handler:0. This request handler will be used in the subsequent calls
to the function. The request is being processed oncupid, and the result will eventually return. The user
can obtain this result in one of two ways. The first one is to call netsolve_nb() with the’probe’
action:

>> [status] = netsolve_nb(’probe’,r)

netsolve_nb() returns thestatusof a pending request. The right-hand side contains the action, as is
required fornetsolve_nb(), and the request handler. This call returns immediately, and prints a
message. Here are the two possible scenarios:

>> [status] = netsolve_nb(’probe’,r)
Not ready yet
status = -1
...
>> [status] = netsolve_nb(’probe’,r)
Result available
status = 1

To obtain the result of the computation one must callnetsolve_nb() with the’wait’ action:

>> [x y] = netsolve_nb(’wait’,r)
Downloading Output from Server zoot.cs.utk.edu

x = y =
10.1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0.6416 0.6511
... ...
... ...

As with thenetsolve() function, one can merge the real part and the imaginary part into a single
complex vector. The typical scenario is to callnetsolve_nb() with the action’send’, then make
repeated calls with the action’probe’ until there is nothing more to do than wait for the result. The
user then callsnetsolve_nb() with the action’wait’. It is of course possible to call

42

Chapter 6. Matlab Interface

netsolve_nb() with the action’wait’ before making any call with the action’probe’. One last
action can be passed tonetsolve_nb(), as shown here:

>> netsolve_nb(’status’)

This command will return a description of all of the pending requests. Let us see how it works on this
last complete example:

>> a=rand(100); b = rand(150);
>> [r1] = netsolve_nb(’send’,’eig’,a)
Sending Input to Server zoot.cs.utk.edu
rd->request_id = 0

r1 =

0

>> [r2] = netsolve_nb(’send’,’eig’,b)
Sending Input to Server zoot.cs.utk.edu
rd->request_id = 1

r2 =

1

Now let us see what’status’ does:

>> netsolve_nb(’status’)
--- NetSolve: pending requests ---
Requests #0: ’eig’, submitted to zoot.cs.utk.edu (160.36.58.152)

was started 24 seconds ago.
netsolveProbeRequest returned: 1, ns_errno = 0

Completed
Requests #1: ’eig’, submitted to zoot.cs.utk.edu (160.36.58.152)

was started 7 seconds ago.
netsolveProbeRequest returned: 1, ns_errno = 0

Completed

The user can check what requests he has sent so far and obtain an estimation of the completion times. By
using the’status’ action, the user can also determine whether a request is still running or has been
completed. By sending multiple non-blocking requests to NetSolve and relying on the agent for load
balancing, the user can achieve parallelism.

43

Chapter 6. Matlab Interface

What Can Go Wrong?
During a computation, two classes of error can occur: NetSolve failures and user mistakes. Let us
demonstrate a few examples:

>> netsolve
NS:netsolveproxybasics.c:225: : connection refused
Cannot contact agent

...
>> [x] = netsolve(’foo’,a)
unknown problem

x =

[]

...
>> [x y] = netsolve(’eig’,a,a)
’eig’ requires 1 objects in input (2 provided)
bad problem input/output

x =

[]

y =

[]
>>

In case of error, the different NetSolve functions print appropriate error messages. However, when the
user writes Matlab scripts that call NetSolve, he/she needsways to catch the errors while the script is
running. Hence the functions described in the next section.

Catching NetSolve errors
There are two NetSolve functions that can be called from Matlab to catch errors. The first function,
netsolve_err() takes no arguments and returns an integer that is the NetSolve error code returned by
the last call to a NetSolve function (see Chapter 24 for a listof the possible error codes). Here is a call:

>> e = netsolve_err

44

Chapter 6. Matlab Interface

e = -11

The other function,netsolve_errmsg() takes an error code as an argument and returns a string that
contains the corresponding error message. A typical call tonetsolve_errmsg() is as follows:

>> [msg] = netsolve_errmsg(netsolve_err)

msg =

bad problem input/output

With these two functions, it is possible to write Matlab scripts that call NetSolve and handle all of the
NetSolve errors at runtime.

Demo
A NetSolve-Matlab demo is available with the NetSolve distribution. It consists of a set of Matlab scripts
that call NetSolve to compute parts of the Mandelbrot set. The main script is calledmandel.m and is
located in$NETSOLVE_ROOT/src/Demo/mandelbrot/. To run the demo, just typemandel at the
Matlab prompt.

Optional: Testing the NetSolve BLAS interfaces
A NetSolve-Matlab BLAS test suite is available with the NetSolve distribution, and tests a subset of
BLAS routines available in the NetSolve distribution. The user can test the reference implementation
BLAS included in NetSolve or he could have enabled an optimized BLAS library during the
configuration phase of NetSolve (./configure --with-blaslib=BLAS_LIB) or hand modified the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc to point to the optimized BLAS library.
The user must then enable the BLAS in the$NETSOLVE_ROOT/server_config file, and he/she is
ready to run this test suite. The test suite consists of a set of Matlab scripts that test each of the BLAS
interfaces available in NetSolve. The main script is calledblas_test.m and is located in
$NETSOLVE_ROOT/src/Testing/matlab/. To run the BLAS test suite, typeblas_testat the Matlab
prompt.

Optional: Testing the NetSolve LAPACK interfaces

45

Chapter 6. Matlab Interface

A NetSolve-Matlab LAPACK test suite is available with the NetSolve distribution. If the user enabled
LAPACK during the configuration phase of NetSolve as instructed in the section calledEnabling the
LAPACK library in Chapter 13 or hand modified the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc to point to the LAPACK library and
BLAS library, and has enabled LAPACK in the$NETSOLVE_ROOT/server_config file, he/she may
choose to run this test suite. Note that only a subset of LAPACK is included in the NetSolve distribution.
The complete LAPACK library is not included as default numerical software for the server, and must be
installed separately. The test suite consists of a set of Matlab scripts that test each of the LAPACK
interfaces available in NetSolve. The main script is calledlapack_test.m and is located in
$NETSOLVE_ROOT/src/Testing/matlab/. To run the LAPACK test suite, typelapack_testat the
Matlab prompt.

Optional: Testing the NetSolve ScaLAPACK interfaces
Likewise, a NetSolve-Matlab ScaLAPACK test suite is available with the NetSolve distribution. If the
user enabled ScaLAPACK during the configuration phase of NetSolve as instructed in the section called
Enabling the ScaLAPACK libraryin Chapter 13 or hand modified the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc to point to the ScaLAPACK,
MPIBLACS, BLAS, and MPI libraries, and has enabled ScaLAPACK in the
$NETSOLVE_ROOT/server_config file, he/she may choose to run this test suite. The ScaLAPACK
library is not included as default numerical software for the server, and must be installed separately (as
well as MPI). The test suite consists of a set of Matlab scripts that test each of the ScaLAPACK
interfaces available in NetSolve. The main script is calledscalapack_test.m and is located in
$NETSOLVE_ROOT/src/Testing/matlab/. To run the ScaLAPACK test suite, typescalapack_testat
the Matlab prompt.

Optional: Testing the NetSolve ’sparse_iterative_solve’
interface

The NetSolve’sparse_iterative_solve’interface to PETSc, Aztec, and ITPACK can only be tested if the
user has enabledsparse_iterative_solvein the$NETSOLVE_ROOT/server_config file and has
configured NetSolve with the respective paths to the PETSc library, Aztec library, and MPI library. The
PETSc, Aztec, and ITPACK libraries are not included as default numerical software for the server, and
must be installed separately (as well as MPI). Refer to the section calledEnabling Sparse Iterative
Solvers (PETSc, Aztec, and ITPACK)in Chapter 13 for further details.

This interface can be tested most effectively by using sparse matrices generated from collections such as

46

Chapter 6. Matlab Interface

the Harwell Boeing test collection on theMatrix Market homepage(http://math.nist.gov/MatrixMarket/).
Refer to the section on the webpage entitledSoftware, where the test matrices are available in C, Fortran,
and Matlab. For ease of testing, several of the test matricesfrom this collection are included in the
distribution of NetSolve.

After Matlab has been invoked, the user can then call the testscriptspetsc_test.m, aztec_test.m,
anditpack_test.m in the$NETSOLVE_ROOT/src/Testing/matlab/ directory, by typing

>> petsc_test

and

>> aztec_test

and

>> itpack_test

These scripts invoke the PETSc, Aztec, and ITPACK interfaces and check the validity of the computed
solution.

Alternatively, the user can generate a series of Harwell Boeing matrix types (1-5), using the
generate.m script. To see a list of Harwell Boeing matrix types that can be generated, type

>> generate(0);

And then call the functionspetsc.m and/oraztec.m by typing

>> [A,rhs] = generate(1);
>> [x1,its1] = petsc(A,rhs);
>> [x2,its2] = aztec(A,rhs);

Note that the user can query for the list of arguments in the calling sequence to the routine by using the
NetSolve tool routine.

>> netsolve(’sparse_iterative_solve’)

Optional: Testing the NetSolve ’sparse_direct_solve’
interface

47

Chapter 6. Matlab Interface

The NetSolve’sparse_direct_solve’interface to MA28 and SuperLU can only be tested if the user has
enabledsparse_direct_solvein the$NETSOLVE_ROOT/server_config file and has configured
NetSolve with the respective paths to the SuperLU and MPI libraries. The MA28 library is distributed
with NetSolve in$NETSOLVE_ROOT/src/SampleNumericalSoftware/MA28/ as a small
modification to the library was necessary to enable its use inNetSolve. The SuperLU library is not
included as default numerical software for the server, and must be installed separately (as well as MPI).
Refer to the section calledEnabling Sparse Direct Solvers (SuperLU and MA28)in Chapter 13 for
further details.

This interface can be tested most effectively by using sparse matrices generated from collections such as
the Harwell Boeing test collection on theMatrix Market homepage(http://math.nist.gov/MatrixMarket/).
Refer to the section on the webpage entitledSoftware, where the test matrices are available in C, Fortran,
and Matlab. For ease of testing, several of the test matricesfrom this collection are included in the
distribution of NetSolve.

After Matlab has been invoked, the user can then call the testscriptsma28_test.m and
superlu_test.m in the$NETSOLVE_ROOT/src/Testing/matlab/ directory, by typing

>> ma28_test

and

>> superlu_test

These scripts invoke the MA28 and SuperLU interfaces and check the validity of the computed solution.

Alternatively, the user can generate a series of Harwell Boeing matrix types (1-5), using the
generate.m script. To see a list of Harwell Boeing matrix types that can be generated, type

>> generate(0);

And then call the functionsma28.m and/orsuperlu.m by typing

>> [A,rhs] = generate(1);
>> [x1] = ma28(A,rhs);
>> [x2] = superlu(A,rhs);

Note that the user can query for the list of arguments in the calling sequence to the routine by using the
NetSolve tool routine.

>> netsolve(’direct_solve_serial’)

48

Chapter 7. Mathematica Interface

Introduction
Before compiling the NetSolve-Mathematica client interface, the user must have specified the pathname
to the MathLink Development Kit during the configure phase ofNetSolve (./configure
--with-mldk=MLDK_PATH), whereMLDK_PATH is the pathname. By default this value is set to
$(HOME)/AddOns/MathLink/DevelopersKits/Linux/CompilerAdditions. Alternatively, the
user could have manually edited the$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc file
to set this variable instead of specifying the path as a configure command line option.

The Mathematica client interface for NetSolve is then builtby typing

UNIX> make mathematica

in the directory$NETSOLVE_ROOT.

Details of this interface can be found in [ns:mathematica] and quick instructions/requirements for
building it are in the file:$NETSOLVE_ROOT/src/Mathematica/INSTALLFull details of the
installation procedure can be found in:$NETSOLVE_ROOT/src/Mathematica/doc/UsersGuide.tex

What to do first
Once the interface is successfully installed, the first thing to do is to start a Mathematica client and type

NetSolve[]

which prints information on how to use the interface:

In[1]:= NetSolve[]
usage:

NetSolve[FuncName[arg1, ...]] - blocking problem call
NetSolveNB[FuncName[arg1, ...]] - nonblocking problem call
NetSolveProbe[request] - checks if a request has been completed
NetSolveWait[request] - waits for a request to complete
NetSolveGetAgent[] - returns the current agent name
NetSolveSetAgent[AgentName] - changes the agent we are working with
NetSolveError[] - returns the result code of the last

executed NetSolve function
NetSolveErrorMsg[rc] - returns a string describing

49

Chapter 7. Mathematica Interface

the result code passed
NetSolve["?problems"] - shows a list of available problems
NetSolve["?servers"] - shows a list of available servers
NetSolve["?FuncName[]"] - shows a problem description

Let us review the possibilities:

Information functions -- NetSolve["?problems"], NetSolve["?servers"] and

NetSolve["?FuncName[]"]

This set of functions provides information about a specific problem’s calling sequence and which
problems and servers are available through the user’s agent.

Blocking problem solving -- NetSolve[ProblemName[arguments, ...]]

This function is a blocking call to NetSolve to solve a certain problem. When utilizing this type of
call to NetSolve, the user does not regain execution controluntil the result becomes available.

Nonblocking problem solving -- NetSolveNB[ProblemName[arguments, ...]]

This function is a non-blocking call to NetSolve to solve a certain problem. Unlike a blocking call
to NetSolve, a non-blocking call returns the execution control, as well as a request handler,
immediately to the user. The request handler can then be “probed” for the status of the calculation.

Getting/setting an agent -- NetSolveGetAgent[], NetSolveSetAgent[AgentName]

NetsolveGetAgent[] returns a string containing the host name of the agent. The user can
change the current agent by theNetSolveSetAgent[] function at any time.

Let us now assume that the user has started Mathematica and isready to use NetSolve. We can check
who our agent is by typing

In[1]:= NetSolveGetAgent[]

Out[1]= torc0.cs.utk.edu

If there is no agent set, the result would be the$Null symbol. One can change the agent by the function
NetSolveSetAgent[]. For instance

In[2]:= NetSolveSetAgent["netsolve.cs.utk.edu"]

The agent can be changed at any time provided there is anotherNetSolve agent running on the host
whose name has been passed as an argument. However, if the agent is changed, then the set of servers
and possibly the set of solvable problems has also been changed.

50

Chapter 7. Mathematica Interface

A list of the solvable problems can be obtained by the function NetSolve["?problems"]. Here is a
possible list (clipped to save space).

In[3]:= NetSolve["?problems"]
/BLAS-wrappers/Level3/dmatmul
/BLAS-wrappers/Level3/zmatmul
/BLAS/Level1/daxpy
/BLAS/Level1/ddot
/BLAS/Level1/zaxpy
/BLAS/Level2/dgemv
/BLAS/Level3/dgemm
/BLAS/Level3/zgemm
/LAPACK-wrapper/Simple/Eig_and_Singular/eig
/LAPACK-wrapper/Simple/Linear_Equations/linsol
/QuickSort/DoublePrecision/dqsort
/QuickSort/Integer/iqsort
. . .

Handle 41 problem(s).

Similarly, a list of the servers can be printed by the function NetSolve["?servers"]

In[4]:= NetSolve["?servers"]
Initializing NetSolve...
Initializing NetSolve Complete
---- List of NetSolve agents ----
netsolve.cs.utk.edu (160.36.58.76) Host: Up
---- List of NetSolve servers ----
cetus3a.cs.utk.edu (160.36.56.94) (0 failures)
cetus3b.cs.utk.edu (160.36.56.95) (0 failures)
torc1.cs.utk.edu (160.36.56.200) (0 failures)
torc2.cs.utk.edu (160.36.56.201) (0 failures)
torc3.cs.utk.edu (160.36.56.202) (0 failures)

. . .

For every server associated with a specific agent, the following information is given: its name, IP
address, host and server status, and how many different problems it can solve.

The user can easily determine information about a specific problem,iqsort for instance, by typing

NetSolve["?iqsort[]"]

51

Chapter 7. Mathematica Interface

The brackets after the problem name are required because every NetSolve problem is treated as a
function defined in Mathematica.

The output of that command is as follows:

In[5]:= NetSolve["?iqsort[]"]
iqsort: Quicksort -
Sorts a vector of integers

Input:
0 : Integer Vector
Vector of integers to Sort

Output:
0 : Integer Vector
Sorted Vector

Mathematica example:
rI0 = NetSolve[iqsort[I0]]

examples for types:

Char Byte/Integer Single/Double Complex
Scalar: "c" 42 66.32 4 - 7 I
Vector: "vector" {1,2,3} {3,4.5,7} {3, -5+3I, 8}
Matrix: {"line 1", {{1,2,3}, {{6.4,2,1}, {{1+2I, 3+4I},

"line 2"} {4,5,6}} {-7,1.2,4}} {5-6I, 7}}

The first part of the output is a brief general description of the problem. The second part describes the
input and output objects, their type and description. And lastly, an example is provided.

If the user does not provide the number, the type, and the sequence of arguments correctly, an error
message message will be printed and the$Null symbol will be returned.

The arguments shown in the example are variables but the usermay also choose to pass numerical
values, symbols with assigned data or function calls.

Here are some rules the user must remember.

1. Characters are passed as strings (only the first characteris used).

2. Integers can be passed instead of reals and vice versa (conversion is performed automatically).

3. Integers and reals can be passed instead of complex numbers.

4. Vectors of characters are passed as strings.

52

Chapter 7. Mathematica Interface

5. Matrices of characters are passed as vectors of strings.

Blocking call to NetSolve
In the previous section we explained how the user can obtain information about a problem and its calling
sequence. For the call itself, the functionNetSolve[] is invoked with the problem name and its
arguments. For example,

In[6]:= NetSolve[iqsort[{7,2,3,5,1}]]
contacting server torc0.cs.utk.edu ...

Out[6]= {1, 2, 3, 5, 7}

As stated earlier the user can pass not only numerical values, but also symbols that contain data of proper
type or functions that return a result of this type. Indeed, Mathematica calculates these expressions and
passes the arguments by value. For example

In[7]:= v = -Range[5]

Out[7]= {-1, -2, -3, -4, -5}

In[8]:= NetSolve[iqsort[v]]
contacting server torc0.cs.utk.edu ...

Out[8]= {-5, -4, -3, -2, -1}

or to sort a random vector of size 7

In[9]:= NetSolve[iqsort[Table[Ceiling[10*Random[]], {7}]]]
contacting server torc0.cs.utk.edu ...

Out[9]= {1, 2, 2, 2, 4, 6, 7}

SinceNetSolve[] is a function defined in Mathematica, it can be used in expressions like:

In[9]:= NetSolve[iqsort[Table[Ceiling[10*Random[]], {7}]]]
contacting server torc0.cs.utk.edu ...

Out[9]= {1, 2, 2, 2, 4, 6, 7}

In[10]:= Print["The minimal element of v is ", NetSolve[iqsort[v]][[1]]]
contacting server torc0.cs.utk.edu ...

53

Chapter 7. Mathematica Interface

The minimal element of v is -5

Let us consider a more complex problem such as the Level 3 BLASsubroutinedgemm[] which
calculates where $op(X) = X$ or $op(X) = X’$.

The routinedgemm[] requires the following 7 arguments.

Let us generate three random matrices.

In[11]:= RandomMatrix[m_,n_] := Table[Ceiling[10*Random[]], {m}, {n}]

In[12]:= a = RandomMatrix[2,3]

Out[12]= {{9, 2, 3}, {6, 3, 9}}

In[13]:= b = RandomMatrix[3,2]

Out[13]= {{6, 4}, {4, 10}, {2, 9}}

In[14]:= c = RandomMatrix[2,2]

Out[14]= {{4, 7}, {4, 8}}

and calldgemm[].

In[15]:= NetSolve[dgemm["N", "N", 2, a, b, 3, c]]
contacting server cetus2a.cs.utk.edu ...

Out[15]= {{148., 187.}, {144., 294.}}

In[16]:= 2 a . b + 3 c

Out[16]= {{148, 187}, {144, 294}}

Nonblocking Call to NetSolve
As in the Matlab interface (see Chapter 6), the Mathematica interface can be called in an asynchronous
fashion. Nonblocking calls are performed by the functionNetSolveNB[], and its calling sequence is the
same as the blocking callNetSolve[]. The difference is in the result returned.NetSolveNB[] always
returns a request handler.

54

Chapter 7. Mathematica Interface

NetSolveProbe[] returns an integer value to indicate if the problem has been completed. A value of 0
indicates that the result is available and a value of 1 indicates that the computation is still in progress.
Other values are error codes (see the section calledCatching Errors).

Let us multiply two complex matrices usingNetSolveNB[]. We generate the matricesac andbc using
already generated matricesa, b andc.

In[17]:= ac = a - 2 a I

Out[17]= {{9 - 18 I, 2 - 4 I, 3 - 6 I}, {6 - 12 I, 3 - 6 I, 9 - 18 I}}

In[18]:= bc = b - 3 b I

Out[18]= {{6 - 18 I, 4 - 12 I}, {4 - 12 I, 10 - 30 I}, {2 - 6 I, 9 - 27 I}}

In[19]:= request = NetSolve[zmatmul[ac, bc]]
contacting server cetus2a.cs.utk.edu ...

Out[19]= 0

In[20]:= NetSolveProbe[request]

Out[20]= 0

As the computation is still in progress, the user can choose to perform other work, or wait for the request
to complete:

In[21]:= NetSolveWait[request]

Out[21]= {{-340. - 340. I, -415. - 415. I}, {-330. - 330. I, -675. - 675. I}}

Catching Errors
As in the Matlab interface, it is possible to detect errors with the functionsNetSolveError[] and
NetSolveErrorMsg[]. The first function returns an integer which is the error codeof the last executed
NetSolve function.NetSolveErrorMsg[] takes an error code as an input argument and returns a string
describing the error.

With these two functions, it is possible to write Mathematica scripts that call NetSolve and handle all of
the NetSolve errors at runtime.

55

Chapter 7. Mathematica Interface

Demo
A NetSolve-Mathematica demo is available with the NetSolvedistribution. It invokes and explains the
various NetSolve features available within Mathematica. The main script is calledNSdemo.m and is
located in$NETSOLVE_ROOT/src/Testing/mathematica/. To run the demo, just type<<NSdemo‘
at the Mathematica prompt.

Optional: Testing the NetSolve BLAS interfaces
A NetSolve-Mathematica BLAS test suite is available with the NetSolve distribution, and tests a subset
of BLAS routines available in the NetSolve distribution. The user can test the reference implementation
BLAS included in NetSolve, or he can enable an optimized BLASlibrary during the configuration phase
of NetSolve (./configure --with-blaslib=BLAS_LIB) or hand modify the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc to point to the optimized BLAS library.
The user must then enable the BLAS in the$NETSOLVE_ROOT/server_config file, and he/she is
ready to run this test suite. The test suite consists of a set of Mathematica scripts that test each of the
BLAS interfaces available in NetSolve. The main script is called NSblastest.m and is located in
$NETSOLVE_ROOT/src/Testing/mathematica/. To run the BLAS test suite, type<<NSblastest‘
at the Mathematica prompt.

Optional: Testing the NetSolve LAPACK interfaces
A NetSolve-Mathematica LAPACK test suite is available withthe NetSolve distribution. If the user
enabled LAPACK during the configuration phase of NetSolve asinstructed in the section calledEnabling
the LAPACK libraryin Chapter 13 or hand modified the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc to point to the LAPACK library and
BLAS library, and has enabled LAPACK in the$NETSOLVE_ROOT/server_config file, he/she may
choose to run this test suite. Note that only a subset of LAPACK is included in the NetSolve distribution.
The complete LAPACK library is not included as default numerical software for the server, and must be
installed separately. The test suite consists of a set of Mathematica scripts that test each of the LAPACK
interfaces available in NetSolve. The main script is calledNSlapacktest.m and is located in
$NETSOLVE_ROOT/src/Testing/mathematica/. To run the LAPACK test suite, type
<<NSlapacktest‘ at the Mathematica prompt.

56

Chapter 8. NetSolve Request Farming
Farming is a new way of calling NetSolve to manage large numbers of requests for a single NetSolve
problem. Many NetSolve users are confronted by situations when many somewhat similar computations
must be performed in parallel. Previously, the way to do thisin NetSolve was to write non-blocking calls
to netslnb() in C for instance. However, this becomes very cumbersome. Not only because the user
must manage all of the requests himself, but also because theNetSolve system is at a loss trying to
manage such a large number of requests without flooding the servers. This is the motivation for
distributing a new call in NetSolve:netsl_farm(). In the present distribution, this call is only available
from C, but will soon be made available from Matlab, Mathematica, and Java. A Fortran interface will
most likely not be provided because of pointer management. For now, linking to the C NetSolve client
library (generated as explained in the section calledInstallation on Unix Systemsin Chapter 3) makes
netsl_farm() available from the user’s program.

How to call farming
Like netsl() andnetslnb(), thenetsl_farm() function takes a variable number of arguments. Its
first argument is a string that describes theiteration range. This string is of the form"i=%d,%d" (in C
string format symbols). The second argument is a problem name appended with an opening and a closing
parenthesis. The arguments following are similar in intentto the ones supplied tonetsl(), but are
iteratorsas opposed to integers or pointers. Where the user was passing, say an integer, tonetsl(), he
now needs to pass an array of integers and tellnetsl_farm() which element of this array is to be used
for which iteration. This information is encapsulated in aniterator and we provide three functions to
generate iterators:

ns_int()

ns_int_array()

ns_ptr_array()

Let us review these functions one by one.

ns_int()

This function takes only one argument: a character string that contains anexpressionthat is
evaluated to an integer at each iteration. The format of thatstring is based on a Shell syntax.$i
represents the current iteration index, and classic arithmetic operators are allowed. For instance:

ns_int("$i+1")

returns an iterator that generates an integer equal to one plus the current iteration index at each iteration.

57

Chapter 8. NetSolve Request Farming

ns_int_array()

This function takes two arguments:

i. a pointer to an integer array (int *);

ii. a character string that contains an expression.

For instance,

ns_int_array(ptr,"$i")

returns an iterator that generates at each iteration an integer equal to thei-th element of the arrayptr
wherei is the current iteration index.

ns_ptr_array()

This function takes two arguments:

i. a pointer to an array of pointers (void **);

ii. a character string that contains an expression.

For instance,

ns_ptr_array(ptr,"$i")

returns an iterator that generates at each iteration a pointer which is thei-th element of the arrayptr
wherei is the current iteration index.

An example
Let us assume that the user wants to sort an array of integers with NetSolve using the C interface. The
default NetSolve server comes with a default problem callediqsort that does a quicksort on an integer
vector. The call looks like

status = netsl(’iqsort()’,size,ptr,sorted);

wheresize is the size of the array to be sorted,ptr is a pointer to the first element of the array, and
sorted is a pointer to the memory space that will hold the sorted array on return. What if the user
wants to sort 200 arrays? One way is to write 200 calls as the one above. Not only would it be tedious,
but also inefficient as the sorts would be done successively,with no parallelism. In order to obtain some
parallelism, one must callnetslnb() and make the corresponding calls tonetslpr() andnetslwt()
as explained in Chapter 5. Again, this is tedious and as it is arather common situation we decided to
address it withnetsl_farm(). Before callingnetsl_farm(), the user needs to construct arrays of
pointers and integers that contain the arguments of each of the NetSolve calls. This is straightforward:
where the user would have called NetSolve as:

58

Chapter 8. NetSolve Request Farming

requests1 = netslnb(’iqsort’,size1,ptr1,sorted1);
requests2 = netslnb(’iqsort’,size2,ptr2,sorted2);
...
requests200 = netslnb(’iqsort’,size200,array200,sorted200);

and then to have calls tonetslpr() andnetslwt() for each request.

With farming, one only needs to construct three arrays as:

int size_array[200];
void *ptr_array[200];
void *sorted_array[200];

size_array[0] = size1;
ptr_array[0] = ptr1;
sorted_array[0] = sorted1;
...

Then,netsl_farm() can be called as:

status_array = netsl_farm("i=0,199",netsl_int_array(size_array,"$i"),
netsl_ptr_array(ptr_array,"$i"),
netsl_ptr_array(sorted_array,"$i"));

In short,netsl_farm() is a concise, convenient way of farming out groups of requests. Of course, it
usesnetslnb() underneath, thereby ensuring fault-tolerance and load-balancing.

Catching errors
netsl_farm() returns an integer array. That array is dynamically allocated and must be freed by the
user after the call. The array is at least of size 1. The first element of the array is either 0 or -1. If it is 0,
then the call was completed successfully and the array is of size 1. If first element of the array is -1, then
at least one of the requests failed. The array is then of size one plus the number of requests and the
(1+i)-th element of the array is the error code for the i-th request. Here is an example on how to print
error messages:

status = netsl_farm("i=0,200",....);
if (status[0] == 0){

fprintf(stderr,"Success\n");
free(status);

} else {
for (i=1;i<201;i++) {

59

Chapter 8. NetSolve Request Farming

fprintf(stderr,"Request #%d:",i);
netslerr(status[i]);

}
}
free(status);

Current Implementation and Future Improvements
One of the advantages of farming is that the user does not havethe responsibility of managing the
requests. As it would be unreasonable to send all of the requests if there are not enough servers to
perform the computations, thenetsl_farm() farming algorithm avoids this problem by dynamically
tuning the maximum number of pending requests to reflect changes in the computational server pool
(size and load). This is done by constantly measuring the throughput of the computations.

60

Chapter 9. NetSolve Request Sequencing

Goals and Methodologies
Our aim in request sequencing is to decrease network traffic amongst NetSolve client and server
components in order to decrease overall request response time. Our design ensures that i) no unnecessary
data is transmitted and ii) all necessary data is transferred. As briefly discussed below, we also reduce
execution time by executing computational modules simultaneously when possible. All this is
accomplished by performing a detailed analysis of the inputand output parameters of every request in
the sequence to produce a directed acyclic graph (DAG) that represents the tasks and their execution
dependences. This DAG is then sent to a server in the system where it is scheduled for execution. More
details regarding this interface and some results can be found in [sequencing].

In order to build the DAG or task graph, we need to analyze every input and output in the sequence of
requests. We evaluate two parameters as the same if they share the same reference. We use the size fields
and reference pointer of the input parameters to calculate when inputs overlap in the memory space.
Only matrices and vectors are checked for recurrences on thepremise that these are the only objects that
tend to be large enough for the overhead of the analysis to paydividends. Through this analysis we build
a DAG in which the nodes represent computational modules or NetSolve services and the arcs represent
data dependencies amongst these modules. The graph is acyclic because looping control structures are
not allowed within the sequence, and therefore, a node can never be its own descendant.

The Application Programming Interface
For request sequencing, we add three functions to the NetSolve client API:

void netsl_sequence_begin();

This function takes no arguments, and returns nothing. It notifies the NetSolve system to collect
information from subsequent calls tonetsl() from which to construct a DAG as explained above.
The netsolve services will not be scheduled for execution until a subsequent call to
netsl_sequence_end()

int netsl_sequence_end(void *, ...);

This function takes as arguments an NS_NULL-terminated list of pointers. (For technical reasons,
the user must use the special variable NS_NULL defined in thenetsolve.h header file. These
pointers are to be references to objects designated as output pointers in previous calls made to

61

Chapter 9. NetSolve Request Sequencing

netsl() after the most recent call tonetsl_sequence_begin(). These pointers designate to the
NetSolve system which output parametersNOT to return to the client program. In other words,
these output parameters serve only as intermediary input tocalls within the chain or sequence. At
the point wherenetsl_sequence_end() is called, the NetSolve system will transfer the collected
sequence (in the form of a DAG) to a computational server(s) for execution.
netsl_sequence_end() returns an error code that can be used to determine success orfailure,
and the cause in the case of the latter.

int netsl_sequence_status();

This function takes no arguments, and returns TRUE (non-zero) if the system is currently collecting
NetSolve requests (i.e. constructing a DAG or is in the middle of a sequence) and FALSE (zero)
otherwise.

Figure 9-1 illustrates what a sequencing call might look like. Two points to note in this example: i)for all
requests, only the last parameter is an output, and ii)the user is instructing the system not to return the
intermediate results ofcommand1 andcommand2.

Figure 9-1. Sample C Code Using Request Sequencing Constructs

...
begin_sequence();
submit_request("command1", A, B, C);
submit_request("command2", A, C, D);
submit_request("command3", D, E, F);
begin_end(C, D, NS_NULL);
...

For the system to be well-behaved, we must impose certain restrictions upon the user. Our first restriction
is that no control structure that may change the execution path is allowed within a sequence. We impose
this restriction because the conditional clause of this control structure may be dependent upon the result
of a prior request in the sequence, and since the requests arenot scheduled for execution until the end of
the sequence, the results will likely not be what the programmer expects.

The other restriction is that statements that would change the value of any input parameter of any
component of the sequence are forbidden within the sequence(with the exception of calls to the
NetSolve API itself that the system can track.) This is because during the data analysis, only references
to the data are stored. So if changed, the data transferred atthe end of the sequence will not be the same
as the data that was present when the request was originally made. We contemplated saving the entire
data, rather than just the references, but this directly conflicts with one of our premises -- that the data
sets are large; multiple copies of these data are not desirable.

62

Chapter 9. NetSolve Request Sequencing

Execution Scheduling at the Server
Once the entire DAG is constructed, it is transferred to a NetSolve computational server. In this first
version of request sequencing, the NetSolve agent uses a large granularity and decides which server
should execute the entire sequence. We execute a node if all its inputs are available and there are no
conflicts with its output parameters. Currently the only mode of execution we support is on a single
NetSolve server -- though, that server may be a symmetric multi-processor (SMP).

For data partitioning, we transfer the union of the input parameter sets to the selected server host. This
makes input for all nodes, except those which are intermediate output from prior nodes, available for the
execution of the sequence. Our scheduling algorithm can be summarized as follows:

while(problems left to execute)
{

execute all problems with satisfied dependencies;
wait for at least one problem to finish;
update dependencies;

}

63

Chapter 10. Security in NetSolve Client

Introduction
This is the first version of NetSolve with (rudimentary) Kerberos support. NetSolve components include
clients, agents, and servers. Currently the only requests that require authentication are requests that the
client makes to the server, and of those, only the “run problem” request. Other requests could be
authenticated (an obvious one being “kill server”), but drastic changes along these lines would probably
require drastic restructuring of NetSolve. For instance, aclient can currently inform an agent that a
particular server is down, and the agent will not advertise that server for use in other problems. It seems
of dubious value to require authentication for such requests until there is a mechanism for specifying the
trust relationship between clients and agents.

An attempt has been made to allow Kerberized NetSolve clients to interoperate with both Kerberized and
non-Kerberized NetSolve servers. In either case the clientsends a request to the server. An ordinary
server will return a status code indicating that he will accept the requested operation. By contrast, a
Kerberized server will immediately return an “authentication required” error in response to the request.
The client is then required to send Kerberos credentials to the server before the request will be processed.
This allows the server to require authentication of the client. Currently there is no mechanism to allow
the client to insist on authentication of the server - a Kerberized client will happily talk with either
Kerberized or non-Kerberized servers.

The server implements access control via a simple list of Kerberos principal names. This list is kept in a
text file which is consulted by the server. A request to a NetSolve server must be made on behalf of one
of those principal names. If the principal name associated with the Kerberos credentials in the request
appears in the list, and the credentials are otherwise valid, the request will be honored. Otherwise, the
request will be denied.

Since the NetSolve server was not designed to run as a set-uidprogram, it is not currently feasible to
have the NetSolve server run processes using the user-id of the particular UNIX user who submitted the
request. NetSolve thus uses its own service principal name of “netsolve” rather than using the “host”
principal. What this means (among other things) is that you need to generate service principals and
keytabs for each of your NetSolve servers, even if you already have host principals in place.

The NetSolve server, by default, runs in non-Kerberized mode. To start up the server in Kerberized mode
you need to add the-k option to the command-line, and also set environment variables
NETSOLVE_KEYTAB (pointing to the keytab) and NETSOLVE_USERS pointing to the list of
authorized users).

This version of Kerberized NetSolve performs no encryptionof the data exchanged among NetSolve
clients, servers, or agents. Nor is there any integrity protection for the data stream.

64

Chapter 10. Security in NetSolve Client

Compiling a Kerberized Server

1. Compile Kerberos. See the Kerberos V5 Installation Guidefor instructions for how to do this.

2. Compile the NetSolve client libraries with Kerberos support. Refer to the instructions in the the
section calledInstallation on Unix Systemsin Chapter 13 section following the notes that talk about
authentication and authentication libraries. In part, this involves editing the
$NETSOLVE_ROOT/conf/Makefile.NETSOLVE_ARCH.inc and modifying the KLIBS field to
point to the appropriate Kerberos libraries and setting theAUTHENTICATION field to
KERBEROS5.

Running a Kerberized NetSolve Client

1. Set up the necessary environment variables:

UNIX> setenv NETSOLVE_AGENT netsolve.agent.host

2. Runkinit to get a ticket-granting ticket for yourself. You don’t haveto do this if you already have a
ticket and it has not expired.

3. Run your NetSolve program. If the server contacted requires authentication, the NetSolve client
automatically contacts the Kerberos Key Distribution Center for a ticket and sends it to the server. If
this client is authorized to utilize the NetSolve server services will be granted to the client, if not, an
AUTHENTICATION_REJECTED error protocol will be returned to the client.

65

Chapter 11. The User-Supplied Function
Feature

Motivation
In the preceding sections, we described all the client interfaces to NetSolve. In these descriptions we
assumed that the only input the user had to supply to NetSolvewas numerical data, that is, matrices,
vectors, or scalars. This assumption is valid for a lot of numerical software. However, for some software
that we would like to include in NetSolve via NetSolve servers, we need an additional feature. Indeed,
numerous scientific packages require the user to provide numerical data as well as afunction. Typically,
nonlinear software requires the user to pass a pointer to a subroutine that computes the nonlinear
function. This is a problem in NetSolve because the computation is performed remotely and the user
cannot provide NetSolve with a pointer to one of his linked-in subroutines. The only solution is to send
code over the network to the server. This approach raises a lot of issues, includingsecurity.

Solution
Let us describe here the solution we have adopted. This is really a first attempt, and there is definitely
room for improvement. However, we believe that it provides reasonable capabilities for now, considering
that NetSolve is still at an early stage of development. As wenoted, we need to ship code over to the
computational server. Since NetSolve works in a heterogeneous environment, it is not possible to migrate
compiled code. Thus, we require that the user have his subroutine or function in a separate file, written
either in C or Fortran. We send this file to the computational server. The server compiles it and is then
able to use this user-supplied function.

The security implementation is quite simple. When compiling the user’s function, we use thenm UNIX
command to disallow any system call. The approach is very restrictive for the user, but typically the
subroutine that has to be passed needs only to perform computations. If course, there are a lot ofhacker
ways to go around this problem, and our system currently doesnot pretend to be a real security manager.
We are investigating Java to deal with this user-supplied function issue.

For the Client

66

Chapter 11. The User-Supplied Function Feature

Determining the Format of the Function to Supply
We now understand that the user has to write a Fortran subroutine or a C function to call a problem that
requires a user-supplied function. For now, the prototype of this subroutine/function can be found in the
description of the problem, available from Matlab or the CGIscripts of the NetSolve homepage (see the
section calledProblems that can be solved with NetSolvein Chapter 4). Following the usual philosophy
of NetSolve, the prototype of the user-supplied function isexactly the same as if the user were using the
numerical software directly. Some softwares require the user to provide more than one function. When
that is the case, the description of the problem mentions it and gives all the prototypes for all the
functions to supply.

From Matlab, Mathematica, C and Fortran
A UPF is passed to NetSolve as a string that contains the path to the file that contains the source code of
the function.

From the NetSolve Java API
Users of the NetSolve API may specify a UPF input item as they would any other input item, using the
pushArg() method. However, an extra argument is required when pushinga UPF item: the language
that the UPF is written in. For example:

n.pushArg(new String(upf0,0),GlobalDefs.LANG_FORTRAN);
n.pushArg(new String(upf1,0),GlobalDefs.LANG_C);

Currently, the user must pass the UPF as a String. Therefore,if the UPF is stored in a file, it is up to the
user to read the file into a String. Future versions of the API will allow the user to simply pass the name
of the file.

From the Java GUI
Entering a user-supplied function via the Java interface isvery much similar to entering any other kind of
data. If the problem requires a user-supplied function, there will be an entry in theInput Listcalled “User
Provided Function” for which data must be specified, just like any other input object. The user may
choose to enter the user-supplied function manually into the Data Input Boxor from a file specified in
theFilename Selection Box. If the user enters the function manually, the language mustalso be specified
by choosing either C or FORTRAN from an “option menu” that appears just above theData Input Box.

67

Chapter 11. The User-Supplied Function Feature

If the user-supplied function comes from a file, the file must end with either “.c” or “.f” (with names
ending in “.c” interpreted as C functions and names ending in“.f” interpreted as FORTRAN functions).

For the Server
The problem description of a problem that requires one or more user-supplied functions must contain a
line:

@OBJECT UPF CHAR

for each function as an input object so that mnemonics can be used in the description of the calling
sequence (after the’@FORMAT’ clause). In the pseudo-code section, the functions should be declared as
extern like:

extern int upf0();
extern double upf1();
etc....

for instance. The identifiersupf0, upf1, . . . can be used in the rest of the pseudo code to designate the
user-supplied functions. This is not very natural. It wouldbe better to be able to use mnemonics as for
classic objects, but it makes compilation difficult on some platforms.

Conclusion
This new feature of NetSolve is still under investigation. We are aware that security is an important issue
here. For now, NetSolve is still a research project developed to allow experimentations with this
relatively new type of software. In the future, more attention will be given to the user-supplied
mechanism in order to make it as safe as possible. As mentioned earlier, we may use Java in order to set
up a viable security manager. Using Java currently appears to be the best solution for security, but it has
obvious drawbacks. First, the user would have to write his function in Java: the typical NetSolve user is a
scientist who does not have the time or inclination to learn new languages, especially object-oriented
ones. Second, with the current implementations of Java, efficiency would also be a problem.

68

Chapter 12. Troubleshooting
If an error occurs during the invocation of NetSolve, a variety of diagnostic runtime error messages, as
well as error codes that can be returned when calling a NetSolve function from the C or Fortran
interfaces, are provided. The error codes and runtime errormessages are listed in Chapter 24 and may
have several possible explanations/causes. If one of theseerror messages occurs, the user should first
check the agent and server log files,$NETSOLVE_ROOT/nsagent.log or
$NETSOLVE_ROOT/nsserver.log, respectively. These files may contain more information to clarify
the reason for the error message.

For diagnostic help in explaining the reasons for specific NetSolve run-time error messages, refer to the
NetSolve Errata File(http://icl.cs.utk.edu/netsolve/errata.html)

Details of the Makefile.NETSOLVE_ARCH.inc File
Although suitable default options are provided for the compilation of the software, one may look in
theNetSolve/conf directory to edit theMakefile.NETSOLVE_ARCH.inc file. This file contains
parameters to customize the compilation process.

Note:: All of the parameters in this include file can (and should) be modified using command line
arguments to configure .

Most of the contents of this file are straightforward, including definitions for compilers, linkers, etc., and
will not be explained here. There are however a few entries that may need explanation.

NETSOLVE SPECIFIC OPTIONS:

TheOUTPUT_LEVEL macro defines the amount of debug output to print during installation.PROXY
specifies which client proxy to use.CPU_STAT defines which method to use to monitor server
processes in terms of workload, etc. and what method to use toassign tasks to servers. The
AUTH_LIBS andAUTHENTICATION macros define the authentication to use (if any) in the system.
Currently, the only options are KERBEROS5 or NO_AUTH (no authentication) for the
AUTHENTICATION macro. If authentication is set to KERBEROS4, thenAUTH_LIBS must be set to
the location of the appropriate libraries needed to use the kerberos application programming
interface.

AUXILIARY PACKAGES:

If NWS is enabled, i.e.,CPU_STAT = NWS, the variableNWSDIR provides the path to the NWS
distribution. See Chapter 19) for further details.

69

Chapter 12. Troubleshooting

In the case of a parallel server, it is necessary to set theMPI_DIR, MPI_INCLUDE_DIR, and
MPI_INCDIR variables to the proper paths.

If IBP is enabled, i.e.,IBPDIR provides the path to the IBP distribution. See Chapter 20 forfurther
details.

Auxiliary Libs:

This section contains variables for setting path names and to optional software packages such as
PETSc, Aztec, ITPACK, SuperLU, LAPACK, ScaLAPACK, MPIBLACS, and BLAS.

An exampleMakefile.NETSOLVE_ARCH.inc for IRIX is listed below.

Generated automatically from Makefile.generic-arch.in by configure.
Never include this file directly!
Always include ./Makefile.inc and make sure it is appropriately
set to include the proper platform specific file.
CUSTOMIZING CONFIGURATION
#

SHELL = /bin/sh

#############################
INSTALL DIRECTORIES
#############################

PLATFORM = mips-sgi-irix6.5
NETSOLVE_VERSION = 1.4
EXEC_PREFIX = $(NETSOLVE_ROOT)/$(NETSOLVE_ARCH)
BINDIR = $(NETSOLVE_ROOT)/bin/$(NETSOLVE_ARCH)
LIBDIR = $(NETSOLVE_ROOT)/lib/$(NETSOLVE_ARCH)
OBJDIR = $(NETSOLVE_ROOT)/obj/$(NETSOLVE_ARCH)
MATLABOBJDIR = $(OBJDIR)/MATLAB
PDFGUICLASSDIR = $(BINDIR)/PDFGUICLASSDIR

###############################
COMPILERS AND OPTIONS
###############################
CC = /usr/bin/cc
C_OPT_FLAGS = -O3
C_NOOPT_FLAGS = -n32 -mips4 -r12000 -common
CFLAGS = $(C_OPT_FLAGS) $(C_NOOPT_FLAGS)
NS_C_OPT_FLAGS = $(C_OPT_FLAGS) $(HBMFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \

$(INCDIR) $(PROXY) ${CPU_STAT} ${IBPFLAG} \

70

Chapter 12. Troubleshooting

${AUTHENTICATION} $(DSIFLAGS)
NS_C_NOOPT_FLAGS = $(C_NOOPT_FLAGS) $(HBMFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \

$(INCDIR) $(PROXY) ${CPU_STAT} ${IBPFLAG} \
${AUTHENTICATION} $(DSIFLAGS)

NS_CFLAGS = $(CFLAGS) $(HBMFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \

$(INCDIR) $(PROXY) ${CPU_STAT} ${IBPFLAG} \
${AUTHENTICATION} $(DSIFLAGS)

FC = /usr/bin/f77
F_OPT_FLAGS = -O3
F_NOOPT_FLAGS = -n32 -mips4 -r12000
FFLAGS = $(F_OPT_FLAGS) $(F_NOOPT_FLAGS)
NS_FFLAGS = $(FFLAGS) $(INCDIR) $(ARCHCFLAGS)
NS_F_OPT_FLAGS = $(F_OPT_FLAGS) $(INCDIR) $(ARCHCFLAGS)
NS_F_NOOPT_FLAGS = $(F_NOOPT_FLAGS) $(INCDIR) $(ARCHCFLAGS)

LINKER = $(FC)
LDFLAGS = -LD_MSG:OFF=15,84 -n32 -mips4 -r12000

MEX = /usr/local/matlab/bin/mex
MEXFLAGS = -O
MEXEXT = .mexsg
NS_MEXFLAGS = $(MEXFLAGS) $(HBMFLAG) $(F2CFLAG) $(OUTPUT_LEVEL) $(ARCHM-
FLAGS) \

$(INCDIR) $(PROXY) ${CPU_STAT} ${IBPFLAG} \
${AUTHENTICATION} $(DSIFLAGS) -g -DMATLAB

JAVAC =
NS_JAVAFLAGS = -
classpath $(NETSOLVE_ROOT)/src/PDF_GUI/classes:$(PDFGUICLASSDIR) \

-d $(PDFGUICLASSDIR)

##############################
LIBS, DIRS AND DEFINES
##############################

LIBS = -lm -lc
INCDIR = -I$(NETSOLVE_ROOT)/include \

$(NWS_INCDIR) \
$(IBP_INCDIR) \
$(MPI_INCDIR)

ARCHCFLAGS = -D$(NETSOLVE_OS) \

71

Chapter 12. Troubleshooting

-D$(F2CSTR) -D$(F2CINT) -D$(F2CNAMES) -D$(RUSAGE) \
-DNETSOLVE_ROOT=\"$(NETSOLVE_ROOT)\" \
-DNETSOLVE_ARCH=\"$(NETSOLVE_ARCH)\" \

-DMPI_DIR=\"$(MPI_DIR)\"

ARCHMFLAGS = -D$(NETSOLVE_OS) \
-D$(F2CSTR) -D$(F2CINT) -D$(F2CNAMES) -D$(RUSAGE) \
-D’NETSOLVE_ROOT=\"$(NETSOLVE_ROOT)\"’ \
-D’NETSOLVE_ARCH=\"$(NETSOLVE_ARCH)\"’

$F2CINT options
FINT2CLONG : F77 INTEGER -> C long
FINT2CINT : F77 INTEGER -> C int (default)
FINT2CSHORT : F77 INTEGER -> C short
F2CINT = FINT2CINT

$F2CNAMES options
F2CADD_ : F77 netsl() -> C netsl_() (default)
F2CADD__ : F77 netsl() -> C netsl__()
F2CNOCHANGE : F77 netsl() -> C netsl()
F2CUPCASE : F77 netsl() -> C NETSL()
F2CNAMES = F2CADD_

$F2CSTR options
F2CSTRSUNSTYLE : Sun style of passing strings from f2c
F2CSTRCRAYSTYLE : Cray style of passing strings from f2c
F2CSTRSTRUCTPTR : Struct * style of passing strings from f2c
F2CSTRSTRUCTVAL : Struct style of passing strings from f2c
F2CSTR = F2CSTRSUNSTYLE

##########################
AUXILIARY PROGRAMS
##########################
FLEX = /usr/bin/flex
BISON = /usr/bin/bison
AR = /usr/bin/ar
ARFLAGS = cr
RANLIB = :
RUSAGE = HAVERUSAGE

###################################
NETSOLVE SPECIFIC OPTIONS
###################################

72

Chapter 12. Troubleshooting

#================#
F2C
#================#
F2CFLAG = -DNOCHANGE

#================#
Program Output
#================#
DEBUG : For really verbose debugging information
VIEW : For smooth information during the execution
NO_OUTPUT : no output
OUTPUT_LEVEL = -DVIEW

#==============#
Client Proxy
#==============#
Proxies are currently mutually exclusive
GLOBUS_PROXY : build and enable globus proxy
NETSOLVE_PROXY : build and enable netsolve proxy
PROXY = -DNETSOLVE_PROXY

#====================#
Information Server
#====================#

options for INFOSERVERFLAGS
INFOSERVERFLAGS = (blank means do not use)
INFOSERVERFLAGS = -DINFOSERVER (use as part of agent)
INFOSERVERFLAGS = -DINFOSERVER -DSTANDALONEISERV (use in standalone mode)
INFOSERVERFLAGS =
INFOSERVER =

#=================#
Workload Prober
#=================#
Which probes? options are NWS, NS_WORKLOAD (NetSolve)
CPU_STAT = -DNS_WORKLOAD

#=====#
DSI
#=====#
DSIFLAGS =

########################
AUXILIARY PACKAGES

73

Chapter 12. Troubleshooting

########################
#================#
AUTHENTICATION
#================#

options are NO_AUTH, KERBEROS5
AUTHENTICATION = -DNO_AUTH
AUTH_LIBS =

#=====#
NWS
#=====#
NWSDIR =
NWS_INCDIR =
NWSLIBS =
NWSEXECSSTUB =

#=====#
MPI
#=====#
MPI_DIR = /usr/local/mpich
MPI_INCLUDE_DIR = $(MPI_DIR)/include
MPI_INCDIR = -I$(MPI_INCLUDE_DIR)

#=====#
IBP
#=====#
IBPDIR =
IBPARCH =
IBP_INCDIR =
IBPLIB =
IBPOBJS_STUB =
IBPOBJS =
IBPFLAG =

#========#
Globus
#========#

#GLOBUS_DIR =
#include $(GLOBUS_DIR)/etc/makefile_header
#G_LIBS = -L$(GLOBUS_DIR)/lib $(GLOBUS_GRAM_CLIENT_LIBS) $(LIBS)
#G_CFLAGS = $(GLOBUS_GRAM_CLIENT_CFLAGS) -I$(GLOBUS_DIR)/include
#G_LDFLAGS = $(GLOBUS_GRAM_CLIENT_LDFLAGS)
#LDAP_DIR = /usr/local/ldap

74

Chapter 12. Troubleshooting

#LDAP_LIBS = -L$(LDAP_DIR)/lib
#LDAP_CFLAGS = -I$(LDAP_DIR)/include
#LDAP_LDFLAGS = -lldap -llber

#================#
Auxiliary Libs
#================#

HAVE_petsc = 0
PETSC_DIR = /src/icl2/petsc/petsc-2.0.29/
PETSC_ARCH = linux
BOPT = O
PETSC_LIB_DIR = $(PETSC_DIR)/lib/lib$(BOPT)/$(PETSC_ARCH)

HAVE_aztec = 0
AZTEC_DIR = /src/icl2/Aztec/
AZTEC_LIB_DIR = /src/icl2/Aztec/lib/libg/linux

HAVE_superlu = 0
SUPERLU_DIR = /src/icl2/SuperLU/
SUPERLU_LIB_DIR = /src/icl2/SuperLU/lib/sequential/linux
USE_SUPERLU_SERIAL = -DUSE_SERIAL
USE_SUPERLU_DIST =

LAPACK_LIB_LINK = /usr/local/lib/liblapack-n32.a

SCALAPACK_LIB_LINK = /usr/local/lib/libscalapack.a

BLAS_LIB_LINK = /usr/lib32/mips4/libblas.a

BLACS_LIB_LINK = /usr/local/lib/libmpiblacsCinit-
p4.a /usr/local/lib/libmpiblacs-p4.a /usr/local/lib/libmpiblacsCinit-p4.a

75

III. The Administrator’s Manual
The user has two choices when installing NetSolve. He can install only the client software and use
existing pools of resources (agent(s) and server(s)), or hecan install his own stand-alone NetSolve
system (client, agent(s) and server(s)). If the user wishesto only install the client interface(s), he should
follow instructions inPart II. The User’s Manual. However, if the users wishes to install client, agent(s),
and server(s), he should follow the instructions inPart III. The Administrator’s Manual.

76

Chapter 13. Downloading, Installing, and
Testing the Agent and Server

The NetSolve agent and server software is currently only available for UNIX and UNIX-like operating
systems. All of the client, agent, and server software is bundled into one tar-gzipped file. There is a
separate distribution tar file for Unix and Windows installations. No root/superuser privileges are needed
to install or use any component of the NetSolve system.

Installation on Unix Systems
The NetSolve distribution tar file is available from the NetSolve homepage.
(http://icl.cs.utk.edu/netsolve/download/NetSolve-1.4.tgz) Once the file has been downloaded, the
following UNIX commands will create theNetSolve directory:

gunzip -c NetSolve-1.4.tgz | tar xvf -

From this point forward, we assume that the UNIX SHELL is fromthecsh family.

The installation of NetSolve is configured for a given architecture using the GNU toolconfigure.

UNIX> cd NetSolve
UNIX> ./configure

For a list of all options that can be specified to configure, type

UNIX> ./configure --help

Usage: configure [--with-cc=C_COMPILER] [--with-cnooptflags=C_NOOPT_FLAGS]
[--with-coptflags=C_OPT_FLAGS] [--with-fc=F77_COMPILER]
[--with-fnooptflags=F77_NOOPT_FLAGS]
[--with-foptflags=F77_OPT_FLAGS]
[--with-ldflags=LOADER_FLAGS]
[--with-nws=NWSDIR]
[--with-ibp=IBPDIR]
[--with-kerberos]
[--with-proxy=PROXY_TYPE]
[--with-outputlevel=OUTPUT_LEVEL]
[--enable-infoserver=INFOSERVER]
[--with-mpi=MPI_DIR]
[--with-petsc=PETSCDIR]
[--with-aztec=AZTEC_DIR]

77

Chapter 13. Downloading, Installing, and Testing the Agentand Server

[--with-azteclib=AZTEC_LIB]
[--with-superlu=SUPERLU_DIR]
[--with-superlulib=SUPERLU_LIB]
[--with-scalapacklib=SCALAPACK_LIB]
[--with-blacslib=BLACS_LIB]
[--with-lapacklib=LAPACK_LIB]
[--with-blaslib=BLAS_LIB]
[--with-mldk=MLDK_PATH]

where
C_COMPILER = default is to use gcc
C_NOOPT_FLAGS = C compiler flags to be used on files that

must be compiled without optimization
C_OPT_FLAGS = C compiler optimization flags (e.g., -O)
F77_COMPILER = default is to use g77
F77_NOOPT_FLAGS = Fortran77 compiler flags to be used on files that

must be compiled without optimization
F77_OPT_FLAGS = Fortran77 compiler optimization flags (e.g., -O)
LOADER_FLAGS = Flags to be passed only to the loader
NWSDIR = directory where NWS is installed (optional)
IBPDIR = directory where IBP is installed (optional)
PROXY_TYPE = currently supported values are netsolve

and globus (default is netsolve)
OUTPUT_LEVEL = currently supported values are debug, view,

and none (default is view)
INFOSERVER = currently supported values are alone and

nothing specified (default is not alone,
where nothing is specified).

MPI_DIR = location of the MPI directory (optional,
assumes MPICH directory structure)
(default is /usr/local/mpich-1.2.1).

PETSCDIR = location of PETSc installation directory (optional)
AZTEC_DIR = location of Aztec installation directory (optional)
AZTEC_LIB = Aztec link line (optional)
SUPERLU_DIR = location of SuperLU installation directory (optional)
SUPERLU_LIB = SuperLU link line (optional)
SCALAPACK_LIB = ScaLAPACK link line (optional)
BLACS_LIB = MPIBLACS link line (optional)
LAPACK_LIB = LAPACK link line (optional)
BLAS_LIB = BLAS link line (optional)
MLDK_PATH = Path to MathLink Development Kit (optional)

All arguments are optional. The options particularly pertinent to NetSolve are:

--with-nws=NWSDIR location of NWS installation dir

78

Chapter 13. Downloading, Installing, and Testing the Agentand Server

--with-ibp=IBPDIR location of IBP installation dir
--with-kerberos use Kerberos5 client authentication
--with-proxy which Proxy? (netsolve, globus)
--with-outputlevel output level (debug,view,none)
--enable-infoserver[=alone] use InfoServer [alone]

The NetSolve service options are:

--with-petsc=PETSCDIR location of PETSc installation dir
--with-petsclibdir=PETSC_LIB_DIR location of PETSc library
--with-aztec=AZTEC_DIR location of Aztec installation dir
--with-azteclib=AZTEC_LIB Aztec link line
--with-superlu=SUPERLU_DIR location of SuperLU installation dir
--with-superlulib=SUPERLU_LIB SuperLU link line
--with-mpi=MPI_DIR location of MPI Root Directory
--with-lapacklib=LAPACK_LIB LAPACK link line
--with-scalapacklib=SCALAPACK_LIB ScaLAPACK link line
--with-blacslib=BLACS_LIB MPIBLACS link line
--with-blaslib=BLAS_LIB BLAS link line
--with-mldk=MLDK_PATH Path to MathLink Development Kit

The configure script creates two main files, ./conf/Makefile.$NETSOLVE_ARCH.inc and
./conf/Makefile.inc. These files are created from the templates ./conf/Makefile.generic-arch and
./conf/Makefile.inc.in respectively. $NETSOLVE_ARCH is the string printed by the command
./conf/config.guess, with all ’-’ and ’.’ characters converted to ’_’ characters. The variable
$NETSOLVE_ROOT is the complete path name to the installed NetSolve directory and defined in
./conf/Makefile.inc. These *.inc files are included by the Makefiles that build theNetSolve system.
Manually editing these configuration files is strongly discouraged. However, details of the
$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc file are explained in the section called
Details of the Makefile.NETSOLVE_ARCH.inc Filein Chapter 12.

Typingmake in theNetSolve directory will give instructions to complete the compilation. A typical
agent and server compilation includes:

UNIX> make standard

to build the agent, server, NetSolve management tools (see Chapter 16), and NetSolve test suite (see the
section calledTesting the Software). After a successful compilation process, the appropriatebinaries
and/or libraries can be found in the$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH and/or
$NETSOLVE_ROOT/lib/$NETSOLVE_ARCH directories respectively. Thus, to execute a NetSolve binary,
the user must either execute the command from within the$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH

directory, or add this directory name to his UNIXpath variable.

79

Chapter 13. Downloading, Installing, and Testing the Agentand Server

Testing the Software
Testing the software consists of starting an agent and a server and running a client test (the section called
Agent-Server-Client Test). Alternatively, the default agent and servers running at the University of
Tennessee can be used to test the client only (see the sectioncalledTesting the Unix installationin
Chapter 3). We describe here the step-by-step procedure that involves manipulations that will be detailed
and explained in the following chapters.

Agent-Server-Client Test

1. Choose a machine to run the agent, server and client (saynetsolve.world.net),

2. cd NetSolve,

3. edit the file./server_config to replacenetsolve.cs.utk.edu by
netsolve.world.net, and save the file.

4. setenv NETSOLVE_AGENT netsolve.world.net

5. $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/agent

6. $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/server

7. cd $NETSOLVE_ROOT/bin/$NETSOLVE_ARCH

8. Test

While the test suite is running, it prints messages about itsexecution. This test tests only the C and
Fortran interfaces. See Chapter 6 for details on how to test the Matlab interface. Successful completion
of these tests assures you that you have properly installed the NetSolve agent and server.

If an error is encountered during testing, refer to the Troubleshooting section of theErrata file
(http://icl.cs.utk.edu/netsolve/errata.html) for NetSolve.

Expanding the Server Capabilities
It is possible to add new functionalities to a NetSolve computational server by specifying additional
problem description files in the server configuration file. Infact, a number of PDFs have been written for
a variety of serial and parallel software packages: ARPACK,Aztec, BLAS, ITPACK, LAPACK, MA28,
PETSc, ScaLAPACK, and SuperLU. These PDFs are available in the$NETSOLVE_ROOT/problems/

80

Chapter 13. Downloading, Installing, and Testing the Agentand Server

directory. If a user has one of these software libraries compiled on the architecture to which he is
installing NetSolve, he can easily add this functionality to his server in three steps.

• During the configure phase of NetSolve, specify the configureoption(s) for enabling the respective
library. Refer to the section calledInstallation on Unix Systemsfor details. This step will automatically
set the needed@LIB line(s) in the respective$NETSOLVE_ROOT/problems/ PDF file, as well as set
the required variables in the$NETSOLVE_ROOT/conf/Makefile.$NETSOLVE_ARCH.inc file.

• Uncomment the respective line in thekeywordsection@PROBLEMS: of the
$NETSOLVE_ROOT/server_config file.

• Recompile the server by typingmake serverin the$NETSOLVE_ROOT/ directory.

Note: If you are enabling sparse_iterative_sovle or sparse_direct_solve, you will need to type make
wrappers followed by make server .

NetSolve’s distributed memory services (e.g., ScaLAPACK,PETSc) are spawned using MPI (mpirun
-machinefile MPImachines ...) and thus require an MPI machine file describing the parallelmachine on
which to run. The name of the file containing this list of homogeneous machines is called
$NETSOLVE_ROOT/MPImachines and is referenced in the file$NETSOLVE_ROOT/server_config for
configuring the server. Therefore, if you are enabling parallel services within a server, the userMUST
edit this$NETSOLVE_ROOT/MPImachines file to list the specific machines to be used. The current
implementation of NetSolve allows only oneMPImachines file per server. This spawning file is tied to
the server, andnot to a specific service enabled. Thus, unfortunately, if you wish to enable parallel
services on different clusters, then you must enable the software on different servers -- i.e., maintain a
separate NetSolve source code tree for each server enablement so that each parallel service can have its
ownMPImachines file from which to spawn. A future release of NetSolve should identify a separate
MPImachines file with each parallel service that can be enabled.

Enabling the LAPACK library
To enable LAPACK within NetSolve, one must perform the following steps:

• During the configure phase of the NetSolve installation, type

UNIX> ./configure --with-lapacklib=LAPACK_LIB --with-blaslib=BLAS_LIB

whereLAPACK_LIB denotes the name of the LAPACK library, andBLAS_LIB denotes the name(s) of the
BLAS library. If these libraries are not already available on the user’s machine, he can download

81

Chapter 13. Downloading, Installing, and Testing the Agentand Server

LAPACK from theLAPACK web page(http://www.netlib.org/lapack/lapack.tgz). If an optimized
BLAS library is not available on the user’s machine, he can view theBLAS FAQ
(http://www.netlib.org/blas/faq.html#1.6) for detailsof availability; otherwise, he can download
ATLAS from theATLAS webpage(http://www.netlib.org/atlas/) and it will automatically generate an
optimized BLAS library for the installation architecture.

• The user must then uncomment the respective line

#./problems/lapack

in the@PROBLEMS: section of the$NETSOLVE_ROOT/server_config file by removing the# from the
beginning of the line.

• And lastly, the user must recompile the server by typingmake serverin the$NETSOLVE_ROOT/
directory.

Enabling the ScaLAPACK library
To enable ScaLAPACK within NetSolve, one must perform the following steps.

• During the configure phase of the NetSolve installation, type

UNIX> ./configure --with-scalapacklib=SCALAPACK_LIB \
--with-blacslib=BLACS_LIB --with-blaslib=BLAS_LIB \
--with-mpidir=MPI_DIR

whereSCALAPACK_LIB denotes the name of the ScaLAPACK library,BLACS_LIB denotes the name(s)
of the MPIBLACS libraries, andBLAS_LIB denotes the name(s) of the BLAS library. If these libraries
are not already available on the user’s machine, he can download ScaLAPACK from theScaLAPACK
web page(http://www.netlib.org/scalapack/scalapack.tgz), andthe MPIBLACS from theBLACS web
page(http://www.netlib.org/blacs/mpiblacs.tgz). If an optimized BLAS library is not available on the
user’s machine, he can view theBLAS FAQ(http://www.netlib.org/blas/faq.html#1.6) for detailsof
availability; otherwise, he can download ATLAS from theATLAS webpage
(http://www.netlib.org/atlas/) and it will automatically generate an optimized BLAS library for the
installation architecture.MPI_DIR denotes the location of the MPI library (assumes the standard
MPICH distribution).

• The user must then uncomment the respective line

#./problems/scalapack

in the@PROBLEMS: section of the$NETSOLVE_ROOT/server_config file by removing the# from the
beginning of the line.

82

Chapter 13. Downloading, Installing, and Testing the Agentand Server

• And lastly, the user must recompile the server by typingmake serverin the$NETSOLVE_ROOT/
directory.

Enabling Sparse Iterative Solvers (PETSc, Aztec, and ITPAC K)
NetSolve offers a’sparse_iterative_solve’service as a convenient interface to sparse iterative methods
packages such as PETSc, Aztec, and ITPACK. If the user would like to enable PETSc, Aztec, or
ITPACK within NetSolve, he must perform the following steps.

• During the configure phase of the NetSolve installation, type

UNIX> ./configure --with-petsc=PETSC_DIR --with-aztec=AZTEC_DIR \
--with-azteclib=AZTEC_LIB --with-lapacklib=LAPACK_LIB \
--with-blaslib=BLAS_LIB --with-mpidir=MPI_DIR

wherePETSC_DIR denotes the location of the PETSc directory containing the standard distribution,
AZTEC_DIR denotes the location of the Aztec directory where the include files can be found,
AZTEC_LIB is the link line for the Aztec library,LAPACK_LIB denotes the name of the LAPACK
library,BLAS_LIB denotes the name(s) of the BLAS library, andMPI_DIR denotes the location of the
MPI library (assumes the standard MPICH distribution). If these libraries are not already available on
the user’s machine, he can download and install the softwarefrom the respective webpages -- (PETSc
homepage(http://www-fp.mcs.anl.gov/petsc/), andAztec homepage
(http://www.cs.sandia.gov/CRF/aztec1.html)). The PETSc interface is compatible with PETSc,
version 2.0.29. LAPACK can be downloaded from theLAPACK web page
(http://www.netlib.org/lapack/lapack.tgz). If an optimized BLAS library is not available on the user’s
machine, he can view theBLAS FAQ(http://www.netlib.org/blas/faq.html#1.6) for detailsof
availability; otherwise, he can download ATLAS from theATLAS webpage
(http://www.netlib.org/atlas/) and it will automatically generate an optimized BLAS library for the
installation architecture. The ITPACK library is distributed with NetSolve in
$NETSOLVE_ROOT/src/SampleNumericalSoftware/ITPACK/ since a small modification to the
library was necessary to enable its use in NetSolve.

• The user must then uncomment the respective line

#./problems/sparse_iterative_solve

in the@PROBLEMS: section of the$NETSOLVE_ROOT/server_config file by removing the# from the
beginning of the line.

• And second, the user must compile the server by typingmake wrappersandmake serverin the
$NETSOLVE_ROOT/ directory.

83

Chapter 13. Downloading, Installing, and Testing the Agentand Server

Enabling Sparse Direct Solvers (SuperLU and MA28)
NetSolve offers a’sparse_direct_solve’service as a convenient interface to sparse direct methods
packages such as SuperLU and MA28. If the user would like to enable SuperLU or MA28 within
NetSolve, he must perform the following steps.

• During the configure phase of the NetSolve installation, type (for example, to enable SuperLU)

UNIX> ./configure --with-superlu=SUPERLU_DIR --with-
superlulib=SUPERLU_LIB \

--with-lapacklib=LAPACK_LIB --with-blaslib=BLAS_LIB \
--with-mpidir=MPI_DIR

whereSUPERLU_DIR denotes the location of the SuperLU directory where the include files can be found,
SUPERLU_LIB is the link line for the SuperLU library,LAPACK_LIB denotes the name of the
LAPACK library, BLAS_LIB denotes the name(s) of the BLAS library, andMPI_DIR denotes the
location of the MPI library (assumes the standard MPICH distribution). If these libraries are not
already available on the user’s machine, he can download andinstall the software from the respective
webpage --SuperLU homepage(http://www.nersc.gov/~xiaoye/SuperLU/). The MA28 library is
distributed with NetSolve in$NETSOLVE_ROOT/src/SampleNumericalSoftware/MA28/ since a
small modification to the library was necessary to enable itsuse in NetSolve. LAPACK can be
downloaded from theLAPACK web page(http://www.netlib.org/lapack/lapack.tgz). If an optimized
BLAS library is not available on the user’s machine, he can view theBLAS FAQ
(http://www.netlib.org/blas/faq.html#1.6) for detailsof availability; otherwise, he can download
ATLAS from theATLAS webpage(http://www.netlib.org/atlas/) and it will automatically generate an
optimized BLAS library for the installation architecture.

• The user must then uncomment the respective line

#./problems/sparse_direct_solve

in the@PROBLEMS: section of the$NETSOLVE_ROOT/server_config file by removing the# from the
beginning of the line.

• And lastly, the user must compile the server by typingmake wrappersandmake serverin the
$NETSOLVE_ROOT/ directory.

84

Chapter 14. Running the NetSolve Agent
After compiling the agent as explained in the section calledInstallation on Unix Systemsin Chapter 13,
the executable of the NetSolve agent is located in:

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/agent.

The proper command line for this program is

agent [-a agent_name] [-l logfile]

When invoked with no arguments, a stand-alone agent is started. This agent is now available for
registrations of NetSolve servers wanting to participate in a new NetSolve system. After servers are
registered, client programs can contact this agent and haverequests serviced by one or more of the
registered servers.

Note:: Only one NetSolve agent can be running on a given machine at a given time.

When the-a option is used, as in:

UNIX> agent -a netsolve.cs.utk.edu

the new agent will register itself with the agent running on the host specified by the agent_name
argument. If no agent is running on this host, the new agent will exit with an appropriate error message.
However, when it is able to contact that agent, it will receive from that agent, a list of servers (who have
given the previous agent the permission to broadcast their status, see Chapter 15) and possibly other
agents. These servers then also become available for the servicing of requests sent via the new agent.

The-l option specifies the name of a file to use for logging purposes.

UNIX> agent -l /home/me/agent_logfile

This file is where the agent logs all of its interactions (and possibly errors) since it is a daemon with no
controlling terminal and therefore has no way to do this otherwise. This log file also produces very useful
information about requests, among other things, that helpsadministrators know how their NetSolve
system is being used. If no-l option is specified, the default log file is
$NETSOLVE_ROOT/nsagent.log. This means that successive runs of the agent with no specification of
a log file will overwrite the original log file, so if the information is needed, it must be copied to another
file.

85

Chapter 14. Running the NetSolve Agent

To terminate an existing agent (or query an existing NetSolve system), the user should refer to the
NetSolve management tools, particularlyNS_killagent, as outlined in Chapter 16.

86

Chapter 15. Running the NetSolve Server

Starting a Server
After compiling the server as explained in the section called Installation on Unix Systemsin Chapter 13,
the executable of the NetSolve server is located in:

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/server.

The proper command line for this program is

server [-f config_file] [-l logfile] [-k]

This executable uses aconfiguration filefor initializing the NetSolve server. When invoked with no
arguments as:

UNIX> server

the default configuration file located in$NETSOLVE_ROOT/server_config is used. This is the file that
should be used for first experiments and for testing the system. However, it is possible to customize or
expand the functionality of a server (the section calledThe Server Configuration File), or to specify
another configuration file by calling the executable as in

UNIX> server -f /home/me/my_config

for instance.

The-l option specifies the name of a file to use for logging purposes.

UNIX> server -l /home/me/agent_logfile

This file is where the server logs all of its interactions (andpossibly errors) since it is a daemon with no
controlling terminal and therefore has no way to do this otherwise. If the-l option is not specified, the
default log file is$NETSOLVE_ROOT/nsserver.log. Successive runs of the server with no
specification of a log file will overwrite the original log file, so if the information is needed, it must be
copied to another file!

Note:: Multiple NetSolve servers can be running on a given machine if and only if they have a
different NetSolve agent.

87

Chapter 15. Running the NetSolve Server

When the server has been compiled with the Kerberos libraries, the administrator has the option of
having the server require clients to authenticate before rendering services. To mandate this
authentication, the-k option must be used, otherwise no authentication will be asked for, and the server
will be available to service requests to ANY client asking for services.

To terminate an existing server (or query an existing NetSolve system), the user should refer to the
NetSolve management tools as outlined in Chapter 16.

The Server Configuration File
The server configuration file is used to customize the server.The default configuration file in
$NETSOLVE_ROOT/server_config should be used as a template to create new configuration files.This
configuration file is organized as follows. A line can start with a’#’ in which case the line is ignored
and can be used for comments. A line can also start with akeywordthat is prefixed by a’@’ typically
followed by a single value or parameter. Let us review all of the possible keywords and how they can be
used to precisely define a NetSolve server as it is done in the default configuration file.

• ’@AGENT:<hostname>’[*] specifies the agent that the NetSolve server must contact to register into
a NetSolve system. The agent is identified by the name of the host on which it is running and there can
be only one such line in the configuration file. If the’*’ is present, then the server will broadcast its
existence to all NetSolve agents known to the one running on<hostname>. Otherwise, the server will
only be known to the agent on<hostname>.

• ’@PROC:<number>’ specifies the number of processors (=1 for a single processor, =2 for a dual
processor, =4 for a quad processor) that can be used by the server to perform simultaneous
computations on the local hosts. There can only be one such line in the configuration file.

• ’@MPIHOSTS <filename> <number>’ specifies the path to the file that contains the list of
machines that can be used by MPI, and the maximum number of processors that can be spawned by
MPI.

• ’@WORKLOADMAX:<max>’ specifies the value of the workload beyond which the server refuses new
requests (e.g.’@WORKLOADMAX:100’). A value of-1 means that the server accepts requests
regardless of the workload.

• ’@SCRATCH:<path>’ specifies where the NetSolve server can put temporary directories and files.
The default is/tmp/.

• ’@CONDOR:<path>’ specifies that the NetSolve server is using a Condor [condor1] [condor2] pool as
a computing resource. The path to the Condor base directory must be provided. There can be only one
such line in the configuration file.

88

Chapter 15. Running the NetSolve Server

• ’@PROBLEMS:’ marks the beginning of the list ofproblem description file (PDF)names that are
enabled in the NetSolve server installation. Each of these problem description files contains interfaces
to a number of problems/subroutines from a particular software library. If a particular problem
description file is enabled in the server configuration file, then the problems/subroutines contained
therein become available on that server. A number of PDFs have been written for a variety of software
packages, but the default NetSolve installation only enables a small subset, as there is only a limited
amount of software included with the NetSolve distribution. Details of description files are given in
the section calledExpanding the Server Capabilitiesin Chapter 13.

• ’@RESTRICTIONS:’ marks the beginning of the list of access restrictions that are applicable to the
NetSolve server. The list consists of lines formatted as:

<domain name> <number of pending requests allowed>

The symbol’*’ is used as a wildcard in the domain name. For instance, the line:

*.edu 10

means that only 10 requests from clients residing on a.edu machine can be serviced simultaneously.
When the server receives a request from some machine, it determines which line in the list must be
used to accept or reject the request by taking the most refineddomain name. For instance, if the list of
the restrictions is:

*.edu 5
*.utk.edu 10

then the server accepts at most 5 simultaneous requests coming from.edu machines that arenot in the
.utk.edusub-domain, and at most 10 requests that come from machines in the.utk.edu sub-domain
for a total of 15 possible simultaneous requests.

89

Chapter 16. NetSolve Management Tools for
Administrators

The NetSolve distribution comes with a set of tools to manage/query a NetSolve system. After compiling
the tools as explained in the section calledInstallation on Unix Systemsin Chapter 13, the following six
executables are available:

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_conf
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_problems
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_probdesc
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killagent
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killserver
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killall

Let us review these executables one by one.

NS_conf
This executable takes one argument on the command line, the name of a host running a NetSolve agent:

UNIX> NS_conf netsolve.cs.utk.edu

It prints the list of hosts participating in the NetSolve system:

AGENT: netsolve.cs.utk.edu (128.169.93.161)
SERVER: maruti.cs.berkeley.edu (128.32.36.83)
SERVER: cupid.cs.utk.edu (128.169.94.221)

NS_problems
This executable takes the name of a host running an agent as single argument on its command line. It
prints the list of problems that can be solved by contacting that agent:

UNIX> NS_problems netsolve.cs.utk.edu
/BLAS/Matrices/matmul
/ItPack/jsi

90

Chapter 16. NetSolve Management Tools for Administrators

/LAPACK/Matrices/EigenValues/eig
/LAPACK/Matrices/SingularValues/svd

NS_probdesc
This executable takes two arguments on its command line: thename of a host running a NetSolve agent
and the nickname of a NetSolve problem. It prints the description of the problem:

UNIX> NS_probdesc netsolve.cs.utk.edu linsol
-- linsol -- From LAPACK -
Compute the solution to a real system of linear equations

A * X = b
where A is an N-by-B matrix and X and B are N-by-NRHS matrices.
Matlab Example : [x] = netsolve(’dgesv’,a,b)
http://www.netlib.org/lapack/index.html
* 2 objects in INPUT
- input 0: Matrix Double Precision Real.
Matrix A
- input 1: Matrix Double Precision Real.
Right hand side

* 1 objects in OUTPUT
- output 0: Matrix Double Precision Real.
Solution

* Calling sequence from C or Fortran
6 arguments
- Argument #0:

- number of rows of input object #0 (A)
- number of columns of input object #0 (A)
- number of rows of input object #1 (RHS)

- Argument #1:
- number of columns of input object #1 (RHS)

- Argument #2:
- pointer to input object #0 (A)

- Argument #3:
- leading dimension of input object #0 (A)

- Argument #4:
- pointer to input object #1 (RHS)
- pointer to output object #0 (SOLUTION)

- Argument #5:
- leading dimension of input object #1 (RHS)

91

Chapter 16. NetSolve Management Tools for Administrators

NS_killagent
This executable takes one argument on its command line, the name of a host running a NetSolve agent.
After a (basic) user authentication, the executable kills the agent.

UNIX> NS_killagent netsolve.cs.utk.edu
Agent on netsolve.cs.utk.edu : killed

NS_killserver
This executable takes two arguments on its command line, thename of a host running a NetSolve agent
and the name of a host running a NetSolve server. After a (basic) user authentication, the executable kills
the server, using the agent as an entry-point into the system.

UNIX> NS_killserver netsolve.cs.utk.edu cupid.cs.utk.edu
Server on cupid.cs.utk.edu killed : killed

NS_killall
This Shell script takes one argument on its command line, thename of a host running a NetSolve agent.
After a (basic) user authentication, the executable kills the agent, along with all other NetSolve processes
(agents and servers) known to that agent:

UNIX> NS_killall netsolve.cs.utk.edu
Server on cupid.cs.utk.edu : killed
Server on maruti.cs.berkeley.edu : killed
Agent on netsolve.cs.utk.edu : killed

92

Chapter 17. The Problem Description File
The problem description file (PDF) is the mechanism through which NetSolve enables services for the
user. The NetSolve distribution contains the source code for MA28, ITPACK, qsort, and a subset of
BLAS and LAPACK routines. This software is contained in the
$NETSOLVE_ROOT/src/SampleNumericalSoftware/ directory. Therefore, the default NetSolve
enablement (contained in$NETSOLVE_ROOT/server_config) only accesses the PDFs related to the
included software packages. The user should refer to the section calledExpanding the Server
Capabilitiesin Chapter 13 for details on expanding the capabilities of a server, and refer to the section
calledContents of a Problem Description Filefor details on the structure of a problem description file.

Contents of a Problem Description File
In what follows we describe the contents of a problem description file (PDF). We offer all of the details
because it may be necessary or desirable to be aware of them, but we strongly recommend the use of the
GUI application described in the section calledPDF Generatorto create new PDFs.

The rationale for the syntax of the description files is explained in [ima]. Each description file is
composed of severalproblem descriptions. Before explaining how to create a problem description, we
reiterate the concept ofobjectsin NetSolve, and then define the concept ofmnemonics.

NetSolve Objects
As detailed in the section calledNetSolve Problem Specificationin Chapter 4, the syntax of a NetSolve
problem specification is a function evaluation:

<output> = <name>(<input>)

where

• <name> is a character string containing the name of the problem,

• <input> is a list of input objects,

• <output> is a list of output objects.

An object is itself described by anobject typeand adata type. The types available in the current version
of NetSolve are shown in Table 17-1 and Table 17-2.

93

Chapter 17. The Problem Description File

Table 17-1. Available data types

Data Type Description Note

NETSOLVE_I Integer

NETSOLVE_CHAR Character

NETSOLVE_BYTE Byte never XDR encoded

NETSOLVE_FLOAT Single precision real

NETSOLVE_DOUBLE Double precision real

NETSOLVE_SCOMPLEX Single precision complex

NETSOLVE_DCOMPLEX Double precision complex

Table 17-2. Available object types

Object Type Description Note

NETSOLVE_SCALAR scalar

NETSOLVE_VECTOR vector

NETSOLVE_MATRIX matrix

NETSOLVE_SPARSEMATRIX sparse matrix Compressed Row Storage (CRS)
format

NETSOLVE_FILE file only of data type
NETSOLVE_CHAR

NETSOLVE_PACKEDFILES packed files only of data type
NETSOLVE_CHAR

NETSOLVE_UPF User Provided Function only of data type
NETSOLVE_CHAR

NETSOLVE_STRING Character string only of data type
NETSOLVE_CHAR

NETSOLVE_STRINGLIST Character string list only of data type
NETSOLVE_CHAR

A problem description file (PDF) uses these objects to define aproblem specification for a given service.
the section calledMnemonicsdescribes the requirements for each NetSolveobject typeas it relates to the
problem description file.

Sparse Matrix Representation in NetSolve

94

Chapter 17. The Problem Description File

NetSolve uses the Compressed Row Storage (CRS) for storing sparse matrices. The Compressed Row
Storage (CRS) format puts the subsequent nonzeros of the matrix rows in contiguous memory locations.
Assuming we have a nonsymmetric sparse matrix, we create vectors: one for floating-point numbers
(val), and the other two for integers (col_ind, row_ptr). The val vector stores the values of the nonzero
elements of the matrix, as they are traversed in a row-wise fashion. The col_ind vector stores the column
indexes of the elements in the val vector. The row_ptr vectorstores the locations in the val vector that
start a row.

For example, if

1 0 3 1
A = 0 0 5 2

6 1 0 8
4 0 0 0

then,

val: 1 3 1 5 2 6 1 8 4
col_ind: 0 2 3 2 3 0 1 3 0
row_ptr: 0 3 5 8 9

Thus, if a problem in NetSolve has the following specifications:

-- sm_prob --
* 1 object in INPUT
- input 0: Sparse Matrix Double Precision Real.
the sparse matrix

* Calling sequence from C or Fortran
11 arguments
- Argument #0:

- number of rows of input object #0 (sm)
- number of columns of input object #0 (sm)

- Argument #1:
- number of non-zero values of input object #0 (sm)

- Argument #2:
- pointer to input object #0 (sm)

- Argument #3:
- column indices of non-zeros of input object #0 (sm)

- Argument #4:
- row pointers of the sparse matrix #0 (sm)

a Matlab user would call this program as:

>> netsolve(’sm_prob’, SM);

95

Chapter 17. The Problem Description File

where SM is a Matlab constructed sparse matrix object.

and a C user would invoke this problem as:

double* val;
int* col_index;
int* row_ptr;

int rows, num_nzeros;

/* initialize the arrays and variables */
...
...
...

status = netsl("sm_prob()", rows, num_nzeros, val, col_index, row_ptr);

Mnemonics
As described in the section calledNetSolve Objects, the NetSolve system defines data structures that we
call NetSolveobjects. These are high-level objects that are comprised of integers, and arrays of
characters and floats. To be able to relate high-level and low-level descriptions of the input and output
objects of a given problem, we need to develop some kind of syntax. We decided to term this syntax
mnemonics. A mnemonic is a character string (typically 2 or 3 characters long) that is used to access low
level details of the different input and output objects. We index the list of objects, starting at 0. Therefore,
the first object in input to a problem is the input object number 0 and the third object in output to a
problem is the output object number 2, for instance. We use anI or anO to specify whether an object is
in input or output. Here are the eight types of mnemonics for an object indexedx:

• Pointer to the data :[I|O]x,

• Number of rows :m[I|O]x (only for matrices, vectors, packed files and string lists),

• Number of columns :n[I|O]x (only for matrices),

• Leading dimensions :l[I|O]x (only for matrices).

• Special descriptor :d[I|O]x (only for distributed memory objects).

• Nonzero values of the sparse matrix:f[I|O]x

• Row pointers for the sparse matrix:i[I|O]x

• Column indices for the sparse matrix:p[I|O]x

96

Chapter 17. The Problem Description File

For example,mI4 designates the number of rows of the input object number 4, whereasO1 designates the
pointer to the data of output object number 1. In the next section, we describe the different sections that
are necessary to build a problem description and will see howthe mnemonics are used.

Sections of a Problem Description
The structure of a problem description file is very similar tothat of a server configuration file. The lines
starting with a’#’ are considered comments. Keywords are prefixed by a’@’ and mark the beginning
of sub-sections. In what follows, we describe each section separately as well as each keyword and
sub-sections within each section. Keep in mind to look at oneexisting problem description file as a
template when reading this section.

Problem ID and General Information

The following keywords are required and must occur in the order in which they are presented.

• ’@PROBLEM <nickname>’ specifies the name of a problem as it will be visible to the NetSolve users
(clients).

• ’@INCLUDE <name>’ specifies a C header file to include (See the example in the section calledA
Simple Example). There can be several such lines as a problem can call several functions.

• ’@DASHI <path>’ specifies a default directory in which header files are to be looked for, in a similar
way as the-I option of most C compilers. There can be several such lines asa problem can call
several functions.

• ’@LIB <name>’ specifies a library or an object file to link to, or a-L option for the linker (See the
example in the section calledA Simple Example). If multiple libraries are required, a separate@LIB

line must be specified for each library, and the libraries will be linked in the order in which they are
specified. The@LIB line(s) can contain variable name substitutions such as$(NETSOLVE_ROOT).

• ’@FUNCTION <name>’ specifies the name of a function from the underlying numerical software
library that is being called to solve the problem. There can be several such lines as a problem can call
several functions.

• ’@LANGUAGE [C|FORTRAN]’ specifies whether the underlying numerical library is written in C or in
Fortran. This is used in conjunction with the function namesspecified with’@FUNCTION’ to handle
multi-language interoperability.

• ’@MAJOR [COL|ROW]’ specifies what major should be used to store the input matrices before calling
the underlying numerical software. For instance, if the numerical library is LAPACK [lapack], the
major must be’COL’.

97

Chapter 17. The Problem Description File

• ’@PATH <path>’ specifies a path-like name for the problems. This path is onlya naming convention
and is used for presentation purposes.

• ’@DESCRIPTION’ marks the beginning of the textual description of the problem. This sub-section is
mandatory as it is used by the NetSolve management tools to provide information to the NetSolve
users (clients) about a specific problem.

Input Specification

• ’@INPUT <number>’ specifies the number of objects in input to the problem. This line is followed
by that corresponding<number> of object descriptions (see below).

• ’@OBJECT <object type> <data type> <name>’ specifies an object type, data type, and name.
The name is only used for presentation purposes. This line isfollowed by a mandatory textual
description of the object. The data types are abbreviated byreplacingNETSOLVE_I by I,
NETSOLVE_CHAR by CHAR, NETSOLVE_BYTE by B, NETSOLVE_FLOAT by S, NETSOLVE_DOUBLE by
D, NETSOLVE_SCOMPLEX by C, andNETSOLVE_DCOMPLEX by Z, (see Table 17-1). Similarly, the object
types are abbreviated by replacingNETSOLVE_SCALAR by SCALAR, NETSOLVE_VECTOR by VECTOR,
NETSOLVE_MATRIX by MATRIX, NETSOLVE_SPARSEMATRIX by SPARSEMATRIX, NETSOLVE_FILE
by FILE, NETSOLVE_PACKEDFILES by PACKEDFILES, NETSOLVE_UPF by UPF, NETSOLVE_STRING
by STRING, andNETSOLVE_STRINGLIST by STRINGLIST, (see Table 17-2). The objects of object
type FILE, STRING, UPF, and PACKEDFILES do not have a data type. Here are a few examples:

@OBJECT VECTOR I X
An integer vector named ’X’

@OBJECT MATRIX D A
A double precision real matrix named ’A’

@OBJECT FILE foo
A file named ’foo’

Output Specification

• ’@OUTPUT <number>’ specifies the number of objects in output from the problem. This line is
followed by that corresponding<number> of object descriptions (see below).

98

Chapter 17. The Problem Description File

• ’@OBJECT <object type> <data type> <name>’ specifies an object type, a data type and a
name. This line is followed by a mandatory textual description of the object. The abbreviations for
data types and object types are as defined previously in the section calledInput Specification.

Additional Information

The following list of tags are optional.

• ’@MATLAB_MERGE <number1>,<number2>’ specifies that the output objects number<number1>

and<number2> can be merged as a complex object upon receipt of the numerical results from the
Matlab client interface (see Chapter 6).

• ’@COMPLEXITY <number1>,<number2>’ specifies that given the size of the problem, sayn, the
asymptotic complexity, sayC, of the problem in number of floating point operations is

C = number1 * n^(number2)

• ’@CUSTOMIZED <name>’ is an internal customization used by the code developers. Itmeans that the
NetSolve server code will do something different (or custom) before invoking a routine. For example,
this option is used for the enablement of ScaLAPACK and the sparse solvers. The functionality of this
keyword will be expanded in the future. Novice users are advised to avoid using this keyword.

• ’@PARALLEL MPI’ specifies that the software enabled in the problem description file is parallel and
uses MPI. Thus, MPI must be installed on the server to which you are enabling this service.

Calling Sequence
The calling sequence to the problem must be defined so that theNetSolve client using the C or Fortran
interfaces can call the problem. The material described in this section is ignored by NetSolve when the
client is Matlab, Mathematica or Java. To clarify, let us take an example. Let us say that the problem
’toto’ takes a matrix in input and returns a matrix in output. The call from the Matlab interface looks like:

>> [b] = netsolve(’toto’,a)

for instance. However, there can be several possible calling sequences from C or Fortran. Assuming the
following declarations in Fortran:

DOUBLE PRECISION A(M,N)
DOUBLE PRECISION B(K,L)

99

Chapter 17. The Problem Description File

the following calling sequences are all possible:

CALL FNETSL(’toto()’,A,B,M,N,K,L)
CALL FNETSL(’toto()’,A,M,N,B,K,L)
CALL FNETSL(’toto()’,M,N,A,K,L,B)
etc.....

The Calling Sequence sub-section in the problem description specifies the order of the arguments
(represented with mnemonics) in the C and Fortran interfacecalling sequence. Indeed, still with the same
example, the integerN can be represented by the mnemonicnI0, and the pointerB can be represented by
the mnemonicO0.

It is very important to note that the number of rows or columnsor the leading dimension of input and
output arguments must be specified in the@CALLINGSEQUENCE sub-section. If a dimension is not passed
as an input argument, or equivalenced with an existing inputargument (via@ARG), it must be
set/computed using@COMP.

• ’@CALLINGSEQUENCE’ marks the beginning of a calling sequence description. Thisdescription
consists of a list of argument specifications (see below).

• ’@ARG <comma-separated list of mnemonics>’ specifies an argument of the calling
sequence. For instance the line

@ARG I0

specifies that the current argument in the calling sequence is the pointer to the data of the first object in
input. The line

@ARG mI0,lI0

specifies that the current argument in the calling sequence is the number of rowsand the leading
dimension of the first object in input (which in this case is a matrix). The line

@ARG ?

specifies that the current argument in the calling sequence should be ignored by NetSolve (useful in
some cases). Note that no argument description contains mnemonics of the form[m|n]O*.

• ’@CONST <mnemonic>=<number>’ specifies that the number of rows or columns or the leading
dimension of an input object is constant and can not be found in the calling sequence. For instance, the
line

@CONST mI4=12

means that the number of rows of the fifth object in input is always 12 and is not passed in by the
NetSolve user.

100

Chapter 17. The Problem Description File

• ’@COMP <mnemonic>=<expression>’ specifies that the number of rows or columns or the leading
dimension of an input object has not been supplied as an argument in the calling sequence, but can be
computed using arguments in the calling sequence.

Here are some examples:

@COMP mI1=mI0
@COMP mI0=op(+,mI3,1) // performs an addition
@COMP mI3=array(I2,0) // performs an indirection
@COMP mI1=op(-,array(I0,op(-,mI0,1)),1)
@COMP mI2=op(+,op(+,array(I1,0),1),op(*,array(I0,0),2))
@COMP mI2=if(array(I0,0)=’N’,mI1,if(array(I0,0)=’T’,nI1,op(-,0,1)))

// conditionals

where theop notation is used to perform addition and subtraction, and thearray notation is used to
access the value of a specific element of an array. For example, mI3 is equal to the value of the zero-th
element of the arrayI2.

This feature of NetSolve is rarely used, and is only necessary in routines when the user’s array storage
differs from the array storage passed to the computational routine. A good example of such an
occurrence is in the interfaces to the LAPACK routines for band and tridiagonal matrices.

Pseudo-Code

• ’@CODE’ marks the beginning of the pseudo-code section.

• ’@END_CODE’ marks the end of the pseudo-code section.

The pseudo-code is C code that uses the mnemonics described in the section calledMnemonics. This
code contains call(s) to the numerical library function(s)that the problem is supposed to use as part of its
algorithm. The arguments in the calling sequences of these library routines will be primarily the different
mnemonics. In the pseudo-code, the mnemonics are pre- and ap-pended by a’@’ to facilitate the
parsing. Let us review again the meaning of some possible mnemonics in the pseudo-code:

• ’@I0@’: pointer to the elements of the first object in input.

• ’@mI0@’: pointerto an integer that is number of rows of the first object in input.

• ’@nO1@’: pointerto an integer that is number of columns of the second object inoutput.

Usually, the pseudo-code is organized in three parts. First, thepreparationof the input (if necessary).
Second, the call to the numerical library function(s). Third, the update of the output (pointer and sizes).
At this point, it is best to give an example. Let us assume thatwe have access to a hypothetical numerical

101

Chapter 17. The Problem Description File

C library that possesses a functionmatvec() that performs a matrix-vector multiply for square matrices.
The prototype of the function is

void matvec(float *a, float *b, int n, int l);

wherea is a pointer to the matrix,b is a pointer to the vector,n is the dimension of the matrix,l is the
leading dimension of the matrix and the result is stored inb (overwriting the input). We may define the
problem such that the matrix is the first object in the input, the vector the second object in the input, and
the result the only object in output. Possible preparationscould be for instance the creation of workspace,
test of input values to detect mistakes, test of matching dimensions. In this case, we may want to check
that the dimension of vectorb agrees with the number of columns of matrixa. This can be done as
follows:

@CODE
if (*@mI1@ != *@nI0@)

return NS_PROT_DIM_MISMATCH;

The macroNS_PROT_DIM_MISMATCH is defined by NetSolve. Other macros available are
NS_PROT_BAD_VALUES (for invalid input parameters),NS_PROT_INTERNAL_FAILURE (for a
malfunction of the numerical software) orNS_PROT_NO_SOLUTION (sometimes useful if no numerical
solution has been found and the client is interactive). Notice the use of’*’ for accessing the integers at
addresses@mI1@ and@nI0@.

The second part of the pseudo-code consists of calling the functionmatvec and is:

matvec(@I0@,@I1@,*@mI0@,*@mI0@);

A few things can be said on this call. First, we use the’*’ to access integers via the pointers. Note that
if matvec() were a Fortran subroutine, we would pass the addresses themselves (see Example below).
Second, the leading dimension is taken to be equal to the dimension. This code is executed at the server
level where the matrix (or sub-matrix) has been received from the client over the network. As such, it has
been stored contiguously in memory and has a leading dimension equal to its number of rows. As a
general rule, the mnemonics@l[I|O]*@ never appear in the pseudo-code. The last thing to do at this
point is to update the output:

@O0@ = @I1@;
*@mO0@ = *@mI1@;
@END_CODE

The first line expresses the fact that the input has been overwritten by the output. The second line sets the
number of rows of the output. The following section gives a complete example, with all of the sections of
the problem description.

102

Chapter 17. The Problem Description File

A Simple Example
Let us imagine that we have access to a Fortran numerical library that contains a function, sayLINSOL,
to solve a linear system according to the following prototype:

SUBROUTINE LINSOL(A, B, N, NRHS, LDA, LDB)

DOUBLE PRECISION A(LDA, *) // Left-hand side (NxN)
DOUBLE PRECISION B(LDB, *) // Right-hand side (NxNRHS),

// overwritten with the solution
INTEGER N
INTEGER NRHS
INTEGER LDA // Leading Dimension of A
INTEGER LDB // Leading Dimension of B

Then, an appropriate description for a problem that solves alinear system usingLINSOL and that expects
from the client the same calling sequence as the one forLINSOL is:

@PROBLEM linsol
@INCLUDE <math.h>
@INCLUDE "/home/me/my_header.h"
@LIB -L/home/lib/
@LIB -lstuff
@LIB /home/me/lib_$(NETSOLVE_ARCH).a
@LIB /home/stuff/add.o
@FUNCTION linsol
@LANGUAGE FORTRAN
@MAJOR COL
@PATH LinearAlgebra/LinearSystems/
@DESCRIPTION
Solves the square linear system A*X = B. Where:
A is a double-precision matrix of dimension NxN
B is a double-precision matrix of dimension NxNRHS
X is the solution

@INPUT 2
@OBJECT MATRIX D A
Matrix A (NxN)
@OBJECT MATRIX D B
Matrix B (NxNRHS)
@OUTPUT 1
@OBJECT MATRIX D X
Solution X (NxNRHS)
@COMPLEXITY 3,3
@CALLINGSEQUENCE
@ARG I0

103

Chapter 17. The Problem Description File

@ARG I1,O0
@ARG nI0,mI0,mI1
@ARG nI1
@ARG lI0
@ARG lI1,lO0
@CODE

linsol(@I0@,@I1@,@mI0@,@nI1@,@lI0@,@lI1@);

@O0@ =@I1@; /* Pointing to the overwritten input */
*@mO0@ = *@mI1@; /* Setting the number of rows */
*@nO0@ = *@nI1@; /* Setting the number of columns */

@END_CODE

PDF Generator
The process of creating new problem descriptions can be difficult, especially for a first time user. It is
true that after writing a few files, it becomes rather routineand several NetSolve users have already
generated a good number of working PDFs for a variety of purposes (including linear algebra,
optimization, image processing, etc.). However, we have designed a graphical Java GUI application that
helps users in creating PDFs. To compile this GUI, type

UNIX> make pdgui

from the$NETSOLVE_ROOT directory. This creates a set of Java classfiles needed to runthe GUI
application and places them in the$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH directory. After this
compilation, you can also find a shell script namedNS_pdguithat can be used from any directory to
properly run the GUI application which needs to locate the abovementioned classfiles. This GUI can be
used to create and load PDFs into NetSolve. Apart from being easy to use, the GUI also has a help menu
(not implemented yet) and we defer other details about running the GUI to those help files. The user has
the option of storing PDFs in nspdf format or both nspdf format and xmlpdf format. The user can only
load a PDF if it has been stored in xmlpdf format. As the user has the option of storing in xmlpdf format,
there is no need to keep the GUI open until he gets the pdf correct. He must make sure that he has stored
the created pdf in xmlpdf format before closing the GUI.

104

Chapter 18. Security in NetSolve

Introduction
This version of NetSolve has (rudimentary) Kerberos support. NetSolve components include clients,
agents, and servers. Currently the only requests that require authentication are requests that the client
makes to the server, and of those, only the “run problem” request. Other requests could be authenticated
(an obvious one being “kill server”), but drastic changes along these lines would probably require drastic
restructuring of NetSolve. For instance, a client can currently inform an agent that a particular server is
down, and the agent will not advertise that server for use in other problems. It seems of dubious value to
require authentication for such requests until there is a mechanism for specifying the trust relationship
between clients and agents.

An attempt has been made to allow Kerberized NetSolve clients to interoperate with both Kerberized and
non-Kerberized NetSolve servers. In either case the clientsends a request to the server.An ordinary
server will return a status code indicating that he will accept the requested operation. By contrast, a
Kerberized server will immediately return an “authentication required” error in response to the request.
The client is then required to send Kerberos credentials to the server before the request will be processed.
This allows the server to require authentication of the client. Currently there is no mechanism to allow
the client to insist on authentication of the server - a Kerberized client will happily talk with either
Kerberized or non-Kerberized servers.

The server implements access control via a simple list of Kerberos principal names. This list is kept in a
text file which is consulted by the server. A request to a NetSolve server must be made on behalf of one
of those principal names. If the principal name associated with the Kerberos credentials in the request
appears in the list, and the credentials are otherwise valid, the request will be honored. Otherwise, the
request will be denied.

Since the NetSolve server was not designed to run as a set-uidprogram, it is not currently feasible to
have the NetSolve server run processes using the user-id of the particular UNIX user who submitted the
request. NetSolve thus uses its own service principal name of “netsolve” rather than using the “host”
principal. What this means (among other things) is that you need to generate service principals and
keytabs for each of your NetSolve servers, even if you already have host principals in place.

The NetSolve server, by default, runs in non-Kerberized mode. To start up the server in Kerberized mode
you need to add the-k option to the command-line, and also set environment variables
NETSOLVE_KEYTAB (pointing to the keytab) and NETSOLVE_USERS pointing to the list of
authorized users).

This version of Kerberized NetSolve performs no encryptionof the data exchanged among NetSolve
clients, servers, or agents. Nor is there any integrity protection for the data stream.

105

Chapter 18. Security in NetSolve

Compiling a Kerberized Server

1. Compile Kerberos. See the Kerberos V5 Installation Guidefor instructions for how to do this.

2. Compile the NetSolve server with Kerberos support (./configure --with-kerberos).

Installing a Kerberized Server

1. Install Kerberos on the server machine. See Kerberos V5 Installation Guide for instructions for how
to do this. You do not have to install all of the Kerberos clients just to run a NetSolve server, but you
do needkadmin and components that deal with Kerberos tickets likekinit andkdestroy.

2. Define a Kerberos service principal for the NetSolve server. To define the principal for machine
foo.bar.com:

a. Get the name and the password of a Kerberos principal that is authorized to runkadmin and
create principals.

b. Log on to the machine where you want to install the Kerberized NetSolve server. Make sure
you have a secure connection to the client machine (perhaps you’re typing on the machine’s
keyboard, or perhaps you’re using ssh to log in to that machine), so that your password will not
be exposed on the net.

c. Do akinit to acquire a ticket that identifies you as someone who can create principals.

d. Create a service principal for the NetSolve server on yourhost. If your host is named
foo.bar.com, the service principal should be namednetsolve/foo.bar.com:

UNIX> kadmin

(if you don’t have a Kerberos ticket yet,kadmin will try to get one for you based on your UNIX
username. If there is a Kerberos principal for that username, and that principal has the ability to
create new principals, just type in your password when askedto do so. Otherwise runkinit to
get a ticket for some other principal - one that has the ability to create new principals - and then
runkadmin again.)

UNIX> kadmin: addprincipal -randkey netsolve/foo.bar.com
UNIX> kadmin: ktadd -k /etc/netsolve.keytab netsolve/foo.bar.com

This will extract the key into the file/etc/netsolve.keytab. You can put this keytab any place
you want it but it must be on a local filesystem. If you put the file on a NFS-mounted filesystem

106

Chapter 18. Security in NetSolve

then (a) you will compromise the security of your server by exposing the key to eavesdroppers,
and (b) there’s a good chance that NFS file locking bugs will cause your NetSolve server to get
wedged.

e. While you’re at it, you might want to define other service principals for the same host. For
instance, a service principal of the formhost/foo.bar.comis needed if you want to allow
Kerberized logins to that host. This is straightforward:

UNIX> kadmin: addprincipal -randkey host/foo.bar.com
UNIX> kadmin: ktadd host/foo.bar.com

f. Make sure that/etc/netsolve.keytab is readable only by the UNIX user-id that will run
the NetSolve server. (Permissions should be0600, -rw-------). The owner should not be root.

Running a Kerberized Server

1. You must have a NetSolve agent running somewhere first.

2. You must be logged into UNIX as the owner of the/etc/netsolve.keytab file, since the server
needs to be able to read this file.

3. Set up the environment variables:

UNIX> setenv NETSOLVE_AGENT netsolve.agent.host
UNIX> setenv NETSOLVE_KEYTAB /etc/netsolve.keytab
UNIX> setenv NETSOLVE_USERS /etc/netsolve.users

The NETSOLVE_USERS file is a text file that contains a list of Kerberos principal names, one per line,
who are authorized to use the server. It is reopened each timea user tries to authenticate to the
server, so you can add users while the server is running.

4. Start the server

UNIX> /path/to/netsolve/server -k &

If you do not use the-k flag, the server will not require authentication.

107

IV. Miscellaneous Features

108

Chapter 19. Using the Network Weather Service

Introduction
In NetSolve, as in other metacomputing systems, the scheduling of tasks to available resources is
difficult. NetSolve uses a limited load-balancing strategyto improve the utilization of computational
resources. This load-balancing strategy takes into account the current workload of the computational
resources available in the NetSolve system. In scheduling the client’s requests over a network, the
workload estimate should be “forecast” for when the computation will execute, and not a workload
estimate obtained at a time prior to the request. There are also other characteristics of distributed
metacomputing resources such as the CPU speed of the resource, the amount of physical memory of the
resource, as well as the latency/bandwidth from the client to the computational resource, that can be
effectively utilized in scheduling decisions for the computational resources.

The Network Weather Service (NWS) is a system which providesa way of forecasting dynamically
changing performance characteristics, such as the workload, from distributed metacomputing resources.
Integrating NWS into NetSolve improves the load-balancingstrategy by taking into account the future
load instead of the current load of the computational resources.

To Use NWS:
To use NWS within NetSolve, one must enable the NWS feature bytyping

UNIX> ./configure --with-nws=NWS_DIR

during the configure phase of NetSolve, whereNWS_DIR denotes the location of the NWS directory.
NWS is downloadable from theNWS web page(http://nws.cs.utk.edu/)

NWS Components utilized in NetSolve

Nameserver

This process implements a DNS-like directory capability used to bind process and data names with
low-level contact information. It knows which hosts are running in the NWS system, and provides a
database (name, location, function) for the NWS processes.To ensure that all hosts are known and

109

Chapter 19. Using the Network Weather Service

well-referenced, there must be only one nameserver per NWS system. The address of the
nameserver process is the only well-known address used by the system, allowing both data and
service to be distributed. All NWS processes must register their name, their location and their
function with the nameserver as soon as they are started. Onerole of the nameserver is to know at
any time where is the memory corresponding to a sensor.

Sensor

The sensor is a monitoring process running on each resource.It periodically measures the workload
of the resource and sends this information to the memory process described below. Moreover, it
empirically measures the network “weather” between a collection of specified hosts. A sensor
executes infinitely to provide recent measurements at any time. The earlier the process is started, the
more numerous are the measurements and thus the more accurate are the forecasts.

Memory

The memory process stores measurements sent by sensors and retrieves measurements for the
forecaster. As these measurements represent a key in NWS, they are immediately written to the
memory and stored with a time stamp and a value name corresponding to the host/experiment to
which they correspond.

Forecaster

The forecaster generates predictions by requesting the relevant measurement history from the
memory process. As the measurements are continually updated by a sensor, the most recent data
will be available to the forecaster when it makes its request.

A nameserver must be started first in an NWS system, as all other NWS processes depend upon it. After
starting the nameserver, memories can then register themselves, and sensor or forecaster processes can
be initialized on any host.

The default port numbers reserved for the NWS processes (nameserver, memory, forecaster, and sensor)
are specified in the file$NETSOLVE_ROOT/include/nwsutils.h.

The integration of NWS into NetSolve requires the startup ofNWS processes, their management and the
accurate use of the forecaster. The NWS processes (nameserver, memory, forecaster, and sensor) can be
started in various places within NetSolve. We now present our design for the integration and motivate our
choices.

NetSolve agent and the NWS nameserver, memory and
forecast

110

Chapter 19. Using the Network Weather Service

As previously stated, only one NWS nameserver can exist in anNWS system, and this process must be
placed in NetSolve where it will have full knowledge of the computational resources and be visible to all
components of the NetSolve system. The Netsolve agent is the“brain” of the NetSolve system, knowing
how many resources exist and where they are located, and making all decisions on the execution of
requests in the system. Moreover, the NetSolve agent is known by all components of the NetSolve
system. Thus, the logical choice for the placement of the NWSnameserver is on the NetSolve agent.

The first started agent in NetSolve is called the master. During its initialization, a nameserver and a
memory are started. In fact the memory is started for the sakeof simplicity. Indeed, the master agent is
known by the whole system. It enables each sensor to registerand easily store its measurements.
Furthermore this scheme avoids unnecessary communicationcosts. A forecaster process is then started
by each agent. It generates information as soon as needed by the agent. Thus, each agent possesses its
own forecaster and can deal with client requests. We shall now examine what happens on computational
resources.

NetSolve server and the NWS sensor
As soon as a NetSolve server (computational resource) is added to the NetSolve system, it is necessary to
start an NWS sensor. This sensor is started on the server after its registration with the agent to avoid any
incoherency with the NetSolve system. The NWS sensor is totally independent from the NetSolve
processes running on the server.

At present, the NWS sensor is only detecting the CPU speed of the computational resource. Future
implementations will expand this functionality to includemonitoring for the amount of physical memory
available per computational resource, as well as the latency/bandwidth of the communication between
each server and the client. These improvements will requirean additional sensor to be started on the
client.

111

Chapter 20. Distributed Storage Infrastructure
(DSI) in NetSolve

Introduction
The Distributed Storage Infrastructure (DSI) in NetSolve1.4 is a new feature added to NetSolve. It is a
first attempt towards achieving coscheduling of the computation and data movement over the NetSolve
Grid. The DSI APIs help the user in controlling the placementof data that will be accessed by a
NetSolve service. This is useful in situations where a givenservice accesses a single block of data a
number of times. Instead of multiple transmissions of the same data from the client to the server, the DSI
feature helps to transfer the data from the client to a storage server just once, and relatively cheap
multiple transmissions from the storage server to the computational server. Thus the present DSI feature
helps NetSolve to operate in a cache-like setting. Presently, only Internet Backplane Protocol (IBP) is
used for providing the storage service. In the future, we hope to integrate other commonly available
storage service systems.

To Use DSI:
To use DSI, one should enable the DSI feature both at the NetSolve client and the server. Type

UNIX> ./configure --with-ibp=IBP_DIR

during the initial configure of NetSolve. HereIBP_DIR denotes the location of the IBP directory. This is
specifically the directory of the IBP full distribution downloadable from the IBP web site
(http://icl.cs.utk.edu/ibp/)

DSI APIs:
The DSI APIs are modeled after the UNIX file manipulation commands (open, close etc.) with a few
extra parameters that are specific to the concepts of DSI. This section provides the syntax and semantics
of the different DSI APIs available to the NetSolve user.

DSI_FILE* ns_dsi_open(char* host_name, int flag, int permissions, int size,
dsi_type storage_system);

112

Chapter 20. Distributed Storage Infrastructure (DSI) in NetSolve

host_name

Name of the host where the IBP server resides.

flag

This flag has the same meaning as the flag inopen() calls in C. Specifically O_CREAT is used for
creating a dsi file and so on.

permissions

While creating the file with O_CREAT flag, the user can specifythe permissions for himself and
others. The permissions are similar to the ones used in UNIX.Hence if the user wants to set read,
write, execute permissions for himself and read and write permissions for others, he would call
ns_dsi_open with 74 as the value for the permissions.

size

Represents the maximum length of the DSI file. Write or read operations over this size limit will
return an error.

storage_system

At present, IBP.

ns_dsi_open() is used for allocating a chunk of storage in the IBP storage. On success,ns_dsi_open
returns a pinter to the DSI file. On failure, returns NULL. Following are the various error values set in
case of failure.

NetSolveUnknownDsiFile

If the file does not exist and if the file is opened without O_CREAT.

NetSolveIBPAllocateError

Error while allocating IBP storage.

NetSolveDsiDisabled

If DSI is not enabled in the NetSolve configuration.

int ns_dsi_close(DSI_FILE* dsi_file);

dsi_file

Pointer to the DSI file.

113

Chapter 20. Distributed Storage Infrastructure (DSI) in NetSolve

ns_dsi_close() is used for closing a DSI file.

On success returns 1. On failure, returns -1. Following are the various error values set in case of failure.

NetSolveIBPManageError

Error in IBP internals while closing.

NetSolveDsiDisabled

If DSI is not enabled in the NetSolve configuration.

DSI_OBJECT* ns_dsi_write_vector(DSI_FILE* dsi_file, void* data, int count,
int data_type);

dsi_file

The name of the DSI file where the vector will be written.

data

Vector to write to the DSI storage.

count

Number of elements in the vector.

data_type

One of netsolve data types.

ns_dsi_write_vector() is used for writing a vector of a particular datatype to a DSI file.

On success,ns_dsi_write_vector() returns a pointer to the DSI object created for the vector. On
failure, returns NULL. Following are the various error values set in case of failure.

NetSolveIBPStoreError

Error while storing the vector in IBP.

NetSolveDsiEACCESS

Not enough permissions for writing to the DSI file.

NetSolveDsiDisabled

If DSI is not enabled in the NetSolve configuration.

114

Chapter 20. Distributed Storage Infrastructure (DSI) in NetSolve

DSI_OBJECT* ns_dsi_write_matrix(DSI_FILE* dsi_file, void* data, int rows, int
cols, int data_type);

Same functionality and return values asns_dsi_write_vector() exceptns_dsi_write_matrix()
is used to write matrix ofrows rows andcols columns.

int ns_dsi_read_vector(DSI_OBJECT* dsi_obj, void* data, int count, int
data_type);

dsi_obj

Pointer to the DSI object that contains the data to read.

data

Actual vector to read.

count

Number of elements of the vector to read.

data_type

One of NetSolve data types.

On success, returns the number of elements read. On failure,returns -1. Following are the various error
values set in case of failure.

NetSolveIBPLoadError

Error while loading the vector from IBP.

NetSolveDsiEACCESS

Not enough permissions for reading from the DSI file.

NetSolveDsiDisabled

If DSI is not enabled in the NetSolve configuration.

int ns_dsi_read_matrix(DSI_OBJECT* dsi_obj, void* data, int rows, int cols,
int data_type);

115

Chapter 20. Distributed Storage Infrastructure (DSI) in NetSolve

Same functionality and return values asns_dsi_read_vector() exceptns_dsi_read_matrix() is
used to read matrix ofrows rows andcols columns.

Example
This section shows two example programs. The first program solves quick sort without using the DSI
feature. The second program solves the same quick sort, but with using the dsi feature.

Figure 20-1. Example 1 (without using DSI)

int main(){
int i;
int length;
int* inputVec;
int* outputVec;
int status;

printf("Enter the number of vector elements: \n");
scanf("%d", &length);

inputVec = (int*)malloc(sizeof(int)*length);
outputVec = (int*)malloc(sizeof(int)*length);

for(i=0; i<length; i++){
printf("Element %d: ", i+1);
scanf("%d", &inputVec[i]);

}

status = netsl("iqsort()", length, inputVec, outputVec);

printf("\n\nSorted Elements: \n");
for(i=0; i<length; i++)

printf("%d ", outputVec[i]);
printf("\n");

return 0;
}

Figure 20-2. Example 2 (using DSI)

int main(){

116

Chapter 20. Distributed Storage Infrastructure (DSI) in NetSolve

int i;
int length;
int* inputVec;
int* outputVec;
int status;
DSI_FILE* dsi_file;
DSI_OBJECT* dvec;

printf("Enter the number of vector elements: \n");

scanf("%d", &length);

inputVec = (int*)malloc(sizeof(int)*length);
outputVec = (int*)malloc(sizeof(int)*length);

for(i=0; i<length; i++){
printf("Element %d: ", i+1);
scanf("%d", &inputVec[i]);

}

dsi_file = ns_dsi_open("torc1.cs.utk.edu", O_CREAT|O_RDWR , 744 , 3000, IBP);
if(dsi_file == NULL){

printf("error in open\n");
}

dvec = ns_dsi_write_vector(dsi_file, inputVec, 10, NETSOLVE_D);
if(dvec == NULL){

printf("error in write\n");
}

status = netsl("iqsort()", length, dvec, outputVec);

printf("\n\nSorted Elements: \n");
for(i=0; i<length; i++)

printf("%d ", outputVec[i]);
printf("\n");

ns_dsi_close(dsi_file);

return 0;

}

117

V. References

118

Chapter 21. Matlab Reference Manual
In this appendix, we describe all of the NetSolve calls that can be invoked from within Matlab. In the
case of an error, all of these calls will print very simple andexplicit error messages. The user should refer
to Chapter 24 for a list of all possible NetSolve error messages.

>> netsolve

Prints to the screen the list of all problems that are available in the NetSolve system.

>> netsolve(’<problem name>’)

Prints all information available from Matlab about a specific problem.

>> netsolve(’?’)

Prints the list of all the agents and servers in the NetSolve system, that is, the NetSolve system
containing the host whose name is in the environment variable NETSOLVE_AGENT.

>> [...] = netsolve(’<problem name>’, ...)

Sends ablockingrequest to NetSolve. The left-hand side contains the outputarguments. The
right-hand side contains the problem name and the input arguments. The arguments are listed
according to the problem description. Upon completion of this call, the output arguments contain
the result of the computation.

>> [r] = netsolve_nb(’send’,’<problem name>’, ...)

Sends anon-blockingrequest to NetSolve. The right-hand side contains the keywordsend, the
problem name, and the list of input arguments. These arguments are listed according to the problem
description. The left-hand side will contain a request handler upon completion of the call.

>> [...] = netsolve_nb(’wait’,r)

Waitsfor a request’s completion. The right-hand side contains the keywordwait and the request
handler. The left-hand side contains the output arguments.These arguments are listed according to
the problem description. Upon completion of this call, the output arguments contain the result of the
computation.

>> [status] = netsolve_nb(’probe’,r)

Probesfor a request completion. The right-hand side contains the keywordprobe and the request
handler. The left-hand side contains the output arguments.These arguments are listed according to
the problem description. The right-hand side contains the keywordprobe and the request handler.
Upon completion of this call, the output arguments contain the result of the computation.

119

Chapter 21. Matlab Reference Manual

>> netsolve_nb(’status’)

Prints out the list of all the pending requests. This list contains estimated time of completion, the
computational servers handling the requests and the current status. The status can beCOMPLETED
or RUNNING.

>> netsolve_err

Returns the error code of the most recently called NetSolve function.

>> netsolve_errmsg(e)

Returns a string containing the error message that corresponds to the error code passed as the
argument.

120

Chapter 22. C Reference Manual
We describe here all of the possible calls to NetSolve from C.All of these calls return a NetSolve code
status. The list of the possible code status is given in Chapter 24.

status = netsl("<problem name()>()", ...)

Sends ablockingrequest to NetSolve.netsl() takes as argument the name of the problem and the
list of arguments in the calling sequence. See the section called What is the Calling Sequence?in
Chapter 5 for a discussion about this calling sequence. It returns the NetSolve status code (integer
status). If the call is successful, the result of the computation isstored in the output arguments.
The output arguments are specified in the calling sequence.

status = netslnb("<problem name()>()", ...)

Sends anonblockingrequest to NetSolve.netslnb() takes as argument the name of the problem,
and the list of arguments in the calling sequence. See the section calledWhat is the Calling
Sequence?in Chapter 5 for a discussion about this calling sequence. Itreturns the NetSolve status
code (integerstatus). If the call is successful,status contains the request handler.

status = netslwt(<request handler>)

Waitsfor a request completion.netslwt() takes as argument a request handler (an integer). If the
call is successful, the result of the computation is stored in the output arguments. The output
arguments are specified in the calling sequence during the call to netslnb().

status = netslpr(<request handler>)

Probesfor a request completion.netslpr() takes as argument a request handler (an integer). If
the call is successful, the result of the computation is stored in the output arguments. The output
arguments are specified in the calling sequence during the call to netslnb().

netslerr(<error code>)

Displays an explicit error message given a NetSolve error code.

netslmajor("<major>")

Sets the way the user has stored her matrices (row- or column-wise). The argument can be"col"
or "row". It is case-insensitive and in fact only the first character is used by NetSolve.

121

Chapter 23. Fortran Reference Manual
We describe here all the possible calls to NetSolve from Fortran. All these calls return a NetSolve code
status. The list of the possible code status is given in Chapter 24.

CALL FNETSL(’<problem name()>}()’,INFO, ...)

Sends ablockingrequest to NetSolve.FNETSL() takes as argument the name of the problem, an
integer, and the list of arguments in the calling sequence. See the section calledWhat is the Calling
Sequence?in Chapter 5 for a discussion about this calling sequence. When the call returns, the
integerINFO contains the NetSolve status code. If the call is successful, the result of the
computation is stored in the output arguments. The output arguments are specified in the calling
sequence.

CALL FNETSLNB(’<problem name()>}()’,INFO, ...)

Sends anonblockingrequest to NetSolve.FNETSLNB() takes as argument the name of the
problem, an integer, and the list of arguments in the callingsequence. See the section calledWhat is
the Calling Sequence?in Chapter 5 for a discussion about this calling sequence. Itreturns the
NetSolve status code (integerstatus). If the call is successful,status contains the request
handler.

CALL FNETSLWT(<request handler>,INFO)

Waitsfor a request completion.FNETSLWT() takes as argument a request handler and an integer.
When the call returns,INFO contains the NetSolve status code. If the call is successful, the result of
the computation is stored in the output arguments. The output arguments are specified in the calling
sequence during the call toFNETSLNB().

CALL FNETSLPR(<request handler>,INFO)

Probesfor a request completion.FNETSLPR() takes as argument a request handler and an integer.
When the call returns,INFO contains the NetSolve status code. If the call is successful, the result of
the computation is stored in the output arguments. The output arguments are specified in the calling
sequence during the call toFNETSLNB().

CALL FNETSLERR(<error code>)

Displays an explicit error message given a NetSolve error code.

CALL FNETSLMAJOR(’<major>’)

Sets the way the user has stored her matrices (row- or column-wise). The argument can be’col’
or ’row’. It is case-insensitive and in fact only the first character is used by NetSolve.

122

Chapter 24. Error Handling in NetSolve
If an error occurs during the invocation of NetSolve, a variety of diagnostic runtime error messages, as
well as error codes that can be returned when calling a NetSolve function from the C or Fortran
interfaces, are provided. Table 24-1 lists all of the possible error codes that can be returned when
invoking a NetSolve function from the C or Fortran interfaces. These error codes are listed in the
$NETSOLVE_ROOT/include/netsolveerror.h include file. Each of these return codes has an
equivalent runtime error message, also listed in Table 24-1. These runtime error messages are defined in
$NETSOLVE_ROOT/src/CoreFunctions/netsolveerror.c. If one of these error messages occurs,
the user should first check the agent and server log files,$NETSOLVE_ROOT/nsagent.log or
$NETSOLVE_ROOT/nsserver.log, respectively. These files may contain more information to clarify
the reason for the error message. Otherwise, the user can refer to Chapter 12 for an explanation of
possible causes for specific error messages.

Table 24-1. Error Codes

ERROR CODE
VALUE

RUNTIME ERROR MESSAGE

NetSolveOK 0 NS: no error

NetSolveNotReady -1 NS: not ready

NetSolveSetNetSolveAgent -2 NS:NETSOLVE_AGENT not set

NetSolveSetNetSolveRoot -3 NS:NETSOLVE_ROOT not set

NetSolveSetNetSolveArch -4 NS:NETSOLVE_ARCH not set

NetSolveInternalError -5 NS: internal error

NetSolveUnknownHost -6 NS: Unknown host

NetSolveNetworkError -7 NS: network error

NetSolveUnknownProblem -8 NS: unknown problem

NetSolveProtocolError -9 NS: protocol error

NetSolveNoServer -10 NS: no available server

NetSolveBadProblemSpecification -11 NS: bad problem input/output

NetSolveNotAllowed -12 NS: not allowed

NetSolveBadValues -13 NS: bad input values

NetSolveDimensionMismatch -14 NS: dimension mismatch

NetSolveNoSolution -15 NS: no solution

123

Chapter 24. Error Handling in NetSolve

ERROR CODE
VALUE

RUNTIME ERROR MESSAGE

NetSolveUnknownError -16 NS: unknown error

NetSolveInvalidRequestID -17 NS: invalid request ID

NetSolveBadProblemName -18 NS: invalid problem name

NetSolveInvalidMajor 19 NS: invalid major specification

NetSolveTooManyPendingRequests -20 NS: too many pending requests

NetSolveFileError -21 NS: file I/O error

NetSolveUnknownDataFormat -22 NS: unknown machine type

NetSolveInvalidUPFFilename -23 NS: invalid upf filename

NetSolveMismatch -24 NS: inconsistent object transfers

NetSolveSystemError -25 NS: system error

NetSolveConnectionRefused -26 NS: connection refused

NetSolveCannotBind -27 NS: impossible to bind to port

NetSolveUPFError -28 NS: impossible to compile UPF

NetSolveUPFUnsafe -29 NS: UPF security violation

NetSolveServerError -30 NS: server error

NetSolveBadIterationRange -31 NS: invalid interation range

NetSolveFarmingError -32 NS: One or more request failed

NetSolveCannotStartProxy -33 NS: Cannot start proxy

NetSolveUnknownServer -34 NS: Unknown server

NetSolveProxyError -35 NS: Error while talking to proxy

NetSolveCondorError -36 NS: Condor error

NetSolveCannotContactAgent -37 NS: Cannot contact agent

NetSolveTimedOut -38 NS: operation timed out

NetSolveAuthenticationError -39 NS: Authentication to server failed

NetSolveUnknownHandle -40

NetSolveUnknownDsiFile -41 NS: DSI file not found

NetSolveIBPAllocateError -42 NS: error in IBP_Allocate

NetSolveIBPManageError -43 NS: error in IBP_Manage

NetSolveIBPLoadError -44 NS: error in IBP_Load

124

Chapter 24. Error Handling in NetSolve

ERROR CODE
VALUE

RUNTIME ERROR MESSAGE

NetSolveIBPStoreError -45 NS: error in IBP_Store

NetSolveDsiEACCESS -46 NS: permission denied to DSI file

NetSolveDsiDisabled -47 NS: NetSolve not configured with DSI

125

VI. Appendices

126

Appendix A. Complete C Example

/***/
/* Example of the C call to NetSolve */
/* This program sends : */
/* */
/* - One blocking request for the problem ’dgesv’ */
/* - One non-blocking request for the problem ’dgesv’ */
/* */
/* and */
/* */
/* - One blocking request for the problem ’linsol’ */
/* - One non-blocking request for the problem ’linsol’ */
/* */
/* The problem ’linsol’ is a simplified version of ’dgesv’ */
/* */
/* The matrices are stored column-wise in a Fortran fashion */
/* */
/* WARNING : The matrix may be singular, in which case NetSolve */
/* will print out an error message. */
/* */
/***/

#include <stdio.h>
#include "netsolve.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>

main(int argc,char **argv)
{

int m; /* Size of the matrix and right-hand side */
double *a1,*b1; /* Matrix and right-hand side for the 1st call */
double *a2,*b2; /* Matrix and right-hand side for the 2nd call */
double *a3,*b3; /* Matrix and right-hand side for the 3rd call */
double *a4,*b4; /* Matrix and right-hand side for the 4th call */
int *pivot; /* Vector of pivots returned by ’dgesv’ */
int ierr; /* ’dgesv’ error code */

int i; /* Loop index */
int init=1325; /* Seed of the random number generator */

127

Appendix A. Complete C Example

int info; /* NetSolve error code */
int request; /* NetSolve request handler */

if (argc != 2)
{

fprintf(stderr,"Usage : %s <size>\n",argv[0]);
exit(0);

}
if ((m = atoi(argv[1])) <= 0)
{

fprintf(stderr,"’%s’ : Should be a positive integer\n",argv[1]);
exit(0);

}

/*
* Generating the random mxm matrices, as well as the
* random right hand sides.
*/

fprintf(stderr,"Generating the problem ...\n");

a1 = (double *)malloc(m*m*sizeof(double));
a2 = (double *)malloc(m*m*sizeof(double));
a3 = (double *)malloc(m*m*sizeof(double));
a4 = (double *)malloc(m*m*sizeof(double));
for (i=0;i<m*m;i++) {

init = 2315*init % 65536;
a1[i] = (double)((double)init - 32768.0) / 16384.0;
a2[i] = a1[i]; /* */
a3[i] = a1[i]; /* In this example, we solve 4 times the same problem */
a4[i] = a1[i]; /* */

}

b1 = (double *)malloc(m*sizeof(double));
b2 = (double *)malloc(m*sizeof(double));
b3 = (double *)malloc(m*sizeof(double));
b4 = (double *)malloc(m*sizeof(double));
for (i=0;i<m;i++) {

init = 2315*init % 65536;
b1[i] = (double)((double)init - 32768.0) / 16384.0;
b2[i] = b1[i];
b3[i] = b1[i];
b4[i] = b1[i];

}
pivot = (int *)malloc(m*sizeof(double));

128

Appendix A. Complete C Example

/* Calling Netsolve for ’dgesv’ in a blocking fashion */
/* For ’dgesv’, the right-hand side is overwritten */
/* with the solution */

netslmajor("Col");

fprintf(stderr,"Calling NetSolve for ’dgesv’, blocking :\n");
info = netsl("dgesv()",m,1,a1,m,pivot,b1,m,&ierr);
if (info <0)
{

netslerr(info);
exit(0);

}
if (ierr != 0)

fprintf(stderr,"Cannot solve for this Matrix and right-hand side\n");
else
{

fprintf(stderr,"Solution :\n");
for (i=0;i<m;i++)
fprintf(stderr,"--> %f\n",b1[i]);

}

/* Calling Netsolve for ’dgesv’ in a non-blocking fashion */
/* For ’dgesv’, the right-hand side is overwritten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for ’dgesv’, non-blocking :\n");
request = netslnb("dgesv()",m,1,a2,m,pivot,b2,m,&ierr);
if (request <0)
{

netslerr(request);
exit(0);

}
fprintf(stderr,"Request #%d being processed\n",request);
fprintf(stderr,"Probing......\n");
info = netslpr(request);
while(info == NetSolveNotReady)
{

sleep(4);
fprintf(stderr,".");
fflush(stderr);
info = netslpr(request);

}
fprintf(stderr,"\n");

129

Appendix A. Complete C Example

if (info == NetSolveOK)
{
info = netslwt(request);

}
if (info < 0)

netslerr(info);
else
{

if (ierr != 0)
fprintf(stderr,"Cannot solve for this Matrix and right-hand side\n");

else
{

fprintf(stderr,"Solution :\n");
for (i=0;i<m;i++)

fprintf(stderr,"\t--> %f\n",b2[i]);
}

}

/* Calling Netsolve for ’linsol’ in a blocking fashion */
/* For ’linsol’, the right-hand side is overwritten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for ’linsol’, blocking :\n");
info = netsl("linsol()",m,1,a3,m,b3,m);
if (info <0)
{

netslerr(info);
}
else
{

fprintf(stderr,"*************\n");
fprintf(stderr,"** Success **\n");
fprintf(stderr,"*************\n");
fprintf(stderr,"Solution :\n");
for (i=0;i<m;i++)
fprintf(stderr,"\t --> %f\n",b3[i]);

}

/* Calling Netsolve for ’linsol’ in a non-blocking fashion */
/* For ’linsol’, the right-hand side is overwritten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for ’linsol’, non-blocking :\n");
request = netslnb("linsol()",m,1,a4,m,b4,m);
if (info <0)

130

Appendix A. Complete C Example

{
netslerr(info);
exit(0);

}
fprintf(stderr,"Request #%d being processed\n",request);
fprintf(stderr,"Probing......\n");
info = netslpr(request);
while(info == NetSolveNotReady)
{

sleep(4);
fprintf(stderr,".");
fflush(stderr);
info = netslpr(request);

}
fprintf(stderr,"\n");
if (info == NetSolveOK)
{
info = netslwt(request);

}
if (info < 0)

netslerr(info);
else
{

fprintf(stderr,"*************\n");
fprintf(stderr,"** Success **\n");
fprintf(stderr,"*************\n");
fprintf(stderr,"Solution :\n");
for (i=0;i<m;i++)
fprintf(stderr,"\t--> %f\n",b4[i]);

}

return 1;
}

131

Appendix B. Complete Fortran77 Example

C Example of the FORTRAN call to NetSolve
C This program sends :
C
C - One blocking request for the problem ’dgesv’
C - One non-blocking request for the problem ’dgesv’
C
C and
C
C - One blocking request for the problem ’linsol’
C - One non-blocking request for the problem ’linsol’
C
C The problem ’linsol’ is a simplified version of ’dgesv’
C
C WARNING : The matrix may be singular, in which case NetSolve
C will print an error message.
C

PROGRAM EXAMPLE

INCLUDE ’../../include/fnetsolve.h’

INTEGER MAX
PARAMETER (MAX = 500)
INTEGER M
DOUBLE PRECISION A1(MAX,MAX)
DOUBLE PRECISION A2(MAX,MAX)
DOUBLE PRECISION A3(MAX,MAX)
DOUBLE PRECISION A4(MAX,MAX)
DOUBLE PRECISION B1(MAX)
DOUBLE PRECISION B2(MAX)
DOUBLE PRECISION B3(MAX)
DOUBLE PRECISION B4(MAX)

INTEGER PIVOT(MAX)
INTEGER IERR

INTEGER I,J, II, III
INTEGER INIT
INTEGER INFO,REQUEST

EXTERNAL FNETSL, FNETSLNB, FNETSLPB, FNETSLWT

132

Appendix B. Complete Fortran77 Example

INTRINSIC DBLE, MOD

WRITE(*,*) ’Enter the size of your matrix M =’
READ(*,*) M

IF(M.GT.MAX) THEN
WRITE(*,*) ’Too big !!’
STOP

ENDIF

C
C Generating the matrices
C

WRITE(*,*) ’Generating the problem ...’
INIT = 1325
DO 10 I = 1,M

DO 11 J = 1,M
INIT = MOD(2315*INIT,65536)
A1(J,I) = (DBLE(INIT) - 32768.D0)/16384.D0
A2(J,I) = A1(J,I)
A3(J,I) = A1(J,I)
A4(J,I) = A1(J,I)

11 CONTINUE
10 CONTINUE

C
C Generating the right-hand sides
C

DO 12 I = 1,M
INIT = MOD(2315*INIT,65536)
B1(I) = (DBLE(INIT) - 32768.D0)/16384.D0
B2(I) = B1(I)
B3(I) = B1(I)
B4(I) = B1(I)

12 CONTINUE

C Calling Netsolve for ’dgesv’ in a blocking fashion
C For ’dgesv’, the right-hand side is overwritten
C with the solution

WRITE(*,*) ’Calling NetSolve for "dgesv", blocking :’
CALL FNETSL(’dgesv()’,INFO,M,1,A1,MAX,PIVOT,B1,MAX,IERR)
IF(INFO.LT.0) THEN

133

Appendix B. Complete Fortran77 Example

CALL FNETSLERR(INFO)
STOP

END IF
IF(IERR.NE.0) THEN

WRITE(*,*) ’Cannot solve for this Matrix and right-hand side’
ELSE

WRITE(*,*) ’*************’
WRITE(*,*) ’** Success **’
WRITE(*,*) ’*************’
WRITE(*,*) ’ Result :’
DO 13 I = 1,M

WRITE(*,*) ’ --> ’,B1(I)
13 CONTINUE

END IF

C Calling Netsolve for ’dgesv’ in a non-blocking fashion
C For ’dgesv’, the right-hand side is overwritten
C with the solution

WRITE(*,*) ’Calling NetSolve for "dgesv", non-blocking :’
CALL FNETSLNB(’dgesv()’,REQUEST,M,1,A2,MAX,PIVOT,B2,MAX,IERR)
IF(REQUEST.LT.0) THEN

CALL FNETSLERR(REQUEST)
STOP

END IF
WRITE(*,*) ’Request #’,INFO,’ being processed’
WRITE(*,*) ’Probing......’

14 CONTINUE
CALL FNETSLPR(REQUEST, INFO)
IF(INFO.EQ.NetSolveNotReady) THEN

DO 21 II=1,50
III = II + 3*II

21 CONTINUE
GO TO 14

END IF
IF(INFO.EQ.NetSolveOK)

$ CALL FNETSLWT(REQUEST, INFO)

IF(IERR.NE.0) THEN
WRITE(*,*) ’Cannot solve for this Matrix and right-hand side’

ELSE
WRITE(*,*) ’*************’
WRITE(*,*) ’** Success **’
WRITE(*,*) ’*************’
WRITE(*,*) ’ Result :’

134

Appendix B. Complete Fortran77 Example

DO 16 I = 1,M
WRITE(*,*) ’ --> ’,B2(I)

16 CONTINUE
END IF

C Calling Netsolve for ’linsol’ in a blocking fashion
C For ’linsol’, the right-hand side is overwritten
C with the solution

WRITE(*,*) ’Calling NetSolve for "linsol", blocking :’
CALL FNETSL(’linsol()’,INFO,M,1,A3,MAX,B3,MAX)
IF(INFO.LT.0) THEN

CALL FNETSLERR(INFO)
ELSE

WRITE(*,*) ’*************’
WRITE(*,*) ’** Success **’
WRITE(*,*) ’*************’
WRITE(*,*) ’ Result :’
DO 17 I= 1,M

WRITE(*,*) ’ -->’,B3(I)
17 CONTINUE

END IF

C Calling Netsolve for ’linsol’ in a non-blocking fashion
C For ’linsol’, the right-hand side is overwritten
C with the solution

WRITE(*,*) ’Calling NetSolve for "linsol", non-blocking :’
CALL FNETSLNB(’linsol()’,REQUEST,M,1,A4,MAX,B4,MAX)
IF(REQUEST.LT.0) THEN

CALL FNETSLERR(INFO)
STOP

END IF
WRITE(*,*) ’Request #’,REQUEST,’ being processed’
WRITE(*,*) ’Probing......’

18 CONTINUE
CALL FNETSLPR(REQUEST,INFO)
IF (INFO.EQ.NetSolveNotReady) THEN

DO 22 II=1,50
III = II + 3*II

22 CONTINUE
GO TO 18

END IF
IF(INFO.EQ.NetSolveOK)

$ CALL FNETSLWT(REQUEST, INFO)

135

Appendix B. Complete Fortran77 Example

IF(INFO.LT.0) THEN
CALL FNETSLERR(INFO)

ELSE
WRITE(*,*) ’*************’
WRITE(*,*) ’** Success **’
WRITE(*,*) ’*************’
WRITE(*,*) ’ Result :’
DO 20 I= 1,M

WRITE(*,*) ’ -->’,B4(I)
20 CONTINUE

END IF

STOP
END

136

Bibliography

[matlab] 1992, The MathWorks, Inc.,MATLAB Reference Guide.

[mathematica] 1996, Wolfram Median, Inc. and Cambridge University Press,The Mathematica Book,
Third Edition.

[netsolve] 1997, The International Journal of Supercomputer Applications and Performance Computing,
NetSolve: A Network Server for Solving Computational Science Problems.

[ieee-cse] 1997, 1998, IEEE, IEEE Computational Science & Engineering,NetSolve’s Network Enabled
Server: Examples and Applications, 57-67, 5(3), Henri Casanova and Jack Dongarra.

[sequencing] 2000, Euro-Par 2000: Parallel Processing,Request Sequencing: Optimizing
Communication for the Grid, 3-540-67956-1, D. Arnold, D. Bachmann, and J. Dongarra.

[ns-impl] 1998, UT Department of Computer Science Technical Report,NetSolve version 1.2: Design
and Implementation, Henri Casanova and Jack Dongarra.

[ns:mathematica] 1998, UNI • C Technical Report UNIC-98-05, Mathematica Interface to NetSolve,
Henri Casanova, Jack Dongarra, A. Karaivanov, and Jerzy Wasniewski.

[condor1] 1988, Proceedings of the 8th International Conference of Distributed Computing Systems,
Condor - A Hunter of Idle Workstations, 104-111, M. Litzkow, M. Livny, and M. W. Mutka.

[condor2] 1990, IEEE, Proceedings of the IEEE Workshop on Experimental Distributed Systems,
Experience with the Condor Distributed Batch System, M. Litzkow and M. Livny.

[ima] 1998, Springer-Verlag, IMA Volumes in Mathematics and its Applications, Algorithms for Parallel
Processing,Providing Uniform Dynamic Access to Numerical Software, 345-355, 105, Henri
Casanova and Jack Dongarra.

[lapack] 1999, SIAM,LAPACK Users’ Guide, Third Edition, 0-89871-447-8, E. Anderson, Z. Bai, C.
Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A.Greenbaum, S. Hammarling, A.
McKenney, and D. Sorensen.

137

