Users’ Guide to NetSolve V1.4

(http://icl.cs.utk.edu/netsolve/)

Dorian Arnold
Sudesh Agrawal
Susan Blackford

Jack Dongarra

Michelle Miller

Kiran Sagi
Zhiao Shi
Sathish Vadhiyar

Innovative Computing Laboratory, Department of Computer S cience, University of
Tennessee

Knoxville, TN 37996-3450

Users’ Guide to NetSolve V1.4: (http://icl.cs.utk.edu/ne tsolve/)
by Dorian Arnold, Sudesh Agrawal, Susan Blackford, Jackdzora, Michelle Miller, Kiran Sagi, Zhiao Shi, and
Sathish Vadhiyar

version 1.4 Edition
Copyright © 1995-2001 by The NetSolve Project, Universitffennessee

Legal Restrictions

Allowed Usage: Users may use NetSolve in any capacity they wish. We onlylestiqroper credit and citations be
used when the NetSolve system is being leveraged in othevaef systems.

Redistribution: Users are allowed to freely distribute the NetSolve systeomimodified form. At no time is a user
to accept monetary or other compensation for redistrilgytirts or all of the NetSolve system.

Modification of Code: Users are free to make whatever changes they wish to the NetSetem to suit their
personal needs. We mandate, however, that you clearlyigighvhich portions are of the original system and which
are a result of the third-party modification.

Warranty Disclaimer: USER ACKNOWLEDGES AND AGREES THAT: (A) NEITHER THE NetSolVEEAM
NOR THE BOARD OF REGENTS OF THE UNIVERSITY OF TENNESSEE SYSMTEREGENTS) MAKE ANY
REPRESENTATIONS OR WARRANTIES WHATSOEVER ABOUT THE SUITABTY OF NetSolve FOR ANY
PURPOSE; (B) NetSolve IS PROVIDED ON AN "AS IS, WITH ALL DEFHEG" BASIS WITHOUT EXPRESS
OR IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABLITY AND FITNESS FOR A
PARTICULAR PURPOSE OR NONINFRINGEMENT; (C) NEITHER THE N&lve TEAM NOR THE
REGENTS SHALL BE LIABLE FOR ANY DAMAGE OR LOSS OF ANY KIND ARISNG OUT OF OR
RESULTING FROM USER’S POSSESSION OR USE OF NetSolve (INCUING DATA LOSS OR
CORRUPTION), REGARDLESS OF WHETHER SUCH LIABILITY IS BASEIN TORT, CONTRACT, OR
OTHERWISE; AND (D) NEITHER THE NetSolve TEAM NOR THE REGENTHAVE AN OBLIGATION TO
PROVIDE DEBUGGING, MAINTENANCE, SUPPORT, UPDATES, ENHANEMENTS, OR MODIFICATIONS
EXCEPT WHERE EXPLICIT WRITTEN ARRANGEMENTS HAVE BEEN PRERRANGED.

Damages Disclaimer: USER ACKNOWLEDGES AND AGREES THAT IN NO EVENT WILL THE NetSwé
TEAM OR THE REGENTS BE LIABLE TO USER FOR ANY SPECIAL, CONSE@MTIAL, INDIRECT OR
SIMILAR DAMAGES, INCLUDING ANY LOST PROFITS OR LOST DATA ARBING OUT OF THE USE OR
INABILITY TO USE NetSolve EVEN IF THE NetSolve TEAM OR THE REENTS HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

Attribution Requirement: User agrees that any reports, publications, or other disctoof results obtained with
NetSolve will attribute its use by an appropriate citatibhe appropriate reference for NetSolve is "The NetSolve
Software Program (NetSolve) was developed by the NetSaaenTat the Computer Science Department of the
University of Tennessee, Knoxuville. All rights, title, aimderest in NetSolve are owned by the NetSolve Team."

Compliance with Applicable Laws: User agrees to abide by copyright law and all other appleckt's of the
United States including, but not limited to, export conteats.

Table of Contents

= - Lol SRR 9
Who Should Read ThiS DOCUMENT.........uvuuiriririiererarerrrirerirr s eee s e s snresssanssannsnnnnns 9
Organization Of ThiS DOCUMENT.......cuiiieie i cceiiie e et e e e e e e e e s st eeeesrssba e araeeeeeannnnnes 9
Document Conventions
Request for Comments

[) (0T (U T2 1T} o 2.1
1. ANELSOIVE OVEIVIEWcooeiieiiieieeeiei ettt ettt ettt bbbt a bbb nneaneesseessessressresnreseres 13

An Introduction to Distributed COMPULINGooiccieiiiiie e e e e e 13
WHAL IS NEISOIVE? ...veiiiiiiiit ettt e e e e e e e e e e e e e e e eeeesr e e s i e ae s e aeaeaeaeeas 13
3 T2 o | (0¥ [T ISR 13
Overview and ArChitECIUIEc.oooeieie ettt 13
WHhO iS the NEtSOIVE USEI?...uueei it mmm ettt e ettt e e e e et s e e e e e e ereranas 15
The Status of NetSolve............ccvveeeeieen

2. Related Projects and Systems
[I. The User's Manual

3. Downloading, Installing, and Testing the Client...........coiiii e 20
Installation 0N UNIX SYSIEIMSciiiiiiiii it ccee ettt me e 20
Testing the UNiX iNStallation..............c.uviiieeeriiiie e 23
Installation 0N WINAOWS SYSTEIMSoiiiiiiierimmeiiee ettt 23
Testing the WINdows iNSTAIATION.............eiscmmeneee st 25

Using NetSolve from WIindows Matlab e eieieieeiiiiieeie e 25.
Using the NetSolve Management TooIs in WINAOWSccccveeiiiiiieeiiiiiee i 26

4. Introduction to the NetSolve Client
NetSolve Problem Specification

Available CHENt INTEITACESvvviiiiiiiiitieeeimr ettt ee e
Problems that can be solved with NetSolve
Naming Scheme for a NetSolve problem.............

5. C and FOrtran77 INtEITACESooi o i et enneseeeereseressbessseseres
[[aYi (oo [Tt 1o o SRR
What is the Calling SEQUENCE?ccii it eeereeer et ee e e e eeeessanereeaee s 30
2] (oTed (1 T O 1 PP 33
[N\ To] 0] o] [Yo 24 o [5= 1| PSR 34
(O 1o o110 =15 o] £ 35
ROW- OF COIUMN-MI@JOTiiiiiiieie e e ee e e e eremmr e e e e e e e st e e e e e e e e e s e s stnt e e e eeeennnnrnsaeeaeeesannnnns 35
Limitations of the FOrtran77 iNtEIfaCe...........mmmmeeeieeeieeeeeeeeeeeeeeeeeeeeeeeee e 36
BUIIE-IN @XAMPIES....c et e e e e s ennnr e e e e s e raaeaas 36

6. Matlah INTEITACEcoo e e b bbb s s s as 37

L) (0 To 18T 1] o R 37

WRAL 10 DO FiFSE .. ueeiiiiiiiiiie sttt ettt ettt e e e st ee e e et e e sene e e e sbbaee e e annbeeeaeas 37
Callingnet sol ve() to perform CoOmMpULatioN............ccooieiiviirmccc e e 39
(O 1| [T oo T o[- Yo IRV 2T 11 oY (5 SR PPERRR a4l
What Can GO WIONG? ...veeeieeeee i i ieiiieeeee e e 2222 e 4 e antaate e e e e e e e e eannssbaeeeseennsteeeeeeaeasaans 43
CatChing NEtSOIVE BITOIS....cciiiiiiiiiiitiiie et ee e e e e e s e e e e ae e e e sennre e e e e s e e snnnaaneees 44
DBIMIO < e 45
Optional: Testing the NetSolve BLAS INterfaces.....ccccevvvieiiiiiieiiiiie e 45
Optional: Testing the NetSolve LAPACK iNterfaces....cccuuiieiiiieieiiiieeiiiiieece e 45
Optional: Testing the NetSolve SCaLAPACK INtErfaCeS m ..oivvreeiiiiiiieiiiiiiee e 46.
Optional: Testing the NetSolve 'sparse_iterative_solwrface...........cccccceeeeiiiiiciinnnn, 6.4
Optional: Testing the NetSolve 'sparse_direct_SOIVEHFACEccvuvieeeeieeeiiiiiinn Al.
7. MathematiCa INTEITACE ... et ae e e e e e 49
L a o To [UTd 1 o] o PP SPPRRPPP 49
LAY F= Lo (oI o (o N 1 £ S RUUR P 49
Blocking Call t0 NEtSOIVE........coeiiiiiiiie et 53
Nonblocking Call to NEtSOIVE.........coiiiii e 54
(G- (o] o1 g [0l =1 (o] £ T U PO PPPP 55
DBIMIO < e 55
Optional: Testing the NetSolve BLAS INterfaces.....ccccvvvieiiiiiie i 56
Optional: Testing the NetSolve LAPACK interfaCes...ccccccooviiviiiiieeeeiiiiiiiieeieeee e 56
8. NetSoIVe REQUESE FArMUNGvcceiiiiiiiiiiieee e e st eee e e s e e e e e smnnr e e e e s s e ennarenaeeeeas 57
HOW tO Call fAIMIING c.vveviieieee e cmmee e e e e e s e s e e e ee e areeeeeeenaanns 57
Y Q=Y = 2] o] = RSP 58
(O 1o o110 =11 (o] € R T 59
Current Implementation and Future IMprovVeMENLS . v vvereeeeeeresiiiiereeeeeessesnnnnnnn. 00
9. NetSolve REQUESE SEQUENCINGcociiiiiiiiiieeeee e e e e e s et r e e e e e e e s st e e e e e s eesrnreeee e e s e e annnneees 61
Goals and MethOUOIOGIESuuviiiiee e ettt e e e e et e e e e e e st e e e eermreeeeeeeeeennnns 61
The Application Programming INterface..........ccvueeeeveeiiii i e 61
Execution Scheduling at the SEIVEToceeeeeeeccce e 62
10. Security iN NEtSOIVE CHENL.......uuiiieeee e s e e etetr e e ee e e e s s et e e ee e e e s s s snnneeeessesnnrsrareeaeaaes 64
T oo [N]ox 7o] o [PPSR 64
Compiling @ KErberiZed SEIVETcuiiiie ittt rnnnne e e e e 65
Running a Kerberized NetSoIVe ClENTicueeemeeeiie e e e eeereaees 65
11. The User-Supplied FUNCHON FEALUIE o eeiiieeieiiiiieie sttt ameee e e 66
1YL 1 11YZ= L1 T o R PP PP 66
Y01 11 1o o PSPPI 66
oL T O 11T o P UPRTPRSTP 66
Determining the Format of the FUNCtion t0 SUPPIY ... coereeevvieieiniiiiiiiiiiecie 66
From Matlab, Mathematica, C and FOrtrancccceeeeeieeeiiniiiiiiiiceee e 67

From the NEetSOIVE JAVA APloiiiiiieeiie s sttt s e e e e et e e e e e e e ee b 67

From the Java GUI.........ceiiiiiiiiii e 67
FOI tNE SEIVET ...t ne e 68
CONCIUSION ...tttk et e et e e e e e e e e e nnne e e nnn e e s 68
2 I (0T o] =T o o 1] o SRR 69
Details of the Makefile. NETSOLVE_ARCH.INC Fil€mmm i oo 9.6
[II. The AdMInIStrator's MANUALccouii oo e e e e e e e e e e e e e e nneneeee 76
13. Downloading, Installing, and Testing the Agent and BBIV...........ccoviviiee e 77
Installation 0N UNIX SYSIEIMSciiiiiiiei it eeeee ettt rne e e 77
TeSHNG the SOTIWAIE ..ot e 79
AGEN-SEIVEr-CIENT TEST ...eiiiiiiiiiiiie et cereee e 80
Expanding the Server Capabilitiesoiiceeeccmiiiiiiiie e 80
Enabling the LAPACK TIDFaryc..uvieiiiiii et 81
Enabling the SCALAPACK lIDFary ..o 82
Enabling Sparse Iterative Solvers (PETSc, Aztec, and ITRAC..........ccccvvveviineeen. 83
Enabling Sparse Direct Solvers (SuperLU and MA28).........cccoovvveeeiiiiieeiiiiiieeene 83
14. RUNNiNg the NetSOIVE AGENToiiiiiiii i sttt 85
15. RUNNING the NEetSOIVE SEIVETcoiiiiiii et 87
Y=L a0 T TS 1T Y= SRR 87
The Server Configuration Filecuiiiiiie i s 88
16. NetSolve Management Tools for AdMINIStratorS.coeee e ieviviieieeeee e 90
NS T o0 o SO 90
NN IS T 701 o] L=1 1 4 SRS 920
N IS 0] 0o [oSSR 91
NN IS T (L1 Vo 1= | SRS 91
N ST L] ST =T V7= SRS 92
NN IS 1= PRSP 92
17. The Problem DeSCription File ... rmeeee e e ee e e 93
Contents of a Problem Description Fileoommmererieeerieee i eseeee e 93
NELSOIVE ODJECLS ...vviiiiiiiieiei e e e e e e rreees e snne e s 93
Sparse Matrix Representation in NetSOIVecevviiiieeeeeiiiiciiiiieeeeeen 94
IMINEIMONICS ...ttt ettt s et et e smeeens e e e nre e e nnneeen 96
Sections of @ Problem DeSCrIPLON.i ettt 97
Problem ID and General INnformation..............ooocceeiieieeeeniiiieeee e 97
INPUL SPECITICALION. ...t e 98
OULPUL SPECITICALIONeeiiiiiiie et ceerc e 98
Additional INfOrmMatioN............ueeiiiiiie e e 929
CalliNg SEUUENCE ...ttt s ettt ettt n e s e e e neee s 99
PSEUAO-COAE.....cceiiiieiiiiiei ettt 101
A SIMPIE EXAMPIE ..ttt 102

[B CT=T aTCT = | (o] PPN 104

18. SECUNNLY IN NELSOIVE ..o ceeeee e e s e e e et r e e e e e e e s e nenneees 105
([0 o [8]ox 170] o I PP 105
Compiling @ KErberized SEIVETiceei i ceeeeee ettt a e e e rmnneee e e s 106
Installing a Kerberized SEIVETcc.uuiiiiii it e e e e 106
RUNNING @ KErDEINZEA SEIVETvviiiiiii ittt e s rrmanee e e e e 107
V. MISCEIIANEOUS FEALUIES ettt e e e e e e ee e e e e s s et be e e e e e e e e e nenneees 108
19. Using the Network Weather SEIVICEuiiiieeer it 109
[T (oo [T 1] o PSP PPPPPPPPRPPPTPIOt 109
TO USE NV S et e et e et e e e e et e e e e e e eses s e s e e e eeeanntnaaeaaaes 109
NWS Components utilized in NEetSOIVEiieeeccriiiiieeeeee e 109
NetSolve agent and the NWS nameserver, memory and forecast..........ccccocvveernnnen. 110
NetSolve server and the NWS SENSOFeuiiiiiiiiiiiie et e e 111
20. Distributed Storage Infrastructure (DSI) in NetSOIVe.. ... 112
LYoo [T 1] o PSP PPPPPPPPRPPPTPIOt 112
TO USE DSl ittt et e ettt e e e e e et e e et et e ae e a e e ab s 112
DY Y o 1S PSPPI 112
= L0] o] = TSR PRPRP 115
A S L= (=T (=T o] PP PP PP PP PPPPPPPPPPPPPN 118
21. Matlab Reference ManUAL..............cueiicomeeeee e sttt reee e et eee e sneaee e enes 119
22. C REfEIENCE MANUAL........iiiiiei it eeeeee ettt e e s e et e e e st eeenan 121
23. Fortran Reference ManUAL.............ooouiiiiiiiiiiiis et 122
24, Error HandliNg in NEISOIVEocoiiiiiees ottt e e e ee ettt e e e e e s s st eeessnnrananeeaeeeanaan 123
RV IR AN o] o 1= Lo [T SRR 126
A. Complete C EXAMPIEceiiiiiiiicee et e e e e a e e e e e e s 127
B. Complete FOrtran77 EXAMPIE.........cc.vuuieecemmmn e s eeiieiieeeee e e e e sesstsiteaeee s e e e s sennnnneaeeeassnnnnneees 132
1]][0T |- o VSR 713

List of Tables

e R -V = Lo Lo o P = T Y o1 PRSP 93
A V-V = Lo L= o] o] [=Tod 1 1Y/ 1= SR 94
P I Y 4 o B @0 o L= PSRRI 123

List of Figures

1-1. THE NETSOIVE SYSTEIM ..eoiiiiiiiii it e et e et e et e e nbr e e 14
9-1. Sample C Code Using Request Sequencing CONSLIUCTS........oeeiiiiiiiiiiiiieeeee e eeiiiiee e 62

20-1. Example 1 (WithOUt USING DSI)ueiiiiimmmec ettt 116
20-2. EXampPIe 2 (USING DSI) .ottt e e 116

Preface

Who Should Read This Document

This Document is intended to provide the reader with a dsionsof how to use the different
components of the NetSolve System and to serve as a refarerugal for the commands and functions
made available by NetSolve. Although we offer a brief distms of the NetSolve System, this document
is not necessarily intended to provide details about th&blee components. The reader should refer to
the NetSolve documents in the reference list and refer tDtdwimentatiorsection of the NetSolve
homepage (http://icl.cs.utk.edu/netsolve/) for morerappate discussion of the NetSolve system.

The reader is expected to have some level of familiarity wittgramming and at least one programming
languages, preferably the C language. Rudimentary kn@elefithe UNIX™ operating system
environment and thmake utility will prove handy if installing and configuring Net8e for the UNIX
environment.

Organization of This Document

This users’ guide is divided into six parts. Themgtsare aimed at the needs of different types of users.
Therefore, it is not necessary for a user to read all chapfehss users’ guide.

Part I: Introduction

This part of the users’ guide provides a general overviemeiMetSolve system, as well as a
discussion of related projects.

Part Il: The User’'s Manual

These chapters are aimed at the average user of NetSolveswhtyiinterested in utilizing the

client interfaces. They provide installation instructdor the client software, a discussion of the
available client interfaces and how to utilize specific feas of the NetSolve system such as request
farming, security, and user-supplied functions, and altteshooting section to explain
error-handling within the NetSolve system.

Part Ill: The Administrator’'s Manual

These chapters are aimed at the user who will be installidgcastomizing a stand-alone NetSolve
system. They give installation instructions for the agemnt server software and the management
tools, explanations of how to enable new software into theshllwe system, and a thorough

Preface

explanation of the design of features in the NetSolve systech as request farming, security, and
the user-supplied function.

Part IV: Miscellaneous Features

These chapters provide detailed information on miscetlaadeatures of the NetSolve system such
as the Network Weather Service (NWS).

Part V: Reference

These sections provide reference manuals for the cliemtfades, as well as a listing of
error-handling messages within the NetSolve system.

Part VI: Appendices

These appendices provides example programs calling theaR@i7 and C NetSolve interfaces.

Document Conventions

Pr ogr am Qut put

Text that is output from a program.

UNI X>

The UNIX prompt at which commands can be entered.

User | nput

Data to be entered by the user.

Repl aceabl e

Content that may or must be replaced by the user.

Action

A response to a user event.

Const ant

A program or system constant.

Functi on

The name of a function or subroutine.

10

Preface

Par amet er

A value or symbolic reference to a value.

Type
The classification of a value.

Vari abl e

The name of a variable.

Application

The name of a software program.

Command

The name of an executable program or other software command.

ENVAR

A software environment variable.

Fi | ename

The name of afile.

Request for Comments

Please help us improve future editions of this document pgnteng any errors, inaccuracies, bugs,
misleading or confusing statements, and typographicaftthat you find. Email your bug reports and
comments to us at netsolve@cs.utk.edu. (mailto:netsobead@k.edu) Your help is greatly appreciated.

11

|. Introduction

Chapter 1. A NetSolve Overview

An Introduction to Distributed Computing

The efficient solution of large problems is an ongoing threfagsearch in scientific computing. An
increasingly popular method of solving these types of oid is to harness disparate computational
resources and use their aggregate power as if it were cewtaira single machine. This mode of using
computers that may be distributed in geography, as well aewship, has been term&istributed
Computing Some of the major issues concerned with Distributed Comguaire resource discovery,
resource allocation and resource management, faulatoder; security and access control, scalability,
flexibility and performance. Various organizations haveadeped mechanisms that attempt to address
these issues, each with their own perspectives of how tdveetizem.

What is NetSolve?

NetSolve (http://icl.cs.utk.edu/netsolve/) is an exasrgdla Distributed Computing system that hopes to
present functionalities and features that a wide variescadntists will find highly useful and helpful.

Background

Various mechanisms have been developed to perform conqmaatcross diverse platforms. The most
common mechanism involves software libraries. Unfortalyathe use of such libraries presents several
difficulties. Some software libraries are highly optimiZedonly certain platforms and do not provide a
convenient interface to other computer systems. Othaarids demand considerable programming effort
from the user. While several tools have been developedduiate these difficulties, such tools
themselves are usually available on only a limited numbeoafputer systems and are rarely freely
distributed. Matlab [matlab] and Mathematica [mathenadtize examples of such tools.

These considerations motivated the establishment of th®dle projectNetSolve
(http://icl.cs.utk.edu/netsolve) project. The basid@ophy of NetSolve is to provide a uniform,
portable and efficient way to access computational ressureer a network.

Overview and Architecture

The NetSolve project is being developed at the Universifjesfnessee’s Computer Science Department.
It provides remote access to computational resources Hawttware and software. Built upon standard

13

Chapter 1. A NetSolve Overview

Internet protocols, like TCP/IP sockets, it is availabledt popular variants of the UNIX™ operating
system, and parts of the system are available for the Miér®gmadows 95™, Windows 98™, Windows
NT™, and Windows 2000™ platforms. Testing has not yet be&wlgoted on the Windows ME™
operating system.

The NetSolve system is comprised of a set of loosely condentehines. Byooselyconnected, we
mean that these machines are on the same local, wide or gi@zhetwork, and may be administrated
by different institutions and organizations. Moreovee etSolve system is able to support these
interactions in deterogeneousnvironment, i.e. machines of different architecturegraping systems
and internal data representations can participate in thtesyat the same time.

Figure 1-1. The NetSolve System

. NS
Appllcatlon@t L@ Users

NS Agent
Resource Discovery.oad Balancin

Resource Allocationgg it Tolerance

NS NS NS
Serve Serve Serve

o] 00

Figure 1-1 shows the global conceptual picture of the NetSsystem. In this figure, we can see the
three major components of the system:

- The NetSolve client,
- The NetSolve agent,
- The NetSolve computational resources (or servers).

The figure also shows the relation NetSolve has to the apiglitathat use it. NetSolve and systems like
it are often referred to as Grid Middleware; this figure hetpmake the reason for this terminology

14

Chapter 1. A NetSolve Overview

clearer. The shaded parts of the figure represent the NetSgbtem. It can be seen that NetSolve acts as
a glue layer that brings the application or user togethdr thi¢ hardware and/or software it needs to
complete useful tasks.

At the top tier, the NetSolve client library is linked in withe user’s application. The application then
makes calls to NetSolve’s application programming inteféAPI) for specific services. Through the
API, NetSolve client-users gain access to aggregate resswithout the users needing to know
anything about computer networking or distributed compmtin fact, the user does not even have to
know remote resources are involved.

The NetSolve agent maintains a database of NetSolve setoerg with their capabilities (hardware
performance and allocated software) and dynamic usagstismtIt uses this information to allocate
server resources for client requests. The agent finds saharwill service requests the quickest,
balances the load amongst its servers and keeps trackexd failes.

The NetSolve server is a daemon process that awaits cligaésts. The server can run on single
workstations, clusters of workstations, symmetric mpiticessors or machines with massively parallel
processors. A key component of the NetSolve server is a smage generator which parses a NetSolve
problem description file (PDF). This PDF contains inforraatihat allows the NetSolve system to create
new modules and incorporate new functionalities. In essahe PDF defines a wrapper that NetSolve
uses to call functions being incorporated.

The (hidden) semantics of a NetSolve request are:

i. Client contacts the agent for a list of capable servers.
ii. Client contacts server and sends input parameters.
iii. Server runs appropriate service.
iv. Server returns output parameters or error status tatclie

No root/superuser privileges are needed to install or upe@amponent of the NetSolve system.

Who is the NetSolve User?

There are two types of NetSolve users. The first type of usaméswho installs and accesses only the
client interface(s) and utilizes existing pools of res@sr(agent(s) and server(s)). The second type of
NetSolve user installs and administrates his own NetSglstem (client, agent(s), server(s)), and
potentially enables his software to be used by NetSolves Users’ Guide addresses the needs of both
types of users. If the user wishes to only install the cliatariface(s), he should follow instructions in
Part Il. The User's ManualHowever, if the users wishes to install client, agent(syl server(s), he
should follow the instructions iRart I1l. The Administrator's Manual

15

Chapter 1. A NetSolve Overview

Note that the term "administrates” or "administrator" h&naply refers to the person setting up and

maintaining the NetSolve agent and server components -- NORPRIVILEGES ARE NEEDED TO
INSTALL OR USE ANY COMPONENT OF THE NetSolve SYSTEM.

The Status of NetSolve

The official release of NetSolve-1.4 is July, 2001. Featimgdemented in this release include a new
Java GUI to aid in the creation of PDFs, IBP-enabled clientsservers, and more server modules for
sparse matrix computations. The Java interface and theuSlafoxy are currently being updated and are
not available for this release. A Microsoft Excel interfasalso under development. NetSolve has been

recognized as a significant effort in research and developraed was named iR & D Magazine’s top
100 list for 1999

16

Chapter 2. Related Projects and Systems

There are a variety of related projects.

CONDOR

Condor (http://www.cs.wisc.edu/condor/)is a softwargtemn that runs on a cluster of workstations
to harness wasted CPU cycles. A Condor pool consists of ampauof machines, of possibly
different architectures and operating systems, that armected by a network.

NetSolve currently has the ability to access CONDOR pooitsa®mputational resource. With
little effort, the server can be configured to submit thentlgerequest to an existing CONDOR pool,
collect the results, and send them to the client.

Globus

The Globus project (http://www.globus.org/) is develgptime fundamental technology that is
needed to build computational grids, execution envirorisgrat enable an application to integrate
geographically-distributed instruments, displays, andhputational and information resources.
Such computations may link tens of hundreds of these resaurc

In its testing phase is a new NetSolve client which implermarn®lobus proxy to allow the client to
utilize the Globus grid infrastructure if available. If nttie client resorts to its present behavior.

IBP (Internet Backplane Protocol)

IBP (http://icl.cs.utk.edu/ibp/) is a storage managensgatem which serves up writable storage as
a wide-area network resource, allows for the remote divacif storage activities, and decouples
the notion of user identification from storage.

Currently available in NetSolve are IBP-enabled clients servers that allow NetSolve to allocate
and schedule storage resources as part of its resourceimgkehis leads to much improved
performance and fault-tolerance when resources fail.

Legion

Legion (http://legion.virginia.edu/) has been incorgedsin such a way to allow the client-user to
program using the NetSolve interface while leveraging tegibn meta-computing resources. The
NetSolve client side uses Legion data-flow graphs to keeft whdata dependencies. This effort
has been extended only to the FORTRAN interfaces and waslijote Legion group at the
University of Virginia.

17

Chapter 2. Related Projects and Systems

metaNEOS

The metaNEOS project (http://www-unix.mcs.anl.gov/nmesia/) integrates fundamental
algorithmic research in optimization with research andastructure tool development in
distributed systems management. Algorithms that can #gxpepowerful but heterogeneous,
high-latency and possibly failure-prone virtual hardwaniatform typical of metacomputing
platforms have been developed in such areas as global @gatiion, integer linear optimization,
integer nonlinear optimization, combinatorial optimizat, and stochastic optimization.

Ninf

Ninf (http://ninf.etl.go.jp) and NetSolve are remote cartipg systems which are oriented to
provide numerical computations. These two systems aresigrijar to each other in their design
and motivation. Adapters have been implemented to enablesestem to use numerical routines
installed on the other.

NWS (Network Weather Service)

NWS (http://www.nws.npaci.edu/NWS/) is a system that ss#sor processes on workstations to
monitor the cpu and network connection. It constantly atdlestatistics on these entities and has the
ability to incorporate statistical models to run on the ecleéd data to generate a forecast of future
behavior.

NetSolve has integrated NWS into its agent to help its effofidetermining which computational
servers would yield results to the client most efficiently.

18

ll. The User's Manual

The user has two choices when installing NetSolve. He cdalirmly the client software and use
existing pools of resources (agent(s) and server(s)), oahénstall his own stand-alone NetSolve
system (client, agent(s) and server(s)). If the user wighesly install the client interface(s), he should
follow instructions inPart II. The User’'s ManualHowever, if the users wishes to install client, agent(s),
and server(s), he should follow the instruction®anrt I1l. The Administrator's Manual

19

Chapter 3. Downloading, Installing, and Testing
the Client

The NetSolve client software is available for UNIX/UNIX& operating systems and Windows
environments. All of the client, agent, and server softwaigindled into one tar-gzipped file. There is a
separate distribution tar file for Unix and Windows instadias. No root/superuser privileges are needed
to install or use any component of the NetSolve system.

Installation on Unix Systems

The NetSolve distribution tar file is available from the Nali® homepage.
(http://icl.cs.utk.edu/netsolve/download/NetSolvé:tgz) Once the file has been downloaded, the
following UNIX commands will create thiset Sol ve directory:

gunzip -c NetSolve-1.4.tgz | tar xvf -
From this point forward, we assume that the UNIX SHELL is friracshfamily.

The installation of NetSolve is configured for a given aretiitire using the GNU toaonf i gur e.

UNI X> cd Net Sol ve
UNI X> . /configure

For a list of all options that can be specified to configureetyp

UNI X> ./configure --help

Usage: configure [--w th-cc=C_COWILER] [--w th-cnooptfl ags=C_NOOPT_FLAGS]
-with-coptflags=C OPT_FLAGS] [--with-fc=F77_COWPI LER]
-wi t h-fnoopt fl ags=F77_NOOPT_FLAGS]
-with-foptflags=F77_OPT_FLAGS]

-wi t h-1dfl ags=LOADER_FLAGS]

-wi t h- nws=NWSDI R]

-wi t h-i bp=I BPDI R|

-W t h- ker ber os]

- Wi t h- pr oxy=PROXY_TYPE]

-wi t h-out put | evel =OUTPUT_LEVEL]

- enabl e-i nf oser ver =I NFOSERVER]

-w t h-mpi =MPI _DI R]

[
[
[
[
[
[
[
[
[
[
[
[
[--with-petsc=PETSCDI R]

20

Chapter 3. Downloading, Installing, and Testing the Client

-wi th-aztec=AZTEC DI R]
-with-aztecli b=AZTEC LI B]

-wi t h-super | u=SUPERLU_DI R]
-wi th-super !l ul i b=SUPERLU_LI B]

-wi t h-bl acsl i b=BLACS_LI B]
-wi t h-1 apackl i b=LAPACK LI B]
-wi t h-bl asl i b=BLAS_LI B]

[_
[_
[_
[_
[--wi th-scal apackl i b=SCALAPACK LI B]
[_
[_
[_
[_

-wi t h-m dk=M_DK_PATH]

wher e
C_COWPI LER
C_NOOPT_FLAGS

C_OPT_FLAGS
F77_COWPI LER
F77_NOOPT_FLAGS

F77_OPT_FLAGS
LOADER FLAGS
NWSDI R

| BPDI R
PROXY_TYPE

CQUTPUT_LEVEL

| NFOSERVER

MPI DI R

PETSCDI R
AZTEC DI R
AZTEC LI B
SUPERLU_DI R
SUPERLU LI B
SCALAPACK LI B
BLACS LI B
LAPACK LI B
BLAS LI B
MLDK_PATH

All arguments are optional.

default is to use gcc

C conpiler flags to be used on files that

nmust be conpiled w thout optim zation

C conpiler optimzation flags (e.g., -0

default is to use g77

Fortran77 conpiler flags to be used on files that
nmust be conpiled w thout optimzation

Fortran77 conpiler optinization flags (e.g., -0
Flags to be passed only to the | oader

directory where NWs is installed (optional)
directory where IBP is installed (optional)
currently supported val ues are netsol ve

and gl obus (default is netsolve)

currently supported val ues are debug, view,

and none (default is view

currently supported val ues are al one and

not hi ng specified (default is not alone,

where nothing is specified).

|l ocation of the MPI directory (optional,

assunes MPICH directory structure)

(default is /usr/local/npich-1.2.1).

| ocation of PETSc installation directory (optional)
| ocation of Aztec installation directory (optional)
Aztec link line (optional)

| ocation of SuperLU installation directory (optional)
SuperLU link line (optional)

ScaLAPACK link line (optional)

MPI BLACS |ink line (optional)

LAPACK link |Iine (optional)

BLAS link line (optional)

Path to Mat hLi nk Devel opnent Kit (optional)

The options particularly pegtit to NetSolve are:

21

Chapter 3. Downloading, Installing, and Testing the Client

--w t h- nws=NWSDI R | ocation of NWs installation dir
--wi t h-i bp=I BPDI R | ocation of IBP installation dir
--w t h- ker beros use Kerberos5 client authentication
--w t h- proxy whi ch Proxy? (netsolve, gl obus)

--wi t h-out put | evel out put | evel (debug, view, none)

--enabl e-i nfoserver[=al one] use InfoServer [alone]

The NetSolve service options are:

--wi t h- pet sc=PETSCDI R | ocation of PETSc installation dir
--with-petsclibdir=PETSC LIB DI R | ocation of PETSc l|ibrary

--wi th-aztec=AZTEC DI R | ocation of Aztec installation dir
--wi th-aztecli b=AZTEC LI B Aztec link line

--Wwi t h-super| u=SUPERLU DI R | ocation of SuperLU installation dir
--wi th-super!l ul i b=SUPERLU_LI B Super LU link line

--wi th-nmpi =MPI _DIR | ocation of MPI Root Directory
--wi th-1apackl i b=LAPACK_LI B LAPACK link Iine

--wi th-scal apackl i b=SCALAPACK LI B ScaLAPACK |ink line

--with-blacsli b=BLACS LIB MPI BLACS Iink line
--with-blaslib=BLAS LIB BLAS link line

--wi th-m dk=M_.DK_PATH Path to Mat hLi nk Devel opnment Kit

The configure script creates two main files, ./conf/MakefNETSOLVE_ARCH.inc and
.Jconf/Makefile.inc. These files are created from the tetagldconf/Makefile.generic-arch and
Jconf/IMakefile.inc.in respectively. SNETSOLVE_ARCH keetstring printed by the command
Jconf/config.guess, with all -’ and .’ characters conesfto '’ characters. The variable
$NETSOLVE_ROOT is the complete path name to the installeibdlee directory and defined in

./ conf/ Makefil e.inc. These *.inc files are included by the Makefiles that buildfeSolve system.
Manually editing these configuration files is strongly dis@ged. However, if the user prefers to edit
this file, details of theéeNETSOLVE_ROOT/ conf / Makef i | e. $NETSOLVE_ARCH. i nc file are explained
in the section calleetails of the Makefile.NETSOLVE_ARCH.inc FileChapter 12.

Typing make in theNet Sol ve directory will give instructions to complete the compitati A typical
client compilation includes:

UNI X> make C Fortran tool s test

to build the C and Fortran client interfaces, NetSolve managnt tools (see Chapter 16), and NetSolve
test suite (see the section calléekting the Softwar@ Chapter 13). To build the Matlab client interface
to NetSolve, type

UNI X> make mat ! ab

and to build the Mathematica client interface to NetSolypet

22

Chapter 3. Downloading, Installing, and Testing the Client

UNI X> make mat hemati ca

As previously stated, the Java client interface is in thegss of being updated, and is not available in
release 1.4 of NetSolve. After a successful compilatiorcgss, the appropriate binaries and/or libraries
can be found in th@NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCHand/or

$NETSOLVE_ROOT/ | i b/ $NETSOLVE_ARCHdirectories respectively. Thus, to execute a NetSolverpina
the user must either execute the command from withir$tEer SOLVE_ROOT/ bi n/ $NETSOLVE_ARCH
directory, or add this directory name to his UNp4t h variable.

Testing the Unix installation

Testing solely the client software means that a pre-exjstietSolve system will be contacted, possibly
the default agent and servers running at the University oh&ssee. That system can be contacted via
the hosinet sol ve. cs. ut k. edu which should always be running an agent. The step-by-step
procedure to test your NetSolve client installation is dloves:

1.cd NetSolve

2. make test

3.setenv NETSOLVE_AGENT netsolve.cs.utk.edu

4. Test
While the tester is running, it prints messages about itsugi@n. This test tests only the C and
Fortran77 interfaces. Details of this process are expihiméhe following chapters. For more

information on the C and Fortran77 interfaces, see Chaptehapter 6 and Chapter 7 detail how to test
the Matlab and Mathematica interfaces, respectively.

If an error is encountered during testing, refer to the Tlesifiooting section of thErrata file
(http://icl.cs.utk.edu/netsolve/errata.html) for Nef&.

Installation on Windows systems

This section describes the installation and testing of tiveddivs version of the NetSolve client
software. At present, the software is distributed in theforf a self-extracting exe file. AmstallShield
setup is being developed to simplify the installation instions, and this setup will be available soon.

The contents of the self-extracting exe file are as followser@NETSOLVE_DI Rrefers to the directory
where you have unzipped the distribution.

23

Chapter 3. Downloading, Installing, and Testing the Client

NETSOLVE_DI R\

This directory contains the readme file and an installatwips

NETSOLVE DIR\li b

This directory contains the NetSolve client library.

NETSOLVE_DI R\ nat | ab

This directory contains the matlab binaries.

NETSOLVE_DI R\t ool s

This directory contains various tools for managing Net8olv

NETSOLVE_DI R\t esti ng

This directory contains various sample binary test progrirat you can run to verify your
installation.

The installation process is quite simple.

a. Run the exe you downloaded from the NetSolve webpage.

To determine the agent host name, the user can issue theiftdlcommand:
a.cd NETSOLVE_DIR\tools
b. getagent

To set a new agent host name, the user must issue the foll@emgand:
a.cd NETSOLVE_DIR\tools

b. setagent [agent host name]

If the agent host name is not specified on the command lineyibbe prompted for a host name.
You will have the option of specifying a name or acceptingdheent agent name set in the registry.

The de-installation process is quite similar.

a.cd NETSOLVE_DIR
b. netsolve_install -uninstall

The above program removes the keys from the Windows registry

24

Chapter 3. Downloading, Installing, and Testing the Client

c.del ete NETSOLVE DI R

Testing the Windows installation

You can use the various programs in MEr'SOLVE_DI R\t est i ng directory to test your NetSolve
installation. Remember that a valid NetSolve agent andesestvould already be running, and the
required problems should be installed on the servers. lSadist of test programs and the problems
they make use of:

c_test

chartest, doubletest, inttest, stringlisttest, stringtmtaltest

farming_test

doubletest

sequence_test

mpass, vpass, pass, multipass
For example, to perform a sample runcottest the user must do the following:

a. Usesetagentto point to the correct agent host

b. Runc_test.exe

Using NetSolve from Windows Matlab

A user new to Netsolve will find the Matlab interface very sim@he matlab interface is in
NETSOLVE_DI R\ nat | ab. To access the interface

a. Start up Matlab
b. Click on File -> Set Path ...
c. Add theNETSOLVE_DI R\ mat | ab directory to the path

The interface consists of 4 NetSolve calls

25

Chapter 3. Downloading, Installing, and Testing the Client

netsolve.dll
netsolve_nb.dll
netsolve_err.dll
netsolve_errmsg.dll

Testing NetSolve within Matlab involves the following step
netsolve('?’)
This command prints the agent and servers currently aveilab

netsolve
This command prints the list of problems that can be solved.

Help on any call can be obtained by typing just the call on tlzl&b prompt.

Using the NetSolve Management Tools in Windows
There are various tools in tMETSOLVE_DI R\ t ool s directory that allow the user to explore the

NetSolve metacomputing system.

netsolveconfig.exe [agent_name]

provides a list of agents and servers as seen by agent_name

netsolveproblems.exe [agent_name]

provides a list of problems that can be solved within the NktSframework as seen by
agent_name

26

Chapter 4. Introduction to the NetSolve Client

NetSolve Problem Specification
Solving a computational problem with NetSolve is a funcévaluation:
<out put > = <nane>(<i nput >)

where

- <nane> is a character string containing the name of the problem,

- <i nput > is a list of input objects,

« <out put > is a list of output objects.

An object is itself described by abject typeand adata type The types available in the current version
of NetSolve are shown in Table 17-1 and Table 17-2. Ratherghang examples for each object type,
we refer the reader to the programs$mETSOLVE_ROOT/ sr ¢/ Exanpl es and

$NETSOLVE_ROOT/ sr ¢/ Test i ng. The user can also refer to the section caNetemonicsn Chapter

17 for a description of the requirements for each NetSohject typeas it relates to the problem
description file.

Available Client Interfaces

NetSolve provides a variety of client interfaces:

« C, Fortran interfaces are detailed in Chapter 5.

« Mat | ab interface is detailed in Chapter 6.

- Mat hemat i ca interface is detailed in Chapter 7.

We are in the process of updating @wava interface, thus this interface is not available in versighdf
NetSolve. We are also developingBxcel interface.

In the section calletlletSolve Problem Specificatiome described the input and output arguments of a
NetSolve problem as lists @bjects The Matlab, Mathematica, and Java interfaces to NetSalwe ¢
manipulate objects directly and it is therefore very easyalbNetSolve from their interfaces once

27

Chapter 4. Introduction to the NetSolve Client

problem descriptions are known. From interfaces that atelject-oriented (C and Fortran), it is
necessary to useaalling sequencéhat describes the objects’ features individually. For ptate details,
the user should refer to Chapter 5 and the section c8ledse Matrix Representation in NetSalve
Chapter 17.

Problems that can be solved with NetSolve

In order for a problem to be solved (i.e., a function or ligresutine to be invoked) using NetSolve,
there must exist a problem description file (PDF) correspantb the problem/routine. A variety of
PDFs are included with the NetSolve distribution. A user aso write his own PDF for his function, as
described in Chapter 17.

The default NetSolve distribution provides only a limitethset of enabled software to test the various
client interfaces. Interfaces have been written for a waésoftware libraries (refer to
$NETSOLVE_ROOT/ pr obl ens/), but as the libraries themselves are not included in th&bdlee
distribution, the library interfaces are not enabled. Therwcan, therefore, customize his installation to
include these existing interfaces and/or new interfacefeiRo the section calledistallation on Unix
System@ Chapter 13 for further details.

It is possible to query a NetSolve agent to obtain a list arsttidigtions of the problems that can be
solved by its respective servers. There are several wayendirsg such queries.

1. From the NetSolve homepage, it is possible to specify antagame and run CGI scripts to obtain
detailed information about NetSolve problems, includingr@ Fortran calling sequence
specifications.

2. Problem lists and descriptions are also directly avidlfdom the Matlab interface, the Mathematica
interface, and the Java GUI.

3. The NetSolve management tools described in Chapter ®&gess to that information from the
UNIX prompt.

Naming Scheme for a NetSolve problem

The full name of a NetSolve problem has two parts:

i. the path, and

ii. the nickname

28

Chapter 4. Introduction to the NetSolve Client

Let us demonstrate this with an example. The problem niclethiot , which computes the inner
product of two double-precision vectors, has the full namieAS/ Level 1/ ddot . This problem can be
found in$NETSOLVE_RQOOT/ pr obl ens/ bl as. This full name has two purposes. First, when we display
a list of problems, they are sorted alphabetically by thdirrfame, and the problems are grouped by
"directory”. Second, by convention, the first element offtlename (e.g.BLAS) is the name of the
numerical library containing the operation (problem).STédnvention has proven to be useful, as seen in
the section calletiVhat is the Calling Sequenca®?Chapter 5.

29

Chapter 5. C and Fortran77 Interfaces

Introduction

As previously mentioned in the section calledtallation on Unix Systeme Chapter 3, the C/Fortran77
client interfaces for NetSolve are built by typing

UNI X> make C Fortran

in the directorysNETSOLVE_ROOT. This compilation produces the following two archive files:

« $NETSOLVE_ROOT/ | i b/ $NETSOLVE_ARCH | i bnet sol ve. a: the C library
« $NETSOLVE_ROOT/ | i b/ $NETSOLVE_ARCH | i bf net sol ve. a: the Fortran77 library

where NETSOLVE_ROQT is the full path name to the NetSolveatory and NETSOLVE_ARCH is
the architecture name generated by configure.

Before linking to one of these libraries, the user must idelthe appropriate header file in his program:

« $NETSOLVE_ROOT/ i ncl ude/ net sol ve. hin C,
« $NETSOLVE_ROOT/ i ncl ude/ f net sol ve. hin Fortran77.

The Fortran77 include file is not mandatory, but increasestiurce program readability by allowing
calling subroutines to manipulate the NetSolve error ciiyesriable name rather than by integer value.

The Fortran77 interface is built on top of the C interfacesiall of the networking underneath NetSolve
is written in C. However, we chose to write the Fortran77rifaee with subroutines instead of functions
(for reasons of compiler compatibilities). The C functiatiseturn a NetSolverror codeequal to0 if

the call was successful or to a negative value in case of. €hapter 24 contains the list of all possible
error codes. The Fortran77 subroutines take an extra oimieger argument (passed by reference) at the
end of the calling sequence that contains the error codeatepletion of the call. The reference
manuals for C and Fortran77 are in Chapter 22 and Chapter 23.

The basic concepts here are the same as the ones we havedeod Chapter 6 for the Matlab
interface, especially the ability to call NetSolve in a g or nonblocking fashion.

We describe the C and Fortran77 interfaces by the means odampe. In the following section we start
developing the example by demonstrating how a user canmibfairmation about the calling sequence
to a given problem.

30

Chapter 5. C and Fortran77 Interfaces

What is the Calling Sequence?

As described in the section calldttSolve Problem SpecificationChapter 4, the C and Fortran77
interfaces, as they are not object-capable, need to us#ispatling sequences that are more involved
than the ones used from Matlab or Mathematica.

Let us take a very simple example: the user wants to perforamaallinear system solve. The first thing
to know, as stated in earlier chapters, is the name or IP asldfea host running a NetSolve agent. The
default NetSolve agent running at the University of Tenaess aware of many servers that can perform
the computation. In fact, a dense linear system solve isigeeavwith the NetSolve distribution as default
numerical software for the server. The user has now two plessourses of action to find out about the
problem. Let us assume that the user chooses to use the UMiKaad line management tools (see
Chapter 16 for a complete description of these tools). Ttegradtive would be to use the CGlI scripts on
the NetSolve homepage.

the section calleExpanding the Server Capabiliti@&s Chapter 13 shows how the servers specify the
calling sequence to a given problem. It is usual for seneenforce the same calling sequence as the
original numerical software and to give a problem the nantéebriginal library function. In the
exampledgesv() is the name of an LAPACK subroutine and the user can therefquect the calling
sequence for the probledyesv to match the one of the subroutine. One can see in the proidem |
returned byNS_problemsa problem called i nsol . In this examplel i nsol is a simplified version of
dgesv and has a simplified calling sequence chosen by whomevegdthe first server that provides
access to that problem. Sincensol is not the name of an LAPACK subroutine, its calling sequence
can be arbitrary.

UNI X> NS_probl ens netsol ve. cs. utk. edu
/1 mageProcessi ng/ Filters/ bl ur

/ LAPACK/ Li near Syst ens/ dgesv

/ LAPACK/ Li near Syst ens/ | i nsol

Next, two situations are possible. First, the user alreambyis the numerical software (e.g., LAPACK)
and may even have code already written in terms of this soétwa this case, thewitchingto NetSolve

is immediate. The second possibility is that the user doekmmw the software. If this is the case, he
needs to pay close attention to the output givemNIBy probdesc The output from this command first
gives the calling sequence as it would be invoked from Matkaldl then gives the calling sequence from
C/Fortran.

UNI X> NS_probdesc netsol ve. cs. utk. edu dgesv
-- dgesv -- From LAPACK -
Conpute the solution to a real systemof |inear equations
A* X=b
where Ais an N-by-B matrix and X and B are N-by-NRHS matri ces.
Mat | ab Exanple : [x y z info] = netsolve(’dgesv’, a,b)

31

http://ww. netlib.org/lapack/index. htm
* 2 objects in | NPUT
- input 0: Matrix Double Precision Real.
Matrix A
- input 1: Matrix Double Precision Real.
Ri ght hand side
* 4 objects in OUTPUT
- output O: Matrix Double Precision Real.
LU factors (A = P*L*U)
- output 1: Vector Integer.
Vector of pivots (defines the P matrix)
- output 2: Matrix Double Precision Real.
Sol ution
- output 3: Scalar |nteger.
I NFO
0 successful
<0 error on calling ?
>0 QR algorithmfailed
* Calling sequence from C or Fortran
8 argunents
- Argunent #0:
- nunber of rows of input object #0 (A)
- nunber of colums of input object #0 (A)
- nunber of rows of input object #1 (RHS)
- Argunent #1:

- nunber of colums of input object #1 (RHS)

- Argunent #2:

- pointer to input object #0 (A)

- pointer to output object #0 (LU)

- pointer to output object #0 (LU)
- Argunent #3:

- leading dimension of input object #0 (A)
- Argunent #4:

- pointer to output object #1 (PIVOT)
- Argunent #5:

- pointer to input object #1 (RHS)

- pointer to output object #1 (PIVOT)

- pointer to output object #2 (SOLUTION)
- Argunent #6:

- leading dinension of input object #1 (RHS)

- Argunent #7:
- pointer to output object #3 (INFO

Chapter 5. C and Fortran77 Interfaces

32

Chapter 5. C and Fortran77 Interfaces

This output can appear rather cryptic at first. Let us worlgh it step by step. First, the number of
arguments in the calling sequence is 8. This means that thfieara C will look like:

status = netsl (' dgesv()’, X0, X1, X2, X3, X4, X5, X6, X7) ;
And from Fortran77, the call to NetSolve would be:
CALL FNETSL(’ dgesv()’, STATUS, X0, X1, X2, X3, X4, X5, X6, X7)

Now, each argument is described in the information retubyedS_probdescand this description can
be translated into meaningful variable names in the usecsaode. For instanci?2 should be a pointer
to the matrix of the linear system, aid should be an integer that is the leading dimension of theiratr
We can now move on to the descriptions of the different waysatliing NetSolve from C or Fortran77.

Blocking Call

The blocking call to NetSolve from C or Fortran77 is the estsie implement. Specifically, if the main
program is in C, one calls the functiomet sl (), and if the main programis in Fortran77, one calls the
function,FNETSL() . This C function returns an error code. It takes as arguntkataame of a problem
and the list of input data. These inputs are listed accortdiriige calling sequence discussed in the
section calledVhat is the Calling SequencePhe C prototype of the function is

int netsl(char *problemnane, ... < argunent list > ...)
and the Fortran77 prototype is

SUBROUTI NE FNETSL(PROBLEM NAME, STATUS,
& < argunent list > ...)

wherePROBLEM NAME is a string andSTATUS is the integer status code returned by NetSolve.

Let us resume our example of the calldigesv. In Fortran77, the direct call to LAPACK looks like
CALL DGESV(N, 1, A LDA, 1PV, B, LDB, INFO)
The equivalent blocking call to NetSolve is

CALL FNETSL(’ DGESV()', STATUS, N, 1, A LDA [1PlV,
& B, LDB, INFO)

ThecallinCis

status = netsl (’dgesv()’',n,1,a,lda,ipiv,b,Idb, & nfo);

33

Chapter 5. C and Fortran77 Interfaces

Notice that the name of the problemcdase insensitivand that it is appended by an opening and a
closing parenthesis. The parentheses are used by Net8dtaadle Fortran/C interoperability on certain
platforms. In Fortran77, every identifier represents a f@ojiout in C we actually had the choice to use
pointers or not. We chose to use integer (int) for the sizebefmatrices/vectors, but pointers for
everything else.

From the user’s point of view, the call to NetSolve is exaetiyivalent to a call to LAPACK. One detail,
however, needs to be mentioned. Most numerical softwareifgewin Fortran77 and requires users to
provide workspace arrays as well as data, since there is$giljlity for dynamic memory allocation.
Because we preserved the exact calling sequence of the ivahsmftware, we require the user to pass
those arrays. But, since the computation is performed relyjyatorkspace on the client side is
meaningless. It will, in fact, be dynamically created ondbever side. Therefore, when the numerical
software would require workspace, the NetSolve user mayigea one-length array for workspace.

This is signaled in the output &§S_probdesdy an argument description such as:

- Argunent #6:
- ignored

Nonblocking Call

We developed this nonblocking call for the same reason weldped one for Matlab (see the section
calledCalling net sol ve_nb() in Chapter 6): to allow the user to have sohetSolve-parallelismThe
nonblocking version ofiet sl () isnet sl nb() . Similarly, the nonblocking version &fNETSL() is
FNETSLNB() . The user calls it exactly as he would cadit s| () or FNETSL() . If the call to

net sl nb() or FNETSLNB() is successful, it returns a request handler in the form obaifpe) integer.
If it is not successful, it returns an error code. Continuinth our example:

CALL FNETSLNB(' DGESV()', REQUEST, N, 1, A LDA IPIV,
& B, LDB, INFO)

andinC:
request = netslnb(’ dgesv()’,n,1,a, nax,ipiv, b, max, & nfo);

In case of an error, the request handler actually contasmétbgative) NetSolve error code.

The next step is to check the status of the request. As in thiaMiaterface, the user can choose to
probe or to wait for the request. Probing is done by calfiags! pr () or FNETSLPR() which returns a
NetSolve error code:

34

Chapter 5. C and Fortran77 Interfaces

CALL FNETSLPR(REQUEST, I NFO)
andinC:

info = netslpr(request);

Typical error codes returned aKet Sol veNot Ready andNet Sol veOK (see Chapter 24). Waiting is
done by usingiet sl wt () or FNETSLWI() . This function blocks until the computation is complete and
the result is available. Here is the Fortran77 call:

CALL FNETSLWI(REQUEST, | NFO)
and the C call :
info = netslw (request);

If the call is successful, the function/subroutine retuheserror codélet Sol veOK and the result is in
the user memory space.

Catching errors

Given a NetSolve error code, there is a function in the C antt&w/ 7 interface that prints explicit error
messages to the standard error. The C call is :

netslerr(info);
and in Fortran77
CALL FNETSLERR(| NFO)

The user should refer to Chapter 24 for a list of all possiblerecodes.

Row- or column-major

To allow the NetSolve user to store her/his matrices eitieoiv-wise or column-wise fashion, we also
provide the functiomet sl maj or () in C andFNETSLMAJOR() in Fortran77. This function can be
called at any time in the user’s program in C:

net sl maj or ("col");
netsl major("row');

35

Chapter 5. C and Fortran77 Interfaces

or in Fortran77:

CALL FNETSLMAJOR(’ col ’)
CALL FNETSLMAJOR(’ row)

All of the subsequent calls to NetSolve will assume the gmoading major. The default values are of
course row-wise for C and column-wise for Fortran77.

Limitations of the Fortran77 interface

Due to Fortran77’s restrictions for the use of pointer aadniability to dynamically allocate memory,
the Fortran77 interface to NetSolve does not support thekBAFILES and STRINGLIST object type.
It also does not support output objects of type STRING.

Built-in examples

C and Fortran77 and Java examples are included in the Net8tribution in

$NETSOLVE_ROOT/ sr c/ Exanpl es. To build them, the user simply typeske exanpl es in the top
directory. The examples use different problems that haea lgésen servers at the University of
Tennessee. They should help the user to understand howdteersworks. We also have full examples in
C and Fortran in Appendix A and Appendix B.

36

Chapter 6. Matlab Interface

Introduction

Building the Matlab interface by typing

UNI X> make nmat ! ab

in the directorysNETSOLVE_ROOT produces the four followinghex-files

$NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH net sol ve. mex###
$NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH/ net sol ve_nb. mex###
$NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH/ net sol ve_er r. mex###
$NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH net sol ve_er r nsg. mex###

The### part of the extension depends on the architecture (forriestehe extension isnexsol for
the Solaris Operating System). These four files alone ard#ikab interface to NetSolve. To make these
four files accessible to Matlab, the user must modify the MABPATH environment variable as:

UNI X> set env MATLABPATH $NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH

It is also possible to use the Matlab commadipath. For more information about mex-files, the user
can refer to [matlab]. In the following sections, the usdt l@arn to call four new functions from
Matlab:net sol ve(), net sol ve_nb(),netsol ve_err (), andnet sol ve_errmsg().

What to Do First

Let us assume that the user has compiled the Matlab intedatan agent name, started a Matlab
session and is now ready to use NetSolve. In this section seride those features of the interface that
allow the user to obtain information about the currentlyilade NetSolve system.

As stated briefly in the section call&ioblems that can be solved with NetSdlv€hapter 4, it is
possible to obtain the list of solvable problems from Matkabwell as from the homepage CGl scripts
or the management tools. In the case of Matlab, this infaonas obtained by typing the following
command

>> net sol ve
Net Sol ve - List of available problens -

37

Chapter 6. Matlab Interface

/ BLAS- wr apper s/ Level 3/ dmat nul

/ BLAS- wr apper s/ Level 3/ zmat nmul

/ BLAS/ Level 1/ daxpy

/ BLAS/ Level 1/ ddot

/| BLAS/ Level 1/ zaxpy

/ BLAS/ Level 2/ dgenv

/ BLAS/ Level 3/ dgenm

/ BLAS/ Level 3/ zgenm

| LAPACK- wr apper/ Si npl e/ Ei g_and_Si ngul ar/ ei g
| LAPACK- wr apper/ Si npl e/ Li near _Equati ons/ | i nsol
/ LAPACK/ Si npl e/ Li near _Equat i ons/ dgesv

| LAPACK/ Auxi | i ary/ dl acpy

/ Mandel br ot / mandel br ot

/ Qui ckSort/ Doubl ePreci si on/ dgsort

/ Qui ckSort/Integer/iqgsort

| SCALAPACK/ Li near Syst eml pdgesv

| SCALAPACK!/ Li near Syst em pdposv

| SCALAPACK!/ Li near Syst eni pl i nsol

/ Super LU- MA28/ spar se_di rect _sol ve

[output args] = netsol ve(probl emnane, input args)
Informati on on a specific problem: netsol ve(probl em nane)
Informati on on the servers : netsolve(’'?")

where each line contains a full problem name. If the user d/bké more detailed information on a
specific problem, e.gei g, he can type

>> netsolve('eig’)

-- eig -- Wapper around the LAPACK routine DGEEV --
Sinplified version of DGEEV.

Conput es the eigenval ues of a doubl e precision real

matrix A Returns two doubl e precision real

vectors containing respectively the real parts and

the imaginary parts of the eigenval ues.

MATLAB Exanple : [r i] = netsolve('eig ,a)

* 1 objects in | NPUT
- input 0: Matrix Double Precision Real.
Matrix A

* 2 objects in OUTPUT
- output O: Vector Double Precision Real.

38

Chapter 6. Matlab Interface

Real parts of the eigen val ues
- output 1: Vector Double Precision Real.
I magi nary parts of the eigen val ues

Qut put Ohjects 0 and 1 can be nerged.
>>

This output gives a short description of the problem, an gtaiim Matlab usinghet sol ve() , theinput
objects that must be supplied by the user, andtitputthat will be returned to the user. This particular
problem requires only one double-precision matrix on inplattice that this matrix must be square (as
stated in the description of the problem). If the user triesall NetSolve for this problem with a
rectangular matrix, he will receive an error message gfdhiat the dimensions of the input are invalid.
On output, the problerai g will return two vectors, the real and imaginary parts of tigeavalues of

the input matrix, respectively.

Since Matlab provides a mechanism to manipulate complexctdjit is probable that the user would
like to haveei g return one single complex vector instead of two separateveetors. Thus, in the
Matlab interface it is possible tmergethese two real output vectors into one complex vector. Toistp
is further developed in the next section.

The Matlab interface has another feature that is conceroedith the actual problem solving but with
providing information about the NetSolve configuratioeits\We have just seen how to get information
about the problems handled by the NetSolve servers; itéspissible to obtain the physical locations of
these servers. Let us assume that our NETSOLVE_AGENT emvient variable is set to

net sol ve. ¢s. ut k. edu (see Chapter 14). The command

>> netsolve(’?")

produces the following output:

Net Sol ve - List of available agents -
net sol ve. cs. ut k. edu(128. 169. 93. 161)
Net Sol ve - List of available servers -
mar uti.cs. berkel ey. edu(128. 32. 36. 83)

cupi d. cs. ut k. edu(128. 169. 94. 221)
torc3.cs. utk.edu(128.169.93.74) (0 failures)

The same information can be obtained from the homepage Giptsor the management tools.

Calling net sol ve() to perform computation

39

Chapter 6. Matlab Interface

The easiest way to perform a numerical computation in NetSlto call the functiomet sol ve() .
With this function, the user sends a blocking request to blgts By blockingwe mean that after typing
the command in the Matlab session, the user resumes contyoMben the computation has been
successfully completed on a server. The other way to peréommputation is to sendr@onblocking
request as described in the section calladling net sol ve_nb() .

Let us continue with thei g example we started to develop in the preceding section. $aenow

knows that he has to provide a double-precision squarexiatNetSolve, and he knows that he is going
to get two real vectors back (or one single complex vectoe)fitét creates a 300 x 300 matrix, for
instance,

>> a = rand(300);
The call to NetSolve is now
>> [x y] = netsolve('eig’,a)

All the calls tonet sol ve() will look the same. The left-hand side must contain the ougpguments,
in the same order as listed in tbatput descriptior{see the section calléthat to Do Firs}. The first
argument tmet sol ve() is always the name of the problem. After this first argumeattiput
arguments are listed, in the same order as they are listbe ingut description(see the section called
What to Do Firs}. This function does not have a fixed calling sequence, gime@umber of inputs and
outputs depends on the problem the user wishes to solve.

Let us see what happens when we type:
>> [x y] = netsolve('eig’,a)

Sendi ng | nput to Server zoot.cs.utk.edu
Downl oadi ng Qut put from Server zoot.cs. utk.edu

X = y =
10. 1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0. 6416 0. 6511

As mentioned earlier, the user can decide to regsoapdy into one single complex vector. Let us make
it clear again that this possibility is a specificityafg and is not available in general for all problems.
To mergex andy, the user has to type:

>> [x] = netsolve('eig,a)

40

Chapter 6. Matlab Interface

Sendi ng I nput to Server zoot.cs.utk.edu
Downl oadi ng Qut put from Server zoot.cs.utk.edu

10. 1204
-0.9801 + 0.8991i
-0.9801 - 0.8991i
-1. 0195
-0.6416 + 0.6511i

Calling net sol ve_nb()

The obvious drawback of the functiaet sol ve() is that while the computation is being performed
remotely, the user must wait to regain control of the promptaddress this drawback, we provide a
nonblockingunction,net sol ve_nb() . The user can then do work parallel and check for the
completion of the request later. He can even send multipjeasts to NetSolve. Thanks to the
load-balancing strategy implemented in the NetSolve agdinhese requests will be solved on different
machines if possible, achieving soiNetSolve-parallelismiet us now describe this function with the

ei g example.

As in the section calle@€alling net sol ve() to perform computatiorthe user creates a 300 x 300
matrix and calls NetSolve:

>> a = rand(300);
>> [r] = netsolve_nb(’'send ,’eig’,a)

Obviously, the calling sequenceriet sol ve_nb() is a little different from the one toet sol ve().
The left-hand side always contains one single argumentnldpmpletion of this call, it will contain a
NetSolve request handlerhe right-hand side is composed of two parts:dbgonto perform and the
arguments that would be passedta sol ve() . In this example, the action to perform’isend’ ,
which means that we send a request to NetSolve. Throughiewggbtion, we will encounter all of the
possible actions, and they will be summarized in Chapter 21.

Let us resume our example and see what NetSolve answersficstiwall tonet sol ve_nb() :
>> [r] = netsolve_nb(’'send ,’eig’,a)

Sendi ng I nput to Server zoot.cs.utk.edu
rd->request _id =0

41

Chapter 6. Matlab Interface

>>

net sol ve_nb() returns a request handlér: This request handler will be used in the subsequent calls
to the function. The request is being processedwpi d, and the result will eventually return. The user
can obtain this result in one of two ways. The first one is tbreal sol ve_nb() with the’ pr obe’

action:

>> [status] = netsolve_nb(’ probe’,r)

net sol ve_nb() returns thestatusof a pending request. The right-hand side contains therg@mis
required fomet sol ve_nb(), and the request handler. This call returns immediately paimts a
message. Here are the two possible scenarios:

>> [status] = netsolve_nb(’ probe’,r)
Not ready yet
status = -1

>> [status] = netsolve_nb(’ probe’,r)
Resul t avail abl e
status =1

To obtain the result of the computation one must gatlsol ve_nb() with the’ wai t’ action:

>> [x y] = netsolve_nb("wait’,r)
Downl oadi ng Qut put from Server zoot.cs. utk.edu

X = y =
10. 1204 0
-0.9801 0.8991
-0.9801 -0.8991
-1.0195 0
-0. 6416 0. 6511

As with thenet sol ve() function, one can merge the real part and the imaginary piri single
complex vector. The typical scenario is to aat sol ve_nb() with the action send’ , then make
repeated calls with the actiorpr obe’ until there is nothing more to do than wait for the result. The
user then callset sol ve_nb() with the action wai t’ . It is of course possible to call

42

Chapter 6. Matlab Interface

net sol ve_nb() with the action wai t’ before making any call with the actiorpr obe’ . One last
action can be passeditet sol ve_nb(), as shown here:

>> netsol ve_nb(’ status’)

This command will return a description of all of the pendiequests. Let us see how it works on this
last complete example:

>> a=rand(100); b = rand(150);

>> [r1] = netsolve_nb(’send ,’eig ,a)
Sendi ng | nput to Server zoot.cs.utk.edu
rd->request_id =0

ri =
0

>> [r2] = netsolve_nb(’send ,’eig ,b)
Sendi ng I nput to Server zoot.cs.utk. edu
rd->request_id =1

r2 =
1

Now let us see whdtst at us’ does:

>> netsol ve_nb(’ status’)

--- Net Sol ve: pending requests ---

Requests #0: 'eig , subnmitted to zoot.cs.utk.edu (160.36.58.152)
was started 24 seconds ago.

net sol vePr obeRequest returned: 1, ns_errno = 0
Conpl et ed

Requests #1: 'eig , subnmitted to zoot.cs.utk.edu (160.36.58.152)
was started 7 seconds ago.

net sol vePr obeRequest returned: 1, ns_errno = 0
Conpl et ed

The user can check what requests he has sent so far and ab&stiraation of the completion times. By
using the st at us’ action, the user can also determine whether a request isustiling or has been
completed. By sending multiple non-blocking requests ttSdb/e and relying on the agent for load
balancing, the user can achieve parallelism.

43

Chapter 6. Matlab Interface

What Can Go Wrong?

During a computation, two classes of error can occur: NetSfalilures and user mistakes. Let us
demonstrate a few examples:

>> net sol ve
NS: net sol vepr oxybasi cs. ¢c: 225: : connection refused
Cannot contact agent

>> [x] = netsolve(’'foo',a)
unknown probl em

[]

>> [x y] = netsolve('eig’,a,a)
"eig requires 1 objects in input (2 provided)
bad probl eminput/out put

>>

In case of error, the different NetSolve functions printiappiate error messages. However, when the
user writes Matlab scripts that call NetSolve, he/she nesgs to catch the errors while the script is
running. Hence the functions described in the next section.

Catching NetSolve errors

There are two NetSolve functions that can be called from aletib catch errors. The first function,
net sol ve_err () takes no arguments and returns an integer that is the Net8olor code returned by
the last call to a NetSolve function (see Chapter 24 for afishe possible error codes). Here is a call:

>> e = netsolve_err

44

Chapter 6. Matlab Interface

e = -11

The other functionpet sol ve_errnsg() takes an error code as an argument and returns a string that
contains the corresponding error message. A typical caktsol ve_errnmsg() is as follows:

>> [nmeg] = netsol ve_errnsg(netsolve_err)
nsg =
bad probl eminput/out put

With these two functions, it is possible to write Matlab ptsithat call NetSolve and handle all of the
NetSolve errors at runtime.

Demo

A NetSolve-Matlab demo is available with the NetSolve disttion. It consists of a set of Matlab scripts
that call NetSolve to compute parts of the Mandelbrot se¢ Miin script is calledandel . mand is
located in$NETSOLVE_ROOT/ sr ¢/ Deno/ mandel br ot / . To run the demo, just typmandel at the
Matlab prompt.

Optional: Testing the NetSolve BLAS interfaces

A NetSolve-Matlab BLAS test suite is available with the Nali# distribution, and tests a subset of
BLAS routines available in the NetSolve distribution. Theeucan test the reference implementation
BLAS included in NetSolve or he could have enabled an opgchBLAS library during the
configuration phase of NetSolveédonfigure --with-blaslib=BLAS_LIB) or hand modified the
$NETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc to point to the optimized BLAS library.
The user must then enable the BLAS in $#dETSOLVE_ROOT/ ser ver _confi g file, and he/she is
ready to run this test suite. The test suite consists of afddatlab scripts that test each of the BLAS
interfaces available in NetSolve. The main script is calleds_t est . mand is located in
$NETSOLVE_ROOT/ src/ Test i ng/ mat | ab/ . To run the BLAS test suite, typgdas_testat the Matlab
prompt.

Optional: Testing the NetSolve LAPACK interfaces

45

Chapter 6. Matlab Interface

A NetSolve-Matlab LAPACK test suite is available with thetSelve distribution. If the user enabled
LAPACK during the configuration phase of NetSolve as ing&ddn the section calleBnabling the
LAPACK libraryin Chapter 13 or hand modified the

$NETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc to point to the LAPACK library and
BLAS library, and has enabled LAPACK in tl$§dETSOLVE_ROOT/ ser ver _confi g file, he/she may
choose to run this test suite. Note that only a subset of LARACGncluded in the NetSolve distribution.
The complete LAPACK library is not included as default nuim@rsoftware for the server, and must be
installed separately. The test suite consists of a set ofaldlatripts that test each of the LAPACK
interfaces available in NetSolve. The main script is calleplack_t est . mand is located in
$NETSOLVE_ROOT/ src/ Test i ng/ mat | ab/ . To run the LAPACK test suite, typapack_testat the
Matlab prompt.

Optional: Testing the NetSolve ScaLAPACK interfaces

Likewise, a NetSolve-Matlab ScaL APACK test suite is ava#avith the NetSolve distribution. If the
user enabled ScalLAPACK during the configuration phase asdlege as instructed in the section called
Enabling the ScaLAPACK libraryn Chapter 13 or hand modified the

$NETSOLVE_ROOT/ conf / Makefi | e. $NETSOLVE_ARCH. i nc to point to the ScaLAPACK,
MPIBLACS, BLAS, and MPI libraries, and has enabled ScaLARAG the

$NETSOLVE_ROOT/ ser ver _confi g file, he/she may choose to run this test suite. The ScaLAPACK
library is not included as default numerical software far ferver, and must be installed separately (as
well as MPI). The test suite consists of a set of Matlab sstipat test each of the ScaLAPACK
interfaces available in NetSolve. The main script is cadledl apack_t est . mand is located in
$NETSOLVE_ROOT/ sr c/ Test i ng/ mat | ab/ . To run the ScaLAPACK test suite, tygealapack_testat
the Matlab prompt.

Optional: Testing the NetSolve 'sparse _iterative_solve’
interface

The NetSolvésparse_iterative_solveéhterface to PETSc, Aztec, and ITPACK can only be testeddf th
user has enablesparse_iterative_solhia the SNETSOLVE_ROOT/ ser ver _conf i g file and has
configured NetSolve with the respective paths to the PETarly, Aztec library, and MPI library. The
PETSc, Aztec, and ITPACK libraries are not included as defaumerical software for the server, and
must be installed separately (as well as MPI). Refer to thémecalledEnabling Sparse Iterative
Solvers (PETSc, Aztec, and ITPAGK)Chapter 13 for further details.

This interface can be tested most effectively by using spanatrices generated from collections such as

46

Chapter 6. Matlab Interface

the Harwell Boeing test collection on tivdatrix Market homepagéhttp://math.nist.gov/MatrixMarket/).
Refer to the section on the webpage entitkdtware where the test matrices are available in C, Fortran,
and Matlab. For ease of testing, several of the test matftioasthis collection are included in the
distribution of NetSolve.

After Matlab has been invoked, the user can then call thestegitspet sc_t est. maztec_test. m
andi t pack_t est . min the$NETSCLVE_ROOT/ sr ¢/ Test i ng/ mat | ab/ directory, by typing

>> petsc_test
and

>> aztec_test
and

>> |t pack_t est

These scripts invoke the PETSc, Aztec, and ITPACK intedaaal check the validity of the computed
solution.

Alternatively, the user can generate a series of Harwelii@pmatrix types (1-5), using the
gener at e. mscript. To see a list of Harwell Boeing matrix types that cargbnerated, type

>> generat e(0);
And then call the functionget sc. mand/orazt ec. mby typing
>> [A rhs] = generate(l);

>> [x1,itsl] = petsc(A rhs);
>> [x2,its2] = aztec(A rhs);

Note that the user can query for the list of arguments in tHiengasequence to the routine by using the
NetSolve tool routine.

>> netsol ve(’ sparse_iterative_solve')

Optional: Testing the NetSolve 'sparse_direct_solve’
interface

47

Chapter 6. Matlab Interface

The NetSolvésparse_direct_solvahterface to MA28 and SuperLU can only be tested if the user ha
enabledsparse_direct_solvia the $NETSOLVE_ROOT/ ser ver _conf i g file and has configured
NetSolve with the respective paths to the SuperLU and MPatibs. The MA28 library is distributed
with NetSolve in$NETSOLVE_ROOT/ sr ¢/ Sanpl eNuner i cal Sof t war e/ MA28/ as a small
modification to the library was necessary to enable its udéetSolve. The SuperLU library is not
included as default numerical software for the server, anstte installed separately (as well as MPI).
Refer to the section callegnabling Sparse Direct Solvers (SuperLU and MAZ8Yhapter 13 for
further detalils.

This interface can be tested most effectively by using spanatrices generated from collections such as
the Harwell Boeing test collection on tivatrix Market homepagéhttp://math.nist.gov/MatrixMarket/).
Refer to the section on the webpage entitkdtware where the test matrices are available in C, Fortran,
and Matlab. For ease of testing, several of the test matitioasthis collection are included in the
distribution of NetSolve.

After Matlab has been invoked, the user can then call thestegitsma28_t est . mand
super | u_t est. min the$NETSOLVE_ROOT/ sr c/ Test i ng/ mat | ab/ directory, by typing

>> ma28_test
and
>> superl u_test

These scripts invoke the MA28 and SuperLU interfaces andictie validity of the computed solution.

Alternatively, the user can generate a series of Harwelii@pmatrix types (1-5), using the
gener at e. mscript. To see a list of Harwell Boeing matrix types that cargbnerated, type

>> generat e(0);
And then call the functionsa28. mand/orsuper | u. mby typing
>> [A rhs] = generate(l);

>> [x1] = ma28(A rhs);
>> [x2] = superlu(A rhs);

Note that the user can query for the list of arguments in tHiengasequence to the routine by using the
NetSolve tool routine.

>> netsol ve(’ direct_solve_serial’)

48

Chapter 7. Mathematica Interface

Introduction

Before compiling the NetSolve-Mathematica client integfathe user must have specified the pathname
to the MathLink Development Kit during the configure phas@lefSolve (/configure
--with-mldk=MLDK_PATH), whereM_DK_PATH s the pathname. By default this value is set to

$(HOVE) / AddOns/ Mat hLi nk/ Devel oper sKi t s/ Li nux/ Conpi | er Addi t i ons. Alternatively, the

user could have manually edited tBETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc file

to set this variable instead of specifying the path as a cardigommand line option.

The Mathematica client interface for NetSolve is then Hwltyping

UNI X> make mat hemati ca

in the directorysNETSOLVE_ROOT.

Detalils of this interface can be found in [ns:mathematical] quick instructions/requirements for
building it are in the file$NETSOLVE_ROOT/ sr ¢/ Mat henat i ca/ | NSTALL Full details of the
installation procedure can be found §NETSCLVE_ROOT/ sr ¢/ Mat hemat i ca/ doc/ User sCui de. t ex

What to do first

Once the interface is successfully installed, the firstghindo is to start a Mathematica client and type
Net Sol ve[]
which prints information on how to use the interface:

In[1]: = Net Sol ve[]

usage:

Net Sol ve[FuncNane[argl, ...]] - bl ocki ng problemcall

Net Sol veNB[FuncNane[argl, ...]] - nonbl ocking problem call

Net Sol vePr obe[r equest] - checks if a request has been conpl eted

Net Sol veWai t [request] - waits for a request to conplete

Net Sol veGet Agent [] - returns the current agent name

Net Sol veSet Agent [Agent Nane] - changes the agent we are working with

Net Sol veError|[] - returns the result code of the |ast
execut ed Net Sol ve function

Net Sol veError Msg[rc] - returns a string describing

49

Chapter 7. Mathematica Interface

the result code passed

Net Sol ve[" ?pr obl ens"] - shows a list of available problens
Net Sol ve[" ?servers"] - shows a list of available servers
Net Sol ve[" ?FuncNane[]"] - shows a probl emdescription

Let us review the possibilities:

Informati on functions -- NetSolve["?problens"], NetSolve["?servers"] and
Net Sol ve[" ?FuncNane[]"]

This set of functions provides information about a specifabem’s calling sequence and which
problems and servers are available through the user’s.agent
Bl ocki ng probl em sol ving -- NetSol ve[Probl enNane[ar guments, ...]]
This function is a blocking call to NetSolve to solve a cartaioblem. When utilizing this type of
call to NetSolve, the user does not regain execution coatriil the result becomes available.
Nonbl ocki ng probl em sol vi ng -- Net Sol veNB[Probl enNane[ar guments, ...]]

This function is a non-blocking call to NetSolve to solve aa&m problem. Unlike a blocking call

to NetSolve, a non-blocking call returns the execution @nas well as a request handler,

immediately to the user. The request handler can then bé&gfdor the status of the calculation.
Getting/setting an agent -- NetSolveGetAgent[], Net Sol veSet Agent[Agent Nane]

Net sol veGet Agent [] returns a string containing the host name of the agent. Téiecas

change the current agent by tket Sol veSet Agent [] function at any time.

Let us now assume that the user has started Mathematica ezatlisto use NetSolve. We can check
who our agent is by typing

In[1] : = Net Sol veGet Agent []

Qut[1] = torcO.cs. utk.edu

If there is no agent set, the result would be $inal | symbol. One can change the agent by the function
Net Sol veSet Agent [] . For instance

I'n[2] : = Net Sol veSet Agent ["net sol ve. cs. ut k. edu”]

The agent can be changed at any time provided there is ardh®olve agent running on the host
whose name has been passed as an argument. However, if thiésagfeanged, then the set of servers
and possibly the set of solvable problems has also been edang

50

Chapter 7. Mathematica Interface

A list of the solvable problems can be obtained by the fumatiet Sol ve[" ?pr obl ens"] . Here is a
possible list (clipped to save space).

In[3]:= Net Sol ve[" ?probl ens"]

/ BLAS- wr apper s/ Level 3/ dmat nmul

| BLAS- wr apper s/ Level 3/ zmat nul

/ BLAS/ Level 1/ daxpy

/ BLAS/ Level 1/ ddot

/ BLAS/ Level 1/ zaxpy

/ BLAS/ Level 2/ dgenv

/ BLAS/ Level 3/ dgemm

/ BLAS/ Level 3/ zgenm

| LAPACK- wr apper/ Si npl e/ Ei g_and_Si ngul ar/ei g
| LAPACK- wr apper/ Si npl e/ Li near _Equati ons/ | i nsol
/ Qui ckSort/ Doubl ePreci si on/ dgsort

/ Qui ckSort/Integer/iqgsort

Similarly, a list of the servers can be printed by the functiet Sol ve[" ?servers"]

In[4] : = Net Sol ve[" ?servers"]

Initializing NetSolve..

Initializing NetSolve Conplete

---- List of NetSolve agents ----

net sol ve. cs. utk. edu (160. 36.58.76) Host: Up
---- List of NetSolve servers ----
cetus3a. cs. utk.edu (160.36.56.94) (0 failures)
cetus3b. cs. utk. edu (160.36.56.95) (0 failures)
torcl.cs.utk.edu (160.36.56.200) (0 failures)
torc2.cs.utk.edu (160.36.56.201) (O failures)
torc3.cs.utk.edu (160.36.56.202) (0 failures)

For every server associated with a specific agent, the fallpwmformation is given: its name, IP
address, host and server status, and how many differeniepnslit can solve.

The user can easily determine information about a specificlem,i gsort for instance, by typing

Net Sol ve["?i gsort[]"]

51

Chapter 7. Mathematica Interface

The brackets after the problem name are required becauseMstSolve problem is treated as a
function defined in Mathematica.

The output of that command is as follows:

In[5]:= NetSolve["?iqsort[]"]
igsort: Quicksort -
Sorts a vector of integers

| nput :
0 : Integer Vector
Vector of integers to Sort

CQut put :
0 : Integer Vector
Sorted Vector

Mat hemat i ca exanpl e:
rl0 = NetSolve[iqgsort[I0]]

exanpl es for types:

Char Byte/ I nteger Single/Double Conplex
Scal ar: "c" 42 66. 32 4 - 71
Vector: "vector" {1, 2,3} {3,4.5, 7} {3, -5+3I, 8}
matrix: {"line 1", {{1, 2,3}, {{6.4, 2,1}, {{1+21, 3+41},

"line 2"} {4,5,6}} {-7,1.2,4}} {5-61, 7}}

The first part of the output is a brief general descriptiornefproblem. The second part describes the
input and output objects, their type and description. Astlyaan example is provided.

If the user does not provide the number, the type, and theesegof arguments correctly, an error
message message will be printed andsthel | symbol will be returned.

The arguments shown in the example are variables but thensealso choose to pass numerical
values, symbols with assigned data or function calls.

Here are some rules the user must remember.

1. Characters are passed as strings (only the first charsctsed).
2. Integers can be passed instead of reals and vice versa(sam is performed automatically).
3. Integers and reals can be passed instead of complex nsimber

4. Vectors of characters are passed as strings.

52

Chapter 7. Mathematica Interface

5. Matrices of characters are passed as vectors of strings.

Blocking call to NetSolve

In the previous section we explained how the user can ohtédnmation about a problem and its calling
sequence. For the call itself, the functiset Sol ve[] is invoked with the problem name and its
arguments. For example,

In[6]:= NetSolve[iqgsort[{7,2,3,5,1}]]
contacting server torc0O.cs.utk.edu ...

Qt[6]= {1, 2, 3, 5 7}

As stated earlier the user can pass not only numerical vdbuealso symbols that contain data of proper
type or functions that return a result of this type. IndeedtiMmatica calculates these expressions and
passes the arguments by value. For example

In[7]:= v = -Range[5]

Qut [7]

{-1, -2, -3, -4, -5}

In[8]:= NetSolve[igsort[v]]
contacting server torcO.cs.utk.edu ...

Qut[8]={-5 -4, -3, -2, -1}
or to sort a random vector of size 7

In[9]:= NetSolve[iqgsort[Tabl e[Ceiling[10*Randoni{]], {7}11]
contacting server torcO.cs.utk.edu ...

Qut[9]={1, 2, 2, 2, 4, 6, 7}

SinceNet Sol ve[] is a function defined in Mathematica, it can be used in expresdike:

In[9]:= NetSolve[iqgsort[Tabl e[Ceiling[10*Randon{]], {7}11]
contacting server torcO.cs.utk.edu ...

Qt[9]={1, 2, 2, 2, 4, 6, 7}

INn[10]:= Print["The mnimal elenent of vis ", NetSolve[iqgsort[v]][[1]]]
contacting server torcO.cs.utk.edu ...

53

Chapter 7. Mathematica Interface

The mninmal elenent of vis -5

Let us consider a more complex problem such as the Level 3 BdudBoutinedgenmi] which
calculates where $op(X) = X$ or $op(X) = X'$.

The routinedgenm{] requires the following 7 arguments.

Let us generate three random matrices.

In[11]: = Randomvatrix[m,n_] := Tabl e[Ceiling[10*Randon{]], {n}, {n}]

In[12]:= a = RandomMat ri x[2, 3]
Qt[12]= {{9, 2, 3}, {6, 3, 9}}
In[13]:= b = RandomMat ri x[3, 2]
Qut[13]= {{6, 4}, {4, 10}, {2, 9}}

In[14]: = ¢ = Randomvatri x[2, 2]

Qut[14]= {{4, 7}, {4, 8}}
and calldgenm{] .

In[15]: = Net Sol ve[dgemm{"N", "N', 2, a, b, 3, c]]
contacting server cetus2a.cs.utk.edu ...

Qut[15]= {{148., 187.}, {144., 294.}}
Inf[1l6]:=2 a . b +3 ¢
Qut[16] = {{148, 187}, {144, 294}}

Nonblocking Call to NetSolve

As in the Matlab interface (see Chapter 6), the Mathematitafece can be called in an asynchronous
fashion. Nonblocking calls are performed by the functienSol veNB[] , and its calling sequence is the
same as the blocking calkt Sol ve[] . The difference is in the result returneédt Sol veNB[] always
returns a request handler.

54

Chapter 7. Mathematica Interface

Net Sol vePr obe[] returns an integer value to indicate if the problem has beemteted. A value of 0
indicates that the result is available and a value of 1 indicthat the computation is still in progress.
Other values are error codes (see the section c@iédhing Errorg.

Let us multiply two complex matrices usimgt Sol veNB[] . We generate the matricas andbc using
already generated matricasb andc.

In[17]:= ac = a - 2 a

Qut[17]={{9 - 181, 2 - 41, 3 - 61}, {6- 121, 3- 61, 9 - 18 1}}

InN[18]:= bc = b - 3 b |
Qut[18]= {{6 - 18 1, 4 - 12 1}, {4 - 121, 10 - 30 1}, {2 - 61, 9 - 27 1}}
In[19]: = request = Net Sol ve[zmatmul [ac, bc]]

contacting server cetus2a.cs.utk.edu ...
Qut[19]=0

I n[20]:

Net Sol vePr obe[r equest]

Qut [20]

0

As the computation is still in progress, the user can chompetform other work, or wait for the request
to complete:

I n[21] : = Net Sol veWi t [request]

Qut[21]= {{-340. - 340. |, -415. - 415. 1}, {-330. - 330. |, -675. - 675. 1}}

Catching Errors

As in the Matlab interface, it is possible to detect errordwiie functions\et Sol veError[] and

Net Sol veEr r or Msg[] . The first function returns an integer which is the error cotiine last executed
NetSolve functionNet Sol veEr r or Msg[] takes an error code as an input argument and returns a string
describing the error.

With these two functions, it is possible to write Mathematscripts that call NetSolve and handle all of
the NetSolve errors at runtime.

55

Chapter 7. Mathematica Interface

Demo

A NetSolve-Mathematica demo is available with the NetSadligtribution. It invokes and explains the
various NetSolve features available within Mathematidee main script is calletiSdeno. mand is
located in$NETSOLVE_ROOT/ sr ¢/ Test i ng/ mat hemat i ca/ . To run the demo, just typeg<NSdemo'
at the Mathematica prompt.

Optional: Testing the NetSolve BLAS interfaces

A NetSolve-Mathematica BLAS test suite is available with tetSolve distribution, and tests a subset
of BLAS routines available in the NetSolve distribution.€Thser can test the reference implementation
BLAS included in NetSolve, or he can enable an optimized BliAf&ry during the configuration phase
of NetSolve (/configure --with-blaslib=BLAS_LIB) or hand modify the

$NETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc to point to the optimized BLAS library.
The user must then enable the BLAS in $#dETSOLVE_ROOT/ ser ver _confi g file, and he/she is

ready to run this test suite. The test suite consists of af¢dathematica scripts that test each of the
BLAS interfaces available in NetSolve. The main script ibethNSbl ast est . mand is located in
$NETSOLVE_ROOT/ src/ Test i ng/ mat henat i ca/ . To run the BLAS test suite, typg<NSblastest'

at the Mathematica prompt.

Optional: Testing the NetSolve LAPACK interfaces

A NetSolve-Mathematica LAPACK test suite is available wile NetSolve distribution. If the user
enabled LAPACK during the configuration phase of NetSolvimssucted in the section calléthabling
the LAPACK libraryin Chapter 13 or hand modified the

$NETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc to point to the LAPACK library and
BLAS library, and has enabled LAPACK in ti$dETSOLVE_ROOT/ ser ver _confi g file, he/she may
choose to run this test suite. Note that only a subset of LARACGncluded in the NetSolve distribution.
The complete LAPACK library is not included as default nuim@rsoftware for the server, and must be
installed separately. The test suite consists of a set ofidfaatica scripts that test each of the LAPACK
interfaces available in NetSolve. The main script is caN8dapackt est . mand is located in
$NETSOLVE_ROOT/ sr c/ Test i ng/ mat henat i ca/ . To run the LAPACK test suite, type
<<NSlapacktest' at the Mathematica prompt.

56

Chapter 8. NetSolve Request Farming

Farming is a new way of calling NetSolve to manage large nusbferequests for a single NetSolve
problem. Many NetSolve users are confronted by situatidmsnimany somewhat similar computations
must be performed in parallel. Previously, the way to doithidetSolve was to write non-blocking calls
tonet sl nb() in C for instance. However, this becomes very cumbersomeoNlg because the user
must manage all of the requests himself, but also becauséctiBolve system is at a loss trying to
manage such a large number of requests without flooding thierse This is the motivation for
distributing a new call in NetSolveet sl _f ar n() . In the present distribution, this call is only available
from C, but will soon be made available from Matlab, Mathaoetand Java. A Fortran interface will
most likely not be provided because of pointer management®w, linking to the C NetSolve client
library (generated as explained in the section cdihesthllation on Unix Systenis Chapter 3) makes

net sl _farm) available from the user’s program.

How to call farming

Like net sl () andnet sl nb(), thenet sl _farn() function takes a variable number of arguments. Its
first argumentis a string that describes itiegation range This string is of the fornti =%, %d" (in C
string format symbols). The second argument is a problenergppended with an opening and a closing
parenthesis. The arguments following are similar in interihe ones supplied teet sl (), but are
iteratorsas opposed to integers or pointers. Where the user was gasainan integer, toet sl (), he

now needs to pass an array of integers anchtals! _f ar m() which element of this array is to be used
for which iteration. This information is encapsulated initemator and we provide three functions to
generate iterators:

ns_int()
ns_int_array()
ns_ptr_array()

Let us review these functions one by one.

ns_int()

This function takes only one argument: a character stringdbntains aexpressiornhat is
evaluated to an integer at each iteration. The format ofdfntg is based on a Shell synté.
represents the current iteration index, and classic adtltnoperators are allowed. For instance:

ns_int ("$i +1")

returns an iterator that generates an integer equal to oisahpd current iteration index at each iteration.

57

Chapter 8. NetSolve Request Farming

ns_int_array()
This function takes two arguments:
i. a pointer to an integer array it *);
ii. a character string that contains an expression.
For instance,
ns_int_array(ptr,"$i")
returns an iterator that generates at each iteration agenagjual to thé -th element of the arragt r
wherei is the current iteration index.
ns_ptr_array()
This function takes two arguments:
i. a pointer to an array of pointerg@i d **);
ii. a character string that contains an expression.
For instance,
ns_ptr_array(ptr,"$i")

returns an iterator that generates at each iteration agrairtich is tha -th element of the arragt r
wherei is the current iteration index.

An example

Let us assume that the user wants to sort an array of integgrdletSolve using the C interface. The
default NetSolve server comes with a default problem caltggbr t that does a quicksort on an integer
vector. The call looks like

status = netsl (’iqgsort()’,size,ptr,sorted);

wheresi ze is the size of the array to be sortgd,r is a pointer to the first element of the array, and
sort ed is a pointer to the memory space that will hold the sortedyasrereturn. What if the user
wants to sort 200 arrays? One way is to write 200 calls as teeabove. Not only would it be tedious,
but also inefficient as the sorts would be done successivélyno parallelism. In order to obtain some
parallelism, one must catlet sl nb() and make the corresponding callse sl pr () andnet sl wt ()
as explained in Chapter 5. Again, this is tedious and as itégteer common situation we decided to
address it witmet sl _f ar n() . Before callingnet sl _f ar n() , the user needs to construct arrays of
pointers and integers that contain the arguments of eadtedfétSolve calls. This is straightforward:
where the user would have called NetSolve as:

58

Chapter 8. NetSolve Request Farming

requestsl = netslnb(’igsort’, sizel, ptrl, sortedl);
requests2 = netslnb(’iqgsort’, size2, ptr2,sorted2);

request s200 = netslnb(’iqgsort’, size200, array200, sorted200);

and then to have calls ttet sl pr () andnet sl wt () for each request.

With farming, one only needs to construct three arrays as:

int size_array[200];
void *ptr_array[200];
voi d *sorted_array[200];

size_array[0] = sizel;
ptr_array[0] = ptr1;
sorted_array[0] = sortedi;

Then,net sl _farm() can be called as:

status_array = netsl _farn{"i=0,199", netsl _int_array(size_array,"$i"),
netsl _ptr_array(ptr_array,"$i"),
netsl _ptr_array(sorted_array,"$i"));

In short,net sl _f arn() is a concise, convenient way of farming out groups of requé&3t course, it
useset sl nb() underneath, thereby ensuring fault-tolerance and loéahbimg.

Catching errors

net sl _farn() returns an integer array. That array is dynamically alledand must be freed by the
user after the call. The array is at least of size 1. The fiesheht of the array is either O or -1. Ifitis O,
then the call was completed successfully and the array igefls If first element of the array is -1, then
at least one of the requests failed. The array is then of siegptus the number of requests and the
(1+i)-th element of the array is the error code for the i-thuest. Here is an example on how to print
error messages:

status = netsl_farm("i=0, 200",....);

if (status[0] == 0){
fprintf(stderr,"Success\n");
free(status);

} else {
for (i=1;i<201;i++) {

59

Chapter 8. NetSolve Request Farming

fprintf(stderr,"Request #%l:",i);
netslerr(status[i]);
}
}

free(status);

Current Implementation and Future Improvements

One of the advantages of farming is that the user does notthawvesponsibility of managing the
requests. As it would be unreasonable to send all of the stg|ifehere are not enough servers to
perform the computations, tmet sl _f ar n() farming algorithm avoids this problem by dynamically
tuning the maximum number of pending requests to reflectgdsmm the computational server pool
(size and load). This is done by constantly measuring treutiiyput of the computations.

60

Chapter 9. NetSolve Request Sequencing

Goals and Methodologies

Our aim in request sequencing is to decrease network traffiamgst NetSolve client and server
components in order to decrease overall request response@ur design ensures that i) no unnecessary
data is transmitted and ii) all necessary data is transfeis briefly discussed below, we also reduce
execution time by executing computational modules simeltaisly when possible. All this is
accomplished by performing a detailed analysis of the imatoutput parameters of every request in

the sequence to produce a directed acyclic graph (DAG) épmesents the tasks and their execution
dependences. This DAG is then sent to a server in the systarewths scheduled for execution. More
details regarding this interface and some results can bedfou[sequencing].

In order to build the DAG or task graph, we need to analyzeyewgrut and output in the sequence of
requests. We evaluate two parameters as the same if theythlessame reference. We use the size fields
and reference pointer of the input parameters to calculagninputs overlap in the memory space.

Only matrices and vectors are checked for recurrences gorémeise that these are the only objects that
tend to be large enough for the overhead of the analysis taipadends. Through this analysis we build

a DAG in which the nodes represent computational modulest®dlve services and the arcs represent
data dependencies amongst these modules. The graph i€d®eduse looping control structures are
not allowed within the sequence, and therefore, a node o&r be its own descendant.

The Application Programming Interface

For request sequencing, we add three functions to the Net8tént API:

voi d netsl_sequence_begi n();

This function takes no arguments, and returns nothing.tlfiee the NetSolve system to collect
information from subsequent callsitet sl () from which to construct a DAG as explained above.
The netsolve services will not be scheduled for executidih aisubsequent call to

net sl _sequence_end()

int netsl_sequence_end(void *, ...);

This function takes as arguments an NS_NULL-terminateafipointers. (For technical reasons,
the user must use the special variable NS_NULL defined in¢hheol ve. h header file. These
pointers are to be references to objects designated astq@aipters in previous calls made to

61

Chapter 9. NetSolve Request Sequencing

net sl () after the mostrecent call ttet sl _sequence_begi n() . These pointers designate to the
NetSolve system which output parametd3T to return to the client program. In other words,
these output parameters serve only as intermediary inmall®within the chain or sequence. At
the point wherenet s| _sequence_end() is called, the NetSolve system will transfer the collected
sequence (in the form of a DAG) to a computational serveofsg¢fecution.

net sl _sequence_end() returns an error code that can be used to determine succksisios,

and the cause in the case of the latter.

int netsl_sequence_status();

This function takes no arguments, and returns TRUE (noa}zkthe system is currently collecting
NetSolve requests (i.e. constructing a DAG or is in the naddla sequence) and FALSE (zero)
otherwise.

Figure 9-1 illustrates what a sequencing call might look.likwo points to note in this example: i)for all
requests, only the last parameter is an output, and ii)teeisisnstructing the system not to return the
intermediate results aformand1 andconmand?.

Figure 9-1. Sample C Code Using Request Sequencing Consttsic

begi n_sequence();

subm t _request ("comandl", A, B, O;
subm t _request ("comand2", A, C, D);
subm t _request ("command3", D, E, F);
begi n_end(C, D, NS_NULL);

For the system to be well-behaved, we must impose certdimateens upon the user. Our first restriction
is that no control structure that may change the executitmipallowed within a sequence. We impose

this restriction because the conditional clause of thigrobstructure may be dependent upon the result
of a prior request in the sequence, and since the requestsiseheduled for execution until the end of

the sequence, the results will likely not be what the prognamexpects.

The other restriction is that statements that would changealue of any input parameter of any
component of the sequence are forbidden within the sequerittethe exception of calls to the
NetSolve API itself that the system can track.) This is beeaduring the data analysis, only references
to the data are stored. So if changed, the data transferted ahd of the sequence will not be the same
as the data that was present when the request was originadlg Ve contemplated saving the entire
data, rather than just the references, but this directlylictsiwith one of our premises -- that the data
sets are large; multiple copies of these data are not désirab

62

Chapter 9. NetSolve Request Sequencing

Execution Scheduling at the Server

Once the entire DAG is constructed, it is transferred to éSkie computational server. In this first

version of request sequencing, the NetSolve agent usegeadesinularity and decides which server
should execute the entire sequence. We execute a node# ialputs are available and there are no
conflicts with its output parameters. Currently the only moflexecution we support is on a single

NetSolve server -- though, that server may be a symmetrit+macessor (SMP).

For data partitioning, we transfer the union of the inputpaeter sets to the selected server host. This
makes input for all nodes, except those which are internediatput from prior nodes, available for the
execution of the sequence. Our scheduling algorithm caniimesrized as follows:

whil e(problens | eft to execute)

{

execute all problens with satisfied dependenci es;
wait for at |east one problemto finish;
updat e dependenci es;

}

63

Chapter 10. Security in NetSolve Client

Introduction

This is the first version of NetSolve with (rudimentary) Kerbs support. NetSolve components include
clients, agents, and servers. Currently the only requleatsequire authentication are requests that the
client makes to the server, and of those, only the “run problequest. Other requests could be
authenticated (an obvious one being “kill server”), butstiachanges along these lines would probably
require drastic restructuring of NetSolve. For instanadieant can currently inform an agent that a
particular server is down, and the agent will not advertise server for use in other problems. It seems
of dubious value to require authentication for such regueastil there is a mechanism for specifying the
trust relationship between clients and agents.

An attempt has been made to allow Kerberized NetSolve glieninteroperate with both Kerberized and
non-Kerberized NetSolve servers. In either case the cliends a request to the server. An ordinary
server will return a status code indicating that he will gtdbe requested operation. By contrast, a
Kerberized server will immediately return an “authenticatrequired” error in response to the request.
The client is then required to send Kerberos credentialseéaerver before the request will be processed.
This allows the server to require authentication of thentli€urrently there is no mechanism to allow

the client to insist on authentication of the server - a Kadeel client will happily talk with either
Kerberized or non-Kerberized servers.

The server implements access control via a simple list ob&es principal names. This list is keptin a
text file which is consulted by the server. A request to a NletSserver must be made on behalf of one
of those principal names. If the principal name associatéiutive Kerberos credentials in the request
appears in the list, and the credentials are otherwise,thkdrequest will be honored. Otherwise, the
request will be denied.

Since the NetSolve server was not designed to run as a sptagdam, it is not currently feasible to
have the NetSolve server run processes using the userfie pitrticular UNIX user who submitted the
request. NetSolve thus uses its own service principal ndrireetsolve” rather than using the “host”
principal. What this means (among other things) is that yeedto generate service principals and
keytabs for each of your NetSolve servers, even if you airéade host principals in place.

The NetSolve server, by default, runs in non-Kerberizedendd start up the server in Kerberized mode
you need to add thek option to the command-line, and also set environment veasab
NETSOLVE_KEYTAB (pointing to the keytab) and NETSOLVE_URE pointing to the list of
authorized users).

This version of Kerberized NetSolve performs no encryptibthe data exchanged among NetSolve
clients, servers, or agents. Nor is there any integritygmtidn for the data stream.

64

Chapter 10. Security in NetSolve Client

Compiling a Kerberized Server

1. Compile Kerberos. See the Kerberos V5 Installation Gtad@nstructions for how to do this.

2. Compile the NetSolve client libraries with Kerberos soippRefer to the instructions in the the
section callednstallation on Unix Systemia Chapter 13 section following the notes that talk about
authentication and authentication libraries. In part thvolves editing the
$NETSOLVE_ROOT/ conf / Makef i | e. NETSOLVE_ARCH. i nc and modifying the KLIBS field to

point to the appropriate Kerberos libraries and settingd&@HENTICATION field to
KERBEROSS.

Running a Kerberized NetSolve Client

1. Set up the necessary environment variables:

UNI X> set env NETSOLVE_AGENT net sol ve. agent . host

2. Runkinit to get a ticket-granting ticket for yourself. You don’t haweedo this if you already have a
ticket and it has not expired.

3. Run your NetSolve program. If the server contacted reguauthentication, the NetSolve client
automatically contacts the Kerberos Key Distribution @effior a ticket and sends it to the server. If
this client is authorized to utilize the NetSolve servewsass will be granted to the client, if not, an
AUTHENTICATION_REJECTED error protocol will be returned the client.

65

Chapter 11. The User-Supplied Function
Feature

Motivation

In the preceding sections, we described all the clientfates to NetSolve. In these descriptions we
assumed that the only input the user had to supply to NetSedgemumerical data, that is, matrices,
vectors, or scalars. This assumption is valid for a lot of atioal software. However, for some software
that we would like to include in NetSolve via NetSolve sesyeve need an additional feature. Indeed,
numerous scientific packages require the user to providerioat data as well asfanction Typically,
nonlinear software requires the user to pass a pointer tbrastine that computes the nonlinear
function. This is a problem in NetSolve because the comjmuté performed remotely and the user
cannot provide NetSolve with a pointer to one of his linkediibroutines. The only solution is to send
code over the network to the server. This approach raisegssdiksues, includingecurity

Solution

Let us describe here the solution we have adopted. Thisliy eefirst attempt, and there is definitely
room for improvement. However, we believe that it providessonable capabilities for now, considering
that NetSolve is still at an early stage of development. Asiated, we need to ship code over to the
computational server. Since NetSolve works in a heteragenenvironment, it is not possible to migrate
compiled code. Thus, we require that the user have his stibeoar function in a separate file, written
either in C or Fortran. We send this file to the computatioealar. The server compiles it and is then
able to use this user-supplied function.

The security implementation is quite simple. When compitime user’s function, we use thenUNIX
command to disallow any system call. The approach is vetyictige for the user, but typically the
subroutine that has to be passed needs only to perform catigng. If course, there are a lotludicker
ways to go around this problem, and our system currently doepretend to be a real security manager.
We are investigating Java to deal with this user-suppliedtion issue.

For the Client

66

Chapter 11. The User-Supplied Function Feature

Determining the Format of the Function to Supply

We now understand that the user has to write a Fortran subeonta C function to call a problem that
requires a user-supplied function. For now, the prototyfiihis subroutine/function can be found in the
description of the problem, available from Matlab or the G@&lipts of the NetSolve homepage (see the
section calledProblems that can be solved with NetSalv€hapter 4). Following the usual philosophy
of NetSolve, the prototype of the user-supplied functioexactly the same as if the user were using the
numerical software directly. Some softwares require tle tesprovide more than one function. When
that is the case, the description of the problem mentionsdtgives all the prototypes for all the
functions to supply.

From Matlab, Mathematica, C and Fortran

A UPF is passed to NetSolve as a string that contains the pdltie ffile that contains the source code of
the function.

From the NetSolve Java API

Users of the NetSolve API may specify a UPF input item as theyldvany other input item, using the
pushAr g() method. However, an extra argument is required when pushigF item: the language
that the UPF is written in. For example:

n. pushArg(new String(upfO,0), d obal Defs. LANG_FORTRAN) ;
n. pushArg(new String(upfl,0), d obal Defs. LANG O);

Currently, the user must pass the UPF as a String. Therdffithe, UPF is stored in afile, it is up to the
user to read the file into a String. Future versions of the Aitlalow the user to simply pass the name
of the file.

From the Java GUI

Entering a user-supplied function via the Java interfaseig much similar to entering any other kind of
data. If the problem requires a user-supplied functiorretéll be an entry in thénput Listcalled “User
Provided Function” for which data must be specified, just By other input object. The user may
choose to enter the user-supplied function manually irtdtta Input Boxor from a file specified in
theFilename Selection BoX the user enters the function manually, the language mlsstbe specified
by choosing either C or FORTRAN from an “option menu” that epys just above th@ata Input Box

67

Chapter 11. The User-Supplied Function Feature

If the user-supplied function comes from a file, the file mumt with either “.c” or “.f” (with names
ending in “.c” interpreted as C functions and names endirfg innterpreted as FORTRAN functions).

For the Server

The problem description of a problem that requires one orerser-supplied functions must contain a
line:

@BJECT UPF CHAR

for each function as an input object so that mnemonics carséeé im the description of the calling
sequence (after the@ORMAT’ clause). In the pseudo-code section, the functions shauttkblared as
extern like:

extern int upf0();
extern doubl e upfl();
etc....

for instance. The identifienspf O, upf 1, ... can be used in the rest of the pseudo code to designate the
user-supplied functions. This is not very natural. It wolbébetter to be able to use mnemonics as for
classic objects, but it makes compilation difficult on sortafprms.

Conclusion

This new feature of NetSolve is still under investigatiore #We aware that security is an important issue
here. For now, NetSolve is still a research project devalapallow experimentations with this

relatively new type of software. In the future, more attentwill be given to the user-supplied
mechanism in order to make it as safe as possible. As menteerdier, we may use Java in order to set
up a viable security manager. Using Java currently appedrs the best solution for security, but it has
obvious drawbacks. First, the user would have to write higfion in Java: the typical NetSolve user is a
scientist who does not have the time or inclination to leaw fanguages, especially object-oriented
ones. Second, with the currentimplementations of Javajesity would also be a problem.

68

Chapter 12. Troubleshooting

If an error occurs during the invocation of NetSolve, a vigrad diagnostic runtime error messages, as
well as error codes that can be returned when calling a Ne¢Sohction from the C or Fortran
interfaces, are provided. The error codes and runtime aressages are listed in Chapter 24 and may
have several possible explanations/causes. If one of drememessages occurs, the user should first
check the agent and server log fil88ETSOLVE_ROOT/ nsagent . | og or

$NETSOLVE_ROOT/ nsser ver . | og, respectively. These files may contain more informatioriaofy

the reason for the error message.

For diagnostic help in explaining the reasons for specifitSike run-time error messages, refer to the
NetSolve Errata Filéhttp://icl.cs.utk.edu/netsolve/errata.html)

Details of the Makefile. NETSOLVE_ARCH.inc File

Although suitable default options are provided for the cdatipn of the software, one may look in
theNet Sol ve/ conf directory to edit thavakef i | e. NETSOLVE_ARCH. i nc file. This file contains
parameters to customize the compilation process.

Note:: All of the parameters in this include file can (and should) be modified using command line
arguments to configure .

Most of the contents of this file are straightforward, inéhgddefinitions for compilers, linkers, etc., and
will not be explained here. There are however a few entrigsrttay need explanation.

NETSOLVE SPECIFIC OPTIONS:

The QUTPUT_LEVEL macro defines the amount of debug output to print during llagian. PROXY
specifies which client proxy to usePU_STAT defines which method to use to monitor server
processes in terms of workload, etc. and what method to usssign tasks to servers. The
AUTH_LI BS andAUTHENTI CATI ON macros define the authentication to use (if any) in the system
Currently, the only options are KERBEROS5 or NO_AUTH (noteautication) for the

AUTHENTI CATI ON macro. If authentication is set to KERBEROS4, ti&mH LI BS must be set to
the location of the appropriate libraries needed to use ¢hnledros application programming
interface.

AUXILIARY PACKAGES:

If NWS is enabled, i.eCPU_STAT = NWS5, the variable\wsDI R provides the path to the NWS
distribution. See Chapter 19) for further details.

69

Chapter 12. Troubleshooting

In the case of a parallel server, it is necessary to set®heDl R, MPl _| NCLUDE_DI R, and
MPI _|I NCDI Rvariables to the proper paths.

If IBP is enabled, i.e.|, BPDI Rprovides the path to the IBP distribution. See Chapter 2@uiidher
details.

Auxiliary Libs:

This section contains variables for setting path names@ngtional software packages such as
PETSc, Aztec, ITPACK, SuperLU, LAPACK, ScaLAPACK, MPIBLA and BLAS.

An examplevakef i | e. NETSOLVE_ARCH. i nc for IRIX is listed below.

Generated autonmatically from Makefile.generic-arch.in by configure.
Never include this file directly!

Always include ./Mkefile.inc and make sure it is appropriately
set to include the proper platformspecific file.

CUSTOM ZI NG CONFI GURATI ON

#

SHELL = /bin/sh

BHHHBH AR R H R R R
| NSTALL DI RECTORI ES
AEHAT AR AR R

PLATFORM = mps-sgi-irix6.5

NETSOLVE_VERSION = 1.4

EXEC_PREFI X = $(NETSOLVE_ROOT) / $(NETSCLVE_ARCH)

Bl NDI R = $(NETSOLVE_ROOT) / bi n/ $(NETSOLVE_ARCH)
LI BDI R = $(NETSOLVE_RQOOT) / | i b/ $(NETSOLVE_ARCH)
OBJDI R = $(NETSOLVE_RQOOT) / obj / $(NETSOLVE_ARCH)
MATLABOBJIDI R = $(0BJDI R)/ MATLAB

PDFGUI CLASSDI R $(Bl NDI R) / PDFGUI CLASSDI R

AR R R R AR
COWPI LERS AND OPTI ONS
AEAAR R R R AR

CcC = /usr/bin/cc
C_OPT_FLAGS = -
C_NOOPT_FLAGS = -n32 -mips4 -r12000 -conmon

CFLAGS $(C_OPT_FLAGS) $(C_NOOPT_FLAGS)
NS C OPT_FLAGS $(C_OPT_FLAGS) $(HBVFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \

$(INCDI R) $(PROXY) ${CPU_STAT} ${|BPFLAG \

70

Chapter 12. Troubleshooting

${ AUTHENTI CATI ON} $(DSI FLAGS)
NS _C NOOPT_FLAGS = $(C_NOOPT FLAGS) $(HBMFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \
$(I NCDIR) $(PROXY) ${CPU_STAT} ${I|BPFLAG \
${ AUTHENTI CATI ON} $(DSI FLAGS)
NS_CFLAGS = $(CFLAGS) $(HBMFLAG) $(F2CFLAG) $(OUT-
PUT_LEVEL) $(ARCHCFLAGS) \
$(I NCDIR) $(PROXY) ${CPU_STAT} ${IBPFLAG \
${ AUTHENTI CATI ON} $(DSI FLAGS)

FC = [usr/bin/f77

F_OPT_FLAGS = -8

F_NOOPT_FLAGS = -n32 -mps4 -r12000

FFLAGS = $(F_OPT_FLAGS) $(F_NOOPT_FLAGS)

NS_FFLAGS = $(FFLAGS) $(1NCDIR) $(ARCHCFLAGS)
NS_F_OPT_FLAGS $(F_OPT_FLAGS) $(INCDIR) $(ARCHCFLAGS)
NS_F_NOOPT_FLAGS = $(F_NOOPT_FLAGS) $(INCDIR) $(ARCHCFLAGS)

LI NKER = $(FOQ

LDFLAGS = -LD MSG OFF=15,84 -n32 -mips4 -r12000
VEX = /usr/local / mat | ab/bi n/ mex

VEXFLAGS = -0

VEXEXT = . nmexsg

NS_MEXFLAGS = $(MEXFLAGS) $(HBMFLAG) $(F2CFLAG) $(QUTPUT_LEVEL) $(ARCHM
FLAGS) \

$(I NCDIR) $(PROXY) ${CPU_STAT} ${|BPFLAGH \

${ AUTHENTI CATI ON} $(DSI FLAGS) -g - DVATLAB

JAVAC =

NS_JAVAFLAGS = -

cl asspath $(NETSOLVE_ROOT)/ src/ PDF_GUl / cl asses: $(PDFGUI CLASSDI R) \
-d $(PDFGUI CLASSDI R)

BRI T R A
LI BS, DI RS AND DEFI NES
BRI A S A AR R

LI BS =-Im-lc

I NCDI R = -1 $(NETSOLVE_RQOQOT) /i ncl ude \
$(NWE_I NCDI R) \
$(1BP_INCDIR) \
$(MPI _I NCDI R)

ARCHCFLAGS = - D$(NETSOLVE_OS) \

71

Chapter 12. Troubleshooting

-D$(F2CSTR) - D$(F2CI NT) - D$(F2CNAMVES) - D$(RUSAGE) \

- DNETSOLVE_ROOT=\ " $(NETSOLVE_ROOT)\ " \
- DNETSOLVE_ARCH=\ " $(NETSOLVE_ARCH)\ " \

-DVPI _DI R\ "$(MPI _DIR)\ "

ARCHVFLAGS = - D$(NETSOLVE_08S) \

- D$(F2CSTR) - D$(F2CI NT) - DB(F2CNANES) - D$(RUSAGE) \

- D NETSOLVE_RQOOT=\ " $(NETSOLVE_ROOT)\ "’
- D' NETSOLVE_ARCH=\ " $(NETSOLVE_ARCH) \ "’

$F2CI NT options

FI NT2CLONG : F77 INTEGER -> C | ong
FINT2CINT : F77 INTEGER -> C int
FI NT2CSHORT @ F77 | NTEGER -> C short

F2CI NT = FI NT2CI NT

$F2CNAMVES opti ons

H#it#H F2CADD_ . F77 netsl() ->
H##H F2CADD__ : F77 netsl() ->
###H F2ONOCHANGE @ F77 netsl() ->
###H F2CUPCASE © F77 netsl() ->

F2CNAMVES = F2CADD_

$F2CSTR opti ons

C netsl _()
Cnetsl __ ()
C netsl ()
C NETSL()

\

#H### F2CSTRSUNSTYLE : Sun style of passing strings fromf2c
#H### F2CSTRCRAYSTYLE : Cray style of passing strings fromf2c
F2CSTRSTRUCTPTR @ Struct * style of passing strings fromf2c
#H### F2CSTRSTRUCTVAL : Struct style of passing strings fromf2c

F2CSTR = F2CSTRSUNSTYLE

RHAARHHBHHABHHBHHHBHHRHHAR
AUXI LI ARY PROGRANS
RHAABHHBHHABHHBHHHBHHRRHAR

FLEX = /usr/bin/flex
Bl SON = /usr/bin/bison
AR = [usr/bin/ar
ARFLAGS = cr

RANLI B =

RUSAGE = HAVERUSAGE

RHAARHHBHHABHHBHHHRBHHBHHABHHARHHRHH
NETSOLVE SPECI FI C OPTI ONS
AEHAR R AR R R R

72

H
=3

&

Chapter 12. Troubleshooting

Program Qut put
DEBUG : For really verbose debugging information
#H### VI EW . For snooth information during the execution

###4# NO_OUTPUT : no out put

OQUTPUT_LEVEL = -DVI EW

J I

#
Cient Proxy

4y s

H

H

HHHH Proxies are currently nmutually excl usive
buil d and enabl e gl obus proxy
buil d and enabl e netsol ve proxy

HHH#H GLOBUS_PROXY
HHH# NETSOLVE_PROXY
PROXY = - DNETSOLVE_PROXY

=

I nformati on Server

B oH H

F o

| NFOSERVERFLAGS
| NFOSERVERFLAGS
| NFOSERVERFLAGS
| NFOSERVERFLAGS =
| NFOSERVER =

H H H
Inn

3
3

t

Wor kl oad Prober

4y

H

By

H

CPU_STAT = - DNS_WORKLOAD

DSI FLAGS =

BRI A B R R iy
AUXI LI ARY PACKAGES

options for | NFOSERVERFLAGS

- DI NFOSERVER
- DI NFOSERVER - DSTANDALONEI SERV (use i n standal one node)

(bl ank neans do not use)
(use as part of agent)

\Whi ch probes? options are NW5, NS _WORKLOAD (Net Sol ve)

73

RHAABHHBHHABHH AR HHRHHARH

4y I
H

AUTHENTI CATI ON

I

mn
H i

options are NO AUTH, KERBEROS5
AUTHENTI CATI ON = - DNO_AUTH
AUTH LI BS =

MPI _DIR = /usr/Ilocal/npich
MPI _I NCLUDE_DI R = $(MPI _DI R)/ i ncl ude
MPI _I NCDI R = -1 $(MPI _I NCLUDE_DI R)

I BPLIB =

| BPOBJS_STUB =
| BPOBJS
| BPFLAG =

#GLOBUS DIR =

#i ncl ude $(GLOBUS_DI R)/ et c/ makefi | e_header

Chapter 12. Troubleshooting

#G LIBS = -L$(GLOBUS DIR)/lib $(GLOBUS_GRAM CLIENT_LI BS) $(LIBS)
#G CFLAGS = $(GLOBUS_GRAM CLI ENT_CFLAGS) -1 $(GLOBUS DI R)/i ncl ude

#G LDFLAGS = $(GLOBUS GRAM CLI ENT_LDFLAGS)

#LDAP_DI R = /usr/local /| dap

74

Chapter 12. Troubleshooting

#LDAP_LIBS = -L$(LDAP_DIR)/lib

#LDAP_CFLAGS = -1 $(LDAP_DI R) /i ncl ude
#LDAP_LDFLAGS = -lldap -11ber

Auxiliary Libs

HAVE_petsc = 0

PETSC DIR = /src/icl 2/ petsc/petsc-2.0.29/
PETSC_ARCH = | i nux

BOPT =0

PETSC LIB DIR = $(PETSC DI R)/ i b/1i b$(BOPT)/ $(PETSC_ARCH)

HAVE aztec = 0
AZTEC DI R
AZTEC LIB DR

/srclicl2/ Azt ec/
I'srclicl2/ Aztec/lib/libg/linux

HAVE_super | u 0

SUPERLU_DI R /'srclicl?2/ Super LU

SUPERLU LIB_DIR = /src/icl2/ SuperLU |ib/sequential/linux
USE_SUPERLU_SERI AL = - DUSE_SERI AL

USE_SUPERLU DI ST =

LAPACK_LI B_LINK = /usr/local/lib/liblapack-n32.a
SCALAPACK_LIB_LINK = /fusr/local/lib/libscal apack. a
BLAS LIB LINK = /usr/lib32/ m ps4/libblas.a

BLACS LIB LINK = /usr/local/lib/libnpiblacsCinit-
p4.a /usr/local/lib/libnpiblacs-p4.a /usr/local/lib/libnpiblacsCinit-p4.a

75

lIl. The Administrator’s Manual

The user has two choices when installing NetSolve. He cdalimly the client software and use
existing pools of resources (agent(s) and server(s)), oahénstall his own stand-alone NetSolve
system (client, agent(s) and server(s)). If the user wighesly install the client interface(s), he should
follow instructions inPart II. The User’'s ManualHowever, if the users wishes to install client, agent(s),
and server(s), he should follow the instruction®art I1l. The Administrator's Manual

76

Chapter 13. Downloading, Installing, and
Testing the Agent and Server

The NetSolve agent and server software is currently onlifabla for UNIX and UNIX-like operating
systems. All of the client, agent, and server software ighrahinto one tar-gzipped file. There is a
separate distribution tar file for Unix and Windows instadias. No root/superuser privileges are needed
to install or use any component of the NetSolve system.

Installation on Unix Systems

The NetSolve distribution tar file is available from the Nai® homepage.
(http://icl.cs.utk.edu/netsolve/download/NetSolvé:tyz) Once the file has been downloaded, the
following UNIX commands will create thBet Sol ve directory:

gunzip -c NetSolve-1.4.tgz | tar xvf -
From this point forward, we assume that the UNIX SHELL is friracshfamily.

The installation of NetSolve is configured for a given aretitire using the GNU toaonf i gur e.

UNI X> cd Net Sol ve
UNI X> . /configure

For a list of all options that can be specified to configureetyp

UNI X> ./configure --help

Usage: configure [--w th-cc=C _COWPILER] [--wi th-cnooptflags=C NOOPT_FLAGS]
--with-coptflags=C OPT_FLAGS] [--with-fc=F77_COWI LER]
--wi th-fnoopt fl ags=F77_NOOPT_FLAGS]
--with-foptflags=F77_OPT_FLAGS]

--w t h-1dfl ags=LOADER_FLAGS]

--w t h- nws=NWSDI R]

--w t h-i bp=I BPDI R]

--Wwi t h- ker ber os]

--Wwi t h- pr oxy=PROXY_TYPE]

--wi th-out putl evel =OUTPUT_LEVEL]

- -enabl e-i nf oser ver =I NFOSERVER]

--w th-nmpi =MPI _DI R]

--Wwi t h- pet sc=PETSCDI R]

--wi th-aztec=AZTEC DI R

e R W B B B B e B B B e B

77

[_
[_
[_
[_
[_
[_
[_
[_

wher e
C_COWPI LER
C_NOOPT_FLAGS

C OPT_FLAGS
F77_COWPI LER
F77_NOOPT_FLAGS

F77_OPT_FLAGS
LOADER _FLAGS
NWSDI R

| BPDI R
PROXY_TYPE

OUTPUT_LEVEL

| NFOSERVER
MPI DI R

PETSCDI R
AZTEC DI R
AZTEC LI B
SUPERLU_DI R
SUPERLU LI B
SCALAPACK LI B
BLACS LI B
LAPACK LI B
BLAS LI B
MLDK_PATH

All arguments are optional.

Chapter 13. Downloading, Installing, and Testing the Agerd Server

-with-aztecli b=AZTEC LI B]

-wi t h-super | u=SUPERLU_DI R]

-wi th-superl ul i b=SUPERLU_LI B]

-wi t h-scal apackl i b=SCALAPACK_ LI B]
-wi t h- bl acsl i b=BLACS_LI B]

-wi t h-1 apackl i b=LAPACK LI B]

-wi t h-bl asl i b=BLAS_LI B]

-wi t h- m dk=M_.DK_PATH]|

default is to use gcc

C conpiler flags to be used on files that

nmust be conpiled without optim zation

C conpiler optimzation flags (e.g., -0O

default is to use g77

Fortran77 conpiler flags to be used on files that
nmust be conpiled without optim zation

Fortran77 conpiler optinization flags (e.g., -0O
Flags to be passed only to the | oader

directory where NWs is installed (optional)
directory where IBP is installed (optional)
currently supported val ues are netsol ve

and gl obus (default is netsolve)

currently supported val ues are debug, view,

and none (default is view)

currently supported val ues are al one and

not hi ng specified (default is not alone,

where nothing is specified).

| ocation of the MPI directory (optional

assunmes MPICH directory structure)

(default is /usr/local/npich-1.2.1).

| ocation of PETSc installation directory (optional)
| ocation of Aztec installation directory (optional)
Aztec link line (optional)

| ocation of SuperLU installation directory (optional)
SuperLU link line (optional)

ScaLAPACK link Iine (optional)

MPI BLACS link line (optional)

LAPACK link Iine (optional)

BLAS link line (optional)

Path to Mat hLi nk Devel opment Kit (optional)

The options particularly pegtit to NetSolve are:

--w t h- nws=NWSDI R | ocation of NWs installation dir

78

Chapter 13. Downloading, Installing, and Testing the Agerd Server

--wi t h-i bp=I BPDI R | ocation of IBP installation dir
--wi t h- ker ber os use Kerberos5 client authentication
--wi t h- proxy whi ch Proxy? (netsolve, gl obus)

--wi t h-out put | evel out put | evel (debug, view, none)

--enabl e-i nfoserver[=al one] use InfoServer [alone]

The NetSolve service options are:

--wi t h- pet sc=PETSCDI R | ocation of PETSc installation dir
--wi th-petsclibdir=PETSC LI B DI R | ocation of PETSc |ibrary

--wi th-aztec=AZTEC DI R | ocation of Aztec installation dir
--wi th-aztecli b=AZTEC LI B Aztec link line

--Wwi t h-super| u=SUPERLU DI R | ocation of SuperLU installation dir
--wi th-superl ul i b=SUPERLU_LI B SuperLU link line

--wi th-nmpi =MPI _DIR | ocation of MPI Root Directory
--wi th-1apackl i b=LAPACK LI B LAPACK link |ine

--wi t h-scal apackl i b=SCALAPACK LI B ScaLAPACK link |ine

--with-blacsli b=BLACS LIB MPI BLACS link line

--wi th-blaslib=BLAS LIB BLAS link line

--wi th-m dk=MLDK_PATH Path to Mat hLi nk Devel opnent Kit

The configure script creates two main files, ./conf/MakefNMETSOLVE_ARCH.inc and
.Jconf/Makefile.inc. These files are created from the tetagldconf/Makefile.generic-arch and
Jconf/IMakefile.inc.in respectively. SNETSOLVE_ARCH keetstring printed by the command
.Jconf/config.guess, with all =" and '’ characters contestto '’ characters. The variable
$NETSOLVE_ROOQOT is the complete path name to the installeisblee directory and defined in

./ conf/ Makefil e.inc. These *.inc files are included by the Makefiles that buildXleSolve system.
Manually editing these configuration files is strongly dis@ged. However, details of the
$NETSOLVE_ROOT/ conf / Makef i | e. $NETSOLVE_ARCH. i nc file are explained in the section called
Details of the Makefile.NETSOLVE_ARCH.inc kileChapter 12.

Typing make in theNet Sol ve directory will give instructions to complete the compitati A typical
agent and server compilation includes:

UNI X> make standard

to build the agent, server, NetSolve management tools (eapt€r 16), and NetSolve test suite (see the
section called’esting the SoftwajeAfter a successful compilation process, the approphataries
and/or libraries can be found in tB&IETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCHand/or

$NETSOLVE_ROOT/ | i b/ $NETSOLVE_ARCHdirectories respectively. Thus, to execute a NetSolverina
the user must either execute the command from withir$tMEerSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH
directory, or add this directory name to his UNp4t h variable.

79

Chapter 13. Downloading, Installing, and Testing the Agerd Server

Testing the Software

Testing the software consists of starting an agent and a&isend running a client test (the section called
Agent-Server-Client TéstAlternatively, the default agent and servers runnindpatniversity of
Tennessee can be used to test the client only (see the sealiedTesting the Unix installatiom

Chapter 3). We describe here the step-by-step procedurietiodves manipulations that will be detailed
and explained in the following chapters.

Agent-Server-Client Test

1. Choose a machine to run the agent, server and clienn@agol ve. wor | d. net),
2.cd NetSolve

3. editthe file. / server _confi g to replacenet sol ve. c¢s. ut k. edu by
net sol ve. wor | d. net, and save the file.

4.setenv NETSOLVE_AGENT netsolve.world.net
5.$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/agent
6. SNETSOLVE_ROOT/bin/SNETSOLVE_ARCH/server
7.cd SNETSOLVE_ROOT/bin/$SNETSOLVE_ARCH
8. Test
While the test suite is running, it prints messages aboetigution. This test tests only the C and

Fortran interfaces. See Chapter 6 for details on how tollesttatlab interface. Successful completion
of these tests assures you that you have properly instéiéeNétSolve agent and server.

If an error is encountered during testing, refer to the Ttesitooting section of thErrata file
(http://icl.cs.utk.edu/netsolve/errata.html) for Nefi&.

Expanding the Server Capabilities

It is possible to add new functionalities to a NetSolve cotapanal server by specifying additional
problem description files in the server configuration filefact, a number of PDFs have been written for
a variety of serial and parallel software packages: ARPAGKec, BLAS, ITPACK, LAPACK, MA28,
PETSc, ScaLAPACK, and SuperLU. These PDFs are available$NETSOLVE_ROOT/ pr obl ens/

80

Chapter 13. Downloading, Installing, and Testing the Agerd Server

directory. If a user has one of these software libraries datin the architecture to which he is
installing NetSolve, he can easily add this functionalityhis server in three steps.

- During the configure phase of NetSolve, specify the configpten(s) for enabling the respective
library. Refer to the section callddstallation on Unix Systenfsr details. This step will automatically
set the neede@.| B line(s) in the respectivéNETSCOLVE_ROOT/ pr obl ens/ PDF file, as well as set
the required variables in tlBNETSOLVE_ROOT/ conf / Makef i | e. SNETSOLVE_ARCH. i nc file.

- Uncomment the respective line in theywordsection@ROBLENMS: of the
$NETSOLVE_ROOT/ ser ver _confi g file.

- Recompile the server by typingake serverin the $NETSOLVE_ROOT/ directory.

Note: If you are enabling sparse_iterative_sovle or sparse_direct_solve, you will need to type make
wrappers followed by make server .

NetSolve’s distributed memory services (e.g., ScaLAPABKTSc) are spawned using MPhgirun
-machinefile MPImachines ..) and thus require an MPI machine file describing the paraikthine on
which to run. The name of the file containing this list of horangous machines is called
$NETSOLVE_ROOT/ MPI machi nes and is referenced in the filelNETSOLVE_ROOT/ ser ver _confi g for
configuring the server. Therefore, if you are enabling palraérvices within a server, the uddiJST
edit thissNETSOLVE_ROOT/ MPI machi nes file to list the specific machines to be used. The current
implementation of NetSolve allows only ovel machi nes file per server. This spawning file is tied to
the server, andotto a specific service enabled. Thus, unfortunately, if yoshvtd enable parallel
services on different clusters, then you must enable thevacd on different servers -- i.e., maintain a
separate NetSolve source code tree for each server enatilsontbat each parallel service can have its
own MPI machi nes file from which to spawn. A future release of NetSolve shodkhitify a separate
MPI machi nes file with each parallel service that can be enabled.

Enabling the LAPACK library

To enable LAPACK within NetSolve, one must perform the faliog steps:

- During the configure phase of the NetSolve installationetyp
UNI X> . /configure --wth-Iapacklib=LAPACK LIB --w th-blaslib=BLAS_LIB

whereLAPACK_LI B denotes the name of the LAPACK library, aBdAS LI B denotes the name(s) of the
BLAS library. If these libraries are not already availabietbe user's machine, he can download

81

Chapter 13. Downloading, Installing, and Testing the Agerd Server

LAPACK from the LAPACK web pagénttp://www.netlib.org/lapack/lapack.tgz). If an optirad
BLAS library is not available on the user’'s machine, he cawtheBLAS FAQ
(http://www.netlib.org/blas/fag.html#1.6) for detad6availability; otherwise, he can download
ATLAS from the ATLAS webpagéhttp://www.netlib.org/atlas/) and it will automaticaljenerate an
optimized BLAS library for the installation architecture.

« The user must then uncomment the respective line

#./ probl ens/ | apack

in the @ROBLEMS: section of theSNETSOLVE_ROOT/ ser ver _conf i g file by removing the# from the
beginning of the line.

+ And lastly, the user must recompile the server by typirake serverin the $SNETSCLVE_ROOT/
directory.

Enabling the ScaLAPACK library

To enable ScaLAPACK within NetSolve, one must perform tHiowaing steps.

- During the configure phase of the NetSolve installationetyp

UNI X> ./configure --wth-scal apackl i b=SCALAPACK LI B \

--wi th-blacsli b=BLACS LIB --with-blaslib=BLAS LIB\

--with-nmpidir=MPI _DIR

whereSCALAPACK_LI B denotes the name of the ScaLAPACK libraByACS_LI B denotes the name(s)

of the MPIBLACS libraries, an8LAS_LI| B denotes the name(s) of the BLAS library. If these libraries
are not already available on the user’s machine, he can der8calL APACK from th&caLAPACK
web pagéghttp://www.netlib.org/scalapack/scalapack.tgz), #relMPIBLACS from theBLACS web
page(http://www.netlib.org/blacs/mpiblacs.tgz). If an aptzed BLAS library is not available on the
user’s machine, he can view tB&AS FAQ(http://www.netlib.org/blas/faq.html#1.6) for detadé
availability; otherwise, he can download ATLAS from th&LAS webpage
(http://www.netlib.org/atlas/) and it will automaticalgjenerate an optimized BLAS library for the
installation architecturePl _DI R denotes the location of the MPI library (assumes the stahdar
MPICH distribution).

« The user must then uncomment the respective line

#./ probl ens/ scal apack

in the @ROBLEMS: section of theSNETSOLVE_ROOT/ ser ver _conf i g file by removing the# from the
beginning of the line.

82

Chapter 13. Downloading, Installing, and Testing the Agerd Server

- And lastly, the user must recompile the server by typirake serverin the SNETSOLVE_ROOT/
directory.

Enabling Sparse Iterative Solvers (PETSc, Aztec, and ITPAC K)

NetSolve offers asparse_iterative_solveservice as a convenient interface to sparse iterative rdstho
packages such as PETSc, Aztec, and ITPACK. If the user wikddd enable PETSc, Aztec, or
ITPACK within NetSolve, he must perform the following steps

- During the configure phase of the NetSolve installationetyp

UNI X> ./configure --wth-petsc=PETSC DIR --wi th-aztec=AZTEC DI R\
--with-aztecli b=AZTEC LIB --wi t h-lapackl i b=LAPACK LI B \
--with-bl aslib=BLAS LIB --w th-npidir=MPI _DIR

wherePETSC DI Rdenotes the location of the PETSc directory containing thedard distribution,
AZTEC DI Rdenotes the location of the Aztec directory where the ingliilds can be found,
AZTEC LI Bis the link line for the Aztec library, APACK_LI B denotes the name of the LAPACK
library, BLAS LI B denotes the name(s) of the BLAS library, avkl _DI Rdenotes the location of the
MPI library (assumes the standard MPICH distribution)hHge libraries are not already available on
the user’s machine, he can download and install the softiranethe respective webpages PETSc
homepagéhttp://www-fp.mcs.anl.gov/petsc/), aldtec homepage
(http://www.cs.sandia.gov/CRF/aztecl.html)). The P&rserface is compatible with PETSc,
version 2.0.29. LAPACK can be downloaded from th&PACK web page
(http://www.netlib.org/lapack/lapack.tgz). If an optrad BLAS library is not available on the user’s
machine, he can view tH&LAS FAQ(http://www.netlib.org/blas/fag.html#1.6) for detadé
availability; otherwise, he can download ATLAS from tA€LAS webpage
(http://www.netlib.org/atlas/) and it will automaticgljenerate an optimized BLAS library for the
installation architecture. The ITPACK library is distriieal with NetSolve in
$NETSOLVE_ROOT/ sr ¢/ Sanpl eNuner i cal Sof t war e/ | TPACK/ since a small modification to the
library was necessary to enable its use in NetSolve.

« The user must then uncomment the respective line

#./ probl ens/ sparse_iterative_sol ve

in the @ROBLEMVS: section of theSNETSOLVE_ROOT/ ser ver _conf i g file by removing the# from the
beginning of the line.

- And second, the user must compile the server by typiage wrappersandmake serverin the
$NETSOLVE_ROOT/ directory.

83

Chapter 13. Downloading, Installing, and Testing the Agerd Server

Enabling Sparse Direct Solvers (SuperLU and MA28)

NetSolve offers asparse_direct_solveservice as a convenient interface to sparse direct methods
packages such as SuperLU and MA28. If the user would like ablenSuperLU or MA28 within
NetSolve, he must perform the following steps.

- During the configure phase of the NetSolve installationetffpr example, to enable SuperLU)

UNI X> ./configure --w th-superl u=SUPERLU DI R --wi t h-
super | ul i b=SUPERLU_LI B \

--wi th-1apackl i b=LAPACK_LI B --wi t h-bl asl i b=BLAS_LI B \

--wi th-nmpidir=MPI _DIR

whereSUPERLU_DI Rdenotes the location of the SuperLU directory where thauieffiles can be found,

SUPERLU_LI Bis the link line for the SuperLU library,APACK_LI| B denotes the name of the
LAPACK library, BLAS_LI B denotes the name(s) of the BLAS library, avil _DI Rdenotes the
location of the MPI library (assumes the standard MPICHritistion). If these libraries are not
already available on the user’'s machine, he can downloadhatall the software from the respective
webpage -SuperLU homepagéttp://www.nersc.gov/~xiaoye/SuperLU/). The MA28 By is
distributed with NetSolve iSNETSOLVE_ROOT/ sr ¢/ Sanpl eNuner i cal Sof t war e/ MA28/ since a
small modification to the library was necessary to enablestsin NetSolve. LAPACK can be
downloaded from the APACK web pagéhttp://www.netlib.org/lapack/lapack.tgz). If an optirad
BLAS library is not available on the user’'s machine, he cawtheBLAS FAQ
(http://www.netlib.org/blas/fag.html#1.6) for detad6availability; otherwise, he can download
ATLAS from the ATLAS webpagéhttp://www.netlib.org/atlas/) and it will automaticaljenerate an
optimized BLAS library for the installation architecture.

« The user must then uncomment the respective line
#./ probl ens/ sparse_di rect _sol ve

in the @ROBLEMS: section of theSNETSOLVE_ROOT/ ser ver _conf i g file by removing the# from the
beginning of the line.

- And lastly, the user must compile the server by typimake wrappersandmake serverin the
$NETSOLVE_ROOT/ directory.

84

Chapter 14. Running the NetSolve Agent

After compiling the agent as explained in the section cdltestiallation on Unix Systenis Chapter 13,
the executable of the NetSolve agent is located in:

$NETSOLVE_ROOT/ bi n/ $NETSOLVE_ARCH agent .

The proper command line for this program is

agent [-a agent_name] [logfile]

When invoked with no arguments, a stand-alone agent igdtarhis agent is now available for
registrations of NetSolve servers wanting to participate hew NetSolve system. After servers are
registered, client programs can contact this agent andreaurests serviced by one or more of the
registered servers.

Note:: Only one NetSolve agent can be running on a given machine at a given time.

When the- a option is used, as in:
UNI X> agent -a netsol ve.cs. utk.edu

the new agent will register itself with the agent running loa host specified by the agent_name
argument. If no agent is running on this host, the new agdhewit with an appropriate error message.
However, when it is able to contact that agent, it will reegirom that agent, a list of servers (who have
given the previous agent the permission to broadcast ttagirss see Chapter 15) and possibly other
agents. These servers then also become available for tfieisgrof requests sent via the new agent.

The- | option specifies the name of a file to use for logging purposes.
UNI X> agent -1 /home/ me/ agent _| ogfile

This file is where the agent logs all of its interactions (andgibly errors) since it is a daemon with no
controlling terminal and therefore has no way to do this otl&e. This log file also produces very useful
information about requests, among other things, that repsinistrators know how their NetSolve
system is being used. If nd option is specified, the default log file is

$NETSOLVE_ROOT/ nsagent . | og. This means that successive runs of the agent with no spa@ficof

a log file will overwrite the original log file, so if the inforation is needed, it must be copied to another
file.

85

Chapter 14. Running the NetSolve Agent

To terminate an existing agent (or query an existing NetSelstem), the user should refer to the
NetSolve management tools, particulal$_killagent, as outlined in Chapter 16.

86

Chapter 15. Running the NetSolve Server

Starting a Server

After compiling the server as explained in the section cHitstallation on Unix Systenis Chapter 13,
the executable of the NetSolve server is located in:

$NETSOLVE_ROOT/ bi n/ SNETSOLVE_ARCH ser ver .

The proper command line for this program is

server [-f config_file] [-] logfile] [-k]

This executable usescanfiguration filefor initializing the NetSolve server. When invoked with no
arguments as:

UNI X> server

the default configuration file located §NETSOLVE_ROOT/ ser ver _confi gis used. This is the file that
should be used for first experiments and for testing the syd#owever, it is possible to customize or
expand the functionality of a server (the section callbeé Server Configuration Fijeor to specify
another configuration file by calling the executable as in

UNI X> server -f /home/ me/ny_config

for instance.

The- | option specifies the name of a file to use for logging purposes.
UNI X> server -1 /hone/ne/agent_logfile

This file is where the server logs all of its interactions (@odsibly errors) since it is a daemon with no
controlling terminal and therefore has no way to do this otlige. If the- | option is not specified, the
default log file iISSNETSOLVE_ROOT/ nsser ver . | og. Successive runs of the server with no
specification of a log file will overwrite the original log filso if the information is needed, it must be
copied to another file!

Note:: Multiple NetSolve servers can be running on a given machine if and only if they have a
different NetSolve agent.

87

Chapter 15. Running the NetSolve Server

When the server has been compiled with the Kerberos litgatie administrator has the option of
having the server require clients to authenticate befarédaBng services. To mandate this
authentication, thek option must be used, otherwise no authentication will bedg$ér, and the server
will be available to service requests to ANY client askinggervices.

To terminate an existing server (or query an existing NetSsystem), the user should refer to the
NetSolve management tools as outlined in Chapter 16.

The Server Configuration File

The server configuration file is used to customize the sefberdefault configuration file in
$NETSOLVE_ROOT/ ser ver _conf i g should be used as a template to create new configurationfhés.
configuration file is organized as follows. A line can starthva’ #’ in which case the line is ignored
and can be used for comments. A line can also start wkesyavordthat is prefixed by & @ typically
followed by a single value or parameter. Let us review alhef possible keywords and how they can be
used to precisely define a NetSolve server as it is done ingfaaiti configuration file.

« ' @\GENT: <host nane>’ [*] specifies the agent that the NetSolve server must contaggister into
a NetSolve system. The agent is identified by the name of teiedmowhich it is running and there can
be only one such line in the configuration file. If the' is present, then the server will broadcast its
existence to all NetSolve agents known to the one runninghest name>. Otherwise, the server will
only be known to the agent arhost nane>.

« ' @ROC: <nunber > specifies the number of processors (=1 for a single procesador a dual
processor, =4 for a quad processor) that can be used by thex seperform simultaneous
computations on the local hosts. There can only be one suelnithe configuration file.

« ’ @PI HOSTS <fil ename> <nunber > specifies the path to the file that contains the list of
machines that can be used by MPI, and the maximum number oégsors that can be spawned by
MPIL.

. ' @\ORKLOADMAX: <max>’ specifies the value of the workload beyond which the senfases new
requests (e.g.@ORKLOADVAX: 100’). A value of- 1 means that the server accepts requests
regardless of the workload.

« ' @CRATCH: <pat h>' specifies where the NetSolve server can put temporary diiestand files.
The defaultig t mp/ .

« ' @ONDOR: <pat h>' specifies that the NetSolve server is using a Condor [cofflmrtidor2] pool as
a computing resource. The path to the Condor base directosyloe provided. There can be only one
such line in the configuration file.

88

Chapter 15. Running the NetSolve Server

« ' @ROBLEMS: ' marks the beginning of the list @roblem description file (PDR)ames that are
enabled in the NetSolve server installation. Each of thesklem description files contains interfaces
to a number of problems/subroutines from a particular smféibrary. If a particular problem
description file is enabled in the server configuration fkentthe problems/subroutines contained
therein become available on that server. A number of PDFs hagn written for a variety of software
packages, but the default NetSolve installation only ezmblsmall subset, as there is only a limited
amount of software included with the NetSolve distributiDetails of description files are given in
the section calle@Expanding the Server Capabilitigs Chapter 13.

+ ' @RESTRI CTI ONS: ' marks the beginning of the list of access restrictions theaaplicable to the
NetSolve server. The list consists of lines formatted as:
<domai n nane> <nunber of pending requests all owed>
The symbol *’ is used as a wildcard in the domain name. For instance, tae lin
*. edu 10
means that only 10 requests from clients residing oedu machine can be serviced simultaneously.
When the server receives a request from some machine, imdats which line in the list must be

used to accept or reject the request by taking the most refioedin name. For instance, if the list of
the restrictions is:

*. edu 5
*. utk.edu 10

then the server accepts at most 5 simultaneous requestagénmin. edu machines that aneotin the
.utk.edusub-domain, and at most 10 requests that come from mackinies.iut k. edu sub-domain
for a total of 15 possible simultaneous requests.

89

Chapter 16. NetSolve Management Tools for
Administrators

The NetSolve distribution comes with a set of tools to mar@gery a NetSolve system. After compiling
the tools as explained in the section callestallation on Unix Systenia Chapter 13, the following six
executables are available:

$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_conf
SNETSOLVE_ROOT/bin/SNETSOLVE_ARCH/NS_problems
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_probdesc
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killagent
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killserver
$NETSOLVE_ROOT/bin/$NETSOLVE_ARCH/NS_killall

Let us review these executables one by one.

NS conf

This executable takes one argument on the command lineathe of a host running a NetSolve agent:

UNI X> NS _conf netsol ve. cs. utk. edu

It prints the list of hosts participating in the NetSolvetgys:

AGENT: netsol ve.cs.utk.edu (128.169.93. 161)
SERVER: nmaruti.cs. berkel ey. edu (128. 32. 36. 83)
SERVER: cupi d. cs. utk.edu (128.169.94.221)

NS problems

This executable takes the name of a host running an agemtgle argument on its command line. It
prints the list of problems that can be solved by contactirag agent:

UNI X> NS_probl ens netsol ve. cs. utk. edu
/ BLAS/ Mat ri ces/ mat nul
/1t Pack/j si

90

Chapter 16. NetSolve Management Tools for Administrators

/ LAPACK/ Mat ri ces/ Ei genVal ues/ ei g
/ LAPACK/ Mat ri ces/ Si ngul ar Val ues/ svd

NS probdesc

This executable takes two arguments on its command linenahee of a host running a NetSolve agent
and the nickname of a NetSolve problem. It prints the desoripf the problem:

UNI X> NS_probdesc netsol ve.cs. utk.edu |insol

linsol -- From LAPACK -

Conpute the solution to a real systemof |inear equations

A* X=b

where Ais an N-by-B matrix and X and B are N-by-NRHS matri ces.
Mat | ab Exanple : [x] = netsol ve(’ dgesv’, a, b)

http://ww. netlib.org/lapack/index. htn

* 2 objects in I NPUT

input 0: Matrix Double Precision Real.

Matrix A

input 1. Matrix Double Precision Real.

Ri ght hand side
* 1 objects in OUTPUT

out put 0: Matrix Doubl e Precision Real.

Sol ution
* Calling sequence fromC or Fortran
6 argunents

Argunent #0:

- nunber of rows of input object #0 (A)

- nunber of colums of input object #0 (A)
- nunber of rows of input object #1 (RHS)
Argunent #1:

- nunber of columms of input object #1 (RHS)
Argument #2:

- pointer to input object #0 (A)

Argument #3:

- leading dinmension of input object #0 (A)
Argunent #4:

- pointer to input object #1 (RHS)

- pointer to output object #0 (SOLUTI ON)
Argument #5:

- leading dinension of input object #1 (RHS)

91

Chapter 16. NetSolve Management Tools for Administrators

NS killagent

This executable takes one argument on its command line gime of a host running a NetSolve agent.
After a (basic) user authentication, the executable Kiksagent.

UNI X> NS kil |l agent netsol ve.cs. utk.edu
Agent on netsolve.cs.utk.edu : killed

NS killserver

This executable takes two arguments on its command lineahe of a host running a NetSolve agent
and the name of a host running a NetSolve server. After adpaser authentication, the executable kills
the server, using the agent as an entry-point into the system

UNI X> NS kil |l server netsol ve.cs. utk. edu cupid.cs. utk.edu
Server on cupid.cs.utk.edu killed : killed

NS_killall

This Shell script takes one argument on its command linendmee of a host running a NetSolve agent.
After a (basic) user authentication, the executable Kiksagent, along with all other NetSolve processes
(agents and servers) known to that agent:

UNI X> NS killall netsolve.cs. utk. edu
Server on cupid.cs.utk.edu : killed
Server on nmaruti.cs. berkeley.edu : killed
Agent on netsolve.cs.utk.edu : killed

92

Chapter 17. The Problem Description File

The problem description file (PDF) is the mechanism througltivNetSolve enables services for the
user. The NetSolve distribution contains the source cod®lf&R28, ITPACK, gsort, and a subset of
BLAS and LAPACK routines. This software is contained in the

$NETSOLVE_ROOT/ sr ¢/ Sanpl eNuner i cal Sof t war e/ directory. Therefore, the default NetSolve
enablement (contained $§NETSOLVE_ROOT/ ser ver _confi g) only accesses the PDFs related to the
included software packages. The user should refer to thmeaalledExpanding the Server
Capabilitiesin Chapter 13 for details on expanding the capabilities adraex, and refer to the section
calledContents of a Problem Description Fifer details on the structure of a problem description file.

Contents of a Problem Description File

In what follows we describe the contents of a problem desongile (PDF). We offer all of the details
because it may be necessary or desirable to be aware of themelstrongly recommend the use of the
GUI application described in the section calRDF Generatorto create new PDFs.

The rationale for the syntax of the description files is exy@éd in [ima]. Each description file is
composed of severgkoblem descriptionsBefore explaining how to create a problem description, we
reiterate the concept abjectsin NetSolve, and then define the conceptrafemonics

NetSolve Objects

As detailed in the section callédetSolve Problem SpecificationChapter 4, the syntax of a NetSolve
problem specification is a function evaluation:

<out put > = <nane>(<i nput >)

where

- <nane> is a character string containing the name of the problem,
« <input > is a list of input objects,

. <out put > is a list of output objects.

An object is itself described by abject typeand adata type The types available in the current version
of NetSolve are shown in Table 17-1 and Table 17-2.

93

Table 17-1. Available data types

Chapter 17. The Problem Description File

Data Type Description Note

NETSOLVE_]I Integer

NETSOLVE_CHAR Character

NETSOLVE_BYTE Byte never XDR encoded

NETSOLVE_FLOAT

Single precision real

NETSOLVE_DOUBLE

Double precision real

NETSOLVE_SCOMPLEX

Single precision complex

NETSOLVE_DCOMPLEX

Double precision complex

Table 17-2. Available object types

Object Type Description Note
NETSOLVE_SCALAR scalar
NETSOLVE_VECTOR vector
NETSOLVE_MATRIX matrix

NETSOLVE_SPARSEMATRIX

sparse matrix

Compressed Row Storage (CR
format

S)

NETSOLVE_FILE file only of data type
NETSOLVE_CHAR
NETSOLVE_PACKEDFILES |packed files only of data type
NETSOLVE_CHAR
NETSOLVE_UPF User Provided Function only of data type
NETSOLVE_CHAR
NETSOLVE_STRING Character string only of data type
NETSOLVE_CHAR
NETSOLVE_STRINGLIST Character string list only of data type

NETSOLVE_CHAR

A problem description file (PDF) uses these objects to defpr@blem specification for a given service.
the section calletinemonicglescribes the requirements for each NetSobject typeas it relates to the

problem description file.

Sparse Matrix Representation in NetSolve

94

Chapter 17. The Problem Description File

NetSolve uses the Compressed Row Storage (CRS) for stgpargesmatrices. The Compressed Row
Storage (CRS) format puts the subsequent nonzeros of thixmat's in contiguous memory locations.
Assuming we have a nonsymmetric sparse matrix, we creatergeone for floating-point numbers
(val), and the other two for integers (col_ind, row_ptr)eNal vector stores the values of the nonzero
elements of the matrix, as they are traversed in a row-wiggda. The col_ind vector stores the column
indexes of the elements in the val vector. The row_ptr vestimes the locations in the val vector that
start a row.

For example, if

1031
A= 0052

6108

4000
t hen,
val : 1315261814
col _ind: 023230130
row ptr: 0 3589

Thus, if a problem in NetSolve has the following specificasio

-- smprob --
* 1 object in I NPUT
- input 0: Sparse Matrix Double Precision Real.
the sparse matrix
* Calling sequence from C or Fortran
11 argunents
- Argunent #0:
- nunber of rows of input object #0 (sm
- nunber of colums of input object #0 (sm
- Argunent #1:
- nunber of non-zero val ues of input object #0 (sm)
- Argunent #2:
- pointer to input object #0 (sm
- Argunent #3:
- colum indices of non-zeros of input object #0 (sm
- Argunent #4:
- row pointers of the sparse matrix #0 (sm

a Matlab user would call this program as:

>> netsolve(’smprob’, SM;

95

Chapter 17. The Problem Description File

where SM is a Matlab constructed sparse matrix object.

and a C user would invoke this problem as:

doubl e* val;
int* col _index;
int* row ptr;

int rows, num.nzeros;

/* initialize the arrays and variables */

status = netsl ("smprob()", rows, numnzeros, val, col _index, row ptr);

Mnemonics

As described in the section calldtbtSolve Objectshe NetSolve system defines data structures that we
call NetSolveobjects These are high-level objects that are comprised of integed arrays of

characters and floats. To be able to relate high-level anddwel descriptions of the input and output
objects of a given problem, we need to develop some kind dbsyiVe decided to term this syntax
mnemonicsA mnemonic is a character string (typically 2 or 3 charateng) that is used to access low
level details of the differentinput and output objects. Wedx the list of objects, starting at 0. Therefore,
the first object in input to a problem is the input object nuntband the third object in output to a
problem is the output object number 2, for instance. We use@ranOto specify whether an object is

in input or output. Here are the eight types of mnemonics foolgject indexect:

- Pointer to the data[:l | g x,

- Number of rows n{ I | O x (only for matrices, vectors, packed files and string lists),
« Number of columnsn[| | x (only for matrices),

- Leading dimensionsl:[I | O x (only for matrices).

- Special descriptord[I | O x (only for distributed memory objects).

- Nonzero values of the sparse matfixi1 | Q x

« Row pointers for the sparse matrix:1 | Q x

« Column indices for the sparse matrp{:1 | J x

96

Chapter 17. The Problem Description File

For exampleni 4 designates the number of rows of the input object number éreds01 designates the
pointer to the data of output object number 1. In the nexisectve describe the different sections that
are necessary to build a problem description and will seethevmnemonics are used.

Sections of a Problem Description

The structure of a problem description file is very similatttat of a server configuration file. The lines
starting with & #' are considered comments. Keywords are prefixed’bg@aand mark the beginning
of sub-sections. In what follows, we describe each secepaately as well as each keyword and
sub-sections within each section. Keep in mind to look atexisting problem description file as a
template when reading this section.

Problem ID and General Information

The following keywords are required and must occur in theeoid which they are presented.

« ' @ROBLEM <ni cknane>' specifies the name of a problem as it will be visible to the NktSusers
(clients).

« ' @NCLUDE <nanme>' specifies a C header file to include (See the example in thioseetlledA
Simple Example There can be several such lines as a problem can call $&wections.

. ' @ASH <pat h> specifies a default directory in which header files are to bkdd for, in a similar
way as the | option of most C compilers. There can be several such linagasblem can call
several functions.

« @I B <nane> specifies a library or an object file to link to, or & option for the linker (See the
example in the section calledlSimple Examp)elf multiple libraries are required, a separ@ed B
line must be specified for each library, and the libraries méllinked in the order in which they are
specified. Thed | B line(s) can contain variable name substitutions suc$(&ETSOLVE_ROOT) .

« ' @UNCTI ON <nane>" specifies the name of a function from the underlying numésictiware
library that is being called to solve the problem. There cadweral such lines as a problem can call
several functions.

« ' Q. ANGUAGE [C| FORTRAN] ’ specifies whether the underlying numerical library is writtn C or in
Fortran. This is used in conjunction with the function narsescified withh @G-UNCTI ON' to handle
multi-language interoperability.

« T@RAIOR [COL| ROW' specifies what major should be used to store the input matbietore calling
the underlying numerical software. For instance, if the atioal library is LAPACK [lapack], the
major must be CoL’ .

97

Chapter 17. The Problem Description File

. ' @ATH <pat h>' specifies a path-like name for the problems. This path is amlgming convention
and is used for presentation purposes.

« ' @ESCRI PTI ON marks the beginning of the textual description of the probl€his sub-section is
mandatory as it is used by the NetSolve management tool®taderinformation to the NetSolve
users (clients) about a specific problem.

Input Specification

« * @NPUT <nunber>' specifies the number of objects in input to the problem. Tihasik followed
by that correspondingnunber > of object descriptions (see below).

- ' @BJECT <object type> <data type> <name>' specifies an object type, data type, and name.
The name is only used for presentation purposes. This lifadl@sved by a mandatory textual
description of the object. The data types are abbreviatedflgcingNETSOLVE | by,

NETSOLVE_CHAR by CHAR, NETSOLVE_BYTE by B, NETSOLVE_FLOAT by S, NETSOLVE_DOUBLE hy

D, NETSOLVE_SCOVPLEX by C, andNETSOLVE_DCOVPLEX by Z, (see Table 17-1). Similarly, the object
types are abbreviated by replaciNgTSOLVE _SCALAR by SCALAR, NETSOLVE_VECTOR by VECTOCR,
NETSOLVE_NATRI X by MATRI X, NETSOLVE_SPARSENMATRI X by SPARSEMATRI X, NETSOLVE_FI LE

by FI LE, NETSOLVE_PACKEDFI LES by PACKEDFI LES, NETSOLVE_UPF by UPF, NETSOLVE_STRI NG
by STRI NG, andNETSOLVE_STRI NGLI ST by STRI NGLI ST, (see Table 17-2). The objects of object
type FILE, STRING, UPF, and PACKEDFILES do not have a dat&tyiere are a few examples:

@BJECT VECTOR | X
An integer vector naned 'X

@BJECT MATRIX D A
A doubl e precision real matrix nanmed 'A

@BIECT FI LE foo
A file nanmed ' foo’

Output Specification

« * @UTPUT <nunber > specifies the number of objects in output from the problenis Tiie is
followed by that correspondingnunber > of object descriptions (see below).

98

Chapter 17. The Problem Description File

- ' @BJECT <object type> <data type> <nane>' specifies an object type, a data type and a
name. This line is followed by a mandatory textual desaiptf the object. The abbreviations for
data types and object types are as defined previously in thiesealledinput Specification

Additional Information

The following list of tags are optional.

« ’ @MATLAB_MERGE <nunber 1>, <nunber 2>’ specifies that the output objects numbkeunber 1>
and<nunber 2> can be merged as a complex object upon receipt of the nurhexgedts from the
Matlab client interface (see Chapter 6).

« ' @OVPLEXI TY <nunber 1>, <nunber 2>’ specifies that given the size of the problem, sathe
asymptotic complexity, sa§, of the problem in number of floating point operations is
C = nunberl1l * n”(nunber2)

. ' @USTOM ZED <name>' is an internal customization used by the code developersedins that the
NetSolve server code will do something different (or custbefore invoking a routine. For example,
this option is used for the enablement of ScaLAPACK and tlaesspsolvers. The functionality of this
keyword will be expanded in the future. Novice users aresatV/to avoid using this keyword.

. ' @ARALLEL MPI’ specifies that the software enabled in the problem desanifite is parallel and
uses MPI. Thus, MPI must be installed on the server to whichare enabling this service.

Calling Sequence

The calling sequence to the problem must be defined so thatdt&olve client using the C or Fortran
interfaces can call the problem. The material describeligngection is ignored by NetSolve when the
client is Matlab, Mathematica or Java. To clarify, let usst@k example. Let us say that the problem
'toto’ takes a matrix in input and returns a matrix in output. Théfoam the Matlab interface looks like:

>> [b] = netsolve(’'toto’, a)

for instance. However, there can be several possible galiigquences from C or Fortran. Assuming the
following declarations in Fortran:

DOUBLE PRECI S| ON A(M N)
DOUBLE PRECI SI ON B(K, L)

99

Chapter 17. The Problem Description File

the following calling sequences are all possible:

CALL FNETSL('toto()’,A B,MN K, L)
CALL FNETSL('toto()’,A MN, B, K, L)
CALL FNETSL('toto()',MN, A K, L, B)

The Calling Sequence sub-section in the problem descnigpecifies the order of the arguments
(represented with mnemonics) in the C and Fortran interdatling sequence. Indeed, still with the same
example, the integed can be represented by the mnemaniio, and the pointeB can be represented by
the mnemonico.

It is very important to note that the number of rows or coluranthe leading dimension of input and
output arguments must be specified in @BALLI NGSEQUENCE sub-section. If a dimension is not passed
as an input argument, or equivalenced with an existing inpgiiment (via@RG), it must be
set/computed usin@COMP.

« ' @ALLI NGSEQUENCE marks the beginning of a calling sequence description. déssription
consists of a list of argument specifications (see below).

« ' @RG <commu- separated |ist of menoni cs> specifies an argument of the calling
sequence. For instance the line

@RG 10

specifies that the current argument in the calling sequentteipointer to the data of the first object in
input. The line

@RG MO,110

specifies that the current argument in the calling sequeniteinumber of rowandthe leading
dimension of the first object in input (which in this case isatrmx). The line
@\RG ?
specifies that the current argument in the calling sequdmuald be ignored by NetSolve (useful in
some cases). Note that no argument description containsomies of the fornf i n] O*.

« ’ @ONST <mmenoni c>=<nunber>" specifies that the number of rows or columns or the leading
dimension of an input object is constant and can not be foutigd calling sequence. For instance, the
line

@CONST m 4=12

means that the number of rows of the fifth object in input isaglsv12 and is not passed in by the
NetSolve user.

100

Chapter 17. The Problem Description File

. ' @OWP <mmenoni c>=<expressi on> specifies that the number of rows or columns or the leading
dimension of an input object has not been supplied as an angtimthe calling sequence, but can be
computed using arguments in the calling sequence.

Here are some examples:

@OV m 1=m 0

@OvP m O0=op(+, m 3, 1) /] perforns an addition

@OVP m 3=array(l2,0) /1 perfornms an indirection

@OwP m 1=op(-,array(l0,op(-,m0,1)),1)

@OVP m 2=op(+, op(+,array(11,0),1),op(*,array(10,0),2))

@OWP m2=if(array(10,0)="N,m1,if(array(10,0)="T ,nl1,0op(-,0,1)))
/1 conditionals

where theop notation is used to perform addition and subtraction, aréth ay notation is used to
access the value of a specific element of an array. For examdes equal to the value of the zero-th
element of the array2.

This feature of NetSolve is rarely used, and is only necgsaaoutines when the user’s array storage
differs from the array storage passed to the computati@ndiire. A good example of such an
occurrence is in the interfaces to the LAPACK routines fandand tridiagonal matrices.

Pseudo-Code

. ' @ODE marks the beginning of the pseudo-code section.

- ' @ND_CODE marks the end of the pseudo-code section.

The pseudo-code is C code that uses the mnemonics desaritierldection calleinemonicsThis

code contains call(s) to the numerical library functiorifg)t the problem is supposed to use as part of its
algorithm. The arguments in the calling sequences of thilessy routines will be primarily the different

mnemonics. In the pseudo-code, the mnemonics are pre- aperajed by a @ to facilitate the
parsing. Let us review again the meaning of some possiblermanies in the pseudo-code:

+ ' @0@: pointer to the elements of the first object in input.

« @ 0@ : pointerto an integer that is number of rows of the first object in input

. T @OL@ : pointerto an integer that is number of columns of the second objemtiiput.

Usually, the pseudo-code is organized in three parts., Birspreparationof the input (if necessary).

Second, the call to the numerical library function(s). @hihe update of the output (pointer and sizes).
At this point, it is best to give an example. Let us assumewlestave access to a hypothetical numerical

101

Chapter 17. The Problem Description File

C library that possesses a functioat vec() that performs a matrix-vector multiply for square matrices
The prototype of the function is

void matvec(float *a, float *h, int n, int |);

wherea is a pointer to the matrixy is a pointer to the vecton is the dimension of the matrix, is the
leading dimension of the matrix and the result is storel (overwriting the input). We may define the
problem such that the matrix is the first object in the inph, vector the second object in the input, and
the result the only object in output. Possible preparatiansgd be for instance the creation of workspace,
test of input values to detect mistakes, test of matchingdsions. In this case, we may want to check
that the dimension of vectdr agrees with the number of columns of matixThis can be done as
follows:

@cODE
if (*ol@!'= *@l 0@
return NS_PROT_DI M M SVATCH;

The macraNS_PROT_DI M_M SMATCH s defined by NetSolve. Other macros available are
NS_PROT_BAD_VALUES (for invalid input parametersiNS_PROT | NTERNAL _FAI LURE (for a
malfunction of the numerical software) 86_PROT_NO SOLUTI ON (sometimes useful if no numerical
solution has been found and the client is interactive). ¢éotine use of *’' for accessing the integers at
addresse@n 1@and@l 0@

The second part of the pseudo-code consists of calling th&itnmat vec and is:
matvec(@ 0@ @ 1@*@r 0@ * @ 0@ ;

A few things can be said on this call. First, we use’ttié to access integers via the pointers. Note that
if mat vec() were a Fortran subroutine, we would pass the addressesdhasmgsee Example below).
Second, the leading dimension is taken to be equal to therdiime. This code is executed at the server
level where the matrix (or sub-matrix) has been receiveahftioe client over the network. As such, it has
been stored contiguously in memory and has a leading dimeesjual to its number of rows. As a
general rule, the mnemoni@l | | J * @never appear in the pseudo-code. The last thing to do at this
point is to update the output:

@@= @1@
@@= *@rl 1@
@ND_CODE

The first line expresses the fact that the input has been oitemmby the output. The second line sets the
number of rows of the output. The following section gives mptete example, with all of the sections of
the problem description.

102

Chapter 17. The Problem Description File

A Simple Example

Let us imagine that we have access to a Fortran numericahjilthat contains a function, say NSOL,
to solve a linear system according to the following protetyp

SUBROUTI NE LINSOL(A, B, N, NRHS, LDA, LDB)

DOUBLE PRECI SION A(LDA, *) [/ Left-hand side (NxN)
DOUBLE PRECI SION B(LDB, *) // Right-hand side (NxNRHS),
/1l overwritten with the solution

I NTEGER N

I NTEGER NRHS

| NTEGER LDA /1 Leadi ng Di nension of A
| NTEGER LDB /'l Leading Di mension of B

Then, an appropriate description for a problem that solM&sar system usingl NSOL and that expects
from the client the same calling sequence as the onel fligOL is:

@ROBLEM | i nsol

@ NCLUDE <mat h. h>

@ NCLUDE "/ horne/ ne/ my_header . h"

@1 B -L/home/lib/

@Il B -1stuff

@1 B /hone/ me/ | i b_$(NETSOLVE_ARCH) . a

@1 B / hone/stuff/add. o

@ UNCTI ON | i nsol

@.ANGUAGE FORTRAN

@KBIOR COL

@PATH Li near Al gebr a/ Li near Syst ens/

@DESCRI PTI ON

Sol ves the square linear system A*X = B. \Were:
A is a doubl e-precision matrix of dinension NxN
B is a double-precision matri x of di mensi on NxNRHS
X is the solution

@ NPUT 2

@BJECT MATRI X D A

Matrix A (NxN)

@BJECT MATRI X D B

Matri x B ((NxNRHS)

@UTPUT 1

@BJECT MATRI X D X

Sol uti on X (NXxNRHS)

@COVPLEXI TY 3,3

@CALLI NGSEQUENCE

@\RG | 0

103

Chapter 17. The Problem Description File

@RG 11,0
@\RG Nl O, MO, M1
@A\RG nl 1
@RGI10

@RG 11,1l
@ODE

linsol(@0@O@1@@I 0@ @ 1@@10@@I!1Q@;

@@=@1@ /* Pointing to the overwitten input */
@@= *@ll@ [/* Setting the number of rows */
@@= *@l 1@ [/* Setting the number of col ums */
@END_CODE

PDF Generator

The process of creating new problem descriptions can beuiffespecially for a first time user. It is
true that after writing a few files, it becomes rather routind several NetSolve users have already
generated a good number of working PDFs for a variety of pgepdincluding linear algebra,
optimization, image processing, etc.). However, we hagigtked a graphical Java GUI application that
helps users in creating PDFs. To compile this GUI, type

UNI X> make pdgui

from the$SNETSOLVE_ROOT directory. This creates a set of Java classfiles needed theu@Ul
application and places them in tARETSOLVE_ROOT/ bi n/ $SNETSOLVE_ARCHdirectory. After this
compilation, you can also find a shell script nanN&l_pdguithat can be used from any directory to
properly run the GUI application which needs to locate theveimentioned classfiles. This GUI can be
used to create and load PDFs into NetSolve. Apart from beasy & use, the GUI also has a help menu
(not implemented yet) and we defer other details about ngtie GUI to those help files. The user has
the option of storing PDFs in nspdf format or both nspdf forared xmlpdf format. The user can only
load a PDF if it has been stored in xmlpdf format. As the usertha option of storing in xmlpdf format,
there is no need to keep the GUI open until he gets the pdfcdoie must make sure that he has stored
the created pdf in xmlpdf format before closing the GUI.

104

Chapter 18. Security in NetSolve

Introduction

This version of NetSolve has (rudimentary) Kerberos suppitSolve components include clients,
agents, and servers. Currently the only requests thatreeguthentication are requests that the client
makes to the server, and of those, only the “run problem”estjDther requests could be authenticated
(an obvious one being “kill server”), but drastic changemglthese lines would probably require drastic
restructuring of NetSolve. For instance, a client can ailyénform an agent that a particular server is
down, and the agent will not advertise that server for useherproblems. It seems of dubious value to
require authentication for such requests until there is ehraism for specifying the trust relationship
between clients and agents.

An attempt has been made to allow Kerberized NetSolve glieninteroperate with both Kerberized and
non-Kerberized NetSolve servers. In either case the ddiends a request to the server.An ordinary
server will return a status code indicating that he will gtdbe requested operation. By contrast, a
Kerberized server will immediately return an “authenticatrequired” error in response to the request.
The client is then required to send Kerberos credentialseéaerver before the request will be processed.
This allows the server to require authentication of thentli€urrently there is no mechanism to allow

the client to insist on authentication of the server - a Kadeel client will happily talk with either
Kerberized or non-Kerberized servers.

The server implements access control via a simple list ob&es principal names. This list is keptin a
text file which is consulted by the server. A request to a NletSserver must be made on behalf of one
of those principal names. If the principal name associatéiutive Kerberos credentials in the request
appears in the list, and the credentials are otherwise,thkdrequest will be honored. Otherwise, the
request will be denied.

Since the NetSolve server was not designed to run as a sptagdam, it is not currently feasible to
have the NetSolve server run processes using the userfie pitrticular UNIX user who submitted the
request. NetSolve thus uses its own service principal ndrireetsolve” rather than using the “host”
principal. What this means (among other things) is that yeedto generate service principals and
keytabs for each of your NetSolve servers, even if you airéade host principals in place.

The NetSolve server, by default, runs in non-Kerberizedendd start up the server in Kerberized mode
you need to add thek option to the command-line, and also set environment veasab
NETSOLVE_KEYTAB (pointing to the keytab) and NETSOLVE_URE pointing to the list of
authorized users).

This version of Kerberized NetSolve performs no encryptibthe data exchanged among NetSolve
clients, servers, or agents. Nor is there any integritygmtidn for the data stream.

105

Chapter 18. Security in NetSolve

Compiling a Kerberized Server

1. Compile Kerberos. See the Kerberos V5 Installation Gtad@nstructions for how to do this.

2. Compile the NetSolve server with Kerberos suppécoffigure --with-kerberos).

Installing a Kerberized Server

1. Install Kerberos on the server machine. See Kerberos $tallation Guide for instructions for how
to do this. You do not have to install all of the Kerberos dégjuist to run a NetSolve server, but you
do neeckadmin and components that deal with Kerberos tickets kikét andkdestroy.

2. Define a Kerberos service principal for the NetSolve sefiedefine the principal for machine
foo.bar.com

a. Getthe name and the password of a Kerberos principaktiathorized to rukadmin and
create principals.

b. Log on to the machine where you want to install the KerlegfidetSolve server. Make sure
you have a secure connection to the client machine (pertmpseytyping on the machine’s
keyboard, or perhaps you're using ssh to log in to that maghso that your password will not
be exposed on the net.

c. Do akinit to acquire a ticket that identifies you as someone who canecpemcipals.

d. Create a service principal for the NetSolve server on fost. If your host is named
foo.bar.comthe service principal should be nameett sol ve/ f 0oo. bar. com

UNI X> kadni n

(if you don’t have a Kerberos ticket yetadmin will try to get one for you based on your UNIX
username. If there is a Kerberos principal for that username that principal has the ability to
create new principals, just type in your password when askdd so. Otherwise rukinit to
get a ticket for some other principal - one that has the ghiicreate new principals - and then
runkadmin again.)

UNI X> kadmi n: addprinci pal -randkey netsol ve/foo. bar.com
UNI X> kadmi n: ktadd -k /etc/netsol ve. keytab netsol ve/ f oo. bar. com

This will extract the key into the filéet ¢/ net sol ve. keyt ab. You can put this keytab any place
you want it but it must be on a local filesystem. If you put the §h a NFS-mounted filesystem

106

Chapter 18. Security in NetSolve

then (a) you will compromise the security of your server bgasing the key to eavesdroppers,
and (b) there’s a good chance that NFS file locking bugs wilkeayour NetSolve server to get
wedged.

e. While you're at it, you might want to define other servicmgipals for the same host. For
instance, a service principal of the fohmost/foo.bar.cons needed if you want to allow
Kerberized logins to that host. This is straightforward:

UNI X> kadm n: addprinci pal -randkey host/foo. bar.com
UNI X> kadm n: ktadd host/foo. bar.com

f. Make sure that et c/ net sol ve. keyt ab is readable only by the UNIX user-id that will run
the NetSolve server. (Permissions shoul®b80, -rw------ . The owner should not be root.

Running a Kerberized Server

1. You must have a NetSolve agent running somewhere first.

2. You must be logged into UNIX as the owner of thet ¢/ net sol ve. keyt ab file, since the server
needs to be able to read this file.

3. Set up the environment variables:

UNI X> set env NETSOLVE_AGENT net sol ve. agent . host
UNI X> setenv NETSOLVE_KEYTAB /et c/ netsol ve. keyt ab
UNI X> setenv NETSOLVE_USERS /et c/ netsol ve. users

The NETSOLVE_USERS file is a text file that contains a list oftkaros principal names, one per line,
who are authorized to use the server. It is reopened eaclatimser tries to authenticate to the
server, so you can add users while the server is running.

4. Start the server
UNI X> / path/to/ netsol vel/ server -k &

If you do not use the k flag, the server will not require authentication.

107

V. Miscellaneous Features

108

Chapter 19. Using the Network Weather Service

Introduction

In NetSolve, as in other metacomputing systems, the scimedofl tasks to available resources is
difficult. NetSolve uses a limited load-balancing stratemimprove the utilization of computational
resources. This load-balancing strategy takes into ad¢t¢barcurrent workload of the computational
resources available in the NetSolve system. In scheduliaglient’s requests over a network, the
workload estimate should be “forecast” for when the comipartiawill execute, and not a workload
estimate obtained at a time prior to the request. There aoeotiher characteristics of distributed
metacomputing resources such as the CPU speed of the restiiw@mount of physical memory of the
resource, as well as the latency/bandwidth from the clettié computational resource, that can be
effectively utilized in scheduling decisions for the cortgtional resources.

The Network Weather Service (NWS) is a system which providesy of forecasting dynamically
changing performance characteristics, such as the watkioam distributed metacomputing resources.
Integrating NWS into NetSolve improves the load-balanamgtegy by taking into account the future
load instead of the current load of the computational resesur

To Use NWS:

To use NWS within NetSolve, one must enable the NWS featutgiyng
UNI X> ./configure --w th-nws=NW5 DI R

during the configure phase of NetSolve, whisw&_DI R denotes the location of the NWS directory.
NWS is downloadable from theWS web pagéhttp://nws.cs.utk.edu/)

NWS Components utilized in NetSolve

Naneser ver

This process implements a DNS-like directory capabilitydito bind process and data names with
low-level contact information. It knows which hosts areming in the NWS system, and provides a
database (name, location, function) for the NWS proce3sesnsure that all hosts are known and

109

Chapter 19. Using the Network Weather Service

well-referenced, there must be only one nameserver per N\&t8ma. The address of the
nameserver process is the only well-known address usecetsytiem, allowing both data and
service to be distributed. All NWS processes must regiktr hame, their location and their
function with the nameserver as soon as they are startedrdbmnef the nameserver is to know at
any time where is the memory corresponding to a sensor.

Sensor

The sensor is a monitoring process running on each resdupagiodically measures the workload
of the resource and sends this information to the memorygsodescribed below. Moreover, it
empirically measures the network “weather” between a ctitla of specified hosts. A sensor
executes infinitely to provide recent measurements at amg. fThe earlier the process is started, the
more numerous are the measurements and thus the more acmerétte forecasts.

Menory

The memory process stores measurements sent by sensoedrads measurements for the
forecaster. As these measurements represent a key in N@{Sath immediately written to the
memory and stored with a time stamp and a value name corrdsupto the host/experiment to
which they correspond.

For ecast er

The forecaster generates predictions by requesting thearel measurement history from the
memory process. As the measurements are continually wbbdgta sensor, the most recent data
will be available to the forecaster when it makes its request

A nameserver must be started first in an NWS system, as all NS processes depend upon it. After
starting the nameserver, memories can then register tihesssand sensor or forecaster processes can
be initialized on any host.

The default port numbers reserved for the NWS processesggemer, memory, forecaster, and sensor)
are specified in the filBNETSOLVE_ROOT/ i ncl ude/ nwsut i | s. h.

The integration of NWS into NetSolve requires the startupl\dfS processes, their management and the
accurate use of the forecaster. The NWS processes (nareesaemory, forecaster, and sensor) can be
started in various places within NetSolve. We now presentiesign for the integration and motivate our
choices.

NetSolve agent and the NWS nameserver, memory and
forecast

110

Chapter 19. Using the Network Weather Service

As previously stated, only one NWS nameserver can exist N\&i$ system, and this process must be
placed in NetSolve where it will have full knowledge of thexquutational resources and be visible to all
components of the NetSolve system. The Netsolve agent ibthi” of the NetSolve system, knowing
how many resources exist and where they are located, anshgrakidecisions on the execution of
requests in the system. Moreover, the NetSolve agent is kibgvall components of the NetSolve
system. Thus, the logical choice for the placement of the Nl\&i8eserver is on the NetSolve agent.

The first started agent in NetSolve is called the master.rguts initialization, a nameserver and a
memory are started. In fact the memory is started for the ekinplicity. Indeed, the master agent is
known by the whole system. It enables each sensor to registeeasily store its measurements.
Furthermore this scheme avoids unnecessary communicatsis. A forecaster process is then started
by each agent. It generates information as soon as needée bgéent. Thus, each agent possesses its
own forecaster and can deal with client requests. We shallexamine what happens on computational
resources.

NetSolve server and the NWS sensor

As soon as a NetSolve server (computational resource) stetddthe NetSolve system, it is necessary to
start an NWS sensor. This sensor is started on the serveitaftegistration with the agent to avoid any
incoherency with the NetSolve system. The NWS sensor ifitatalependent from the NetSolve
processes running on the server.

At present, the NWS sensor is only detecting the CPU spedteafdamputational resource. Future
implementations will expand this functionality to includenitoring for the amount of physical memory
available per computational resource, as well as the lgtbandwidth of the communication between
each server and the client. These improvements will requiredditional sensor to be started on the
client.

111

Chapter 20. Distributed Storage Infrastructure
(DSI) in NetSolve

Introduction

The Distributed Storage Infrastructure (DSI) in NetSolvei$ a new feature added to NetSolve. Itis a
first attempt towards achieving coscheduling of the conmtprtaand data movement over the NetSolve
Grid. The DSI APIs help the user in controlling the placentrdata that will be accessed by a
NetSolve service. This is useful in situations where a gs@mwice accesses a single block of data a
number of times. Instead of multiple transmissions of thmesdata from the client to the server, the DSI
feature helps to transfer the data from the client to a stosagver just once, and relatively cheap
multiple transmissions from the storage server to the cdatjpnal server. Thus the present DSI feature
helps NetSolve to operate in a cache-like setting. Prasemily Internet Backplane Protocol (IBP) is
used for providing the storage service. In the future, weshtopntegrate other commonly available
storage service systems.

To Use DSI:

To use DSI, one should enable the DSI feature both at the INet8lient and the server. Type

UNI X> ./configure --with-ibp=IBP_D R

during the initial configure of NetSolve. Her®&P_DI Rdenotes the location of the IBP directory. This is
specifically the directory of the IBP full distribution doveadable from the IBP web site
(http://icl.cs.utk.edu/ibp/)

DSI APIs:

The DSI APIs are modeled after the UNIX file manipulation coamais (open, close etc.) with a few
extra parameters that are specific to the concepts of DS$.sHuition provides the syntax and semantics
of the different DSI APIs available to the NetSolve user.

DSI _FI LE* ns_dsi _open(char* host_nane, int flag, int permssions, int size,
dsi _type storage_system;

112

Chapter 20. Distributed Storage Infrastructure (DSI) intSelve

host _nane

Name of the host where the IBP server resides.

flag
This flag has the same meaning as the flagpien() calls in C. Specifically O_CREAT is used for
creating a dsi file and so on.

perm ssi ons

While creating the file with O_CREAT flag, the user can spettifypermissions for himself and
others. The permissions are similar to the ones used in UN&Xce if the user wants to set read,
write, execute permissions for himself and read and writenssions for others, he would call
ns_dsi _open with 74 as the value for the permissions.

size

Represents the maximum length of the DSI file. Write or reagtaions over this size limit will
return an error.

st orage_system

At present, IBP.

ns_dsi _open() is used for allocating a chunk of storage in the IBP storages@cesss_dsi _open
returns a pinter to the DSl file. On failure, returns NULL. IBaling are the various error values set in
case of failure.

Net Sol veUnknownDsi Fi | e
If the file does not exist and if the file is opened without O_@RE

Net Sol vel BPAI | ocat eErr or

Error while allocating IBP storage.

Net Sol veDsi Di sabl ed

If DSl is not enabled in the NetSolve configuration.

int ns_dsi_close(DSI_FILE* dsi_file);

dsi _file

Pointer to the DSI file.

113

Chapter 20. Distributed Storage Infrastructure (DSI) intSelve

ns_dsi _cl ose() is used for closing a DSl file.

On success returns 1. On failure, returns -1. Followinglagevarious error values set in case of failure.

Net Sol vel BPManageEr r or

Error in IBP internals while closing.

Net Sol veDsi Di sabl ed

If DSl is not enabled in the NetSolve configuration.

DSI _OBJECT* ns_dsi_write_vector (DSl _FILE* dsi_file, void* data, int count,
int data_type);

dsi _file

The name of the DSl file where the vector will be written.

dat a

Vector to write to the DSI storage.

count

Number of elements in the vector.

data_type
One of netsolve data types.
ns_dsi _write_vector () isused for writing a vector of a particular datatype to a D8l fi

On successys_dsi _write_vector () returns a pointer to the DSI object created for the vector. On
failure, returns NULL. Following are the various error veduset in case of failure.

Net Sol vel BPSt or eEr r or
Error while storing the vector in IBP.

Net Sol veDsi EACCESS

Not enough permissions for writing to the DSI file.

Net Sol veDsi Di sabl ed

If DSl is not enabled in the NetSolve configuration.

114

Chapter 20. Distributed Storage Infrastructure (DSI) intSelve

DSI _OBJECT* ns_dsi_write_matrix(DSI_FILE* dsi _file, void* data, int rows, int
cols, int data_type);

Same functionality and return valuesras dsi _write_vector () excepis_dsi_wite_matrix()
is used to write matrix of ows rows andcol s columns.

int ns_dsi_read_vector (DSl _OBJECT* dsi_obj, void* data, int count, int
data_type);

dsi _obj

Pointer to the DSI object that contains the data to read.

dat a

Actual vector to read.

count

Number of elements of the vector to read.

data_type
One of NetSolve data types.

On success, returns the number of elements read. On faiéivens -1. Following are the various error
values set in case of failure.

Net Sol vel BPLoadEr r or
Error while loading the vector from IBP.

Net Sol veDsi EACCESS

Not enough permissions for reading from the DSl file.

Net Sol veDsi Di sabl ed

If DSl is not enabled in the NetSolve configuration.

int ns_dsi_read_natrix(DSlI_OBJECT* dsi_obj, void* data, int rows, int cols,
int data_type);

115

Chapter 20. Distributed Storage Infrastructure (DSI) intSelve

Same functionality and return valuesras dsi _read_vector () excepins_dsi _read_matri x() is
used to read matrix afows rows andcol s columns.

Example

This section shows two example programs. The first progrdwesajuick sort without using the DSI
feature. The second program solves the same quick sort,ittutising the dsi feature.

Figure 20-1. Example 1 (without using DSI)

int main(){
int i;
int |ength;
int* inputVec;
int* output Vec;
int status;
printf("Enter the number of vector elenments: \n");
scanf (" %", &l ength);

inputVec = (int*)nmalloc(sizeof (int)*length);
out putVec = (int*)mall oc(sizeof(int)*length);

for(i=0; i<length; i++){

printf("El ement %l: ", i+1);
scanf ("%", & nputVec[i]);
}
status = netsl ("iqgsort()", length, inputVec, outputVec);

printf("\n\nSorted El enents: \n");
for(i=0; i<length; i++)

printf("% ", outputVec[i]);
printf("\n");

return O;

Figure 20-2. Example 2 (using DSI)

int main(){

116

Chapter 20. Distributed Storage Infrastructure (DSI) intSelve

int i;

int |ength;

int* inputVec;

int* output Vec;

int status;

DSI _FILE* dsi_file;
DSI _OBJECT* dvec;

printf("Enter the nunmber of vector elenments: \n");
scanf ("%", &l ength);

inputVec = (int*)nmalloc(sizeof (int)*length);
out putVec = (int*)mall oc(sizeof(int)*length);

for(i=0; i<length; i++){
printf("El ement %: ", i+1);
scanf ("%", & nputVec[i]);

}

dsi _file = ns_dsi_open("torcl.cs.utk.edu", O CREAT|O RDWR , 744 , 3000, |BP);
if(dsi _file == NULL){
printf("error in open\n");

}
dvec = ns_dsi_write_vector(dsi_file, inputVec, 10, NETSOLVE D);
i f(dvec == NULL){

printf("error in wite\n");

}

status = netsl ("iqgsort()", length, dvec, outputVec);
printf("\n\nSorted El enents: \n");
for(i=0; i<length; i++)
printf("% ", outputVec[i]);
printf("\n");

ns_dsi _cl ose(dsi _file);

return O;

117

V. References

118

Chapter 21. Matlab Reference Manual

In this appendix, we describe all of the NetSolve calls thaat loe invoked from within Matlab. In the
case of an error, all of these calls will print very simple &xglicit error messages. The user should refer
to Chapter 24 for a list of all possible NetSolve error messag

>> net sol ve

Prints to the screen the list of all problems that are avhilabthe NetSolve system.

>> net sol ve(’ <probl em nanme>")

Prints all information available from Matlab about a spegifioblem.

>> netsolve(’?")

Prints the list of all the agents and servers in the NetSofstem, that is, the NetSolve system
containing the host whose name is in the environment vailBITSOLVE_AGENT.

>> [...] = netsolve(’<problemnane>", ...)

Sends dlockingrequest to NetSolve. The left-hand side contains the oatgutments. The
right-hand side contains the problem name and the inputaegts. The arguments are listed
according to the problem description. Upon completion &f tfall, the output arguments contain
the result of the computation.

>> [r] = netsolve_nb(’send ,’<problemnanme>, ...)

Sends aon-blockingequest to NetSolve. The right-hand side contains the kays®end, the
problem name, and the list of input arguments. These argtsaea listed according to the problem
description. The left-hand side will contain a request tangpon completion of the call.

> [...] = netsolve_nb('wait’,r)

Waitsfor a request’'s completion. The right-hand side contaiekeywordwai t and the request
handler. The left-hand side contains the output argum&htse arguments are listed according to
the problem description. Upon completion of this call, thipoit arguments contain the result of the
computation.

>> [status] = netsolve_nb(’ probe’,r)

Probesfor a request completion. The right-hand side contains #ysvkrdpr obe and the request
handler. The left-hand side contains the output argum&htse arguments are listed according to
the problem description. The right-hand side contains #yavordpr obe and the request handler.
Upon completion of this call, the output arguments conta@result of the computation.

119

Chapter 21. Matlab Reference Manual

>> netsol ve_nb(’ status’)

Prints out the list of all the pending requests. This listtagrs estimated time of completion, the
computational servers handling the requests and the dwstans. The status can BOMPLETED
or RUNNI NG,

>> netsol ve_err

Returns the error code of the most recently called NetSalmetfon.

>> net sol ve_errnsg(e)

Returns a string containing the error message that comelsggo the error code passed as the
argument.

120

Chapter 22. C Reference Manual

We describe here all of the possible calls to NetSolve fromAlCof these calls return a NetSolve code
status. The list of the possible code status is given in Gnaat.

status = netsl ("<problemnane()>()", ...)

Sends dlockingrequest to NetSolvenet sl () takes as argument the name of the problem and the
list of arguments in the calling sequence. See the sectitedd&/hat is the Calling Sequenca?
Chapter 5 for a discussion about this calling sequencetutns the NetSolve status code (integer

st at us). If the call is successful, the result of the computatiosted in the output arguments.
The output arguments are specified in the calling sequence.

status = netslnb("<problemnanme()>()", ...)

Sends aonblockingequest to NetSolvanet sl nb() takes as argument the name of the problem,
and the list of arguments in the calling sequence. See thiese@alledWhat is the Calling
Sequenceih Chapter 5 for a discussion about this calling sequencetutns the NetSolve status
code (integest at us). If the call is successfuft at us contains the request handler.

status = netslw (<request handl er>)

Waitsfor a request completiomet sl wt () takes as argument a request handler (an integer). If the
call is successful, the result of the computation is stongtié output arguments. The output
arguments are specified in the calling sequence during thgzet sl nb() .

status = netsl pr(<request handl er>)

Probesfor a request completiomet sl pr () takes as argument a request handler (an integer). If
the call is successful, the result of the computation isestam the output arguments. The output
arguments are specified in the calling sequence during thegzet sl nb() .

netslerr(<error code>)
Displays an explicit error message given a NetSolve errdeco
net sl maj or (" <maj or >")

Sets the way the user has stored her matrices (row- or colise): The argument can Beol "
or"row'. Itis case-insensitive and in fact only the first charactersed by NetSolve.

121

Chapter 23. Fortran Reference Manual

We describe here all the possible calls to NetSolve fromr&ortAll these calls return a NetSolve code
status. The list of the possible code status is given in Gnaat.

CALL FNETSL(’ <problemnane()>}()',INFO ...)

Sends dlockingrequest to NetSolvé=NETSL () takes as argument the name of the problem, an
integer, and the list of arguments in the calling sequenee t8e section called/hat is the Calling
Sequenceih Chapter 5 for a discussion about this calling sequenceiVithe call returns, the
integerl NFOcontains the NetSolve status code. If the call is succegbfiresult of the
computation is stored in the output arguments. The outguimaents are specified in the calling
sequence.

CALL FNETSLNB(’ <problemname()>}()’,INFOQ, ...)

Sends aonblockingequest to NetSolvé=NETSLNB() takes as argument the name of the
problem, an integer, and the list of arguments in the cablieguence. See the section caNglat is
the Calling Sequencef Chapter 5 for a discussion about this calling sequencetutns the
NetSolve status code (integetr at us). If the call is successfuit at us contains the request
handler.

CALL FNETSLWI(<r equest handl er >, | NFO)

Waitsfor a request completioENETSLWI'() takes as argument a request handler and an integer.
When the call returng,NFOcontains the NetSolve status code. If the call is succedbitesult of
the computation is stored in the output arguments. The ¢atfguments are specified in the calling
sequence during the call ENETSLNB() .

CALL FNETSLPR(<request handl er >, | NFO

Probesfor a request completiofNETSLPR() takes as argument a request handler and an integer.
When the call returng,NFOcontains the NetSolve status code. If the call is succedbitesult of

the computation is stored in the output arguments. The ¢atguments are specified in the calling
sequence during the call ENETSLNB() .

CALL FNETSLERR(<error code>)

Displays an explicit error message given a NetSolve errdeco

CALL FNETSLMAJOR(’ <maj or >')

Sets the way the user has stored her matrices (row- or coise): The argument can beol ’
or’ row . Itis case-insensitive and in fact only the first charactersed by NetSolve.

122

Chapter 24. Error Handling in NetSolve

If an error occurs during the invocation of NetSolve, a vigrad diagnostic runtime error messages, as

well as error codes that can be returned when calling a Ne¢Sohction from the C or Fortran
interfaces, are provided. Table 24-1 lists all of the pdesoror codes that can be returned when
invoking a NetSolve function from the C or Fortran interfac€hese error codes are listed in the

$NETSOLVE_ROOT/ i ncl ude/ net sol veerror. hinclude file. Each of these return codes has an

equivalent runtime error message, also listed in Table.Zhé&se runtime error messages are defined in
$NETSOLVE_ROOT/ sr c/ Cor eFunct i ons/ net sol veerror. c. If one of these error messages occurs,
the user should first check the agent and server log $iNBSTSOLVE_ROOT/ nsagent . | og or

$NETSOLVE_ROOT/ nsser ver . | og, respectively. These files may contain more informatioriaofy

the reason for the error message. Otherwise, the user @rteehapter 12 for an explanation of

possible causes for specific error messages.

Table 24-1. Error Codes

ERROR CODE RUNTIME ERROR MESSAGE
VALUE
NetSolveOK 0[NS: no error
NetSolveNotReady -1| NS: not ready
NetSolveSetNetSolveAgent -2| NS:NETSOLVE_AGENT not set
NetSolveSetNetSolveRoot -3|NS:NETSOLVE_ROOT not set
NetSolveSetNetSolveArch -4 | NS:NETSOLVE_ARCH not set
NetSolvelnternalError -5|NS: internal error
NetSolveUnknownHost -6| NS: Unknown host
NetSolveNetworkError -7| NS: network error
NetSolveUnknownProblem -8| NS: unknown problem
NetSolveProtocolError -9| NS: protocol error
NetSolveNoServer -10| NS: no available server
NetSolveBadProblemSpecification -11|NS: bad problem input/output
NetSolveNotAllowed -12| NS: not allowed
NetSolveBadValues -13|NS: bad input values
NetSolveDimensionMismatch -14| NS: dimension mismatch
NetSolveNoSolution -15| NS: no solution

123

Chapter 24. Error Handling in NetSolve

ERROR CODE RUNTIME ERROR MESSAGE
VALUE
NetSolveUnknownError -16| NS: unknown error
NetSolvelnvalidRequestID -17|NS: invalid request ID
NetSolveBadProblemName -18|NS: invalid problem name
NetSolvelnvalidMajor 19| NS: invalid major specification
NetSolveTooManyPendingRequests -20| NS: too many pending requests
NetSolveFileError -21| NS: file I/O error
NetSolveUnknownDataFormat -22| NS: unknown machine type
NetSolvelnvalidUPFFilename -23| NS: invalid upf filename
NetSolveMismatch -24| NS: inconsistent object transfers
NetSolveSystemError -25|NS: system error
NetSolveConnectionRefused -26| NS: connection refused
NetSolveCannotBind -27|NS: impossible to bind to port
NetSolveUPFError -28| NS: impossible to compile UPF
NetSolveUPFUnsafe -29|NS: UPF security violation
NetSolveServerError -30| NS: server error
NetSolveBadlterationRange -31|NS: invalid interation range
NetSolveFarmingError -32| NS: One or more request failed
NetSolveCannotStartProxy -33| NS: Cannot start proxy
NetSolveUnknownServer -34| NS: Unknown server
NetSolveProxyError -35| NS: Error while talking to proxy
NetSolveCondorError -36| NS: Condor error
NetSolveCannotContactAgent -37|NS: Cannot contact agent
NetSolveTimedOut -38| NS: operation timed out
NetSolveAuthenticationError -39| NS: Authentication to server failed
NetSolveUnknownHandle -40
NetSolveUnknownDsiFile -41| NS: DSl file not found
NetSolvelBPAllocateError -42|NS: error in IBP_Allocate
NetSolvelBPManageError -43|NS: error in IBP_Manage
NetSolvelBPLoadError -44|NS: error in IBP_Load

124

Chapter 24. Error Handling in NetSolve

ERROR CODE RUNTIME ERROR MESSAGE
VALUE

NetSolvelBPStoreError -45|NS: error in IBP_Store

NetSolveDsSiEACCESS -46| NS: permission denied to DSI file

NetSolveDsiDisabled -47 | NS: NetSolve not configured with DSI

125

VI. Appendices

126

Appendix A. Complete C Example

/***/

/* Exanple of the C call to NetSolve */
/* This program sends : */
/* */
/* - One bl ocking request for the problem’dgesv’ */
/* - One non-bl ocki ng request for the problem’ dgesv’ */
/* */
/* and */
/* */
/* - One bl ocking request for the problem’linsol’ */
/* - One non-bl ocki ng request for the problem’linsol’ */
/* */
/* The problem’linsol’ is a sinplified version of ’dgesv’ */
/* */
/* The matrices are stored colum-wise in a Fortran fashion */
/* */
/* WARNI NG : The matrix nay be singular, in which case Net Sol ve */
/* will print out an error message. */
/* */

/*'k***'k*'k***'k*'k*'k*'k***'k*'k*'k*'k***'k*'k***'k*'k'k*'k************************/

4i
4
4
4
i
4
4

mai n(i nt

{

ncl ude <stdio. h>

ncl ude

ncl ude <stdio. h>
ncl ude <stdlib. h>
ncl ude <string. h>
ncl ude <tine. h>
ncl ude <uni std. h>

int

m

doubl e *al, *bl
doubl e *a2, *b2
doubl e *a3, *b3;
doubl e *a4, *b4;

int
int
int
int

*pi vot ;
ierr;

i
init=1325;

"net sol ve. h"

/*
/*
/*
/*
/*
/*
/*

/*
/*

argc, char **argv)

Size of the nmatrix and right-hand side
Matrix and right-hand side for the 1st cal
Matri x and right-hand side for the 2nd cal
Matrix and right-hand side for the 3rd cal
Matri x and right-hand side for the 4th cal
Vector of pivots returned by ’dgesv’
"dgesv’ error code

Loop i ndex
Seed of the random nunber generator

*/
*/
*/
*/
*/
*/
*/

*/
*/

127

Appendix A. Complete C Example

int info; /* Net Sol ve error code
int request; /* Net Sol ve request handl er

if (argc !'= 2)

{
fprintf(stderr,"Usage : % <size>\n",argv[0]);
exit(0);
}
if ((m= atoi(argv[1l])) <= 0)
{
fprintf(stderr,"” %’ : Should be a positive integer\n",argv[1]);
exit(0);
}
/*

* Generating the random nxm matrices, as well as the
* randomri ght hand sides
*/

fprintf(stderr,"Generating the problem...\n");

al = (double *)mall oc(nFnrsizeof (double));
a2 = (double *)mal |l oc(ntnrsizeof (double));
a3 = (double *)mal |l oc(nfFnrsizeof (double));
a4 = (double *)mal |l oc(nfFn¥sizeof (double));

for (i=0;i<nmmi++) {
init = 2315*init % 65536
al[i] (doubl e) ((double)init - 32768.0) / 16384.0
a2[i] al[i]; [I*
a3[i]
a4[i] = alf[i]; [/*
}

b1l
b2

(doubl e *)mal | oc(nrsizeof (double));
(doubl e *)mal | oc(nrsizeof (double));
b3 (doubl e *)mal | oc(n¥sizeof (double));
b4 (doubl e *)mal | oc(nrsizeof (double));
for (i=0;i<mi++) {
init = 2315*init % 65536
b1l[i] = (double)((double)init - 32768.0) / 16384.0;

b2[i] = bi[i];
b3[i] = bi[i];
ba[i] = bi[i];

}

pivot = (int *)malloc(ntsizeof (double));

*/
*/

*/

all[i]; /* In this exanple, we solve 4 tines the same problem */

*/

128

Appendix A. Complete C Example

/* Calling Netsolve for 'dgesv’ in a blocking fashion */
/* For 'dgesv', the right-hand side is overwitten */
/* with the solution */

net sl maj or (" Col ") ;

fprintf(stderr,"Calling NetSolve for 'dgesv’', blocking :\n");
info = netsl ("dgesv()",m1,al, mpivot,bl, m&err);
if (info <0)
{

netslerr(info);

exit(0);
}
if (ierr 1=0)

fprintf(stderr,"Cannot solve for this Mtrix and right-hand side\n");
el se
{

fprintf(stderr,"Solution :\n");

for (i=0;i<mi++)

fprintf(stderr,"-->9%\n",bl[i]);

}

/* Calling Netsolve for 'dgesv’' in a non-blocking fashion */
/* For ’dgesv', the right-hand side is overwitten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for 'dgesv’', non-blocking :\n");
request = netslnb("dgesv()", m1,a2, mpivot,b2 m&err);
if (request <0)

{
netslerr(request);
exi t(0);
}
fprintf(stderr,"Request #%l bei ng processed\n", request);
fprintf(stderr,"Probing...... \n");

info = netslpr(request);
whi | e(i nfo == Net Sol veNot Ready)

{
sl eep(4);
fprintf(stderr,".");
fflush(stderr);
info = netsl pr(request);

fprintf(stderr,"\n");

129

Appendix A. Complete C Example

if (info == Net Sol veCK)

{
info = netslw (request);
}
if (info < 0)
netslerr(info);
el se
{
if (ierr 1=0)
fprintf(stderr,"Cannot solve for this Matrix and right-hand side\n");
el se
{
fprintf(stderr,"Solution :\n");
for (i=0;i<mi++)
fprintf(stderr,"\t-->9%\n",b2[i]);
}
}
/* Calling Netsolve for 'linsol’ in a blocking fashion */
/* For 'linsol’, the right-hand side is overwitten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for 'linsol’, blocking :\n");
info = netsl("linsol ()", m1,a3, mb3,n;

if (info <0)

{

netslerr(info);

}

el se

{
fprintf(stderr,"******xxxksss\nn).
fprintf(stderr,"** Success **\n");
fprintf(stderr,"*****xxxxxsix|).
fprintf(stderr,"Solution :\n");
for (i=0;i<mi++)

fprintf(stderr,"\t --> %\n",b3[i]);

}

/* Calling Netsolve for "linsol’” in a non-blocking fashion */
/* For 'linsol’, the right-hand side is overwitten */
/* with the solution */

fprintf(stderr,"Calling NetSolve for '"linsol’, non-blocking :\n");
request = netslnb("linsol ()", m1,a4, mb4, m;
if (info <0)

130

Appendix A. Complete C Example

{
netslerr(info);
exit(0);
}
fprintf(stderr,"Request #%l bei ng processed\n", request);
fprintf(stderr,"Probing...... \n");

info = netslpr(request);
whi | e(i nfo == Net Sol veNot Ready)
{
sl eep(4);
fprintf(stderr,".");
fflush(stderr);
info = netsl pr(request);

fprintf(stderr,"\n");
if (info == Net Sol veCK)
{
info = netslw(request);
}
if (info < 0)
netslerr(info);
el se
{
fprintf(stderr,"****xxxkrkikr\pr).
fprintf(stderr,"** Success **\n");
fprintf(stderr,"****xxxkrkikr\pr).
fprintf(stderr,"Solution :\n");
for (i=0;i<mi++)
fprintf(stderr,"\t--> 9%\n",b4[i]);
}

return 1;

131

Appendix B. Complete Fortran77 Example

C Exanple of the FORTRAN call to Net Sol ve

C This program sends :

VWARNI NG :

O000000000O0O0O0OO0

The problem’linsol’

- One bl ocking request for the problem’dgesv’
- One non-bl ocking request for the problem’dgesv’

- One bl ocking request for the problem’linsol’
- One non-bl ocking request for the problem’linsol’

is asinplified version of ’dgesv’

The matrix may be singular, in which case Net Sol ve
will print an error nessage.

PROGRAM EXAMPLE

I NCLUDE ' ../../include/fnetsolve.h

I NTEGER NMAX
PARAMETER (MAX =
I NTEGER M

DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE
DOUBLE

PRECI SI ON
PREC!I SI ON
PRECI SI ON
PREC!I SI ON
PRECI SI ON
PRECI SI ON
PREC! SI ON
PRECI SI ON

500)

AL(MAX, MAX)
A2(NAX, MAX)
A3(MAX, MAX)
A4(NAX, MAX)
B1(MAX)
B2(MAX)
B3(MAX)
B4(MAX)

| NTEGER PI VOT(MAX)
| NTEGER | ERR

INTEGER I, J, I,
INTEGER INIT
I NTEGER | NFO, REQUEST

EXTERNAL FNETSL, FNETSLNB, FNETSLPB, FNETSLWI

132

Appendix B. Complete Fortran77 Example

I NTRI NSI C DBLE, MOoD

WRI TE(*,*) "Enter the size of your matrix M =
READ(*, *) M

| F(M GT. MAX) THEN
WRI TE(*, *) ' Too big !!’
STOP

ENDI F

Generating the matrices

Oo00

WRI TE(*,*) ' Generating the problem...’
INIT = 1325
DO10 1 =1, M
DO11J =1, M
INIT = MOD(2315*I NI T, 65536)
A1(J,1) = (DBLE(INIT) - 32768.D0)/16384. D0
A2(J,1) = AL(J, 1)
A3(J, 1) = AL(J, 1)
A4(J, 1) = AL(J, 1)
11 CONTI NUE
10 CONTI NUE

Generating the right-hand sides

O00

DO12 | =1,M
INIT = MOD(2315*I NI T, 65536)

B1(1) = (DBLE(INIT) - 32768.D0)/16384. DO
B2(1) = BL(I)
B3(1) = BL(I)
B4(1) = BL(I)

12 CONTI NUE

C Calling Netsolve for 'dgesv' in a blocking fashion
C For ’'dgesv', the right-hand side is overwitten
C with the solution

WRI TE(*,*) "Calling NetSolve for "dgesv", blocking :’

CALL FNETSL(’dgesv()’, | NFO M 1, Al, MAX, Pl VOT, B1, MAX, | ERR)
IF(INFO.LT.0) THEN

133

13

Appendix B. Complete Fortran77 Example

CALL FNETSLERR(| NFO)
STOP
END | F
IF(1ERR NE.O) THEN
WRI TE(*, *) ' Cannot solve for this Matrix and right-hand side’
ELSE
V\Rl TE(*’*) Thkkkkhkhkhkkkkhkkk ok k!
WRI TE(*, *) '** Success **’
V\Rl TE(*’*) Thkkkkhkhkhkkkkhkkkkk?
VRI TE(*, *) Result :’
DO13 1 =1, M
WRI TE(*, *) --> ", BL(I)
CONTI NUE
END | F

C Calling Netsolve for 'dgesv' in a non-blocking fashion
C For ’'dgesv', the right-hand side is overwitten
C with the solution

14

21

WRI TE(*,*) "Calling NetSolve for "dgesv", non-blocking :’
CALL FNETSLNB('dgesv()’, REQUEST, M 1, A2, MAX, PI VOT, B2, MAX, | ERR)
| F(REQUEST.LT.O0) THEN
CALL FNETSLERR(REQUEST)
STOP
END I F
WRI TE(*, *) ' Request # ,INFO,’' being processed’
WRI TE(*,*) *Probing...... ’
CONTI NUE
CALL FNETSLPR(REQUEST, | NFO)
I F(| NFO. EQ Net Sol veNot Ready) THEN
DO 21 I1=1,50
I =11 + 3%
CONTI NUE
GO TO 14
END I F
I F(I NFO. EQ Net Sol veCK)
$ CALL FNETSLWI(REQUEST, |NFO)

IF(1ERR NE.O) THEN

WRI TE(*, *) ' Cannot solve for this Matrix and right-hand side’
ELSE

V\Rl TE(*,*) Thkkkkhkkhkhkkkkhkkhkk k)

WRI TE(*, *) ’'** Success **’

V\Rl TE(*’*) Thkkkkhkhkhkkkkhkkkkk?

WRI TE(*, *) Result :’

134

16

OO0

17

O00

18

22

Appendix B. Complete Fortran77 Example

DO16 | =1, M
WRI TE(*, *) ’ --> " B2(1)
CONTI NUE
END | F
Calling Netsolve for "linsol’” in a blocking fashion
For 'linsol’, the right-hand side is overwitten

with the solution

WRI TE(*,*) "Calling NetSolve for "linsol", blocking :’
CALL FNETSL('linsol ()’,INFO M 1, A3, MAX, B3, MAX)
IF(INFO.LT.0) THEN
CALL FNETSLERR(| NFO)
ELSE
V\Rl TE(*,*) Thkkkkhkkhkkkkhkkhk k%
WRI TE(*,*) *** Success **’
V\Rl TE(*,*) Thkkkkhkkhkhkkkkhkkhk Kk k)

WRI TE(*, *) Result :’
DO 17 1= 1, M
WRI TE(*, *) ’ --> B3(1)
CONTI NUE
END | F
Calling Netsolve for "linsol’” in a non-blocking fashion
For 'linsol’, the right-hand side is overwitten

with the solution

WRI TE(*,*) "Calling NetSolve for "linsol", non-blocking :’
CALL FNETSLNB(’linsol ()’ , REQUEST, M 1, A4, VAX, B4, VAX)
| F(REQUEST.LT.0) THEN
CALL FNETSLERR(| NFO)
STOP
END I F
WRI TE(*, *) ' Request #' , REQUEST,’ being processed’
WRI TE(*,*) *Probing...... ’
CONTI NUE
CALL FNETSLPR(REQUEST, | NFO)
I F (I NFO. EQ Net Sol veNot Ready) THEN
DO 22 11=1,50
I =11 + 3%
CONTI NUE
GO TO 18
END I F
I F(I NFO. EQ Net Sol veCXK)
$ CALL FNETSLWI(REQUEST, |NFO)

135

20

I F(INFO.LT.0) THEN
CALL FNETSLERR(| NFO)

ELSE
V\Rl TE(*,*) T kkkkhkhkkhkKhkhkkkk k!
WRI TE(*, *) '** Success **’
V\Rl TE(*’*) T kkkkhkhkkhkkhkkkkk?
VRI TE(*, *) Result :°
DO 20 I=1,M

VRI TE(*, *) -->, B4(1)

CONTI NUE

END | F

STOP
END

Appendix B. Complete Fortran77 Example

136

Bibliography

[matlab] 1992, The MathWorks, INndVJATLAB Reference Guide

[mathematica] 1996, Wolfram Median, Inc. and Cambridgevdrsity PressThe Mathematica Book,
Third Edition

[netsolve] 1997, The International Journal of Supercompipplications and Performance Computing,
NetSolve: A Network Server for Solving Computational S&dfroblems

[ieee-cse] 1997, 1998, IEEE, IEEE Computational SciencengiieeringNetSolve’'s Network Enabled
Server: Examples and Applicatiqrisr-67, 5(3), Henri Casanova and Jack Dongarra.

[sequencing] 2000, Euro-Par 2000: Parallel Procesfleguest Sequencing: Optimizing
Communication for the Grid3-540-67956-1, D. Arnold, D. Bachmann, and J. Dongarra.

[ns-impl] 1998, UT Department of Computer Science TecHriRaport,NetSolve version 1.2: Design
and ImplementatiorHenri Casanova and Jack Dongarra.

[ns:mathematica] 1998, UNI « C Technical Report UNIC-984dathematica Interface to NetSolve
Henri Casanova, Jack Dongarra, A. Karaivanov, and Jerzy\aski.

[condor1] 1988, Proceedings of the 8th International Camfee of Distributed Computing Systems,
Condor - A Hunter of Idle Workstation$04-111, M. Litzkow, M. Livny, and M. W. Mutka.

[condor2] 1990, IEEE, Proceedings of the IEEE Workshop opdeixnental Distributed Systems,
Experience with the Condor Distributed Batch Syst®mLitzkow and M. Livny.

[ima] 1998, Springer-Verlag, IMA Volumes in Mathematicgdats Applications, Algorithms for Parallel
ProcessingRroviding Uniform Dynamic Access to Numerical Softwa-355, 105, Henri
Casanova and Jack Dongarra.

[lapack] 1999, SIAMLAPACK Users’ Guide, Third Editiqrd-89871-447-8, E. Anderson, Z. Bai, C.
Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du CrozZGPeenbaum, S. Hammarling, A.
McKenney, and D. Sorensen.

137

