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Abstract — This paper describes the technologies and design ideas that underlie the Logistical File Systems ( LoFS). 
LoFS is close to a traditional distributed file sys tem in structure and in the class of operations it supports, but it is 
designed to preserve the easy deployability and scalability across the administrative boundaries that have been the 
pillars of the Web’s success. The leading idea behind the design of LoFS is that in order to implement  a real file 
system that nonetheless preserves the strengths of the Internet of model resource sharing, one has to apply that 
model to the storage resources needed to implement file system operations, so that they are exposed and shareable to 
the global network. Systems that do not expose the underlying resources used to implement file system operations 
can implement remote access to file system operations, but they cannot distribute many important functions of the 
file system itself.  

1. Introduction 
After more than a decade of unprecedented growth, the World Wide Web has transformed the landscape 
of networked information systems. It has easily dominated the arena of wide area information sharing t hat 
seemed, at the beginning of the 90’s, to be the nat ural domain of more capable and mature file sharing 
technologies, such as the Andrew File System [1].  This development was all the more surprising since 
comparison shows that the weaknesses of the Web’s design (e.g. limited ad hoc caching capabilities, little 
or no security, lack of scalability in important di mensions, tendencies to performance degradation, etc.) 
were significant, and many of its strengths (e.g. f ree distribution, intuitive user interface) could be (and 
have been) duplicated by more capable competitors [2]. But what could not have been duplicated, and th e 
key, we believe, to the Web’s unparalleled success, was the Internet model of resource sharing at the base 
of its design 

As evidenced in structure the IP stack, the Internet Model was created to facilitate the sharing of ne twork 
bandwidth for the purpose universal communication among an international community of indefinite size, 
and is therefore designed to be as open (i.e. light ly controlled) and easy to use as possible. It’s ve ry 
weaknesses, according to some established criteria, have had the compensating virtue of making it easy  to 
deploy and highly scalable across the administrative boundaries of traditional systems. The Web builds on 
this same foundation. The fundamental contribution of the Web over previous networked information 
systems was not the notion of the URL as a file nam e with globally uniform semantics (AFS and other 
distributed file systems have that feature), but the use of such names in hyperlinks that were globall y valid  
across administrative boundaries. When the Web was introduced users found that if t hey could put up a 
Web server (and this was very easy to do), anyone could link to the files they wanted to share and v ice 
versa. It seemed as if the Web’s “fuzzy pointers” c ould point anywhere. 

The universality and generality that this model to resource sharing achieves has a power that is 
undeniable. But in order to achieve it, the Web arc hitecture makes a series of compromises that from the 
traditional systems point of view seem drastic:  

1. The default semantics of URLs are that they repr esent unprotected, read-only data.  The 
protection mechanisms that have been introduced are based on passwords and certificates, and so 
are not inherently limited in administrative scope. 

2. Local interpretation of URLs exposes a specific portion of the host directory structure to the 
network. 

3. The Web defines a restricted set of operations o n URLs that can be implemented in a globally 
scalable network. 

The thesis of this paper is that a different set of  design choices can be made that results in a distr ibuted 
file system that can scale up to the global Interne t, but without accepting the compromises accepted by the 
Web.  We believe that the file system that results,  which we call the Logistical File System ( LoFS) is 
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closer to traditional distributed file systems in s tructure and in the class of operations it supports, but 
preserves the easy deployability and scalability across the administrative boundaries that have been the 
pillars of the Web’s success. We call this file sys tem “logistical” because it builds on our work in 
logistical networking, which is described elsewhere [3].  

The leading idea behind the design of LoFS is that in order to implement a real file system that 
nonetheless preserves the strengths of the Internet model, one has to apply the Internet model to the 
resources (primarily storage) needed to implement file system operations, so that they are exposed and 
shareable to the global network. Systems that do not expose the underlying resources used to implement 
file system operations can implement remote access to file system operations, but they cannot distribute 
many important functions of the file system itself.   

Accordingly, in designing LoFS we have followed a “ bottom up” design philosophy that today is more 
familiar in design of network protocol stacks than in the design of operating systems. At the bottom o f the 
“network storage stack” is the Internet Backplane Protocol (IBP), which is a mechanism created to enable 
sharing of exposed storage resources across the network on the Internet paradigm. Since, as we describe 
below, IBP uses a model of storage with weak semant ics, in order to support the kind of strong file 
abstraction that LoFS requires, we have developed a data structure represents aggregate storage resources 
and allows us to layer a file abstraction with stro ng semantic properties on top of a weak underlying 
storage resource that does not generally provide them. We call this data structure the exNode because it is 
analogous to the Unix inode, but scoped for the wide area network. Finally, th e top layer of the network 
storage stack is LoFS, which is designed to be a lo g-based file system that can leverage the power of 
Internet resource sharing that the lower layers make available. The discussion below follows the same 
bottom up design as the technology being described, explaining each layer in turn and providing detail s of 
applications and experiences with these technologies. 

2. Background: The Internet Protocol and the Internet Backpl ane Protocol 
The unique capabilities of LoFS will derive from th e foundation of exposed resource sharing on which it 
builds, i.e. from the  Internet Backplane Protocol. IBP is a mechanism developed for the purpose of 
sharing storage resources across networks ranging from rack-mounted clusters in a single machine room 
to global networks. [3-5]  To approximate the openn ess of the Internet paradigm for the case of storag e, 
the design of IBP parallels key aspects of the desi gn of IP, in particular IP datagram delivery. This service 
is based on packet delivery at the link level, but with more powerful and abstract features that allow it to 
scale globally. Its leading feature is the independence of IP datagrams from the attributes of the par ticular 
link layer, which is established as follows:  

� Aggregation of link layer packets masks its limits on packet size; 

� Fault detection with a single, simple failure model  (faulty datagrams are dropped) masks the 
variety of different failure modes; 

� Global addressing masks the difference between local area network addressing schemes and 
masks the local network’s reconfiguration. 

This higher level of abstraction allows a uniform I P model to be applied to network resources globally , 
and it is crucial to creating the most important di fference between link layer packet delivery and IP 
datagram service. Namely, 

Any participant in a routed IP network can make use  of any link layer connection in the 
network regardless of who owns it. Routers aggregate individual link layer connections 
to create a global communication service. 

This IP-based aggregation of locally provisioned, link layer resources for the common purpose of 
universal connectivity constitutes the form of sharing that has made the Internet the foundation for a  
global information infrastructure. 
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IBP is designed to enable the sharing of storage resources within a community in much the same manner. 
Just as IP is a more abstract service based on link -layer datagram delivery, IBP is a more abstract service 
based on blocks of data (on disk, tape or other med ia) that are managed as “byte arrays.” The 
independence of IBP byte arrays from the attributes of the particular access layer (which is our term for 
storage service at the local level) is established as follows:  

� Aggregation of access layer blocks masks the fixed block size; 

� Fault detection with a very simple failure model (f aulty byte arrays are discarded) masks the 
variety of different failure modes; 

� Global addressing based on global IP addresses masks the difference between access layer 
addressing schemes. 

This higher level of abstraction allows a uniform I BP model to be applied to storage resources globally, 
and this is essential to creating the most important difference between access layer block storage and IBP 
byte array service: 

Any participant in an IBP network can make use of a ny access layer storage resource in the 
network regardless of who owns it.  The use of IP n etworking to access IBP storage resources 
creates a global storage service. 

Whatever the strengths of this application of the I P paradigm, however, it leads directly to two probl ems. 
First, in the case of storage, the chronic vulnerability of IP networks to Denial of Use (DoU) attacks  is 
greatly amplified. The free sharing of communication within a routed IP network leaves every local 
network open to being overwhelmed by traffic from t he wide area network, and consequently open to the 
unfortunate possibility of DoU from the network. Wh ile DoU attacks in the Internet can be detected and  
corrected, they cannot be effectively avoided.  Yet this problem is not debilitating for two reasons: on the 
one hand, each datagram sent over a link uses only a tiny portion of the capacity of that link, so tha t DoU 
attacks require constant sending from multiple sources; on the other hand, monopolizing remote 
communication resources cannot profit the attacker in any way, it can only harm the victim. 
Unfortunately neither of these factors hold true fo r access layer storage resources. Once a data block is 
written to a storage medium, it occupies that porti on of the medium until it is deallocated, so no con stant 
sending is required.  Moreover it is clear that mon opolizing remote storage resources can be very 
profitable for an attacker and his applications. 

The second problem with sharing storage network-style is that the usual definition of a storage servic e is 
based on processor-attached storage, and so it includes strong semantics (near-perfect reliability and 
availability) that are difficult to implement in th e wide area network.  Even in “storage area” or loc al area 
networks, these strong semantics can be difficult to implement and are a common cause of error 
conditions. When extended to the wide area, it becomes impossible to support such strong guarantees for 
storage access. 

We have addressed both of these issues through special characteristics of the way IBP allocates storage: 

� Allocations of storage in IBP can be time limited.   When the lease on an allocation expires, the 
storage resource can be reused and all data structures associated with it can be deleted.  An IBP 
allocation can be refused by a storage resource in response to over-allocation, much as routers can 
drop packets, and such “admission decisions” can be based on both size and duration.  Forcing 
time limits puts transience into storage allocation, giving it some of the fluidity of datagram 
delivery. 

� The semantics of IBP storage allocation are weaker than the typical storage service. Chosen to 
model storage accessed over the network, it is assumed that an IBP storage resource can be 
transiently unavailable. Since the user of remote storage resources is depending on so many 
uncontrolled remote variables, it may necessary to assume that storage can be permanently lost.  
Thus, IBP is a “best effort” storage service .  To encourage the sharing of idle resources, IBP even 
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supports “volatile” storage allocation semantics, where allocated storage can be revoked at any 
time. In all cases such weak semantics mean that the level of service must be characterized 
statistically. 

Because of IBP’s limitations on the size and durati on of allocation and its weak allocation semantics, IBP 
does not directly implement reliable storage abstractions such as conventional files. Instead these must be 
built on top of IBP using techniques such as redund ant storage, much as TCP builds on IP’s unreliable 
datagram delivery in order to provide reliable tran sport. 

3. The Internet Backplane Protocol 

3.1 The IBP API 
The IBP API is in many respects typical of network file systems, with calls for allocation, access and 
management as summarized in Table 1 below and discussed in some detail in the API documentation [5].  
The unique aspects of IBP are reflected most directly in the IBP_allocate call.   

In most conventional file systems, file creation en tails the creation of an entry in a file directory under a 
client-supplied name. The directory entry represents the ability to indefinitely allocate data space t hrough 
write operations, generally up to some limit imposed either by the system or on a per-user basis, and to 
later read from that data space.  In some specializ ed file systems, file attributes such as physical l ayout or 
staging policy between disk and tape can be specified [6-8]. 

The IBP_allocate call differs in a number of ways.  First of all, it is much like a typical memory all ocation 
operation such as the C library malloc in that it a llocates writable storage space but does not create a 
visible directory entry.  It returns a set of capab ilities that can be used as an opaque credential fo r later 
read, write and management operations on the allocated space from any Internet-connected client.  Most 
important, it allows the specification of attribute s that model a number of uses for storage other tha n 
conventional file space.   

� A number of different write semantics are available : append, truncate, FIFO queue, circular 
queue.  Note that there is currently no support for  overwriting other than by truncating the entire 
file to zero length, as this requires external sync hronization when shared among multiple writers.  
These write semantics support non-file applications such as the implementation of Unix-like 
pipes in the network.  To reflect this generality, we refer to the space allocated as a byte array to 
reflect that fact that it is more general than eith er a file or a communication buffer. 

� Allocations can be weakened in a number of ways ref lecting a more lightweight approach to 
permanence and reliability than is typical for netw ork file systems.  In particular, allocations may 
be time-limited, representing a lease that expires at some known point in the future, and they may 
be volatile, meaning that they represent an allocation of free space that the server can revoke at 
any point in the future.  It is intended that by al lowing depots to grant weaker allocations while 
remaining within the bounds of correct functioning, IBP will enable the sharing of resources that 
would otherwise be held for private use only. 

The other IBP API calls fall into two groups: those  that operate on an IBP allocation, and one that 
operates on an IBP depot. 

1. Operations on allocations .  IBP_allocate  returns a set of three capabilities: a read capabi lity, 
a write capability and a manage capability.  Each o f these are required for different subsequent 
API calls. 

a. IBP_store, IBP_load, IBP_copy, IBP_mcopy .  The IBP_store  and IBP_load  
are syncrhonous read and write operations that return when the requested data transfer 
has occurred or when a specified timeout expires.  They take a write and read capability 
as argument respectively. IBP_copy  allows a third-party copy between depots without 
requiring that the data be retrieved by the client,  and takes both a read and a write 
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capability as arguments.  The IBP_mcopy call models generalized point-to-multipoint 
communication.  It takes as argument a single read capability (source) and a set of write 
capabilities (destinations) as well as an “operation” parameter and a set of operation-
specific arguments.  These operations are implemented by depot “plug-in” modules 
called “data movers” (see section 3) and are intended to support flexible exploration of 
new and non-standard ways of transferring data between endpoints[9]. 

b. IBP_manage  takes the manage capability as an argument, and implements increment and 
decrement operations on two reference counts maintained for each allocations: a read 
count and a write count.  If the write count reache s zero, the allocation can be treated as 
read-only, and if the read count reaches zero, the allocation can be deleted.   This call is 
also used to query the state of an allocation, and to request modification of some of its 
basic characteristics (such as extending the lease). 

2. Depot management calls require no capability, but can be protected b y password.  
a. IBP_status  has two sub-commands: inquire  and change . Inquire  allows a client 

to query a depot about its total stable and volatil e storage, the amount of both storage 
categories used, and the maximum allowed duration. Change  allows the client to change 
these parameters. 

 
Storage Management Data Transfer Depot Management 

IBP_allocate, 
IBP_manage 

IBP_store, IBP_load 
IBP_copy, IBP_mcopy 

IBP_status 

 Table 1  

  
3.2 IBP Implementation 
Depot  — The main IBP depot architecture goals are flexib ility, reliability and performance.  The current 
implementation (1.0) is multi-threaded for performance, with a pool of threads created at boot time.  The 
code base is shared between Unix/Linux/OS X and Win32 versions, with OS-specific I/O calls 
encapsulated in a library that has two implementations (win-lib and unix-lib). 

Client Library  — The IBP Client Library, offered in a few differen t versions and systems, was designed 
to be flexible, to ease the implementation of futur e changes to both the API and the protocol, to be v ery 
maintainable code and to be extremely robust and fault-tolerant.  The library is sepearted into two 
different modules: the API2P Module and the Communication Module (ComModule). API2P  translates 
the API command into Communication Units, which are abstract data types that specify the 
communication and its characteristics (direction, semantics of the message, the message itself or the 
expected message). Then, the ComModule allows the execution of the communication. No analysis of the 
message is made at this level, the API2P module being responsible to interpret the message and to take 
the appropriate action.  This design allows easy changes to the API (as it’s seen as a sequence of 
communication units) and to the protocol. On top of  it, the communication module, being completely 
independent, will be re-used in future depot implementations, cutting developing time. 

Protocol — The current version of our protocol is a very dir ect encoding of the API as an architecture-
independent RCP using a per-call TCP connection.  As more challenging requirements arise, we are 
considering a redesign of this protocol, perhaps using some of the protocol encapsulation tools, such as 
BXXP, that are currently under discussion for standardization with the IETF [10]. 

Testing — A flexible test language and interpreter were dev eloped to enable extensive testing and 
performance measurement of the depot by both developers and users. These tools [11] allow a complete 
and extensive test of our software and of the proto col semantics. 
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4. Data Movers  
Since the primary intent of IBP is to provide a com mon abstraction of storage, it is arguable that thi rd 
party transfer of data between depots is unnecessary.  Indeed, it is logically possible to build an ex ternal 
service for moving data between depots that access IBP allocations using only the IBP_load  and 
IBP_store  calls. However, such a service would have to act a s a proxy for clients, and this immediately 
raises trust and performance concerns.  The IBP_copy  and IBP_mcopy  data movement calls were 
provided in order to allow a simple implementation that avoids these concerns.  However, software 
architectures based on external data movement operations are still of great interest to us. 

The intent of the basic IBP_copy  call is to provide access to a simple data transfe r over a TCP stream 
between depots.  IBP_mcopy  is a more general facility, and can provide access  to operations that range 
from simple variants on simple TCP-based data transfer to highly complex protocols using multicast or 
other advanced network facilities.  In all cases, t he caller is responsible for determining whether the 
requested operation is appropriate to the depot’s network environment, and for any error strategy should 
the data movement call return in failure. 

The data mover is a plug-in module to an IBP depot that is activated either by an IBP_mcopy  call or by 
an IBP_datamover  call. The second call is not an API call, but an i nternal call made by the sending IBP 
depot.  The sending depot is responsible for invoki ng a Data Mover plug-in on the receiving depot, and  it 
accomplishes this by fork ing a data mover control process that sends an IBP_datamover  request, 
causing the receiving depot to fork  a symmetric data mover control. Sending and receiving control 
processes then exec  the appropriate Data Mover plug-ins for the reques ted operation and these cooperate 
to perform the operation, then the plug-in at the s ending depot replies to the client and then both pl ug-ins 
terminate. The figure 1 illustrates this process.  

The Data Mover software architecture can support a wide variety of operations, including: 

� Point-to-multipoint through simple iterated TCP unicast transfers 

� Point-to-multipoint through simultaneous threaded TCP unicast transfers. 

� Unreliable UDP point-to-mulitpoint utilizing native IP mulitcast  

� Reliable point-to-multipoint utilizing native IP mu lticast  

� Fast, reliable UDP data transfer over private network links [12] 
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Figure 1: Data Mover Control and Transfer Coordination. 

5. Experience and Applications 
Our method in developing the Internet Backplane Protocol is based on implementation and 
experimentation.  A number of simple applications f rom within our own research group have formed the 
basis of the experience that has guided our work.  In addition, a few external application groups have 
picked up on early implementations of IBP and contr ibute by both tracking our releases and giving us 
needed feedback for future developments.  However, it is only with the upcoming release of the exNode 
library and serialization (Section 6) and ultimately the Logistical File System (Section 7) that we be lieve a 
wide application community will find the supporting  tools necessary to adopt an IBP-based methodology. 
 

� IBP-mail is a system that uses IBP to transmit and deliver mail attachments that require storage 
resources beyond the capacity of standard mail servers[13].  To use IBP-Mail, the sender first 
uploads the attachment into a suitable IBP server and then forwards the read capability to the 
receiver, who can use it to download the attachment (Figure qqq). An initial version of IBP-mail 
used custom CGI scripts to chose the depot and impl ement the upload and download functions.  
The capability was transmitted between sender and receiver embedded in a form that invoked the 
receiving CGI.  This custom architecture has been replaced by a generic mechanism for storing 
IBP capabilities (see section 6 on the exNode) whic h allows them to be sent between sender and 
receiver as a simple file attachment in a standard serialized format.  The manipulation of files 
stored in IBP format is now handled through generic  tools operating on the serialized exNode 
data structure, and so today IBP-Mail is not so muc h an application as a way of using those 
standard tools together with the standard MIME attachment facility in e-mail. 

� NetSolve is a distributed computation tool created by Cassanova and Dongarra [14] to provide 
remote invocation of numerical libraries for scientific code.  One shortcoming of the initial 
NetSolve architecture is that it is stateless: a series of calls to the same server cannot, for instan ce, 
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cache arguments or results in order to avoid unnecessary data movement in subsequent calls.  One 
of the approaches taken to optimize NetSolve was to use an IBP depot at the server to implement 
a cache under the control of the client.  Such shor t-lived use of IBP for value caching is able to 
make good use of even volatile and time-limited all ocations [15]. 

� TAMANOIR [16] is a project developed by the RESAM l ab of the Lyon I University in the field 
of Active Networking. It is a framework that allows  users to easily deploy and maintain 
distributed active routers in a wide area network. IBP depots will be among the standard tools 
available to services implemented within the TAMANOIR framework, along with othe basic tools 
such as the routing manager and stream monitoring tools.  It will also be used to implement 
distribution and caching of services (distributed as Java byte-code modules) that are loaded by 
TAMANOIR on-demand, freeing TAMANOIR to manage only  is own internal cache of services. 

6. The exNode: Aggregating IBP Storage Resources to Provide File Services 
Our approach to creating a strong file abstraction on the weak model of storage offered by IBP continu es 
to parallel the design paradigm of the traditional network stack. In the world of end-to-end packet 
delivery, it has long been understood that TCP, a p rotocol with strong semantic properties (e.g., reliability 
and in-order delivery) can be layered on top of IP,  a weak datagram delivery mechanism. In spite of th e 
weak properties of IP datagram delivery, stronger properties like reliability and in-order delivery of  
packets can be achieved through the fundamental mechanism of retransmitting IP packets.  
Retransmission controlled by a higher layer protocol, combined with protocol state maintained at the 
endpoints, overcomes non-delivery of packets. All non-transient conditions that interrupt the reliable, in-
order flow of packets can then be reduced to non-de livery. We view retransmission as an aggregation of 
weak IP datagram delivery services to implement a stronger TCP connection. 

The same principle of aggregation can be applied in order to layer a storage service with strong seman tic 
properties on top of a weak underlying storage resource that does not generally provide them, such as an 
IBP depot. Examples of aggregating weaker storage services in order to implement stronger ones include 
the following: 

� Reliability — Redundant storage of information on re sources that fail independently can 
implement reliability (e.g. RAID, backups). 

� Fast access — Redundant storage of information on resources in different localities can 
implement high performance access through proximity (e.g. caching) or through the use of 
multiple data paths (e.g. RAID  [6]). 

� Unbounded allocation — Fragmentation of a large allocation across multiple storage resources 
can implement allocations of unbounded size (e.g. files built out of distributed disk blocks, 
databases split across disks). 

� Unbounded duration — Movement of data between resources as allocations expire can implement 
allocations of unbounded duration (e.g. migration of data between generations of tape archive). 

In this exposed-resource paradigm, implementing a file abstraction with strong properties involves 
creating a construct at a higher layer that aggregates more primitive IBP byte-arrays below it. To app ly 
the principle of aggregation to exposed storage services, however, it is necessary to maintain state that 
represents such an aggregation of storage allocations, just as sequence numbers and timers are 
maintained to keep track of the state of a TCP sess ion. Fortunately we have a traditional, well-understood 
model to follow in representing the state of aggreg ate storage allocations. In the Unix file system, t he data 
structure used to implement aggregation of underlying disk blocks is the inode ( intermediate node). 
Under Unix, a file is implemented as a tree of disk  blocks with data blocks at the leaves. The interme diate 
nodes of this tree are the inodes, which are themselves stored on disk. The Unix inode implements only  
the aggregation of disk blocks within a single disk  volume to create large files; other strong propert ies are 
sometimes implemented through aggregation at a lower level (e.g. RAID) or through modifications to the  
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file system or additional software layers that make redundant allocations and maintain additional state 
(e.g. AFS, HPSS) [1, 8].  

Following the example of the inode, we have chosen to implement a single generalized data structure, 
which we call an external node, or exNode, in order to manage of aggregate allocations that can be used 
in implementing network storage with many different strong semantic properties (Figure 2).  Rather than 
aggregating blocks on a single disk volume, the exNode aggregates storage allocations on the Internet, 
and the exposed nature of IBP makes IBP byte-arrays exceptionally well adapted to such aggregations. In 
the present context the key point about the design of the exNode is that it has allowed us to create a n 
abstraction of a network file to layer over IBP-bas ed storage in a way that is completely consistent w ith 
the exposed resource approach. 

We plan to use the exNode as the basis for a set of  generic tools for implementing files with a range of 
characteristics. Because the exNode must provide interoperability between heterogeneous nodes on a 
diverse Internet, we have chosen not to specify it as a language-specific data structure, but as an abstract 
data type with an XML serialization.  The basis of the exNode is a single allocation, represented by an 
Internet resource, which initially will be either a n IBP capability or a URL.  Other classes of underl ying 
storage resources can be added for extensibility and interoperability. 

The important elements to be developed are libraries that implement generic requirements such as large 
size (through fragmentation), fast access (through caching), and reliability (through replication).  
Applications requiring these characteristics should be able to obtain them even without having availab le 
individual IBP depots that implement those specific characteristics – simply using the APIs should be 
sufficient if aggregate resources that are available for use somewhere on the network. The exNode data 
structure will be a basis for interoperability with in the logistical networking API, and the XML 
serialization will be the basis of interoperability  between network nodes. 

Since our intent is to use the exNode file abstract ion in a number of different applications, we have 
chosen to express the exNode concretely as an encoding of storage resources (URLs or IBP capabilities) 
and associated metadata in XML. If the exNode is pl aced in a directory, the file it implements can be 
imbedded in a namespace.  But if the exNode is sent  as a mail attachment, there need not be a canonical 
location for it.  The use of the exNode by varying applications will provide interoperability similar to 
being attached to the same network file system. 

The exNode metadata must be capable of expressing at least the following relationships between the fil e it 
implements and the storage resources that constitute the data component of the files state: 

� The portion of the file extent implemented by a par ticular resource (starting offset and ending 
offset in bytes) 

� The service attributes of each constituent storage resource (e.g. reliability and performance 
metrics, duration) 

� The total set of storage resources which implement the file and the aggregating function (e.g. 
simple union, parity storage scheme) 

Despite our emphasis on using an exposed-resource approach, it is natural to have the exNode support 
access to storage resources via URLs, both for the sake of backward compatibility and because the 
Internet is so prodigiously supplied with them. It is important to note, however, that the flexibility  of a file 
implemented by the exNode is a function of the flex ibility of the underlying storage resources. The value 
of IBP does not consist in the fact that it is the only storage resource that can be aggregated in an exNode, 
but rather that it is by far the most flexible and most easily deployed. 

6.1 The exNode API 
The exNode API is a standard interface for creating , communicating and manipulating the exNode data 
structure. 
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� xnd_create, xnd_destroy are standard data structure constructor/destructor operations. 

� xnd_serialize, xnd_deserialize write/read the standard XML serialization of the ex Node data 
structure to/from a file descriptor (see section 6.2).  

� xnd_add_mapping, xnd_delete_mapping add/delete a mapping from the exNode. 

� xnd_query, xnd_enum_next, xnd_enum_end, xnd_build_exNode are query operations.  
xnd_query returns the a enumeration data structure representing the set of mappings whose range 
intersects with a specified target range.  The enumeration can be traversed using xnd_enum_next 
or destroyed using xnd_enum_end.  xnd_build_exNode creates a new exNode from the set of 
mappings that comprise an enumeration. 

� xnd_size returns the aggregate extent of all the mappings i n an exNode. 

This minimal exNode API can be extended in a number  of ways that have been left out of this account 
for the sake of clarity, and to keep from having to  introduce additional structure.  Some of these 
extensions include: 

� Queries can be much more complex, specifying ranges of data and time, and returning sets of 
storage resources with associated metadata to direct the process of retrieving data. 

� Mappings can be annotated to specify read-only or write-only data. 

� As storage allocations expire or become unavailable it will be necessary to manage the exNode 
by finding and deleting mappings, and this will req uire additional mapping management calls. 

� By associating a mapping with a set of storage spec ifiers and an aggregation function, it is 
possible to model group allocations such as RAID-li ke error correction. 

� By defining metrics on the location or performance or other characteristics of different storage 
allocations it is possible to inform the user of th e exNode which of multiple alternatives to 
choose.  

6.2 The exNode XML Serialization 
The mobility of the exNode is based on two premises : 

1. it is possible to populate the exNode exclusivel y with network-accessible storage resources 
2. the exNode can be encoded in a portable way that  can be interpreted at any node in the network 

Today, XML is the standard tool used to implement p ortable encoding of structured data, and so we are 
defining a standard XML serialization of the exNode .  The serialization is based on the abstract exNod e 
data structure, and so allows each node or application to define its own local data structure. 

7. LoFS: The Logistical File System  
A simple IBP-based file system that implements a di rectory structure and data storage completely within 
IBP has been developed [17], using an ad hoc modified Apache web server to act as the trial app lication 
that accesses its source files through it. In the r ealm of this experiment, we restricted updates to complete 
replacement of a file, allowing atomic updates to b e implemented through the directory. A very interesting 
feature of this project can be identified in the po ssibility of having a local IBP depot as data cache , to 
improve performance. The preliminary tests results show a good potential, but more tests need to be 
conducted in order to have valid results.  

Our Apache-based file system was a prototype on which to test the IBP implementation and robustness.  
A true distributed file system, built on wide-area resources, must have at its core the ability to dea l with 
the commonplace occurences of failures and unbounded network latencies.  Our implementation will be 
based on two core functionalities: 

� The exNode as the main metadata type. 

� A log-structured approach to storing data 
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The exNode is explained above.  Log-structured file systems (LFS's)  were invented in the late 80's as  a 
way to improve the performance of file system write s[18, 19].  Instead of overwriting data in  place, 
which results in disk writes that can be scattered across the disk, data is appended to logs, which are 
flushed to disk en masse, resulting in a more efficient use of contiguous d isk blocks.  This of course 
results in dead data spread throughout the filesystem, which must be reclaimed by a separate gargabe 
collector process. Many implementations of LFS's demonstrated improved overall filesystem 
performance[20, 21]. 

As an unexpected benefit, LFS's were found to have other desirable  properties, such as extremely 
efficient failure recovery[19], the ability to deal  smoothly with compression on the storage substrate[22], 
and the ability to  ease synchronization worries wh en replication is added to the  file system[23].  T his 
latter property is what makes LFS's attractive to L oFS. 

Recently, a storage system called Swarm has been developed at the University of Arizona[24], which 
implements a storage server layer, intended to be a layer between raw or netwo rk-attached storage, and 
file system clients.  With Swarm, clients produce a ppend-only logs as in a LFS, which then become 
striped across multiple storage servers with RAID L evel 5 parity encoding to tolerate the loss of any 
server in the collection. Like in a typical LFS, fi le updates result in log records which are appended to 
new logs, and the updated data eventually becomes cleaned by a cleaner thread. 

This structure has the basic elements needed to implement file systems on the wide area, since it avoi ds 
the synchronization problems (typically solved by holding locks) of updating data in place, and the lo g-
based structure eases the task of rebuilding state following a failure.  It is a storage service, howe ver, and 
not a full-blown file system because it leaves issu es of naming, sharing and security up to the client s.  The 
Swarm researchers have built prototype file systems for Swarm on a local area network[25]. 

We plan to start with the methodology of Swarm as o ur base design for LoFS, using the exNode data 
structure as the basic metadata block.  Beneath this foundation, we will use IBP servers to provide th e 
basic storage services, taking the place of standard disks and network attached storage devices.  On top of 
this foundation, we must incorporate the following majors changes: 

1. Unlike raw and network-attached disks, IBP byte arrays have time limits.  A simple way of 
incorporating this into the file system is to have another thread, much like the cleaner thread, that 
refreshes time limits, and if that is not possible,  copies the data to another IBP byte array.    

2. Many file systems implement striping and/or repl ication for performance improvements on more 
tightly coupled networks than the wide area.  On th e wide area, cache-based replication, and 
logistically scheduled replication (as is performed in a rudimentary fashion by IBP Mail) will be a 
necessity, and will have to be incorporated into Lo FS.   

3. As such, files in LoFS will consist of replicate d blocks, and coding blocks (like parity blocks in 
RAID) that enable clients to rebuild file blocks wh en they are unavailable.  The coding will be 
based on Reed-Solomon coding[26], which allows for a system to provide $m$ coding blocks for 
n blocks of data, and then to tolerate the failure o f {\em any} m blocks (note, RAID Level 5 
parity is equivalent to Reed-Solomon coding with m equal to 1). 

Once these changes are in place, we may experiment with the use of time-limited IBP storage on the 
wide-area as the basis for a network-wide file syst em. 

8. Related Work 
IBP occupies an architectural niche similar to that of network file systems such as AFS [1] and Networ k 
Attached Storage appliances [27], but its model of storage is more primitive, making it similar in som e 
ways to Storage Area Networking (SAN) technologies developed for local networks.  In the Grid 
community, projects such as GASS [28] and the SDSC Storage Resource Broker [29] are file system 
overlays that implement a uniform file access interface and also impose uniform directory, authentication 
and access control frameworks on their users. 
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9. Conclusions 
Validation of the claimed scalability of the logist ical model of file system design based on IBP requi res a 
research program based on implementation and extensive experimentation and experience through 
deployment.  For this reason, we are commited to an  aggressive schedule of code release, and all released 
code can be freely downloaded from our project website http://icl.cs.utk.edu/ibp .  Today, 
the depot software runs on a variety of Unix-based operating systems and the Win32 platform and the 
client library runs on these platforms as well as J ava.  Porting to other systems is being pursued as 
interested user communities or interesting experimental opportunities are identified.  The test suite and 
IBP application-building tools are also available. A specification of the exNode serialization and a  
preliminary version of the exNode library are scheduled for release before publication of this paper.  The 
L-Bone is a service available to any IBP depot admi nistrator, and the Logistical File System is currently 
under development, and the design of content distribution systems based on IBP is being studied. 

An underlying thesis of our research program in the  confluence of networking and storage technologies is 
that community-based resource sharing is one of the important factors that distinguishes the Internet from 
other communication networks.  In formulating the I nternet Backplane Protocol as a common mechanism 
for the sharing of storage resources, we are making a conscious attempt to emulate key aspects of IP 
networking while generalizing them to a new domain.  While the challenges are considerable, and success 
is far from guaranteed, the potential reward is a n ew phase in the Internet revolution involving not j ust 
end-to-end communication but also the management of distributed state ranging from communication 
buffers to distributed files with the myriad polici es and algorithms used by distributed applications of all 
sorts applied to a common underlying infrastructure. The ultimate goal is not simply to enable distrib uted 
file systems to scale across administrative domains in the manner of the Web, but to achieve a similar  
level of deployability for distributed systems of a ll sorts, ultimately integrating distributed computational 
resources (process cycles) to create a Logistical Computing and Internetworking infrastructure 
provisioned with the fundamental troika of distribu ted resources: bandwidth, storage and computation. 
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