Implementation for LAPACK of a
Block Algorithm for

Matrix 1-Norm Estimation *

Sheung Hun Cheng' Nicholas J. Higham?
August 13, 2001

Abstract

We describe double precision and complex*16 Fortran 77 implementations, in
LAPACK style, of a block matrix 1-norm estimator of Higham and Tisseur. This
estimator differs from that underlying the existing LAPACK code, xLACON, in that
it iterates with a matrix with ¢ columns, where £ > 1 is a parameter, rather than
with a vector, and so the basic computational kernel is level 3 BLAS operations.
Our experiments with random matrices on a Sun SPARCStation Ultra-5 show that
with ¢ = 2 or 4 the new code offers better estimates than xLACON with a similar
execution time. Moreover, with ¢ > 2, estimates exact over 95% and 75% of the
time are achieved for the real and complex version respectively, with execution
time growing much slower than . We recommend this new code be included as an
auxiliary routine in LAPACK to complement the existing LAPACK routine xLACON,
upon which the various drivers should still be based for compatibility reasons.

1 Introduction

Error bounds for computed solutions to linear systems, least squares and eigenvalue
problems all involve condition numbers, which measure the sensitivity of the solution to
perturbations in the data. Thus, condition numbers are an important tool for assessing
the quality of the computed solutions. Typically, these condition numbers are as expen-
sive to compute as the solution itself [8]. The LAPACK [1] and ScaLAPACK [2] condition
numbers and error bounds are based on estimated condition numbers, using the method
of Hager [5], which was subsequently improved by Higham [6]. Hager’s method estimates
||B||: given only the ability to compute matrix-vector products Bz and BTy. If we take
B = A~! and compute the required products by solving linear systems with A, we obtain
an estimate of the 1-norm condition number 1 (A4) = ||A||1[|A™Y:.

*This work was supported by Engineering and Physical Sciences Research Council grant GR/1.94314.

tCentre for Novel Computing, Department of Computer Science, University of Manchester, Manch-
ester, M13 9PL, England (scheng@cs.man.ac.uk, http://wuw.cs.man.ac.uk/~scheng/).

'Department of Mathematics, University of Manchester, Manchester, M13 9PL, England
(higham@ma.man.ac.uk, http://www.ma.man.ac.uk/ higham/).

In LAPACK and ScaLAPACK Higham’s version of Hager’s method is implemented
in routines xLACON and PxLACON, respectively. Both routines have a reverse communica-
tion interface. There are two advantages to having such an interface. First it provides
flexibility, as the dependence on B and its associated matrix-vector operations is isolated
from the computational routines xLACON and PxLACON, with the matrix-vector products
provided by a “black box” [6]. By changing these black boxes, xLACON and PxLACON can
be applied to different matrix functions for both dense and sparse matrices. Second, as
the bulk of the computational effort is in matrix-vector operations, efficient implementa-
tion of these operations ensures good overall performance of xLACON and PxLACON, and
thus a focus is provided for performance tuning.

The price to pay for using an estimate instead of the exact condition number is that
it can sometimes be a poor estimate. Experiments in [6] show that the underestimation
is rarely by more than a factor of 10 (the estimate is, in fact, a lower bound), which is
acceptable in practice as it is the magnitude of the condition number that is of interest.
However, counterexamples for which the condition numbers can be arbitrarily poor es-
timates exist [6], [7]. Moreover, when the accuracy of the estimates becomes important
for certain applications [9], the method does not provide an obvious way to improve the
estimate.

Higham and Tisseur [9] present a block generalization of the estimator of [5], [6] that
iterates with an n x t matrix, where ¢ > 1 is a parameter, enabling the exploitation
of matrix-matrix operations (level 3 BLAS) and thus promising greater efficiency and
parallelism. The block algorithm also offers the potential of better estimates and a
faster convergence rate, through providing more information on which to base decisions.
Moreover, part of the starting matrix is randomly formed, which introduces a stochastic
flavour and reduces the importance of counterexamples.

We have implemented this block algorithm using Fortran 77 in the LAPACK pro-
gramming style and report performance on a Sun SPRACStation Ultra-5. The rest of
this note is organized as follows. We describe the block 1-norm estimator in Section 2.
In Section 3 we present and explain details of our implementation of the estimator. The
performance of the implementation is evaluated in Section 4. Finally, we summarize our
findings in Section 5.

2 Block 1-Norm Estimator

In this section we give pseudo-code for the real version of the block 1-norm estimator,
which is basically a block power method for the matrix 1-norm. See [9] for a derivation
and explanation of the algorithm. We use MATLAB array and indexing notation [10].
We denote by rand{—1,1} a vector with elements from the uniform distribution on the
set {—1,1}.

Algorithm 2.1 (block 1-norm estimator) Given A € R" " and positive integers t
and itmax > 2, this algorithm computes a scalar est and vectors v and w such that
est < ||A]|1, w = Av and ||w]|; = est]|v]|;.

Choose starting matrix X € R"*! with first column the vector of 1s
and remaining columns rand{—1,1}, with a check for and replacement
of parallel columns.

ind_hist =[] % Integer vector recording indices of used unit vectors e;.
estog = 0, ind = zeros(n, 1), S = zeros(n, t)
fork=1,2,...
(1) Y = AX
est = max{ [|Y(:,j)]1:7=1:t}
if est > estyq or k=2
ind_best = ind; where est = ||Y(:, 7)1, w = Y'(:,ind_best)
end
if £ > 2 and est < estq, est = estqq, goto (5), end
estolq = est, Soq = S
(2) if £ > itmax, goto (5), end
S =sign(Y) % sign(x)=1ifz > 0else —1
If every column of S is parallel to a column of Sy4, goto (5), end

ift>1
(3) Ensure that no column of S is parallel to another column of §
or to a column of Syq by replacing columns of S by rand{—1, 1}.
end
(4) Z =A"S

hi = | Z(iy:)||0o, ind; =4, i = 1:n

if £ > 2 and max(h;) = hind_pest, goto (5), end

Sort h so that Ay > --- > h, and re-order ind correspondingly.

ift>1
If ind(1:¢) is contained in ind_hist, goto (5), end
Replace ind(1:¢) by the first ¢ indices in ind(1:n) that are
not in ind_hist.

end

X(:,7) = €ing;, J = 1:t

ind_hist = [ind_hist ind(1:¢)]

end
(5) U = €ind_best

Statements (1) and (4) are the most expensive parts of the computation and are where
a reverse communication interface is employed. It is easily seen that if statements (1)
and (4) are replaced by “Solve AY = X for Y7 and “Solve Z for ATZ = S for Z”,
respectively, then Algorithm 2.1 estimates [|A™!];.

MATLAB 6 contains an implementation of Algorithm 2.1 in function normest1, which
is used by the condition number estimation function condest. Moreover, a ScaLAPACK
programming style implementation is also available. The implementation details and its
performance are reported in [3].

An example, discovered by Dhillon [4], for which the current LAPACK estimator badly
underestimates the norm is the inverse of the tridiagonal matrix 7" with zero diagonal
and ones on the sub- and superdiagonals. Algorithm 2.1 does much better for this
matrix. Here we use MATLAB (R12.1) to show the result of applying DLACON and
Algorithm 2.1 with ¢ = 2 to estimate the condition number of 7. The following M-file
invokes Algorithm 2.1 twice in succession (hence with different starting vectors).

rand(’seed’,1)
disp(’ Underestimation ratios’)

disp(’ n Alg. 2.1 Alg. 2.1 DLACON’)
for n=10:10:100
A = full(gallery(’tridiag’,n,1,0,1));
fprintf (°%3.0f %4 .3f %4 .3f %4 .3f\n’, n, condest(A)/cond(A,1),
condest(A)/cond(A,1), 1/(cond(A,1)*rcond(A)))
end

The output is

Underestimation ratios

n Alg. 2.1 Alg. 2.1 DLACON
10 1.000 1.000 0.200
20 1.000 1.000 0.100
30 1.000 1.000 0.067
40 1.000 1.000 0.050
50 1.000 1.000 0.040
60 1.000 0.833 0.033
70 1.000 1.000 0.029
80 1.000 1.000 0.025
90 0.956 0.956 0.022

100 0.880 1.000 0.020

3 Implementation Details

We have implemented Algorithm 2.1 in double precision and complex*16 using Fortran 77
in the LAPACK programming style. Our code uses the highest level of BLAS whenever
possible.

We set the maximum number of iterations itmax to 5, which is rarely reached. When
this limit is reached we have, in fact, performed 5% iterations, as the test (2) in Algorithm
2.1 comes after the matrix product ¥ = AX. This allows us to make use of the new
search direction generated at the end of the fifth iteration.

Most of Algorithm 2.1 is straightforwardly translated into Fortran code apart from
statement (3), which deserves detailed explanation. Statement (3) is a novel feature of
Algorithm 2.1 in which parallel columns within the current sign matrix S and between
S and Syq are replaced by rand{—1,1}. The replacement of parallel columns avoids
redundant computation and may lead to a better estimate [9]. The detection of parallel
columns is done by forming inner products between columns and looking for elements of
magnitude n. Obviously, we should only check for parallel columns when ¢ > 1. Using
the notation of Algorithm 2.1, statement (3) is implemented as follows:

iter =0
fori=1:¢
while iter < n/t
(A) y = ShaS(:,1)
iter = iter + 1
if |[ylloo <m0
(B) y=2S(:,1:5—1)"'S(:,4)

Table 1: Storage requirements of old (xLACON) and new (xLACN1) codes.

Data type ‘ DLACON DLACN1 ZLACON ZLACN1
double/complex 2n 2tn+2n +1 2n 2tn + 2n
integer n 2n — 2n

iter = iter + 1
if ||y||oo < n, goto (#), end
end
S(:,i) =rand{—1,1}
end

(#) end

In the inner loop the number of matrix-vector products is limited to n/t. As the com-
putational cost of Algorithm 2.1 is O(n?¢) flops and (A) and (B) both cost O(nt) flops,
this choice of limit ensures that the cost of replacing parallel columns does not dominate
the overall cost.

For the complex*16 implementation, the sign matrix function is defined elementwise
by sign(a;;) = a;;/|ai;| and sign(0) = 1. The benefit of checking for parallel columns is
dramatically reduced in the complex case, as explained in [9]. We omit this novel feature
in our complex*16 implementation.

The new real and complex versions of our implementations are called DLACN1 and
ZLACN1 respectively. Their storage requirements grow roughly like 2¢n; see Table 1 for a
comparison of storage with xLACON.

Two additional routines are used by xLACN1. DLAPST is a modified version of the
LAPACK quicksort routine DLASRT; it returns the permutation that achieves the sort as
well as the sorted array. The routine DLARPC carries out the tests for and replacement of
repeated columns in statement (3) of Algorithm 2.1.

4 Numerical Experiments

In this section, our aim is to examine the performance of DLACNland ZLACN1. We have
addressed the issues of accuracy and reliability of our implementations by reproducing
parts of the experimental results in Higham and Tisseur [9], thereby validating our code.
We note that there is no test routine for xLACON in the LAPACK test suite, but all the
drivers that call xLACON (such as xGECON) do have test routines. In order to test DLACN1
and ZLACN1 we modified all LAPACK routines that call xLACON to make use of xLACN1 for
1 <t <4 and then ran the LAPACK tests. There were no failures, so in this sense both
DLACN1 and ZLACN1 have passed the LAPACK test suite in the computing environment
described below.

Our main focus in this section is to measure the efficiency of our implementation.
We investigate how the relation between accuracy and execution time varies with n and
t. We tested DLACN1 and ZLACN1 on a Sun SPARCStation Ultra-5. The compiler and
library details are given in Table 2.

Table 2: Characteristics of the Sun SPARCStation Ultra-5, libraries and compiler options
for the experiments.

Compiler Sun WorkShop Compilers: Version 5.0 (£77)
Compiler Flags | -u -f -dalign -native -x05 -xarch=v8plusa
LAPACK version 3.0

BLAS ATLAS optimized

ATLAS version 3.2.1

We use the same compiler flags as were used to compile the LAPACK installation.
This provides a basis for measuring and comparing the performance of our implementation
with their counterparts in the LAPACK routine, namely DLACON and ZLACON.

We estimate ||A7Y|; for n X n random matrices A with n = 800 and 1600. For each
n, a total of 500 random matrices A are generated, variously from the uniform (0, 1),
uniform (—1,1) or normal (0,1) distributions for testing DLACN1. For testing ZLACN1,
random matrices are generated with the following distributions;

e both the real and imaginary parts are each uniform(0, 1),
e both the real and imaginary parts are each uniform (—1, 1),

e both the real and imaginary parts are each normal (0, 1).

The LU factorization with partial pivoting of A is supplied to the 1-norm estimators.
The cost of this part of computation does not contribute to the overall timing result. This
arrangement is reasonable as the LU factorization is usually readily available in practice,
as when solving a linear system, for example. The inverse of A is computed explicitly to
obtain the “exact” ||A~'|];. For a given matrix A we first generated a starting matrix X,
with 128 columns, where 128 is the largest value of ¢ to be used, and then ran Algorithm
2.1 for t = 1,2,...,128 using starting matrix X;(:,1:¢). In this way we could see the
effect of increasing ¢ with fixed n.

For each test matrix we recorded a variety of statistics in which the subscripts min,
max and an overbar denote the minimum, maximum, and average of a particular measure
respectively:

e «: the underestimation ratio a = est/||A7}||; < 1, over each A for fixed t.

%E: the percentage of estimates that are exact. An estimate is regarded as exact
if the relative error |est — ||A7Y|1|/||A7Y||1 is no larger than nu, where u is the unit
roundoff (u = 27% ~ 107').

e %I: for a given t, the percentage of estimates that are at least as large as the
estimates for all smaller ¢.

e %A: For a given ¢, the percentage of the estimates that are at least as large as the
estimates from xLACON, to within a relative tolerance nu.

e %T: the percentage of the cases for which our implementation took longer to com-
plete than xLACON.

Table 3: Experimental results for DLACN1 using 500 real random matrices with dimensions
n = 800 and n = 1600.

n = 800
t | omm @ | %E | %I | %A | %T | Nmax N | Coax C | Kmae K
1 [020 098] 842 | — | - - - — [149 051 9 53
1 /020 098] 842 | - |100.0| 272 | 1.29 1.00 | 1.97 082 | 8 43
2 | 074 1.00| 93.8 |98.6| 98.6 | 88.4 | 1.86 1.18 | 2.00 1.08 | 6 4.1
4 1092 1.00| 976 [99.0 | 99.8 | 97.8 | 216 1.36 | 240 155 | 6 4.0
8 | 0.98 1.00| 99.4 |98.0| 99.8 | 98.4 | 1.59 148 | 4.05 276 | 4 4.0
16 | 1.00 1.00 | 100.0 | 98.6 | 100.0 | 100.0 | 2.50 2.32 | 5.90 4.00 | 4 4.0
32 | .00 1.00 | 100.0 | 98.6 | 100.0 | 100.0 | 4.57 4.18 | 10.75 7.47 | 4 4.0
64 | 1.00 1.00 | 100.0 | 98.6 | 100.0 | 100.0 | 10.04 8.59 | 24.78 16.58 | 4 4.0
128 | 1.00 1.00 | 100.0 | 98.2 [100.0 | 100.0 | 23.79 19.64 | 43.14 31.42| 4 4.0

n = 1600
t | omm @ | %E | %I | %A | %T | Nmax N | Coax C | Kmae K
1° [046 098 828 | — | - - - — [18 023 9 55
1 046 098|828 | — |1000| 920 | 1.39 1.09 | 088 032 | 8 45
2 1063 099 | 89.8 [982] 982 | 91.0 | 200 1.26 | 1.74 044 | 8 4.1
4 1076 1.00| 96.8 | 98.4 | 99.6 | 96.6 | 215 1.33 | 258 0.72 | 6 4.0
8 | 094 1.00| 98.8 |93.6|100.0 | 998 | 1.67 153 | 2.23 148 | 4 4.0
16 | 0.97 1.00 | 99.6 | 94.0 | 100.0 | 100.0 | 2.60 2.38 | 3.91 278 | 4 4.0
32 [1.00 1.00 [100.0 | 94.4 | 100.0 | 100.0 | 4.64 4.21 | 7.54 537 | 4 40
64 | .00 1.00 | 100.0 | 94.4 | 100.0 | 100.0 | 9.16 819 | 1520 10.49 | 4 4.0
128 | 1.00 1.00 | 100.0 | 91.8 | 100.0 | 100.0 | 18.97 16.55 | 26.25 19.17 | 4 4.0

%Data for DLACON

e N: The execution time for xLACN1 normalized against the time taken by xLACON.
e (C: the percentage of time spent in xLACN1 for a given A.

e K: the number of matrix-matrix operations for a given A.

In Tables 3 and 4 we show detailed statistical results and make the following com-
ments.

e Increasing ¢ usually improves the quality of the estimates. However, this is not
always true as %I is not monotonic increasing. Nevertheless, estimates exact over
90% and 70% of the time can be computed for the real and complex cases respec-
tively, with ¢ relatively small compared with n. Fast convergence, which is not
explained by the underlying theory, is recorded throughout the experiments. All

these observations are consistent with those in [9].

As t increases, the time taken for each iteration increases. However, using multiple
search vectors (¢ > 1) accelerates the rate of convergence and also allows the use of
level 3 BLAS, so execution time grows much more slowly than ¢. In this computing
environment ¢ = 2 or t = 4 produces distinctly better estimates than those from
xLACON with only a modest increase in execution time.

7

Table 4: Experimental results for ZLACN1 using 500 complex random matrices with di-
mensions n = 800 and n = 1600.

n = 800
U | Omin @ NE | %L | %A | %T | Npax N | Chax C |Kupax K
1 1025 0.85| 284 - - - - - 1.67 08| 11 6.4
1 1025 094 49.2 - (100.0 | 100.0 | 1.61 1.19 | 1.86 081 | 11 5.4
2 1068 097] 624 [90.2 | 98.8 | 94.2 | 297 141 | 215 158 | 11 5.1
4 1056 098 | 78.2 (874 | 99.8 | 91.0 | 259 1.39 | 3.85 3.06 9 4.9
8 1078 0.99| 89.6 |90.2|100.0| 100.0 | 4.03 1.90 | 5.06 4.35 9 4.7
16 | 0.78 1.00 | 96.4 | 93.6 | 100.0 | 100.0 | 5.33 2.98 | 6.23 5.51 9 4.6
32 1 0.78 1.00 | 98.6 | 94.2 | 100.0 | 100.0 | 7.53 5.60 | 6.48 5.93 7 4.5
64 | 0.94 1.00| 99.8 | 95.0 | 100.0 | 100.0 | 15.15 11.23 | 6.63 6.15 7 4.5
128 | 1.00 1.00 | 100.0 | 95.2 | 100.0 | 100.0 | 26.06 19.12 | 7.75 7.27 5 4.5

n = 1600

=

Qmin @ NE | %L | %A | %T | Npax N Cmax C | Kipax
0.26 0.86 | 26.2 - - - - - 1.55 039 11 6.4
0.51 0.93 | 44.6 - (100.0 | 100.0 | 2.04 147 | 1.13 031 | 11 5.4
0.66 097 | 57.2 | 80.4| 99.0 | 99.8 | 3.68 1.68 | 1.52 0.63| 11 5.1
0.67 098 | 75.8 | 80.8 | 99.6 | 99.2 | 3.14 1.69 | 2.34 1.22 9 5.0
0.81 0.99| 88.2 | 84.4 | 100.0 | 100.0 | 5.10 2.21 | 2.74 1.80 9 4.8
0.86 1.00 | 954 | 87.4|100.0 | 100.0 | 5.88 3.24 | 3.01 2.45 7 4.7

7

7

5

W = —
B oy @ B N = T

0.88 1.00 | 98.8 | 89.2 | 100.0 | 100.0 | 8.15 5.47 | 3.38 2.89 4.6
64 | 0.92 1.00 | 99.8 | 90.0 | 100.0 | 100.0 | 13.60 10.26 | 3.58 3.22 4.6
128 1 0.94 1.00 | 99.8 | 90.0 | 100.0 | 100.0 | 24.14 18.13 | 4.01 3.67 4.6

%Data for ZLACON

e As n increases, C decreases as the matrix-matrix operations start to dominate the
overall cost.

5 Concluding Remarks

We have described a Fortran 77 implementation in LAPACK style of the block matrix
I-norm estimator of Higham and Tisseur [9]. Our experiments show that with ¢ = 2
or 4 the new code offers better estimates than the existing LAPACK code xLACON with
similar execution time. For our random test matrices, with ¢ = 4 estimates exact over
95% and 75% of the time are achieved in the real and complex cases, respectively, with
execution time growing much slower than ¢ thanks to the use of level 3 BLAS and the
accelerated convergence.

We propose that £LACN1 be included as an auziliary routine in LAPACK. We do not
suggest replacing xLACON with xLACN1 (with ¢ = 2, say)! because this would bring a
change in calling sequence and an increase in workspace requirements and hence would

'We note that the xGyCON drivers call special versions of level 2 BLAS triangular solvers that scale
to prevent overflow; if these drivers are modified to call xLACN1 then special level 3 BLAS triangular
solvers with scaling would need to be written.

require users to modify existing codes that call LAPACK drivers or call the estimator
directly?. Moreover, since xLACON is deterministic while xLACN1 with ¢ > 1 can produce
different estimates on different invocations (because of the random starting vectors) such
a change could confuse users. But since xLACN1 is the state of the art norm estimator
and is of value to knowledgeable users who need better and tuneable norm estimates we
believe it is worth including in LAPACK as an auxiliary routine.

Acknowledgements

We thank Francoise Tisseur for the quicksort subroutine DLASRT.

2Replacing xLACON by xLACN1 with ¢ = 1 is not an option, since the latter is less reliable, due to the
former’s rather ad hoc but very effective “extra vector”.

A Appendix

In this appendix we list the double precision codes DLACN1 (main routine) and DLARPC
(tests for and replaces repeated columns).
All the codes are available from http://www.cs.man.ac.uk/"~scheng/PCMF/

SUBROUTINE DLACN1(N, T, V, X, LDX, XOLD, LDXOLD, WRK,
$ H, IND, INDH, EST, KASE, ISEED, INFO)

* .. Scalar Arguments ..
INTEGER INFO, KASE, LDXOLD, LDX, N, T
DOUBLE PRECISION EST

* .. Array Arguments ..
INTEGER IND(*), INDH(*), ISEED(4)
DOUBLE PRECISION H(*), V(%), X(LDX, *), WRK(*),
$ XOLD(LDXOLD, *)

*

Purpose

*

DLACN1 estimates the 1-norm of a square, real matrix A.
Reverse communication is used for evaluating matrix-matrix products.

* X ¥ X ¥

Arguments

*

N (input) INTEGER
The order of the matrix. N >= 1.

T (input) INTEGER
The number of columns used at each step.

v (output) DOUBLE PRECISION array, dimension (N).
On the final return, V = AxW, where EST = norm(V)/norm(W)
(W is not returned).

(input/output) DOUBLE PRECISION array, dimension (N,T)
On an intermediate return, X should be overwritten by
A x X, if KASE=1,
A’ = X, if KASE=2,
and DLACN1 must be re-called with all the other parameters
unchanged.

LDX (input) INTEGER
The leading dimension of X. LDX >= max(1,N).

X0LD (workspace) DOUBLE PRECISION array, dimension (N,T)

* X X X K X X X X X K X X X K X X X ¥ ¥ * ¥ *
>3

10

¥ X X X X X X K X X X X K X K X K X K X K X K X X ¥ X * X ¥ ¥ ¥ X * X * X

LDXOLD (input) INTEGER
The leading dimension of XOLD. LDXOLD >= max(1,N).

WRK (workspace) DOUBLE PRECISION array, dimension (T)
H (workspace) DOUBLE PRECISION array, dimension (N)
IND (workspace) INTEGER array, dimension (N)
INDH (workspace) INTEGER array, dimension (N)

EST (Output) DOUBLE PRECISION
An estimate (a lower bound) for norm(A).

KASE (input/output) INTEGER
On the initial call to DLACN1, KASE should be O.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A’ * X.
On the final return from DLACN1, KASE will again be O.

ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.

INFO (output) INTEGER
INFO describes how the iteration terminated:

INFO = 1: iteration limit reached.
INFO = 2: estimate not increased.
INFO = 3: repeated sign matrix.
INFO = 4: power method convergence test.
INFO = 5: repeated unit vectors.
. Parameters ..
INTEGER ITMAX
PARAMETER (ITMAX =5)
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0)

. Local Scalars ..
INTEGER I, IBEST, ITEMP, ITER, J, JUMP
DOUBLE PRECISION ESTOLD, TEMP

. External Functions ..

INTEGER IDAMAX
DOUBLE PRECISION DASUM, DDOT
EXTERNAL DASUM, DDOT, IDAMAX

11

*

*

* % ¥ *

* % ¥ *

. External Subroutines ..
EXTERNAL DCOPY, DLACPY, DLAPST, DLARNV, DLARPC, DLASCL

Intrinsic Functions ..
INTRINSIC ABS, DBLE, NINT, SIGN

. Save statement ..
SAVE

. Executable Statements ..

IF(KASE .EQ. O) THEN

ESTOLD = ZERO

ITER = 1
ITEMP = 1
INFO = O

DO 10 I =1, N
X(I, 1) =0NE
INDCI) =1
INDH(I) =0
10 CONTINUE

D030 J =2, T
CALL DLARNV(2, ISEED, N, X(1, J))
D020 I =1, N
X(I, J)
20 CONTINUE
30 CONTINUE

SIGN(ONE, X(I, J))

IF (T .GT. 1)
$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)

CALL DLASCL(’G’, 0, O, DBLE(N), ONE, N, T, X, LDX, INFO)

KASE

JUMP

RETURN
END IF

I n
= =

GO TO (40, 100) JUMP

................ ENTRY (JUMP = 1)
FIRST HALF OF THE ITERATION: X HAS BEEN OVERWRITTEN BY AxX.

40 CONTINUE

12

50

60
70

80

IF (ITER .EQ. 1 .AND. N .EQ.
V(1) =X(1, 1)
EST = ABS(V(1))
... QUIT
GO TO 210
END IF

EST = ZERO
po 50 J=1,T

TEMP = DASUM(N, X(1, J), 1

IF (TEMP .GT. EST) THEN

EST = TEMP

ITEMP = J
END IF
CONTINUE

1) THEN

)

IF (EST .GT. ESTOLD .0OR. ITER .EQ. 2) THEN

IBEST = IND(ITEMP)
END IF

IF (EST .LE. ESTOLD .AND. ITER .GE. 2) THEN

EST = ESTOLD

INFO = 2

GO TO 210
END IF

ESTOLD = EST

CALL DCOPY(N, X(1, ITEMP), 1, V, 1)

IF (ITER .GT. ITMAX) THEN
INFO = 1
GO TO 210

END TF

po 70 J =1, T
1

DO 60 I = N

X(I, J) = SIGN(C ONE, X(I, J))

CONTINUE
CONTINUE

IF (ITER .GT. 1) THEN

IF ALL COLUMNS of X PARALLEL TO XOLD, EXIT.

po 8 J=1, T

CALL DGEMV(’Transpose’, N, T, ONE, XOLD, LDXOLD,

X(1, J), 1, ZERD, WRK, 1)
IF (NINT(ABS(WRK(IDAMAX(T, WRK, 1))))
CONTINUE
INFO = 3

13

.LT. N) GO TO 90

* ¥ ¥ * ¥

GO TO 210
90 CONTINUE

IF (T. GT. 1)
$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)

ELSE

IF (T. GT. 1)
$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, O, ISEED)

END TIF

CALL DLACPY(’Whole’, N, T, X, LDX, XOLD, LDXOLD)

KASE = 2
JUMP = 2
RETURN

................ ENTRY (JUMP = 2)
SECOND HALF OF THE ITERATION:
X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.

100 CONTINUE
DO 110 I =1, N
H(I)=ABS(X (I, IDAMAX(T, X(CI, 1), N)))
IND(I) =1
110 CONTINUE

IF (ITER .GE. 2 .AND. H(IDAMAX(N, H, 1)) .EQ. H(IBEST)) THEN

INFO = 4
GO TO 210
END TF

Sort so that h(i) >= h(j) for i < j
CALL DLAPST(’D’, N, H, IND, ITEMP)

IF (ITER .EQ. 1) THEN

ITEMP = T
GO TO 170
END TF

IF IND(1:T) IS CONTAINED IN INDH, TERMINATE.

IF (T .GT. 1) THEN
DO 130 J =1, T
1,

DO 120 I = (ITER-1)*T

14

* ¥ ¥ *

120

130

140

150

160

170

180

190

200

210

IF (I .GT. N .OR. IND(J) .EQ. INDH(I)) GO TO 130
CONTINUE

GO TO 140
CONTINUE

INF

0=5

GO TO 210
CONTINUE

REPLACE IND(1:T) BY THE FIRST T INDICES IN IND THAT

ARE

NOT IN INDH.

ITEMP = 1

DO

160 J =1, N

DO 150 I = 1, (ITER-1)x*T

IF (I .GT. N .OR. IND(C J) .EQ. INDH(I)) GO TO 160
CONTINUE
IND(ITEMP) = IND(J)
IF (ITEMP .EQ. T) GO TO 170
ITEMP = ITEMP + 1

CONTINUE

END IF

ITEMP = ITEMP - 1

CONTINUE

IF ((
DO

CON
END IF

DO 200
DO

CON
X(

ITER-1)*T .GE. N) THEN

180 J = 1, ITEMP

INDH((ITER-1)*T+J) = IND(J)
TINUE

J=1
190 I
X(I,J
TINUE
INDC J), J) = ONE

o~

T
1, N
) = ZERO

CONTINUE

ITER

KASE
JUMP
RETURN

CONTIN
KASE =
RETURN

End of

ITER + 1

UE
0

DLACN1

15

END

* X X X * X * *

*

* X K K X X X X XK X K X K X K X K X K X X ¥ X * X * *x *

SUBROUTINE DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)

. Scalar Arguments ..
INTEGER N, T, LDX, LDXOLD, KASE, ISEED(4)

. Array Arguments ..

DOUBLE PRECISION

Purpose

WRK(*), X(LDX, *), XOLD(LDXOLD, *)

DLARPC

looks for and replaces columns of X which are parallel to

columns of XOLD and itself.

Arguments

LDX

XOLD

LDXOLD

WRK

KASE

ISEED

(input) INTEGER
The number of rows. N >= 1.

(input) INTEGER
The number of columns used at each step.

(input/output) DOUBLE PRECISION array, dimension (N,T)
On return, X will have full rank.

(input) INTEGER
The leading dimension of X. LDX >= max(1,N).

(input/output) DOUBLE PRECISION array, dimension (N,T)
On return, XOLD will have full rank.

(input) INTEGER
The leading dimension of XOLD. LDXOLD >= max(1,N).

(workspace) DOUBLE PRECISION array, dimension (T)
(input) INTEGER
Check parallel columns within X only when KASE = O,

check both X and XOLD otherwise.

(input/output) INTEGER array, dimension (4)

On entry, the seed of the random number generator; the array
elements must be between 0 and 4095, and ISEED(4) must be

16

* ¥ ¥ *

10

20

30

odd.
On exit, the seed is updated.

. Parameters ..
DOUBLE PRECISION ZERD, ONE
PARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0)

. Local Scalars ..
INTEGER I, J, JSTART, PCOL

. External Functions ..
INTEGER IDAMAX
EXTERNAL IDAMAX

. External Subroutines ..
EXTERNAL DGEMV, DLARNV

Intrinsic Functions ..
INTRINSIC ABS, NINT, SIGN

. Executable Statements ..

IF (KASE .EQ. 0) THEN
JSTART = 2

ELSE
JSTART = 1

END IF

DO 50 J JSTART, T

PCOL

0

IF (KASE .EQ. 0) GO TO 30

CALL DGEMV(’Transpose’, N, T, ONE, XOLD, LDXOLD,
$ X(1, J), 1, ZERO, WRK, 1)
IF (NINT (ABS (WRK (IDAMAX (T, WRK, 1))))
$.EQ. N) THEN
PCOL = PCOL + 1
CALL DLARNV(2, ISEED, N, X(1, J))
DO 20I =1, N
X(I, J) = SIGN(ONE, X(I, J))
CONTINUE
IF (PCOL .GE. N/T) GO TO 60
GO TO 10
END IF
IF (J .EQ. 1) GO TO 50
CALL DGEMV(’Transpose’, N, J-1, ONE, X, LDX,
$ X(1, J), 1, ZERO, WRK, 1)

IF (NINT (ABS (WRK (IDAMAX (J-1, WRK, 1))))

17

$.EQ. N) THEN
PCOL = PCOL + 1
CALL DLARNV(2, ISEED, N, X(1, J))
DD 40 I =1, N
X(I, J) = SIGN(ONE, X(I, J))
40 CONTINUE
IF (PCOL .GE. N/T) GO TO 60
IF (KASE .EQ. 0) THEN
GO TO 30
ELSE
GO TO 10
END IF
END IF

50 CONTINUE

60 CONTINUE
RETURN
End of DLARPC

END

18

References

1]

E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J.
Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LA-
PACK Users” Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, third edition, 1999.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. W. Demmel, 1. Dhillon, J. J.
Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.
Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, first edition, 1997.

Sheung Hun Cheng and Nicholas J. Higham. Parallel implementation of a block algo-
rithm for matrix 1-norm estimation. Numerical Analysis Report No. 374, Manchester
Centre for Computational Mathematics, Manchester, England, February 2001. To
appear in Proceedings of EuroPar 2001, Manchester.

Inderjit Dhillon. Reliable computation of the condition number of a tridiagonal matrix
in O(n) time. SIAM J. Matriz Anal. Appl., 19(3):776-796, 1998.

W. W. Hager. Conditions estimates. SIAM J. Sci. Stat. Comput., 5:311-316, 1984.

Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or
complex matrix, with applications to condition estimation (Algorithm 674). ACM
Trans. Math. Software, 14(4):381-396, December 1988.

Nicholas J. Higham. Experience with a matrix norm estimator. SIAM J. Sci. Stat.
Comput., 11:804-809, 1990.

Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.

Nicholas J. Higham and Francoise Tisseur. A block algorithm for matrix 1-norm
estimation, with an application to l-norm pseudospectra. SIAM J. Matriz Anal.
Appl., 21(4):1185-1201, 2000.

[10] The MathWork, Inc., Natick, MA, USA. Using MATLAB, 2000. Online version.

19

