
Implementation for LAPACK of aBlok Algorithm forMatrix 1-Norm Estimation �Sheung Hun Chengy Niholas J. HighamzAugust 13, 2001AbstratWe desribe double preision and omplex*16 Fortran 77 implementations, inLAPACK style, of a blok matrix 1-norm estimator of Higham and Tisseur. Thisestimator di�ers from that underlying the existing LAPACK ode, xLACON, in thatit iterates with a matrix with t olumns, where t � 1 is a parameter, rather thanwith a vetor, and so the basi omputational kernel is level 3 BLAS operations.Our experiments with random matries on a Sun SPARCStation Ultra-5 show thatwith t = 2 or 4 the new ode o�ers better estimates than xLACON with a similarexeution time. Moreover, with t > 2, estimates exat over 95% and 75% of thetime are ahieved for the real and omplex version respetively, with exeutiontime growing muh slower than t. We reommend this new ode be inluded as anauxiliary routine in LAPACK to omplement the existing LAPACK routine xLACON,upon whih the various drivers should still be based for ompatibility reasons.1 IntrodutionError bounds for omputed solutions to linear systems, least squares and eigenvalueproblems all involve ondition numbers, whih measure the sensitivity of the solution toperturbations in the data. Thus, ondition numbers are an important tool for assessingthe quality of the omputed solutions. Typially, these ondition numbers are as expen-sive to ompute as the solution itself [8℄. The LAPACK [1℄ and SaLAPACK [2℄ onditionnumbers and error bounds are based on estimated ondition numbers, using the methodof Hager [5℄, whih was subsequently improved by Higham [6℄. Hager's method estimateskBk1 given only the ability to ompute matrix-vetor produts Bx and BTy. If we takeB = A�1 and ompute the required produts by solving linear systems with A, we obtainan estimate of the 1-norm ondition number �1(A) = kAk1kA�1k1.�This work was supported by Engineering and Physial Sienes Researh Counil grant GR/L94314.yCentre for Novel Computing, Department of Computer Siene, University of Manhester, Manh-ester, M13 9PL, England (sheng�s.man.a.uk, http://www.s.man.a.uk/~sheng/).zDepartment of Mathematis, University of Manhester, Manhester, M13 9PL, England(higham�ma.man.a.uk, http://www.ma.man.a.uk/~higham/).1

In LAPACK and SaLAPACK Higham's version of Hager's method is implementedin routines xLACON and PxLACON, respetively. Both routines have a reverse ommunia-tion interfae. There are two advantages to having suh an interfae. First it providesexibility, as the dependene on B and its assoiated matrix-vetor operations is isolatedfrom the omputational routines xLACON and PxLACON, with the matrix-vetor produtsprovided by a \blak box" [6℄. By hanging these blak boxes, xLACON and PxLACON anbe applied to di�erent matrix funtions for both dense and sparse matries. Seond, asthe bulk of the omputational e�ort is in matrix-vetor operations, eÆient implementa-tion of these operations ensures good overall performane of xLACON and PxLACON, andthus a fous is provided for performane tuning.The prie to pay for using an estimate instead of the exat ondition number is thatit an sometimes be a poor estimate. Experiments in [6℄ show that the underestimationis rarely by more than a fator of 10 (the estimate is, in fat, a lower bound), whih isaeptable in pratie as it is the magnitude of the ondition number that is of interest.However, ounterexamples for whih the ondition numbers an be arbitrarily poor es-timates exist [6℄, [7℄. Moreover, when the auray of the estimates beomes importantfor ertain appliations [9℄, the method does not provide an obvious way to improve theestimate.Higham and Tisseur [9℄ present a blok generalization of the estimator of [5℄, [6℄ thatiterates with an n � t matrix, where t � 1 is a parameter, enabling the exploitationof matrix-matrix operations (level 3 BLAS) and thus promising greater eÆieny andparallelism. The blok algorithm also o�ers the potential of better estimates and afaster onvergene rate, through providing more information on whih to base deisions.Moreover, part of the starting matrix is randomly formed, whih introdues a stohastiavour and redues the importane of ounterexamples.We have implemented this blok algorithm using Fortran 77 in the LAPACK pro-gramming style and report performane on a Sun SPRACStation Ultra-5. The rest ofthis note is organized as follows. We desribe the blok 1-norm estimator in Setion 2.In Setion 3 we present and explain details of our implementation of the estimator. Theperformane of the implementation is evaluated in Setion 4. Finally, we summarize our�ndings in Setion 5.2 Blok 1-Norm EstimatorIn this setion we give pseudo-ode for the real version of the blok 1-norm estimator,whih is basially a blok power method for the matrix 1-norm. See [9℄ for a derivationand explanation of the algorithm. We use MATLAB array and indexing notation [10℄.We denote by randf�1; 1g a vetor with elements from the uniform distribution on theset f�1; 1g.Algorithm 2.1 (blok 1-norm estimator) Given A 2 Rn�n and positive integers tand itmax � 2, this algorithm omputes a salar est and vetors v and w suh thatest � kAk1, w = Av and kwk1 = estkvk1.Choose starting matrix X 2 Rn�t with �rst olumn the vetor of 1sand remaining olumns randf�1; 1g, with a hek for and replaementof parallel olumns. 2

ind�hist = [℄ % Integer vetor reording indies of used unit vetors ej.estold = 0, ind = zeros(n; 1), S = zeros(n; t)for k = 1; 2; : : :(1) Y = AXest = maxf kY (: ; j)k1 : j = 1: t gif est > estold or k = 2ind best = indj where est = kY (: ; j)k1, w = Y (: ; ind best)endif k � 2 and est � estold, est = estold, goto (5), endestold = est, Sold = S(2) if k > itmax, goto (5), endS = sign(Y) % sign(x) = 1 if x � 0 else �1If every olumn of S is parallel to a olumn of Sold, goto (5), endif t > 1(3) Ensure that no olumn of S is parallel to another olumn of Sor to a olumn of Sold by replaing olumns of S by randf�1; 1g.end(4) Z = ATShi = kZ(i; :)k1, indi = i, i = 1:nif k � 2 and max(hi) = hind best, goto (5), endSort h so that h1 � � � � � hn and re-order ind orrespondingly.if t > 1If ind(1: t) is ontained in ind�hist, goto (5), endReplae ind(1: t) by the �rst t indies in ind(1:n) that arenot in ind�hist.endX(: ; j) = eindj , j = 1: tind�hist = [ind�hist ind(1: t)℄end(5) v = eind bestStatements (1) and (4) are the most expensive parts of the omputation and are wherea reverse ommuniation interfae is employed. It is easily seen that if statements (1)and (4) are replaed by \Solve AY = X for Y " and \Solve Z for ATZ = S for Z",respetively, then Algorithm 2.1 estimates kA�1k1.MATLAB 6 ontains an implementation of Algorithm 2.1 in funtion normest1, whihis used by the ondition number estimation funtion ondest. Moreover, a SaLAPACKprogramming style implementation is also available. The implementation details and itsperformane are reported in [3℄.An example, disovered by Dhillon [4℄, for whih the urrent LAPACK estimator badlyunderestimates the norm is the inverse of the tridiagonal matrix T with zero diagonaland ones on the sub- and superdiagonals. Algorithm 2.1 does muh better for thismatrix. Here we use MATLAB (R12.1) to show the result of applying DLACON andAlgorithm 2.1 with t = 2 to estimate the ondition number of T . The following M-�leinvokes Algorithm 2.1 twie in suession (hene with di�erent starting vetors).rand('seed',1)disp(' Underestimation ratios')3

disp(' n Alg. 2.1 Alg. 2.1 DLACON')for n=10:10:100A = full(gallery('tridiag',n,1,0,1));fprintf('%3.0f %4.3f %4.3f %4.3f\n', n, ondest(A)/ond(A,1), ...ondest(A)/ond(A,1), 1/(ond(A,1)*rond(A)))endThe output isUnderestimation ratiosn Alg. 2.1 Alg. 2.1 DLACON10 1.000 1.000 0.20020 1.000 1.000 0.10030 1.000 1.000 0.06740 1.000 1.000 0.05050 1.000 1.000 0.04060 1.000 0.833 0.03370 1.000 1.000 0.02980 1.000 1.000 0.02590 0.956 0.956 0.022100 0.880 1.000 0.0203 Implementation DetailsWe have implemented Algorithm 2.1 in double preision and omplex*16 using Fortran 77in the LAPACK programming style. Our ode uses the highest level of BLAS wheneverpossible.We set the maximum number of iterations itmax to 5, whih is rarely reahed. Whenthis limit is reahed we have, in fat, performed 512 iterations, as the test (2) in Algorithm2.1 omes after the matrix produt Y = AX. This allows us to make use of the newsearh diretion generated at the end of the �fth iteration.Most of Algorithm 2.1 is straightforwardly translated into Fortran ode apart fromstatement (3), whih deserves detailed explanation. Statement (3) is a novel feature ofAlgorithm 2.1 in whih parallel olumns within the urrent sign matrix S and betweenS and Sold are replaed by randf�1; 1g. The replaement of parallel olumns avoidsredundant omputation and may lead to a better estimate [9℄. The detetion of parallelolumns is done by forming inner produts between olumns and looking for elements ofmagnitude n. Obviously, we should only hek for parallel olumns when t > 1. Usingthe notation of Algorithm 2.1, statement (3) is implemented as follows:iter = 0for i = 1: twhile iter < n=t(A) y = SToldS(: ; i)iter = iter + 1if kyk1 < n(B) y = S(: ; 1: i� 1)TS(: ; i)4

Table 1: Storage requirements of old (xLACON) and new (xLACN1) odes.Data type DLACON DLACN1 ZLACON ZLACN1double/omplex 2n 2tn+ 2n+ t 2n 2tn+ 2ninteger n 2n � 2niter = iter + 1if kyk1 < n, goto (#), endendS(: ; i) = randf�1; 1gend(#) endIn the inner loop the number of matrix-vetor produts is limited to n=t. As the om-putational ost of Algorithm 2.1 is O(n2t) ops and (A) and (B) both ost O(nt) ops,this hoie of limit ensures that the ost of replaing parallel olumns does not dominatethe overall ost.For the omplex*16 implementation, the sign matrix funtion is de�ned elementwiseby sign(aij) = aij=jaijj and sign(0) = 1. The bene�t of heking for parallel olumns isdramatially redued in the omplex ase, as explained in [9℄. We omit this novel featurein our omplex*16 implementation.The new real and omplex versions of our implementations are alled DLACN1 andZLACN1 respetively. Their storage requirements grow roughly like 2tn; see Table 1 for aomparison of storage with xLACON.Two additional routines are used by xLACN1. DLAPST is a modi�ed version of theLAPACK quiksort routine DLASRT; it returns the permutation that ahieves the sort aswell as the sorted array. The routine DLARPC arries out the tests for and replaement ofrepeated olumns in statement (3) of Algorithm 2.1.4 Numerial ExperimentsIn this setion, our aim is to examine the performane of DLACN1and ZLACN1. We haveaddressed the issues of auray and reliability of our implementations by reproduingparts of the experimental results in Higham and Tisseur [9℄, thereby validating our ode.We note that there is no test routine for xLACON in the LAPACK test suite, but all thedrivers that all xLACON (suh as xGECON) do have test routines. In order to test DLACN1and ZLACN1 we modi�ed all LAPACK routines that all xLACON to make use of xLACN1 for1 � t � 4 and then ran the LAPACK tests. There were no failures, so in this sense bothDLACN1 and ZLACN1 have passed the LAPACK test suite in the omputing environmentdesribed below.Our main fous in this setion is to measure the eÆieny of our implementation.We investigate how the relation between auray and exeution time varies with n andt. We tested DLACN1 and ZLACN1 on a Sun SPARCStation Ultra-5. The ompiler andlibrary details are given in Table 2. 5

Table 2: Charateristis of the Sun SPARCStation Ultra-5, libraries and ompiler optionsfor the experiments.Compiler Sun WorkShop Compilers: Version 5.0 (f77)Compiler Flags -u -f -dalign -native -xO5 -xarh=v8plusaLAPACK version 3.0BLAS ATLAS optimizedATLAS version 3.2.1We use the same ompiler ags as were used to ompile the LAPACK installation.This provides a basis for measuring and omparing the performane of our implementationwith their ounterparts in the LAPACK routine, namely DLACON and ZLACON.We estimate kA�1k1 for n � n random matries A with n = 800 and 1600. For eahn, a total of 500 random matries A are generated, variously from the uniform (0; 1),uniform (�1; 1) or normal (0; 1) distributions for testing DLACN1. For testing ZLACN1,random matries are generated with the following distributions;� both the real and imaginary parts are eah uniform(0; 1),� both the real and imaginary parts are eah uniform (�1; 1),� both the real and imaginary parts are eah normal (0; 1).The LU fatorization with partial pivoting of A is supplied to the 1-norm estimators.The ost of this part of omputation does not ontribute to the overall timing result. Thisarrangement is reasonable as the LU fatorization is usually readily available in pratie,as when solving a linear system, for example. The inverse of A is omputed expliitly toobtain the \exat" kA�1k1. For a given matrix A we �rst generated a starting matrix X1with 128 olumns, where 128 is the largest value of t to be used, and then ran Algorithm2.1 for t = 1; 2; : : : ; 128 using starting matrix X1(:; 1: t). In this way we ould see thee�et of inreasing t with �xed n.For eah test matrix we reorded a variety of statistis in whih the subsripts min,max and an overbar denote the minimum, maximum, and average of a partiular measurerespetively:� �: the underestimation ratio � = est=kA�1k1 � 1, over eah A for �xed t.� %E: the perentage of estimates that are exat. An estimate is regarded as exatif the relative error jest�kA�1k1j=kA�1k1 is no larger than nu, where u is the unitroundo� (u = 2�53 � 10�16).� %I: for a given t, the perentage of estimates that are at least as large as theestimates for all smaller t.� %A: For a given t, the perentage of the estimates that are at least as large as theestimates from xLACON, to within a relative tolerane nu.� %T: the perentage of the ases for whih our implementation took longer to om-plete than xLACON. 6

Table 3: Experimental results for DLACN1 using 500 real random matries with dimensionsn = 800 and n = 1600. n = 800t �min � %E %I %A %T Nmax N Cmax C Kmax K1a 0.20 0.98 84.2 { { { { { 1.49 0.51 9 5.31 0.20 0.98 84.2 { 100.0 27.2 1.29 1.00 1.97 0.82 8 4.32 0.74 1.00 93.8 98.6 98.6 88.4 1.86 1.18 2.00 1.08 6 4.14 0.92 1.00 97.6 99.0 99.8 97.8 2.16 1.36 2.40 1.55 6 4.08 0.98 1.00 99.4 98.0 99.8 98.4 1.59 1.48 4.05 2.76 4 4.016 1.00 1.00 100.0 98.6 100.0 100.0 2.50 2.32 5.90 4.00 4 4.032 1.00 1.00 100.0 98.6 100.0 100.0 4.57 4.18 10.75 7.47 4 4.064 1.00 1.00 100.0 98.6 100.0 100.0 10.04 8.59 24.78 16.58 4 4.0128 1.00 1.00 100.0 98.2 100.0 100.0 23.79 19.64 43.14 31.42 4 4.0n = 1600t �min � %E %I %A %T Nmax N Cmax C Kmax K1a 0.46 0.98 82.8 { { { { { 1.85 0.23 9 5.51 0.46 0.98 82.8 { 100.0 92.0 1.39 1.09 0.88 0.32 8 4.52 0.63 0.99 89.8 98.2 98.2 91.0 2.00 1.26 1.74 0.44 8 4.14 0.76 1.00 96.8 98.4 99.6 96.6 2.15 1.33 2.58 0.72 6 4.08 0.94 1.00 98.8 93.6 100.0 99.8 1.67 1.53 2.23 1.48 4 4.016 0.97 1.00 99.6 94.0 100.0 100.0 2.60 2.38 3.91 2.78 4 4.032 1.00 1.00 100.0 94.4 100.0 100.0 4.64 4.21 7.54 5.37 4 4.064 1.00 1.00 100.0 94.4 100.0 100.0 9.16 8.19 15.20 10.49 4 4.0128 1.00 1.00 100.0 91.8 100.0 100.0 18.97 16.55 26.25 19.17 4 4.0aData for DLACON� N: The exeution time for xLACN1 normalized against the time taken by xLACON.� C: the perentage of time spent in xLACN1 for a given A.� K: the number of matrix-matrix operations for a given A.In Tables 3 and 4 we show detailed statistial results and make the following om-ments.� Inreasing t usually improves the quality of the estimates. However, this is notalways true as %I is not monotoni inreasing. Nevertheless, estimates exat over90% and 70% of the time an be omputed for the real and omplex ases respe-tively, with t relatively small ompared with n. Fast onvergene, whih is notexplained by the underlying theory, is reorded throughout the experiments. Allthese observations are onsistent with those in [9℄.� As t inreases, the time taken for eah iteration inreases. However, using multiplesearh vetors (t > 1) aelerates the rate of onvergene and also allows the use oflevel 3 BLAS, so exeution time grows muh more slowly than t. In this omputingenvironment t = 2 or t = 4 produes distintly better estimates than those fromxLACON with only a modest inrease in exeution time.7

Table 4: Experimental results for ZLACN1 using 500 omplex random matries with di-mensions n = 800 and n = 1600. n = 800t �min � %E %I %A %T Nmax N Cmax C Kmax K1a 0.25 0.85 28.4 { { { { { 1.67 0.85 11 6.41 0.25 0.94 49.2 { 100.0 100.0 1.61 1.19 1.86 0.81 11 5.42 0.68 0.97 62.4 90.2 98.8 94.2 2.97 1.41 2.15 1.58 11 5.14 0.56 0.98 78.2 87.4 99.8 91.0 2.59 1.39 3.85 3.06 9 4.98 0.78 0.99 89.6 90.2 100.0 100.0 4.03 1.90 5.06 4.35 9 4.716 0.78 1.00 96.4 93.6 100.0 100.0 5.33 2.98 6.23 5.51 9 4.632 0.78 1.00 98.6 94.2 100.0 100.0 7.53 5.60 6.48 5.93 7 4.564 0.94 1.00 99.8 95.0 100.0 100.0 15.15 11.23 6.63 6.15 7 4.5128 1.00 1.00 100.0 95.2 100.0 100.0 26.06 19.12 7.75 7.27 5 4.5n = 1600t �min � %E %I %A %T Nmax N Cmax C Kmax K1a 0.26 0.86 26.2 { { { { { 1.55 0.39 11 6.41 0.51 0.93 44.6 { 100.0 100.0 2.04 1.47 1.13 0.31 11 5.42 0.66 0.97 57.2 80.4 99.0 99.8 3.68 1.68 1.52 0.63 11 5.14 0.67 0.98 75.8 80.8 99.6 99.2 3.14 1.69 2.34 1.22 9 5.08 0.81 0.99 88.2 84.4 100.0 100.0 5.10 2.21 2.74 1.80 9 4.816 0.86 1.00 95.4 87.4 100.0 100.0 5.88 3.24 3.01 2.45 7 4.732 0.88 1.00 98.8 89.2 100.0 100.0 8.15 5.47 3.38 2.89 7 4.664 0.92 1.00 99.8 90.0 100.0 100.0 13.60 10.26 3.58 3.22 7 4.6128 0.94 1.00 99.8 90.0 100.0 100.0 24.14 18.13 4.01 3.67 5 4.6aData for ZLACON� As n inreases, C dereases as the matrix-matrix operations start to dominate theoverall ost.5 Conluding RemarksWe have desribed a Fortran 77 implementation in LAPACK style of the blok matrix1-norm estimator of Higham and Tisseur [9℄. Our experiments show that with t = 2or 4 the new ode o�ers better estimates than the existing LAPACK ode xLACON withsimilar exeution time. For our random test matries, with t = 4 estimates exat over95% and 75% of the time are ahieved in the real and omplex ases, respetively, withexeution time growing muh slower than t thanks to the use of level 3 BLAS and theaelerated onvergene.We propose that xLACN1 be inluded as an auxiliary routine in LAPACK. We do notsuggest replaing xLACON with xLACN1 (with t = 2, say)1 beause this would bring ahange in alling sequene and an inrease in workspae requirements and hene would1We note that the xGyCON drivers all speial versions of level 2 BLAS triangular solvers that saleto prevent overow; if these drivers are modi�ed to all xLACN1 then speial level 3 BLAS triangularsolvers with saling would need to be written. 8

require users to modify existing odes that all LAPACK drivers or all the estimatordiretly2. Moreover, sine xLACON is deterministi while xLACN1 with t > 1 an produedi�erent estimates on di�erent invoations (beause of the random starting vetors) suha hange ould onfuse users. But sine xLACN1 is the state of the art norm estimatorand is of value to knowledgeable users who need better and tuneable norm estimates webelieve it is worth inluding in LAPACK as an auxiliary routine.AknowledgementsWe thank Fran�oise Tisseur for the quiksort subroutine DLASRT.

2Replaing xLACON by xLACN1 with t = 1 is not an option, sine the latter is less reliable, due to theformer's rather ad ho but very e�etive \extra vetor".9

A AppendixIn this appendix we list the double preision odes DLACN1 (main routine) and DLARPC(tests for and replaes repeated olumns).All the odes are available from http://www.s.man.a.uk/~sheng/PCMF/SUBROUTINE DLACN1(N, T, V, X, LDX, XOLD, LDXOLD, WRK,$ H, IND, INDH, EST, KASE, ISEED, INFO)** .. Salar Arguments ..INTEGER INFO, KASE, LDXOLD, LDX, N, TDOUBLE PRECISION EST* ..* .. Array Arguments ..INTEGER IND(*), INDH(*), ISEED(4)DOUBLE PRECISION H(*), V(*), X(LDX, *), WRK(*),$ XOLD(LDXOLD, *)* ..** Purpose* =======** DLACN1 estimates the 1-norm of a square, real matrix A.* Reverse ommuniation is used for evaluating matrix-matrix produts.** Arguments* =========** N (input) INTEGER* The order of the matrix. N >= 1.** T (input) INTEGER* The number of olumns used at eah step.** V (output) DOUBLE PRECISION array, dimension (N).* On the final return, V = A*W, where EST = norm(V)/norm(W)* (W is not returned).** X (input/output) DOUBLE PRECISION array, dimension (N,T)* On an intermediate return, X should be overwritten by* A * X, if KASE=1,* A' * X, if KASE=2,* and DLACN1 must be re-alled with all the other parameters* unhanged.** LDX (input) INTEGER* The leading dimension of X. LDX >= max(1,N).** XOLD (workspae) DOUBLE PRECISION array, dimension (N,T)* 10

* LDXOLD (input) INTEGER* The leading dimension of XOLD. LDXOLD >= max(1,N).** WRK (workspae) DOUBLE PRECISION array, dimension (T)** H (workspae) DOUBLE PRECISION array, dimension (N)** IND (workspae) INTEGER array, dimension (N)** INDH (workspae) INTEGER array, dimension (N)** EST (output) DOUBLE PRECISION* An estimate (a lower bound) for norm(A).** KASE (input/output) INTEGER* On the initial all to DLACN1, KASE should be 0.* On an intermediate return, KASE will be 1 or 2, indiating* whether X should be overwritten by A * X or A' * X.* On the final return from DLACN1, KASE will again be 0.** ISEED (input/output) INTEGER array, dimension (4)* On entry, the seed of the random number generator; the array* elements must be between 0 and 4095, and ISEED(4) must be* odd.* On exit, the seed is updated.** INFO (output) INTEGER* INFO desribes how the iteration terminated:* INFO = 1: iteration limit reahed.* INFO = 2: estimate not inreased.* INFO = 3: repeated sign matrix.* INFO = 4: power method onvergene test.* INFO = 5: repeated unit vetors.** ==** .. Parameters ..INTEGER ITMAXPARAMETER (ITMAX = 5)DOUBLE PRECISION ZERO, ONE, TWOPARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0, TWO = 2.0D+0)* ..* .. Loal Salars ..INTEGER I, IBEST, ITEMP, ITER, J, JUMPDOUBLE PRECISION ESTOLD, TEMP* ..* .. External Funtions ..INTEGER IDAMAXDOUBLE PRECISION DASUM, DDOTEXTERNAL DASUM, DDOT, IDAMAX11

* ..* .. External Subroutines ..EXTERNAL DCOPY, DLACPY, DLAPST, DLARNV, DLARPC, DLASCL* ..* .. Intrinsi Funtions ..INTRINSIC ABS, DBLE, NINT, SIGN* ..* .. Save statement ..SAVE* ..* .. Exeutable Statements ..** IF(KASE .EQ. 0) THEN* ESTOLD = ZEROITER = 1ITEMP = 1INFO = 0* DO 10 I = 1, NX(I, 1) = ONEIND(I) = IINDH(I) = 010 CONTINUE* DO 30 J = 2, TCALL DLARNV(2, ISEED, N, X(1, J))DO 20 I = 1, NX(I, J) = SIGN(ONE, X(I, J))20 CONTINUE30 CONTINUE* IF (T .GT. 1)$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)* CALL DLASCL('G', 0, 0, DBLE(N), ONE, N, T, X, LDX, INFO)* KASE = 1JUMP = 1RETURNEND IF* GO TO (40, 100) JUMP** ENTRY (JUMP = 1)* FIRST HALF OF THE ITERATION: X HAS BEEN OVERWRITTEN BY A*X.* 40 CONTINUE* 12

IF (ITER .EQ. 1 .AND. N .EQ. 1) THENV(1) = X(1, 1)EST = ABS(V(1))* ... QUITGO TO 210END IFEST = ZERODO 50 J = 1, TTEMP = DASUM(N, X(1, J), 1)IF (TEMP .GT. EST) THENEST = TEMPITEMP = JEND IF50 CONTINUE* IF (EST .GT. ESTOLD .OR. ITER .EQ. 2) THENIBEST = IND(ITEMP)END IF* IF (EST .LE. ESTOLD .AND. ITER .GE. 2) THENEST = ESTOLDINFO = 2GO TO 210END IF* ESTOLD = ESTCALL DCOPY(N, X(1, ITEMP), 1, V, 1)* IF (ITER .GT. ITMAX) THENINFO = 1GO TO 210END IF* DO 70 J = 1, TDO 60 I = 1, NX(I, J) = SIGN(ONE, X(I, J))60 CONTINUE70 CONTINUE* IF (ITER .GT. 1) THEN** IF ALL COLUMNS of X PARALLEL TO XOLD, EXIT.* DO 80 J = 1, TCALL DGEMV('Transpose', N, T, ONE, XOLD, LDXOLD,$ X(1, J), 1, ZERO, WRK, 1)IF (NINT(ABS(WRK(IDAMAX(T, WRK, 1)))) .LT. N) GO TO 9080 CONTINUEINFO = 3 13

GO TO 210* 90 CONTINUE* IF (T. GT. 1)$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)* ELSE* IF (T. GT. 1)$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, 0, ISEED)* END IF* CALL DLACPY('Whole', N, T, X, LDX, XOLD, LDXOLD)* KASE = 2JUMP = 2RETURN** ENTRY (JUMP = 2)* SECOND HALF OF THE ITERATION:* X HAS BEEN OVERWRITTEN BY TRANSPOSE(A)*X.* 100 CONTINUE* DO 110 I = 1, NH(I) = ABS(X (I, IDAMAX(T, X(I, 1), N)))IND(I) = I110 CONTINUE* IF (ITER .GE. 2 .AND. H(IDAMAX(N, H, 1)) .EQ. H(IBEST)) THENINFO = 4GO TO 210END IF** Sort so that h(i) >= h(j) for i < j* CALL DLAPST('D', N, H, IND, ITEMP)* IF (ITER .EQ. 1) THENITEMP = TGO TO 170END IF** IF IND(1:T) IS CONTAINED IN INDH, TERMINATE.* IF (T .GT. 1) THENDO 130 J = 1, TDO 120 I = 1, (ITER-1)*T 14

IF (I .GT. N .OR. IND(J) .EQ. INDH(I)) GO TO 130120 CONTINUEGO TO 140130 CONTINUEINFO = 5GO TO 210140 CONTINUE** REPLACE IND(1:T) BY THE FIRST T INDICES IN IND THAT* ARE NOT IN INDH.* ITEMP = 1DO 160 J = 1, NDO 150 I = 1, (ITER-1)*TIF (I .GT. N .OR. IND(J) .EQ. INDH(I)) GO TO 160150 CONTINUEIND(ITEMP) = IND(J)IF (ITEMP .EQ. T) GO TO 170ITEMP = ITEMP + 1160 CONTINUEEND IF* ITEMP = ITEMP - 1* 170 CONTINUE* IF ((ITER-1)*T .GE. N) THENDO 180 J = 1, ITEMPINDH((ITER-1)*T+J) = IND(J)180 CONTINUEEND IF* DO 200 J = 1, TDO 190 I = 1, NX(I, J) = ZERO190 CONTINUEX(IND(J), J) = ONE200 CONTINUE* ITER = ITER + 1* KASE = 1JUMP = 1RETURN* 210 CONTINUEKASE = 0RETURN** End of DLACN1 15

* ENDSUBROUTINE DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)** .. Salar Arguments ..INTEGER N, T, LDX, LDXOLD, KASE, ISEED(4)* ..* .. Array Arguments ..DOUBLE PRECISION WRK(*), X(LDX, *), XOLD(LDXOLD, *)* ..** Purpose* =======** DLARPC looks for and replaes olumns of X whih are parallel to* olumns of XOLD and itself.** Arguments* =========** N (input) INTEGER* The number of rows. N >= 1.** T (input) INTEGER* The number of olumns used at eah step.** X (input/output) DOUBLE PRECISION array, dimension (N,T)* On return, X will have full rank.** LDX (input) INTEGER* The leading dimension of X. LDX >= max(1,N).** XOLD (input/output) DOUBLE PRECISION array, dimension (N,T)* On return, XOLD will have full rank.** LDXOLD (input) INTEGER* The leading dimension of XOLD. LDXOLD >= max(1,N).** WRK (workspae) DOUBLE PRECISION array, dimension (T)** KASE (input) INTEGER* Chek parallel olumns within X only when KASE = 0,* hek both X and XOLD otherwise.** ISEED (input/output) INTEGER array, dimension (4)* On entry, the seed of the random number generator; the array* elements must be between 0 and 4095, and ISEED(4) must be16

* odd.* On exit, the seed is updated.** .. Parameters ..DOUBLE PRECISION ZERO, ONEPARAMETER (ZERO = 0.0D+0, ONE = 1.0D+0)* ..* .. Loal Salars ..INTEGER I, J, JSTART, PCOL* ..* .. External Funtions ..INTEGER IDAMAXEXTERNAL IDAMAX* ..* .. External Subroutines ..EXTERNAL DGEMV, DLARNV* ..* .. Intrinsi Funtions ..INTRINSIC ABS, NINT, SIGN* ..* .. Exeutable Statements ..* IF (KASE .EQ. 0) THENJSTART = 2ELSEJSTART = 1END IF* DO 50 J = JSTART, T* PCOL = 0* IF (KASE .EQ. 0) GO TO 3010 CALL DGEMV('Transpose', N, T, ONE, XOLD, LDXOLD,$ X(1, J), 1, ZERO, WRK, 1)IF (NINT (ABS (WRK (IDAMAX (T, WRK, 1))))$.EQ. N) THENPCOL = PCOL + 1CALL DLARNV(2, ISEED, N, X(1, J))DO 20 I = 1, NX(I, J) = SIGN(ONE, X(I, J))20 CONTINUEIF (PCOL .GE. N/T) GO TO 60GO TO 10END IF* IF (J .EQ. 1) GO TO 5030 CALL DGEMV('Transpose', N, J-1, ONE, X, LDX,$ X(1, J), 1, ZERO, WRK, 1)IF (NINT (ABS (WRK (IDAMAX (J-1, WRK, 1))))17

$.EQ. N) THENPCOL = PCOL + 1CALL DLARNV(2, ISEED, N, X(1, J))DO 40 I = 1, NX(I, J) = SIGN(ONE, X(I, J))40 CONTINUEIF (PCOL .GE. N/T) GO TO 60IF (KASE .EQ. 0) THENGO TO 30ELSEGO TO 10END IFEND IF* 50 CONTINUE60 CONTINUERETURN** End of DLARPC* END

18

Referenes[1℄ E. Anderson, Z. Bai, C. H. Bishof, S. Blakford, J. W. Demmel, J. J. Dongarra, J. J.Du Croz, A. Greenbaum, S. J. Hammarling, A. MKenney, and D. C. Sorensen. LA-PACK Users' Guide. Soiety for Industrial and Applied Mathematis, Philadelphia,PA, USA, third edition, 1999.[2℄ L. S. Blakford, J. Choi, A. Cleary, E. D'Azevedo, J. W. Demmel, I. Dhillon, J. J.Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.Whaley. SaLAPACK Users' Guide. Soiety for Industrial and Applied Mathematis,Philadelphia, PA, USA, �rst edition, 1997.[3℄ Sheung Hun Cheng and Niholas J. Higham. Parallel implementation of a blok algo-rithm for matrix 1-norm estimation. Numerial Analysis Report No. 374, ManhesterCentre for Computational Mathematis, Manhester, England, February 2001. Toappear in Proeedings of EuroPar 2001, Manhester.[4℄ Inderjit Dhillon. Reliable omputation of the ondition number of a tridiagonal matrixin O(n) time. SIAM J. Matrix Anal. Appl., 19(3):776{796, 1998.[5℄ W. W. Hager. Conditions estimates. SIAM J. Si. Stat. Comput., 5:311{316, 1984.[6℄ Niholas J. Higham. FORTRAN odes for estimating the one-norm of a real oromplex matrix, with appliations to ondition estimation (Algorithm 674). ACMTrans. Math. Software, 14(4):381{396, Deember 1988.[7℄ Niholas J. Higham. Experiene with a matrix norm estimator. SIAM J. Si. Stat.Comput., 11:804{809, 1990.[8℄ Niholas J. Higham. Auray and Stability of Numerial Algorithms. Soiety forIndustrial and Applied Mathematis, Philadelphia, PA, USA, 1996.[9℄ Niholas J. Higham and Fran�oise Tisseur. A blok algorithm for matrix 1-normestimation, with an appliation to 1-norm pseudospetra. SIAM J. Matrix Anal.Appl., 21(4):1185{1201, 2000.[10℄ The MathWork, In., Natik, MA, USA. Using MATLAB, 2000. Online version.

19

