Implementation for LAPACK of a Block Algorithm for Matrix 1-Norm Estimation *

Sheung Hun Cheng ${ }^{\dagger}$ Nicholas J. Higham ${ }^{\ddagger}$

August 13, 2001

Abstract

We describe double precision and complex*16 Fortran 77 implementations, in LAPACK style, of a block matrix 1-norm estimator of Higham and Tisseur. This estimator differs from that underlying the existing LAPACK code, xLACON, in that it iterates with a matrix with t columns, where $t \geq 1$ is a parameter, rather than with a vector, and so the basic computational kernel is level 3 BLAS operations. Our experiments with random matrices on a Sun SPARCStation Ultra-5 show that with $t=2$ or 4 the new code offers better estimates than xLACON with a similar execution time. Moreover, with $t>2$, estimates exact over 95% and 75% of the time are achieved for the real and complex version respectively, with execution time growing much slower than t. We recommend this new code be included as an auxiliary routine in LAPACK to complement the existing LAPACK routine xLACON, upon which the various drivers should still be based for compatibility reasons.

1 Introduction

Error bounds for computed solutions to linear systems, least squares and eigenvalue problems all involve condition numbers, which measure the sensitivity of the solution to perturbations in the data. Thus, condition numbers are an important tool for assessing the quality of the computed solutions. Typically, these condition numbers are as expensive to compute as the solution itself [8]. The LAPACK [1] and ScaLAPACK [2] condition numbers and error bounds are based on estimated condition numbers, using the method of Hager [5], which was subsequently improved by Higham [6]. Hager's method estimates $\|B\|_{1}$ given only the ability to compute matrix-vector products $B x$ and $B^{T} y$. If we take $B=A^{-1}$ and compute the required products by solving linear systems with A, we obtain an estimate of the 1-norm condition number $\kappa_{1}(A)=\|A\|_{1}\left\|A^{-1}\right\|_{1}$.

[^0]In LAPACK and ScaLAPACK Higham's version of Hager's method is implemented in routines xLACON and PxLACON, respectively. Both routines have a reverse communication interface. There are two advantages to having such an interface. First it provides flexibility, as the dependence on B and its associated matrix-vector operations is isolated from the computational routines xLACON and PxLACON, with the matrix-vector products provided by a "black box" [6]. By changing these black boxes, xLACON and PxLACON can be applied to different matrix functions for both dense and sparse matrices. Second, as the bulk of the computational effort is in matrix-vector operations, efficient implementation of these operations ensures good overall performance of xLACON and PxLACON, and thus a focus is provided for performance tuning.

The price to pay for using an estimate instead of the exact condition number is that it can sometimes be a poor estimate. Experiments in [6] show that the underestimation is rarely by more than a factor of 10 (the estimate is, in fact, a lower bound), which is acceptable in practice as it is the magnitude of the condition number that is of interest. However, counterexamples for which the condition numbers can be arbitrarily poor estimates exist [6], [7]. Moreover, when the accuracy of the estimates becomes important for certain applications [9], the method does not provide an obvious way to improve the estimate.

Higham and Tisseur [9] present a block generalization of the estimator of [5], [6] that iterates with an $n \times t$ matrix, where $t \geq 1$ is a parameter, enabling the exploitation of matrix-matrix operations (level 3 BLAS) and thus promising greater efficiency and parallelism. The block algorithm also offers the potential of better estimates and a faster convergence rate, through providing more information on which to base decisions. Moreover, part of the starting matrix is randomly formed, which introduces a stochastic flavour and reduces the importance of counterexamples.

We have implemented this block algorithm using Fortran 77 in the LAPACK programming style and report performance on a Sun SPRACStation Ultra-5. The rest of this note is organized as follows. We describe the block 1-norm estimator in Section 2. In Section 3 we present and explain details of our implementation of the estimator. The performance of the implementation is evaluated in Section 4. Finally, we summarize our findings in Section 5.

2 Block 1-Norm Estimator

In this section we give pseudo-code for the real version of the block 1-norm estimator, which is basically a block power method for the matrix 1-norm. See [9] for a derivation and explanation of the algorithm. We use MATLAB array and indexing notation [10]. We denote by rand $\{-1,1\}$ a vector with elements from the uniform distribution on the set $\{-1,1\}$.

Algorithm 2.1 (block 1-norm estimator) Given $A \in \mathbb{R}^{n \times n}$ and positive integers t and itmax ≥ 2, this algorithm computes a scalar est and vectors v and w such that est $\leq\|A\|_{1}, w=A v$ and $\|w\|_{1}=$ est $\|v\|_{1}$.

Choose starting matrix $X \in \mathbb{R}^{n \times t}$ with first column the vector of 1s and remaining columns rand $\{-1,1\}$, with a check for and replacement of parallel columns.
ind_hist $=[]$ \% Integer vector recording indices of used unit vectors e_{j}.
est $_{\text {old }}=0, \operatorname{ind}=\operatorname{zeros}(n, 1), S=\operatorname{zeros}(n, t)$
for $k=1,2, \ldots$

$$
\begin{align*}
& Y=A X \tag{1}\\
& \text { est }=\max \left\{\|Y(:, j)\|_{1}: j=1: t\right\}
\end{align*}
$$

if est $>$ est $_{\text {old }}$ or $k=2$
ind_best $=\operatorname{ind}_{j}$ where est $=\|Y(:, j)\|_{1}, w=Y(:$, ind_best $)$
end
if $k \geq 2$ and est \leq est $_{\text {old }}$, est $=$ est $_{\text {old }}$, goto (5), end
est $_{\text {old }}=$ est, $S_{\text {old }}=S$
if $k>$ itmax, goto (5), end
$S=\operatorname{sign}(Y) \quad \% \operatorname{sign}(x)=1$ if $x \geq 0$ else -1
If every column of S is parallel to a column of $S_{\text {old }}$, goto (5), end if $t>1$

Ensure that no column of S is parallel to another column of S or to a column of $S_{\text {old }}$ by replacing columns of S by rand $\{-1,1\}$.
end
$Z=A^{T} S$
$h_{i}=\|Z(i,:)\|_{\infty}, \operatorname{ind}_{i}=i, i=1: n$
if $k \geq 2$ and $\max \left(h_{i}\right)=h_{\text {ind_best }}$, goto (5), end
Sort h so that $h_{1} \geq \cdots \geq h_{n}$ and re-order ind correspondingly.
if $t>1$
If ind(1:t) is contained in ind_hist, goto (5), end
Replace ind $(1: t)$ by the first t indices in $\operatorname{ind}(1: n)$ that are
not in ind_hist.
end
$X(:, j)=e_{\text {ind }_{j}}, j=1: t$
ind $_$hist $=[$ind_hist ind $(1: t)]$
end
(5)
$v=e_{\text {ind_best }}$
Statements (1) and (4) are the most expensive parts of the computation and are where a reverse communication interface is employed. It is easily seen that if statements (1) and (4) are replaced by "Solve $A Y=X$ for Y " and "Solve Z for $A^{T} Z=S$ for Z ", respectively, then Algorithm 2.1 estimates $\left\|A^{-1}\right\|_{1}$.

MATLAB 6 contains an implementation of Algorithm 2.1 in function normest1, which is used by the condition number estimation function condest. Moreover, a ScaLAPACK programming style implementation is also available. The implementation details and its performance are reported in [3].

An example, discovered by Dhillon [4], for which the current LAPACK estimator badly underestimates the norm is the inverse of the tridiagonal matrix T with zero diagonal and ones on the sub- and superdiagonals. Algorithm 2.1 does much better for this matrix. Here we use MATLAB (R12.1) to show the result of applying DLACON and Algorithm 2.1 with $t=2$ to estimate the condition number of T. The following M-file invokes Algorithm 2.1 twice in succession (hence with different starting vectors).

```
rand('seed',1)
disp(' Underestimation ratios')
```

```
disp(' n Alg. 2.1 Alg. 2.1 DLACON')
```

for $\mathrm{n}=10: 10: 100$
A = full(gallery('tridiag', $n, 1,0,1$));
fprintf(\% $\%$.0f $\% 4.3 f \quad \% 4.3 f \quad \% 4.3 f \backslash n ', n$, condest $(A) / c o n d(A, 1), \ldots$
condest(A)/cond(A,1), $1 /(\operatorname{cond}(A, 1) * r \operatorname{cond}(A)))$
end

The output is

	Underestimation		
n	ratios		
10	Alg. 2.1	Alg. 2.1	DLACON
20	1.000	1.000	0.200
30	1.000	1.000	0.100
40	1.000	1.000	0.067
50	1.000	1.000	0.050
60	1.000	0.833	0.040
70	1.000	1.000	0.029
80	1.000	1.000	0.025
90	0.956	0.956	0.022
100	0.880	1.000	0.020

3 Implementation Details

We have implemented Algorithm 2.1 in double precision and complex*16 using Fortran 77 in the LAPACK programming style. Our code uses the highest level of BLAS whenever possible.

We set the maximum number of iterations itmax to 5 , which is rarely reached. When this limit is reached we have, in fact, performed $5 \frac{1}{2}$ iterations, as the test (2) in Algorithm 2.1 comes after the matrix product $Y=A X$. This allows us to make use of the new search direction generated at the end of the fifth iteration.

Most of Algorithm 2.1 is straightforwardly translated into Fortran code apart from statement (3), which deserves detailed explanation. Statement (3) is a novel feature of Algorithm 2.1 in which parallel columns within the current sign matrix S and between S and $S_{\text {old }}$ are replaced by rand $\{-1,1\}$. The replacement of parallel columns avoids redundant computation and may lead to a better estimate [9]. The detection of parallel columns is done by forming inner products between columns and looking for elements of magnitude n. Obviously, we should only check for parallel columns when $t>1$. Using the notation of Algorithm 2.1, statement (3) is implemented as follows:
iter $=0$
for $i=1$: t
while iter $<n / t$

$$
\begin{align*}
& y=S_{\text {old }}^{T} S(:, i) \tag{A}\\
& \text { iter }=\text { iter }+1 \\
& \text { if }\|y\|_{\infty}<n \\
& \quad y=S(:, 1: i-1)^{T} S(:, i) \tag{B}
\end{align*}
$$

Table 1: Storage requirements of old (xLACON) and new (xLACN1) codes.

$$
\begin{array}{l|cccc}
\text { Data type } & \text { DLACON } & \text { DLACN1 } & \text { ZLACON } & \text { ZLACN1 } \\
\hline \text { double/complex } & 2 n & 2 t n+2 n+t & 2 n & 2 t n+2 n \\
\text { integer } & n & 2 n & - & 2 n \\
\quad \text { iter }=\text { iter }+1 \\
\text { if }\|y\|_{\infty}<n \text {, goto }(\#), \text { end } \\
\text { end } \\
\quad S(:, i)=\operatorname{rand}\{-1,1\} \\
\text { end }
\end{array}
$$

In the inner loop the number of matrix-vector products is limited to n / t. As the computational cost of Algorithm 2.1 is $\mathrm{O}\left(n^{2} t\right)$ flops and (A) and (B) both cost $\mathrm{O}(n t)$ flops, this choice of limit ensures that the cost of replacing parallel columns does not dominate the overall cost.

For the complex*16 implementation, the sign matrix function is defined elementwise by $\operatorname{sign}\left(a_{i j}\right)=a_{i j} /\left|a_{i j}\right|$ and $\operatorname{sign}(0)=1$. The benefit of checking for parallel columns is dramatically reduced in the complex case, as explained in [9]. We omit this novel feature in our complex*16 implementation.

The new real and complex versions of our implementations are called DLACN1 and ZLACN1 respectively. Their storage requirements grow roughly like $2 t n$; see Table 1 for a comparison of storage with xLACON.

Two additional routines are used by xLACN1. DLAPST is a modified version of the LAPACK quicksort routine DLASRT; it returns the permutation that achieves the sort as well as the sorted array. The routine DLARPC carries out the tests for and replacement of repeated columns in statement (3) of Algorithm 2.1.

4 Numerical Experiments

In this section, our aim is to examine the performance of DLACN1and ZLACN1. We have addressed the issues of accuracy and reliability of our implementations by reproducing parts of the experimental results in Higham and Tisseur [9], thereby validating our code. We note that there is no test routine for xLACON in the LAPACK test suite, but all the drivers that call xLACON (such as xGECON) do have test routines. In order to test DLACN1 and ZLACN1 we modified all LAPACK routines that call xLACON to make use of xLACN1 for $1 \leq t \leq 4$ and then ran the LAPACK tests. There were no failures, so in this sense both DLACN1 and ZLACN1 have passed the LAPACK test suite in the computing environment described below.

Our main focus in this section is to measure the efficiency of our implementation. We investigate how the relation between accuracy and execution time varies with n and t. We tested DLACN1 and ZLACN1 on a Sun SPARCStation Ultra-5. The compiler and library details are given in Table 2.

Table 2: Characteristics of the Sun SPARCStation Ultra-5, libraries and compiler options for the experiments.

Compiler	Sun WorkShop Compilers: Version 5.0 (f77)
Compiler Flags	-u -f -dalign -native -x05 -xarch=v8plusa
LAPACK	version 3.0
BLAS	ATLAS optimized
ATLAS	version 3.2.1

We use the same compiler flags as were used to compile the LAPACK installation. This provides a basis for measuring and comparing the performance of our implementation with their counterparts in the LAPACK routine, namely DLACON and ZLACON.

We estimate $\left\|A^{-1}\right\|_{1}$ for $n \times n$ random matrices A with $n=800$ and 1600 . For each n, a total of 500 random matrices A are generated, variously from the uniform $(0,1)$, uniform $(-1,1)$ or normal $(0,1)$ distributions for testing DLACN1. For testing ZLACN1, random matrices are generated with the following distributions;

- both the real and imaginary parts are each uniform $(0,1)$,
- both the real and imaginary parts are each uniform $(-1,1)$,
- both the real and imaginary parts are each normal $(0,1)$.

The LU factorization with partial pivoting of A is supplied to the 1-norm estimators. The cost of this part of computation does not contribute to the overall timing result. This arrangement is reasonable as the LU factorization is usually readily available in practice, as when solving a linear system, for example. The inverse of A is computed explicitly to obtain the "exact" $\left\|A^{-1}\right\|_{1}$. For a given matrix A we first generated a starting matrix X_{1} with 128 columns, where 128 is the largest value of t to be used, and then ran Algorithm 2.1 for $t=1,2, \ldots, 128$ using starting matrix $X_{1}(:, 1: t)$. In this way we could see the effect of increasing t with fixed n.

For each test matrix we recorded a variety of statistics in which the subscripts min, max and an overbar denote the minimum, maximum, and average of a particular measure respectively:

- α : the underestimation ratio $\alpha=$ est $/\left\|A^{-1}\right\|_{1} \leq 1$, over each A for fixed t.
- \%E: the percentage of estimates that are exact. An estimate is regarded as exact if the relative error |est $-\left\|A^{-1}\right\|_{1} \mid /\left\|A^{-1}\right\|_{1}$ is no larger than $n u$, where u is the unit roundoff $\left(u=2^{-53} \approx 10^{-16}\right)$.
- \%I: for a given t, the percentage of estimates that are at least as large as the estimates for all smaller t.
- \%A: For a given t, the percentage of the estimates that are at least as large as the estimates from xLACON, to within a relative tolerance $n u$.
- \%T: the percentage of the cases for which our implementation took longer to complete than xLACON.

Table 3: Experimental results for DLACN1 using 500 real random matrices with dimensions $\underline{n=800}$ and $n=1600$.

$n=800$												
t	$\alpha_{\text {min }}$	$\bar{\alpha}$	\%E	\%I	\%A	\%T	$\mathrm{N}_{\text {max }}$	$\overline{\mathrm{N}}$	$\mathrm{C}_{\text {max }}$	$\overline{\mathrm{C}}$	$\mathrm{K}_{\text {max }}$	$\overline{\overline{\mathrm{K}}}$
1^{a}	0.20	0.98	84.2	-	-	-	-	-	1.49	0.51	9	5.3
1	0.20	0.98	84.2	-	100.0	27.2	1.29	1.00	1.97	0.82	8	4.3
2	0.74	1.00	93.8	98.6	98.6	88.4	1.86	1.18	2.00	1.08	6	4.1
4	0.92	1.00	97.6	99.0	99.8	97.8	2.16	1.36	2.40	1.55	6	4.0
8	0.98	1.00	99.4	98.0	99.8	98.4	1.59	1.48	4.05	2.76	4	4.0
16	1.00	1.00	100.0	98.6	100.0	100.0	2.50	2.32	5.90	4.00	4	4.0
32	1.00	1.00	100.0	98.6	100.0	100.0	4.57	4.18	10.75	7.47	4	4.0
64	1.00	1.00	100.0	98.6	100.0	100.0	10.04	8.59	24.78	16.58	4	4.0
128	1.00	1.00	100.0	98.2	100.0	100.0	23.79	19.64	43.14	31.42	4	4.0
$n=1600$												

t	$\alpha_{\min }$	$\bar{\alpha}$	$\% \mathrm{E}$	$\% \mathrm{I}$	$\% \mathrm{~A}$	$\% \mathrm{~T}$	$\mathrm{~N}_{\max }$	$\overline{\mathrm{N}}$	$\mathrm{C}_{\max }$	$\overline{\mathrm{C}}$	$\mathrm{K}_{\max }$	$\overline{\mathrm{K}}$
1^{a}	0.46	0.98	82.8	-	-	-	-	-	1.85	0.23	9	5.5
1	0.46	0.98	82.8	-	100.0	92.0	1.39	1.09	0.88	0.32	8	4.5
2	0.63	0.99	89.8	98.2	98.2	91.0	2.00	1.26	1.74	0.44	8	4.1
4	0.76	1.00	96.8	98.4	99.6	96.6	2.15	1.33	2.58	0.72	6	4.0
8	0.94	1.00	98.8	93.6	100.0	99.8	1.67	1.53	2.23	1.48	4	4.0
16	0.97	1.00	99.6	94.0	100.0	100.0	2.60	2.38	3.91	2.78	4	4.0
32	1.00	1.00	100.0	94.4	100.0	100.0	4.64	4.21	7.54	5.37	4	4.0
64	1.00	1.00	100.0	94.4	100.0	100.0	9.16	8.19	15.20	10.49	4	4.0
128	1.00	1.00	100.0	91.8	100.0	100.0	18.97	16.55	26.25	19.17	4	4.0

${ }^{a}$ Data for DLACON

- N : The execution time for xLACN1 normalized against the time taken by xLACON.
- C: the percentage of time spent in xLACN1 for a given A.
- K: the number of matrix-matrix operations for a given A.

In Tables 3 and 4 we show detailed statistical results and make the following comments.

- Increasing t usually improves the quality of the estimates. However, this is not always true as $\% \mathrm{I}$ is not monotonic increasing. Nevertheless, estimates exact over 90% and 70% of the time can be computed for the real and complex cases respectively, with t relatively small compared with n. Fast convergence, which is not explained by the underlying theory, is recorded throughout the experiments. All these observations are consistent with those in [9].
- As t increases, the time taken for each iteration increases. However, using multiple search vectors $(t>1)$ accelerates the rate of convergence and also allows the use of level 3 BLAS, so execution time grows much more slowly than t. In this computing environment $t=2$ or $t=4$ produces distinctly better estimates than those from xLACON with only a modest increase in execution time.

Table 4: Experimental results for ZLACN1 using 500 complex random matrices with dimensions $n=800$ and $n=1600$.

$n=800$													
t	$\alpha_{\min }$	$\bar{\alpha}$	$\% \mathrm{E}$	$\% \mathrm{I}$	$\% \mathrm{~A}$	$\% \mathrm{~T}$	$\mathrm{~N}_{\max }$	$\overline{\mathrm{N}}$	$\mathrm{C}_{\max }$	$\overline{\mathrm{C}}$	$\mathrm{K}_{\max }$	$\overline{\mathrm{K}}$	
1^{a}	0.25	0.85	28.4	-	-	-	-	-	1.67	0.85	11	6.4	
1	0.25	0.94	49.2	-	100.0	100.0	1.61	1.19	1.86	0.81	11	5.4	
2	0.68	0.97	62.4	90.2	98.8	94.2	2.97	1.41	2.15	1.58	11	5.1	
4	0.56	0.98	78.2	87.4	99.8	91.0	2.59	1.39	3.85	3.06	9	4.9	
8	0.78	0.99	89.6	90.2	100.0	100.0	4.03	1.90	5.06	4.35	9	4.7	
16	0.78	1.00	96.4	93.6	100.0	100.0	5.33	2.98	6.23	5.51	9	4.6	
32	0.78	1.00	98.6	94.2	100.0	100.0	7.53	5.60	6.48	5.93	7	4.5	
64	0.94	1.00	99.8	95.0	100.0	100.0	15.15	11.23	6.63	6.15	7	4.5	
128	1.00	1.00	100.0	95.2	100.0	100.0	26.06	19.12	7.75	7.27	5	4.5	

$n=1600$												
t	$\alpha_{\text {min }}$	$\bar{\alpha}$	\%E	\%I	\%A	\%T	$\mathrm{N}_{\text {max }}$	$\overline{\mathrm{N}}$	$\mathrm{C}_{\text {max }}$	$\overline{\mathrm{C}}$	$\mathrm{K}_{\text {max }}$	$\overline{\mathrm{K}}$
1^{a}	0.26	0.86	26.2	-	-	-	-	-	1.55	0.39	11	6.4
1	0.51	0.93	44.6	-	100.0	100.0	2.04	1.47	1.13	0.31	11	5.4
2	0.66	0.97	57.2	80.4	99.0	99.8	3.68	1.68	1.52	0.63	11	5.1
4	0.67	0.98	75.8	80.8	99.6	99.2	3.14	1.69	2.34	1.22	9	5.0
8	0.81	0.99	88.2	84.4	100.0	100.0	5.10	2.21	2.74	1.80	9	4.8
16	0.86	1.00	95.4	87.4	100.0	100.0	5.88	3.24	3.01	2.45	7	4.7
32	0.88	1.00	98.8	89.2	100.0	100.0	8.15	5.47	3.38	2.89	7	4.6
64	0.92	1.00	99.8	90.0	100.0	100.0	13.60	10.26	3.58	3.22	7	4.6
128	0.94	1.00	99.8	90.0	100.0	100.0	24.14	18.13	4.01	3.67	5	4.6

${ }^{a}$ Data for ZLACON

- As n increases, $\overline{\mathrm{C}}$ decreases as the matrix-matrix operations start to dominate the overall cost.

5 Concluding Remarks

We have described a Fortran 77 implementation in LAPACK style of the block matrix 1-norm estimator of Higham and Tisseur [9]. Our experiments show that with $t=2$ or 4 the new code offers better estimates than the existing LAPACK code xLACON with similar execution time. For our random test matrices, with $t=4$ estimates exact over 95% and 75% of the time are achieved in the real and complex cases, respectively, with execution time growing much slower than t thanks to the use of level 3 BLAS and the accelerated convergence.

We propose that xLACN1 be included as an auxiliary routine in LAPACK. We do not suggest replacing xLACON with xLACN1 (with $t=2$, say) ${ }^{1}$ because this would bring a change in calling sequence and an increase in workspace requirements and hence would

[^1]require users to modify existing codes that call LAPACK drivers or call the estimator directly ${ }^{2}$. Moreover, since xLACON is deterministic while xLACN1 with $t>1$ can produce different estimates on different invocations (because of the random starting vectors) such a change could confuse users. But since xLACN1 is the state of the art norm estimator and is of value to knowledgeable users who need better and tuneable norm estimates we believe it is worth including in LAPACK as an auxiliary routine.

Acknowledgements

We thank Françoise Tisseur for the quicksort subroutine DLASRT.

[^2]
A Appendix

In this appendix we list the double precision codes DLACN1 (main routine) and DLARPC (tests for and replaces repeated columns).

All the codes are available from http://www.cs.man.ac.uk/~scheng/PCMF/

```
SUBROUTINE DLACN1( N, T, V, X, LDX, XOLD, LDXOLD, WRK,
$ H, IND, INDH, EST, KASE, ISEED, INFO )
.. Scalar Arguments ..
INTEGER INFO, KASE, LDXOLD, LDX, N, T
DOUBLE PRECISION EST
```

```
* .. Array Arguments ..
        INTEGER IND( * ), INDH( * ), ISEED( 4 )
        DOUBLE PRECISION H( * ), V( * ), X( LDX, * ), WRK( * ),
        $ XOLD( LDXOLD, * )
    Purpose
    =======
    DLACN1 estimates the 1-norm of a square, real matrix A.
    Reverse communication is used for evaluating matrix-matrix products.
    Arguments
    =========
N (input) INTEGER
The order of the matrix. N >= 1.
T (input) INTEGER
* The number of columns used at each step.
*
V (output) DOUBLE PRECISION array, dimension (N).
*
* (W is not returned).
*
* X (input/output) DOUBLE PRECISION array, dimension (N,T)
* On an intermediate return, X should be overwritten by
            A * X, if KASE=1,
            A' * X, if KASE=2,
        and DLACN1 must be re-called with all the other parameters
        unchanged.
LDX (input) INTEGER
        The leading dimension of X. LDX >= max(1,N).
*
* XOLD (workspace) DOUBLE PRECISION array, dimension (N,T)
```

```
LDXOLD (input) INTEGER
    The leading dimension of XOLD. LDXOLD >= max(1,N).
    WRK (workspace) DOUBLE PRECISION array, dimension (T)
    H (workspace) DOUBLE PRECISION array, dimension (N)
    IND (workspace) INTEGER array, dimension (N)
    INDH (workspace) INTEGER array, dimension (N)
EST (output) DOUBLE PRECISION
    An estimate (a lower bound) for norm(A).
KASE (input/output) INTEGER
On the initial call to DLACN1, KASE should be 0.
On an intermediate return, KASE will be 1 or 2, indicating
whether X should be overwritten by A * X or A' * X.
On the final return from DLACN1, KASE will again be 0.
ISEED (input/output) INTEGER array, dimension (4)
        On entry, the seed of the random number generator; the array
        elements must be between 0 and 4095, and ISEED(4) must be
        odd.
        On exit, the seed is updated.
INFO (output) INTEGER
INFO describes how the iteration terminated:
        INFO = 1: iteration limit reached.
        INFO = 2: estimate not increased.
        INFO = 3: repeated sign matrix.
        INFO = 4: power method convergence test.
        INFO = 5: repeated unit vectors.
    .. Parameters ..
    INTEGER ITMAX
    PARAMETER ( ITMAX = 5 )
    DOUBLE PRECISION ZERO, ONE, TWO
    PARAMETER ( ZERO = 0.OD+0, ONE = 1.OD+0, TWO = 2.0D+0 )
* .. Local Scalars ..
    INTEGER I, IBEST, ITEMP, ITER, J, JUMP
    DOUBLE PRECISION ESTOLD, TEMP
* .. External Functions ..
    INTEGER IDAMAX
    DOUBLE PRECISION DASUM, DDOT
    EXTERNAL DASUM, DDOT, IDAMAX
```

```
* .. . External Subroutines ..
    EXTERNAL DCOPY, DLACPY, DLAPST, DLARNV, DLARPC, DLASCL
* ..
* .. Intrinsic Functions ..
    INTRINSIC ABS, DBLE, NINT, SIGN
* ..
* .. Save statement ..
    SAVE
* ..
* .. Executable Statements ..
*
*
    IF( KASE .EQ. O ) THEN
        ESTOLD = ZERO
        ITER = 1
        ITEMP = 1
        INFO = 0
*
        DO 10 I = 1, N
            X( I, 1 ) = ONE
            IND( I ) = I
            INDH( I ) = 0
    10 CONTINUE
*
        DO 30 J = 2, T
            CALL DLARNV( 2, ISEED, N, X( 1, J ) )
            DO 20 I = 1, N
                    X( I, J ) = SIGN( ONE, X( I, J ) )
            CONTINUE
        CONTINUE
            IF ( T .GT. 1 )
    $ CALL DLARPC( N, T, X, LDX, XOLD, LDXOLD, WRK, KASE, ISEED)
        CALL DLASCL( 'G', 0, O, DBLE(N), ONE, N, T, X, LDX, INFO )
        KASE = 1
        JUMP = 1
        RETURN
    END IF
    GO TO ( 40, 100 ) JUMP
    ..... . ENTRY
    FIRST HALF OF THE ITERATION: X HAS BEEN OVERWRITTEN BY A*X.
40 CONTINUE
```

```
    IF ( ITER .EQ. 1 .AND. N .EQ. 1 ) THEN
            V( 1 ) = X( 1, 1 )
            EST = ABS( V( 1 ) )
* ... QUIT
            GO TO 210
        END IF
        EST = ZERO
        DO 50 J = 1, T
            TEMP = DASUM( N, X( 1, J ), 1 )
            IF ( TEMP .GT. EST ) THEN
                EST = TEMP
                ITEMP = J
            END IF
    5 0 ~ C O N T I N U E
    IF ( EST .GT. ESTOLD .OR. ITER .EQ. 2 ) THEN
        IBEST = IND( ITEMP )
            END IF
*
    IF ( EST .LE. ESTOLD .AND. ITER .GE. 2 ) THEN
        EST = ESTOLD
        INFO = 2
        GO TO 210
            END IF
*
    ESTOLD = EST
    CALL DCOPY( N, X( 1, ITEMP ), 1, v, 1 )
*
    IF ( ITER .GT. ITMAX ) THEN
        INFO = 1
        GO TO 210
            END IF
*
            DO 70 J = 1, T
        DO 60 I = 1, N
            X( I, J ) = SIGN( ONE, X( I, J ) )
    60 CONTINUE
    70 CONTINUE
*
            IF ( ITER .GT. 1 ) THEN
        IF ALL COLUMNS of X PARALLEL TO XOLD, EXIT.
        DO 80 J = 1, T
            CALL DGEMV( 'Transpose', n, T, ONE, XOLD, LDXOLD,
    $
                X( 1, J ), 1, ZERO, WRK, 1)
            IF ( NINT(ABS(WRK(IDAMAX(T, WRK, 1)))) .LT. N ) GO TO 90
        80
        CONTINUE
        INFO = 3
```

 IF (T. GT. 1)
 \$
CALL DLARPC($\mathrm{N}, \mathrm{T}, \mathrm{X}, \mathrm{LDX}, \mathrm{XOLD}$, LDXOLD, WRK, KASE, ISEED)
ELSE
IF (T. GT. 1)
\$ CALL DLARPC(N, T, X, LDX, XOLD, LDXOLD, WRK, 0, ISEED)
END IF
*
CALL DLACPY('Whole', $\mathrm{N}, \mathrm{T}, \mathrm{X}, \mathrm{LDX}, \mathrm{XOLD}, \mathrm{LDXOLD}$)
*
$\mathrm{KASE}=2$
JUMP $=2$
RETURN
*

* ENTRY (JUMP = 2)
* SECOND HALF OF THE ITERATION:
X HAS BEEN OVERWRITTEN BY TRANSPOSE (A)*X.
100 CONTINUE
* DO $110 \mathrm{I}=1, \mathrm{~N}$
$H(I)=\operatorname{ABS}(X(I, \operatorname{IDAMAX}(T, X(I, 1), N))$
$\operatorname{IND}(\mathrm{I})=I$
110 CONTINUE
* IF (ITER .GE. 2 .AND. H(IDAMAX (N, H, 1)) .EQ. H(IBEST)) THEN
INFO $=4$
GO TO 210
END IF
*
* Sort so that $h(i)>=h(j)$ for $i<j$
CALL DLAPST('D', N, H, IND, ITEMP)
* IF (ITER .EQ. 1) THEN
ITEMP = T
GO TO 170
END IF
*
* IF IND(1:T) IS CONTAINED IN INDH, TERMINATE.
IF (T . GT. 1) THEN
DO $130 \mathrm{~J}=1$, T
DO $120 \mathrm{I}=1$, (ITER-1) $* T$

IF (I .GT. N .OR. IND (J) .EQ. INDH (I)) GO TO 130 CONTINUE
GO TO 140
CONTINUE
INFO $=5$
GO TO 210
CONTINUE

REPLACE IND (1:T) BY THE FIRST T INDICES IN IND THAT ARE NOT IN INDH.

```
        ITEMP = 1
```

 DO \(160 \mathrm{~J}=1, \mathrm{~N}\)
 DO \(150 \mathrm{I}=1\), (ITER-1) \(* \mathrm{~T}\)
 IF (I .GT. N .OR. IND (J) .EQ. INDH (I)) GO TO 160
 CONTINUE
 \(\operatorname{IND}(\operatorname{ITEMP})=\operatorname{IND}(\mathrm{J})\)
 IF (ITEMP .EQ. T) GO TO 170
 ITEMP = ITEMP + 1
 160 CONTINUE
 END IF
 ITEMP = ITEMP - 1
 170 CONTINUE
 IF ((ITER-1)*T. GE. N) THEN
 DO \(180 \mathrm{~J}=1\), ITEMP
 \(\operatorname{INDH}((\operatorname{ITER}-1) * T+J)=\operatorname{IND}(\mathrm{J})\)
 180 CONTINUE
 END IF
 * DO \(200 \mathrm{~J}=1, \mathrm{~T}\)
 DO \(190 \mathrm{I}=1\), N
 \(X(I, J)=\) ZERO
 190 CONTINUE
$\mathrm{X}(\operatorname{IND}(\mathrm{J}), \mathrm{J})=\mathrm{ONE}$
200 CONTINUE
* ITER = ITER + 1
* KASE \(=1\)
 JUMP = 1
 RETURN
 * 210 CONTINUE
KASE $=0$
RETURN
*
* End of DLACN1

SUBROUTINE DLARPC($\mathrm{N}, \mathrm{T}, \mathrm{X}, \mathrm{LDX}, \mathrm{XOLD}, \mathrm{LDXOLD}, \mathrm{WRK}, \mathrm{KASE}, \mathrm{ISEED})$
*

* .. Scalar Arguments .

INTEGER $N, T, L D X, L D X O L D, K A S E, ~ I S E E D(4)$
.. Array Arguments ..
DOUBLE PRECISION WRK (*), X(LDX, *), XOLD(LDXOLD, *)

Purpose
=======

DLARPC looks for and replaces columns of X which are parallel to columns of XOLD and itself.

Arguments
=========

N (input) INTEGER
The number of rows. N >= 1 .

T (input) INTEGER

* The number of columns used at each step.

X (input/output) DOUBLE PRECISION array, dimension (N, T) On return, X will have full rank.

LDX (input) INTEGER
The leading dimension of X. LDX $>=\max (1, N)$.

XOLD (input/output) DOUBLE PRECISION array, dimension (N,T) On return, XOLD will have full rank.

LDXOLD (input) INTEGER
The leading dimension of XOLD. LDXOLD $>=\max (1, N)$.

WRK (workspace) DOUBLE PRECISION array, dimension (T)

KASE (input) INTEGER
Check parallel columns within X only when KASE $=0$, check both X and XOLD otherwise.

ISEED (input/output) INTEGER array, dimension (4)
On entry, the seed of the random number generator; the array elements must be between 0 and 4095, and ISEED(4) must be
odd.
On exit, the seed is updated.

* .. Parameters ..

DOUBLE PRECISION ZERO, ONE
PARAMETER $\quad(Z E R O=0.0 D+0, O N E=1.0 D+0)$

* ..
* .. Local Scalars ..

INTEGER I, J, JSTART, PCOL

* ..
* .. External Functions ..

INTEGER IDAMAX
EXTERNAL IDAMAX

* . .
* .. External Subroutines ..

EXTERNAL DGEMV, DLARNV

* ..
* .. Intrinsic Functions ..

INTRINSIC ABS, NINT, SIGN
*

* .. Executable Statements ..

IF (KASE .EQ. O) THEN
JSTART = 2
ELSE
JSTART = 1
END IF
*
DO $50 \mathrm{~J}=\mathrm{JSTART}, \mathrm{T}$

PCOL $=0$
*
IF (KASE .EQ. O) GO TO 30

CONTINUE
IF (PCOL .GE. N/T) GO TO 60 GO TO 10
END IF
*

IF (J .EQ. 1) GO TO 50
CALL DGEMV ('Transpose', $\mathrm{N}, \mathrm{J}-1, \mathrm{ONE}, \mathrm{X}, \mathrm{LDX}$,
X (1, J) , 1, ZERO, WRK, 1)
IF (NINT (ABS (WRK (IDAMAX (J-1, WRK, 1)))

```
    $
                                    .EQ. N ) THEN
                PCOL = PCOL + 1
                CALL DLARNV( 2, ISEED, N, X( 1, J ) )
                DO 40 I = 1, N
                    X( I, J ) = SIGN( ONE, X( I, J ) )
    4 0
                CONTINUE
            IF ( PCOL .GE. N/T ) GO TO 60
            IF ( KASE .EQ. O ) THEN
                GO TO 30
                    ELSE
                    GO TO 10
            END IF
                END IF
*
    5 0 ~ C O N T I N U E ~
    6 0 ~ C O N T I N U E ~
        RETURN
*
* End of DLARPC
*
    END
```


References

[1] E. Anderson, Z. Bai, C. H. Bischof, S. Blackford, J. W. Demmel, J. J. Dongarra, J. J. Du Croz, A. Greenbaum, S. J. Hammarling, A. McKenney, and D. C. Sorensen. LAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, third edition, 1999.
[2] L. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. W. Demmel, I. Dhillon, J. J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users' Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, first edition, 1997.
[3] Sheung Hun Cheng and Nicholas J. Higham. Parallel implementation of a block algorithm for matrix 1-norm estimation. Numerical Analysis Report No. 374, Manchester Centre for Computational Mathematics, Manchester, England, February 2001. To appear in Proceedings of EuroPar 2001, Manchester.
[4] Inderjit Dhillon. Reliable computation of the condition number of a tridiagonal matrix in $O(n)$ time. SIAM J. Matrix Anal. Appl., 19(3):776-796, 1998.
[5] W. W. Hager. Conditions estimates. SIAM J. Sci. Stat. Comput., 5:311-316, 1984.
[6] Nicholas J. Higham. FORTRAN codes for estimating the one-norm of a real or complex matrix, with applications to condition estimation (Algorithm 674). ACM Trans. Math. Software, 14(4):381-396, December 1988.
[7] Nicholas J. Higham. Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput., 11:804-809, 1990.
[8] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1996.
[9] Nicholas J. Higham and Françoise Tisseur. A block algorithm for matrix 1-norm estimation, with an application to 1-norm pseudospectra. SIAM J. Matrix Anal. Appl., 21(4):1185-1201, 2000.
[10] The MathWork, Inc., Natick, MA, USA. Using MATLAB, 2000. Online version.

[^0]: *This work was supported by Engineering and Physical Sciences Research Council grant GR/L94314.
 ${ }^{\dagger}$ Centre for Novel Computing, Department of Computer Science, University of Manchester, Manchester, M13 9PL, England (scheng@cs.man.ac.uk, http://www.cs.man.ac.uk/~scheng/).
 ${ }^{\ddagger}$ Department of Mathematics, University of Manchester, Manchester, M13 9PL, England (higham@ma.man.ac.uk, http://www.ma.man.ac.uk/~higham/).

[^1]: ${ }^{1}$ We note that the xGyCON drivers call special versions of level 2 BLAS triangular solvers that scale to prevent overflow; if these drivers are modified to call xLACN1 then special level 3 BLAS triangular solvers with scaling would need to be written.

[^2]: ${ }^{2}$ Replacing xLACON by xLACN1 with $t=1$ is not an option, since the latter is less reliable, due to the former's rather ad hoc but very effective "extra vector".

