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2 �Categories and Subject Descriptors: D.2.2 [Software Engineering]: Design Tools and Tech-niques|User interfaces; D.2.6 [Software Engineering]: Programming Environments|Graphi-cal environments, Interactive environments; D.3.2 [Programming Languages]: Language Clas-si�cations|Data-ow languages; D.3.3 [Programming Languages]: Language Constructs andFeatures|Constraints; I.1.2 [Computing Methodologies]: Algorithms|Nonalgebraic algo-rithms; I.1.2 [Computing Methodologies]: Languages and Systems|Evaluation strategiesGeneral Terms: Algorithms, Design, Experimentation, Human Factors, PerformanceAdditional Key Words and Phrases: Constraint Experience, Constraint Satisfaction, ConstraintUsage, Eager Evaluation, Lazy Evaluation, One-way Dataow Constraints1. INTRODUCTIONA one-way, dataow constraint is an equation in which the expression on the rightside of the equation is reevaluated whenever necessary and assigned to the vari-able on the left side of the equation. For example, the constraint rect2.top =rect1.bottom + 10 speci�es that rect2 should be positioned ten pixels below thebottom of rect1. Such a constraint is called a dataow constraint because dataows from the variables on the right side of the equation to the variable on the leftside of the equation. It is called a one-way constraint because the equation mustalways be solved for the left-hand side variable. For example, the above equationmust always be solved for rect2.top. It is not permissable to invert the equationin order to solve for rect1.bottom. A dataow equation is reevaluated wheneverone of the variables on the right side of the equation is changed.One-way, dataow constraints are widely recognized as a potent programmingmethodology. Their initial success in spreadsheets and attribute grammars [Knuth1968] has inspired researchers to use them as tools in a variety of applicationsincluding graphical interfaces [Barth 1986; Myers 1990; Myers et al. 1990; Myerset al. 1997; Hill 1993; Hill et al. 1994; Hudson and King 1988; Hudson 1993;Henry and Hudson 1988; Hudson 1994; Hudson and Smith 1996], programmingenvironments [Demers et al. 1981; Reps et al. 1983; Hoover 1987; 1992], and circuitsimulations [Alpern et al. 1990].Despite the wealth of papers on the design and implementation of these tools'constraint systems, nothing has been published that describes the long-term experi-ences that have been gained from using these systems or the trade-o�s in constraintsatisfaction algorithms that have been discovered as a result of these experiences.This paper describes the insights we have gained from 10 years of experience withthe one-way dataow constraint systems in the Garnet and Amulet toolkits [Myerset al. 1990; Myers et al. 1997]. Garnet is a Lisp-based toolkit for developing inter-active graphical applications that was �rst released in 1989 and has been used byover 80 projects. Amulet is a C++-based successor to Garnet that was released in1994 and has been downloaded about 50,000 times. Garnet runs on the Unix andMacintosh platforms, and Amulet runs on the Unix, PC, and Macintosh platforms.Both toolkits have introduced a number of innovations in dataow constraintsand have incorporated innovations from other constraint systems as well. Theinnovations in Garnet and Amulet include:(1) supporting pointer variables in constraints [Szekely and Myers 1988; Vander



� 3Zanden et al. 1991],(2) supporting arbitrary code in constraints [Myers et al. 1990; Myers et al. 1997],(3) automatically deducing the right hand side variables in a constraint at run-time [Vander Zanden et al. 1994],(4) supporting unrestricted multi-output constraints [Vander Zanden 1992; Rosener1994; Myers et al. 1997],(5) supporting unrestricted side-e�ects in constraints [Vander Zanden 1992; Rosener1994; Myers et al. 1997], and(6) developing new constraint satisfaction algorithms that implement these inno-vations [Vander Zanden et al. 1994].Innovations that were incorporated from other toolkits include path expressionsthat allow constraints to navigate their way through a tree of objects [Borning 1981;Sussman and Steele Jr. 1980], algorithms for implementing multi-output and side-e�ect constraints [Hill 1993], and algorithms for performing e�cient, incrementalconstraint satisfaction [Reps et al. 1983; Hoover 1987; Alpern et al. 1990; Hudson1991].Over the duration of these projects we have received considerable feedback fromapplication developers, from students, and from formermembers of the two projects.This paper reports on the feedback we have received and the implementation expe-rience we have gained by working with di�erent constraint satisfaction algorithms.We have divided the results into three sections:(1) User Issues. This section describes users' experience with the constraintsystems, including how they felt about various features of the constraint systems,how they used constraints in their applications, and their debugging experiences.Most users found constraints useful in constructing their applications. Their biggestcomplaint was the unpredictability of constraint evaluation and their di�culty indebugging them. The biggest use of constraints was to perform graphical layout.(2) Algorithmic Issues. This section describes our experiences with di�erentconstraint satisfaction algorithms with which we experimented in the two toolkits,including mark-sweep algorithms and topological ordering algorithms. The biggest�nding is that mark-sweep algorithms are both easier to implement and more e�-cient than topological-ordering algorithms. Surprisingly, topological-ordering algo-rithms, which seem simple conceptually, become very complicated and ine�cientwhen they are extended to handle cycles and pointer variables in constraints.(3) Performance Issues. This section describes the speed and storage e�-ciency of the constraint systems. The early implementations of constraint systemswere driven by speed issues and storage was sacri�ced in order to gain greatere�ciency. However, our experience has shown that performance is not an issue,whereas storage considerations are an issue as applications grow larger and start toget pushed into virtual storage.Despite the fact that our experiences have been gained using constraints in graph-ical interfaces, we believe that the lessons we have learned will bene�t the program-ming languages community in a number of ways:



4 �(1) Our experiences with users will be helpful to both designers of future con-straint systems and to designers of the languages that may be used to implementthese systems.(2) The tradeo�s we encountered among the various constraint algorithms willbe of universal value to implementors of one-way constraint solvers, regardless ofapplication area.(3) The programming languages community has focused on topological-orderingalgorithms for performing constraint satisfaction because of their perceived per-formance advantage over mark-sweep algorithms [Reps et al. 1983; Hoover 1987;Alpern et al. 1990]. However, the empirical performance results we have obtainedfrom graphical applications reveal that in the area of graphical interfaces, mark-sweep algorithms demonstrate a marked superiority. Since at least one surveyshows that roughly 50% of code in modern applications is devoted to the user inter-face [Myers and Rosson 1992], �nding the right algorithms to e�ciently implementthis code is crucial. The innovations that we have added to constraint systems,especially pointer variables and loops (loops in the sense of allowing a constraintto use a for or while statement rather than in the sense of circular constraints),have also revealed serious shortcomings in the adaptability of topological-orderingalgorithms.(4) Our experiences with users and with implementing constraint systems showsareas of potential future research interest for the programming languages com-munity. These areas include �nding more e�cient storage schemes for constraints,�nding better debugging techniques, and �nding theoretically sound constraint sat-isfaction algorithms that can tolerate side-e�ects of the type described in this paper.The remainder of this paper is organized as follows. Section 2 briey providessome background about one-way constraint systems. Section 3 describes the evo-lution of one-way constraint systems as well as related work. Section 4 provides anoverview of the Garnet and Amulet toolkits. Sections 5, 6, 7, 8, and 9 discuss userexperience, design guidelines, constraint usage, algorithmic experience, and perfor-mance experience respectively. Finally Section 10 describes directions for futurework and sums up the lessons we learned.2. TERMINOLOGYDe�nition. The introduction informally de�ned a one-way dataow constraint asan equation in which the value of the variable on the left side is determined by thevalue of the expression on the right side. More formally, a one-way constraint is anequation of the form v = F (p0; p1; p2; : : : ; pn)where each pi is a variable that serves as a parameter to the function F . Thefunction F is called a formula. Arbitrary code can be associated with F that usesthe values of the parameters to compute a value. This value is assigned to variablev. If the value of any pi is changed during the program's execution, v's value isautomatically recomputed. v has no reciprocal inuence on any pi as far as thisconstraint is concerned. If v is changed by the application or the user, the constraint
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(c)Fig. 1. The dataow graph (c) generated by the three constraints, C1, C2, and C3 (b) whichposition the boxes in (a). C1 positions rect2 below rect1, C2 makes rect2 the same height asrect1, and C3 computes rect2's bottom. The constraints assume that (0,0) is at the top left, asis in most windowing systems.is left temporarily unsatis�ed rather than trying to change one of the variables onthe right-hand side. Hence, the constraint is one-way.DataowGraph. A one-way constraint solver typically uses a bipartite, dataowgraph to keep track of dependencies among variables and constraints. Variables andconstraints comprise the two sets of vertices for the graph. There is a directed edgefrom a variable to a constraint if the constraint's formula uses that variable as aparameter. There is a directed edge from a constraint to a variable if the constraintassigns a value to that variable. Formally, the dataow graph can be representedas G = fV, C, Eg, where V represents the set of variables, C represents the set ofconstraints, and E represents the set of edges. Figure 1 shows the dataow graphfor a sample set of constraints that positions one rectangle below another rectangle.A dataow graph can be constructed in one of three ways:(1) Statically analyzing the syntax of the constraint's formula [Reps and Teit-elbaum 1988]: If a parser can analyze a formula and automatically extract itsparameters, then dependency edges from the parameters to the constraint can beestablished as soon as the constraint is created. A signi�cant drawback of thisapproach is that it precludes the use of arbitrary code because loops, conditionals,and pointer variables can mask the true identity of parameters until run-time.(2) Requiring the programmer to declare a formula's parameters: If the program-



6 �mer declares the formula's parameters, then dependency edges from the parametersto the constraint can be established as soon as the constraint is created [Hill 1993;Hudson 1993; Hudson and Smith 1996]. Two signi�cant drawbacks of this approachare that the programmer must write control code that duplicates the control codein the formula and that the programmer must remember to change the declarationif the formula is changed.(3) Automatically deducing the formula's parameters as the formula executes [Van-der Zanden et al. 1991; Hoover 1992; Vander Zanden et al. 1994]: Using a techniquedescribed in the appendix, the constraint solver can deduce a formula's parametersas the formula executes. This approach has the advantage that the programmerdoes not have to declare the formula's parameters. It has the disadvantage thatthe dataow graph must be constructed dynamically during constraint evaluation.Whether or not this disadvantage is a hindrance depends in part on the algorithmused for constraint evaluation. The appendix shows that automatic parameter de-tection can be done rather simply for a mark-sweep algorithm (discussed next).Constraint Satisfaction. Constraint satisfaction refers to the process of bring-ing constraints up-to-date by evaluating their formulas and assigning the results tothe left side variables. The two schemes used for one-way constraint satisfactionare the mark-sweep strategy [Demers et al. 1981; Reps et al. 1983; Hudson 1991;Vander Zanden et al. 1994] and the topological-ordering strategy [Reps et al. 1983;Hoover 1987; Alpern et al. 1990; Vander Zanden et al. 1994]. A mark-sweep algo-rithm has two phases as the name suggests. The mark phase tags each constraintthat depends on the changed variables as out-of-date. It does so by performing adepth-�rst search of the dataow graph, beginning at the changed variables, andmarking each constraint it encounters out-of-date. For example, if rect1.top inFigure 1 is changed, C1 is marked out-of-date and then C3 is marked out-of-date.C2 is not marked out-of-date because it does not depend on rect1.top. In thesweep phase, out-of-date constraints whose values are requested are evaluated andthe constraints are marked as up-to-date. If constraints are only evaluated whentheir values are requested, then the sweep phase is called a lazy evaluator. If all theout-of-date constraints are evaluated as soon as the mark phase is complete, thenthe sweep phase is called an eager evaluator. An example mark-sweep algorithm ispresented in Appendix A.A topological ordering algorithm is one which assigns numbers to constraints thatindicate their position in topological order. In Figure 1, C1 might be assigned 1,C2 2, and C3 3. The numbers may be arbitrary so long as they satisfy the propertythat constraints occurring later in the topological order have a larger number thanconstraints occuring earlier in the topological order. More formally, if a constraintCi depends on a variable computed by constraint Cj, then the number assigned toCi must be greater than the number assigned to Cj. Topological orders are notnecessarily unique. In Figure 1, there are two equally acceptable topological orders,fC1, C2, C3g and fC2, C1, C3g. Constraints that do not depend on one another,such as C1 and C2, may have arbitrary numbers relative to one another (i.e., C1'snumber may be less than, equal to, or greater than C2's number).Like the mark-sweep strategy, the topological ordering strategy has two phases{anumbering phase that brings the topological numbers up-to-date and a sweep phase



� 7that evaluates the constraints. The numbering phase is invoked whenever an edgein the constraint dataow graph changes. The sweep phase can either be invokedas soon as a variable changes value or it can be delayed to allow several variablesto be changed. The sweep phase uses a priority queue to keep track of the nextconstraint to evaluate. Initially, all constraints that depend on a changed variableare added to the priority queue. The constraint solver removes the lowest numberedconstraint from the queue and evaluates it. If the constraint's value changes, allconstraints that depend on the variable determined by this constraint are addedto the priority queue. This process continues until the priority queue is exhausted.For example, if rect1.top is changed, then C1 is added to the priority queue. It isthen removed from the priority queue and evaluated. If its value changes, then alldirect descendents of rect2.top, the variable computed by C1, are added to thepriority queue. In this case the only direct descendent is C3. It would be removedfrom the priority queue and evaluated. The process would then terminate becausethere are no direct descendents of rect2.bottom and the priority queue is nowempty. An example topological-ordering algorithm is presented in Appendix A.In evaluating the performance of constraint satisfaction algorithms, two metricsare often used [Reps et al. 1983; Alpern et al. 1990]:(1) AFFECTED|the set of constraints that must be re-evaluated because one oftheir inputs has actually changed.(2) INFLUENCED|the set of constraints that potentially must be re-evaluatedbecause one of their inputs has potentially changed.In the general case, satisfaction algorithms only have to evaluateO(jAFFECTEDj)constraints but must examine O(jINFLUENCEDj) constraints [Alpern et al. 1990].It is di�cult to say whether a mark-sweep or a topological ordering algorithm willbe faster for a particular application without implementing both and running themhead to head. Theoretically, a topological ordering algorithm examines fewer con-straints during both of its phases than a mark-sweep algorithm but this savings iso�set by considerably higher overhead incurred by priority queues and by the datastructures required to keep the numbers up-to-date. These issues are explored ingreater detail in Section 8.3. RELATED WORKThis section begins by focusing on the related work for one-way constraints andthen briey considers other constraint-related research.3.1 One-Way, Dataow ConstraintsOne-way constraints were probably �rst used in attribute grammars [Knuth 1968].In the 1980s, developers of syntax-directed editors developed incremental topological-ordering algorithms that allowed attribute grammars to be used as the basis forinteractive programming environments [Reps et al. 1983; Reps and Teitelbaum1988]. These algorithms exploited a restriction in attribute grammars and a re-striction in the editing model that allowed them to both examine and evaluate onlyO(jAFFECTEDj) constraints. The attribute grammar restriction is that constraintequations can only reference attributes of the grammar symbols on the left and rightside of a production. This restriction gives rise to limited types of dataow graphs.



8 �The editing model restriction was that an edit could only occur at one point inan attributed tree. These two restrictions made the dataow graphs amenable tostatic analysis that could be exploited by the constraint satisfaction algorithms.The restrictions on single edits was eventually removed but the restriction on thedataow graphs remained [Reps 1987; Repts et al. 1986].Concomitantly with the development of syntax-directed editors, spreadsheetspopularized the use of one-way constraints for non-programmers. Unlike syntax-directed editors, users could create constraint equations that could access arbitraryvariables and hence the specialized satisfaction techniques developed for syntax-directed editors were not applicable. However, a simple depth-�rst search algorithmcan be used to add constraints to a list in topological order and then to evaluatethe constraints on this list [Ross 1985]. This simple satisfaction algorithm eval-uates O(jINFLUENCEDj) constraints but has proven fast enough for interactiveperformance in spreadsheets.In the middle to late 1980s, developers of applications like graphical interfacesand circuits started to use one-way constraints [Barth 1986; Myers 1990; Myerset al. 1990; Myers et al. 1997; Hill 1993; Hill et al. 1994; Hudson and King 1988;Hudson 1993; Henry and Hudson 1988; Hudson 1994; Hudson and Smith 1996;Alpern et al. 1990]. Like spreadsheets, the constraint systems that arise in theseapplications are not restricted in the ways that they are in attribute grammars andhence the algorithms that were evolved to perform incremental computation forattribute grammars have not been used in these applications.The switch to unrestricted constraint systems led to the development of new,general purpose topological ordering algorithms. Hoover devised an approximatetopological ordering scheme that used order numbers to keep constraints in approx-imate topological order [Hoover 1987]. Since constraints were only in approximatetopological order, a constraint could be evaluated more than once. This algorithmworked well in the restricted world of attribute grammars but performed poorlyin an experimental implementation in Garnet. In collaboration with a number ofother researchers, Hoover later devised a second topological ordering scheme thatkept constraints in precise topological order and evaluated each constraint at mostonce [Alpern et al. 1990]. In the same paper Hoover and his colleagues proved thatin the general case it is not possible to examine only O(jAFFECTEDj) constraints,which made algorithms that examined O(jINFLUENCEDj) attributes much morepalatable.The switch to unrestricted constraint systems and the �nding that O(jINFLUENCEDj)attributes must be examined in the general case also led to a resurrection of mark-sweep algorithms. These algorithms had previously been considered and rejected inthe context of syntax-directed editors because they examined O(jINFLUENCEDj)constraints, which was more constraints than turned out to be necessary. However,in the context of unrestricted constraint systems, Hudson proved that when usedas a lazy evaluator, a mark-sweep algorithm evaluates the minimum number ofconstraints possible [Hudson 1991]. The bound is better than an eager evaluatorcan achieve since a lazy evaluator can avoid constraint evaluations whose values arenever needed by the application. Since topological-ordering algorithms cannot beused as lazy evaluators (see Section 8.1.1), mark-sweep algorithms gained greateracceptability.



� 9By the early 1990s the basic constraint satisfaction strategies had been estab-lished. The programming languages community turned its focus to function cachingand partial evaluation as other techniques for incremental computation [Pugh andTeitelbaum 1989; Sundaresh 1991; Sundaresh and Hudak 1991; Liu et al. 1998].These techniques can be used in concert with incremental one-way constraint satis-faction, or, in the case of Pugh's function caching work FunctionCachingPugh, toreplace incremental constraint satisfaction algorithms (although it appears that ingeneral one-way constraint systems, Pugh's function caching techniques work bestwhen combined with a mark-sweep algorithm). These techniques were not usedin Garnet or Amulet because constraint satisfaction performance was acceptablewithout these techniques.In the 1990s the graphical interfaces community turned its focus to developingnew features for users. Garnet introduced the notion of pointer variables as �rstclass objects in constraint systems [Vander Zanden et al. 1991; 1994]. Unrestrictedpointer variables were subsequently supported by Alphonse [Hoover 1992], Ren-dezvous [Hill 1993], and EvalVite [Hudson 1993]. Our experiences with pointervariables is described further in Section 6.1.Multi-output constraints were �rst proposed by one of the authors in [VanderZanden 1992]. A multi-output constraint allows a formula to compute the value ofmore than one variable. Rendezvous appears to have been the �rst system to ac-tually implement multi-output constraints [Hill 1993; Hill et al. 1994]. Amulet andan experimental version of Garnet [Rosener 1994] provided later implementationsof multi-output constraints.Side-e�ect constraints in which formulas were allowed to commit side-e�ects wereindependently proposed for both Garnet [Vander Zanden 1992] and Alphonse [Hoover1992]. However the �rst actual implementation appears to have been in Ren-dezvous [Hill 1993; Hill et al. 1994], followed by an experimental implementation inGarnet [Rosener 1994] and a released implementation in Amulet [Myers et al. 1997].A side e�ect allows a formula to perform useful tasks such as creating new objectsor deleting objects. Our experiences with multi-output and side-e�ect constraintsare described in Section 6.1.Finally, path expressions, which were �rst introduced in the late 1970s in twomulti-way constraint systems, ThingLab [Borning 1981] and Constraints [Sussmanand Steele Jr. 1980], found their way into the formulas for one-way constraints. Apath expression lets formulas navigate their way through a tree of objects. Garnetand Amulet extended path expressions by allowing the tree of objects to be dynam-ically modi�ed. Our experiences with path expressions are described in Section 6.4.Despite the many constraint systems that have been developed, the only previousstudy of which we are aware that examined how users employed constraints wasan early study of Amulet [Vander Zanden and Venckus 1996]. That study pro�leda number of Amulet applications and found that even as the size of applicationsgrows, the number of constraints that are inuenced by any particular edit does nottend to grow because the dataow graph fractures into many smaller, independentgraphs. Other papers have included brief characterizations of users' preliminaryexperience with constraints but the current paper is the �rst one that attempts tosummarize user feedback about a constraint system based on a decade worth ofexperience.



10 �3.2 Other Types of ConstraintsOne-way constraints are not the only type of constraint developed by the program-ming languages community. A number of graphical interface toolkits and languageshave incorporated multi-way, dataow constraints, including SketchPad [Suther-land 1963], ThingLab [Borning 1981], Constraint [Vander Zanden 1988], Multi-Garnet [Sannella and Borning 1992], and Kaleidoscope [Freeman-Benson 1990]. Itis also possible to build graphical interfaces and programming languages aroundmore powerful types of constraint solvers. A number of toolkits involving graphicalinterfaces use constraint solvers that can solve sets of simultaneous linear equa-tions or linear equations and inequalities, such as SketchPad [Sutherland 1963],ThingLab [Borning 1981], IDEAL [Wyk 1982], Juno [Nelson 1985], Bertrand [Leler1988] and Bramble [Gleicher 1993]. A number of constraint solvers have also beenproposed for graphical applications or could be used with graphical applications,including linear constraint solvers [Golub and Van Loan 1989], non-linear constraintsolvers [J.E. Dennis and Schnabel 1983; Witkin et al. 1990; Witkin and Welch 1990;Gleicher and Witkin 1992], and linear equality and inequality solvers [Borning et al.1997; Borning et al. 1996; Hosobe et al. 1996; Hosobe et al. 1994; Ja�ar et al. 1992;Lassez and McAloon 1992; Lassez and Lassez 1991; Helm et al. 1992; Huynh et al.1992]. These algorithms are domain-speci�c algorithms that are capable of solvingmore expressive mathematical constraints than can be solved by a dataow solver.However, they are restricted to the mathematical domain which excludes manytypes of constraints that are useful in graphical interfaces. For example, 36% of theconstraints de�ned in the applications we examined computed non-numeric results(e.g., choosing a color based on whether or not an object is selected). Additionally,domain-speci�c constraints typically require a good deal of mathematical knowl-edge on the part of the programmer, which limits the usability of these types ofconstraints.The Constraint Logic Programming community represents another signi�cantarea of constraint-based research [Ja�ar et al. 1992; Dincbas et al. 1988; Borninget al. 1989; Saraswat 1989; Cohen 1990]. Constraint solving alternates with a res-olution process, such as uni�cation, in order to produce a solution to a problem.Constraint logic programming is an example of re�nement-based constraint solv-ing, in which variables are initially assigned a range of values, and then the rangeis gradually re�ned during the uni�cation and constraint satisfaction process. Theend result may be a range of values for a variable rather than one unique value.Dataow constraints and constraint logic programming serve di�erent niches inthe programming languages community. Dataow constraints are best adapted toperturbation-based applications, such as interactive applications, that store stateinformation and that incrementally perturb this information by modifying one ormore variables and then updating the remaining variables. Constraint logic pro-gramming is best adapted to re�nement-based applications, where a set of axiomaticstatements and constraints are provided, and then an answer is derived for a par-ticular set of data. Unlike dataow constraints, this answer may consist of a rangeof values for given variables, or even one or more equations that relate the valuesof given variables (i.e., an exact answer is not provided).



� 114. GARNET AND AMULET OVERVIEWThe constraint systems in Amulet and Garent are just one part of a highly inte-grated collection of features designed to make it signi�cantly easier to create highlyinteractive, graphical applications. These features include a prototype-instancemodel, structured graphics, a composite object mechanism, and a high-level event-handling mechanism. Understanding how the constraints are used requires under-standing these other features as well.4.1 Prototype-Instance ModelGarnet and Amulet support a prototype-instance system, in which any object canserve as a prototype for another object [Lieberman 1986; Borning 1986; Ungar et al.1992; Myers et al. 1990]. Each object consists of a set of properties, such as left,top, width, height, and color. A property is stored in a named variable called a slot(a slot would be called an instance variable in a class-instance model). If a slot isnot explicitly assigned a value in an object, then that slot's value is inherited fromthe object's prototype. In the parlance of the prototype-instance models, this typeof inheritance is called delegation. Slots can be dynamically added to and deletedfrom an object. If a slot is deleted from an object, the slot will subsequently inheritits value from the prototype.A constraint is created by assigning a formula object to a slot (both Garnet andAmulet have macros that allow a programmer to declare a function as being aformula and that create a formula object which contains a pointer to the function).All assignments to a slot must be done via a Set method, so both the Garnet andAmulet run-time systems can detect a formula assignment and create a constraintobject, which is what actually gets assigned to the slot. The constraint objectcontains a pointer to the formula object.Constraints are inherited from a prototype like any other value. In particular, aprototype's constraint objects are cloned and stored in an instance's slots, unlessthe programmer provides alternative values for the slots. For example, if the widthslot of the prototype contains a constraint, then the width slot of an instance willcontain a clone of that constraint unless the programmer provides an alternativevalue.A signi�cant advantage of a prototype-instance model is that it supports rapidprototyping when building a graphical application. Two ways in which it supportsrapid prototyping are:(1) A programmer only has to specify values for slots whose properties shoulddi�er from the prototype. All remaining values are inherited from the prototype. Inessence, the prototype contains \default" values for all properties in the instance.(2) By changing a property in a prototype, a designer can dynamically changethe look of all the objects that inherit from that prototype. In a typical class-instance system, the designer would have to shut down the application, change thecode, re-compile the application, and then re-execute it.4.2 Structured GraphicsIn a structured graphics model, each graphic element on the screen is representedby an object in memory. \Structured graphics" is sometimes also called a \retained



12 �object model" or \display list." The advantage of this model is that the programmeris freed of all display maintenance tasks. For example, to change the color ofan object, the programmer only needs to set the color parameter. The systemautomatically updates the display by redrawing the object and any other objects onthe screen that intersect the object. Furthermore, if the window manager requeststhat the window be redrawn, perhaps because it was de-iconi�ed or uncovered, thestructured graphics system can handle these tasks without involving the applicationat all. A structured graphics model also makes it possible to provide high-levelservices in the toolkit, including printing, saving and reading objects from �les,cut/copy/paste/duplicate and other edits, and graphical selection handles. Whileother frameworks require the programmer to override the standard methods forthese functions, a structured graphics model usually allows the programmer to usethe library functions without change.The Amulet and Garnet constraint systems support the structured graphicsmodel in three ways:(1) Computation of Slot Values: Constraints can be attached to the slots of struc-tured graphics objects, thus allowing the properties of an object to be auto-matically recomputed when the user or application changes the values of oneor more other properties.(2) Computation of Objects: In Amulet, constraints can be used to determinewhich objects should be included in a window, by creating and deleting objectsin the constraints.(3) Automatic Noti�cation of Changes: Whenever a slot is recomputed by a con-straint, the constraint solver noti�es the structured graphics system so that theobject containing the slot can be appropriately redrawn.4.3 Composite ObjectsA composite object is an object made up of other objects [Gamma et al. 1995].These other objects may either be primitive objects or themselves be compositeobjects. Composite objects are sometimes called \groups" or \aggregates." Figure 2illustrates a simple composite object, a graph node consisting of a text objectenclosed within a circle.The graph node has named pointers to its children (frame and label) and thechildren have named pointers to their parent (parent) (See Figure 2b.). Thesepointers allow the graph node to access slots in its parts and the parts to accessslots in their parent and in their siblings.The names of the pointers are derived from the names that programmers assign tothe parts. Garnet and Amulet both provide mechanisms that allow a programmerto de�ne names for each of the parts [Myers et al. 1990; Myers et al. 1997]. In theabove example, the programmer has assigned the names \label" and \frame" to thetwo parts. These names have been converted to two slots named label and framerespectively. The slots have been stored in the graph node object and each of theslots has been assigned a pointer to its respective part.Both Garnet and Amulet support structural inheritance, whereby when an in-stance of a composite object is created, instances of all its parts are created as well.In addition, the children and parent pointers are automatically initialized for each
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A(a) (b)Fig. 2. A graph node (a) and its structural components (b).of the parts.The advantage of structural inheritance is that a programmer is able to treata composite object like any other object in the object system, without having toworry about how the object is composed. A second advantage of compositionis that the programmer is able to build up arbitrarily complicated objects fromthe primitive graphical objects, like rectangles and text objects, provided by thestructured graphics system.Constraints simplify the creation of composite objects since constraints can beused to pass information around a composite object and to express relationshipsamong the parts of a composite object. For example, the position and size of thegraph node can be passed down to its label so that the label can center itself withinthe graph node.4.4 ConstraintsBoth Garnet and Amulet support one-way constraint systems. Some of the featuressupported by these constraint systems include:(1) Arbitrary code: A formula can contain any code that is legal in the underlyingtoolkit language. Hence a Garnet formula can contain arbitrary Lisp code and anAmulet formula can contain arbitrary C++ code. In particular, a formula cancontain arbitrary loops, conditionals, function calls, and recursion.(2) Pointer variables: A formula can reference variables indirectly via pointers.For example, an object can be made to appear 10 pixels to the right of the previousobject in a list by writing the constraint:left = self.prev.right + 10where self is a pointer to the object containing left and prev is a pointer to theprevious item in the list1. If the prev pointer is changed, the object will adjustitself so that it appears 10 pixels to the right of the new object pointed to by the1In C++ this equation would be written as left = self->prev->right + 10 and in Java it wouldbe written as left = self.prev.right + 10. We have chosen to use the dot (.) notation in thispaper.



14 �prev pointer. Although pointer variables are common in programming languages,Garnet was the �rst system to support pointers as �rst-class variables in constraints[Vander Zanden et al. 1994]. Previous systems had allowed pointers in path names[Borning 1981; Sussman and Steele Jr. 1980] or as specially declared variables withspecial accessor methods and restrictions, such as not being able to determine thepointer variables themselves using constraints [Szekely and Myers 1988]. However,Garnet was the �rst system to allow the unrestricted use of pointer variables.(3) Side e�ects: In Amulet, a constraint may commit side e�ects, includingcreating/deleting objects or setting slots other than the slot to which the constraintis attached.(4) Transparency: The programmer is unaware of whether or not the slot's valueis computed by a constraint. Garnet and Amulet both provide a Get method forreading the value of a slot. This method takes the name of a slot as an argument andreturns the slot's value. The Get method is responsible for determining whether aslot is computed by a constraint, and if so, ensuring that the constraint is up-to-datebefore returning the slot's value.(5) Automatic Parameter Detection: Garnet and Amulet both automaticallydeduce a constraint's parameters as the constraint executes so the programmerdoes not have to declare a constraint's parameters.(6) Support for Cycles: Garnet and Amulet both support once-around evaluationof cycles. Once-around evaluation means that a constraint in a cycle is evaluatedat most once. If the constraint is asked to evaluate itself a second time, it simplyreturns its original value. For example, suppose we have the cyclical constraintsa = b and b = a and that both are invalid. Both Garnet and Amulet guaranteethat each constraint will be evaluated at most once. In fact, both systems aresomewhat more sophisticated than this. If the application sets a to 6 (a = 6),the constraint a = b is marked up-to-date and the constraint b = a is invalidated.Hence, only b = a gets re-evaluated and a's value gets properly propagated. How-ever, in more complicated cases, where all the constraints in a cycle get invalidated,Garnet and Amulet still guarantee that each constraint will be evaluated at mostonce. The advantage of cycles is that one gets some of the advantages of multi-wayconstraints without the overhead or the usability problems (multi-way constraintsoften have multiple solutions and it can require careful tuning by the programmerto force the constraint solver to choose the desired solution). Indeed, one of theauthors informally surveyed a number of applications written in Multi-Garnet, aversion of Garnet designed to support multi-way constraints [Sannella and Borning1992], and found that the most common type of multi-way constraint was a simplebi-directional equality constraint of the form a = b. Hence, for the applicationssurveyed, once around evaluation of cycles provides support for the single largestuse of multi-way constraints.These features make Garnet and Amulet's constraint systems the most expressiveand exible systems available to graphical interface developers. Previous systemshave been more restrictive, because 1) they o�er only prede�ned constraints, suchas the layout mechanisms in the InterViews [Mark A. Linton and Calder 1989]and Java Swing toolkits, 2) they use their own special constraint language that hasrestricted functionality, such as Higgens [Hudson and King 1988] or Penguims [Hud-



� 15son 1994], or 3) they use the underlying toolkit language but do not provide fullsupport for features such as loops, function calls, conditionals, pointer variables, orrecursion [Hill 1993; Hudson 1993].Because of the expressiveness of its constraint system, Garnet was the �rst toolkitto integrate constraints with the lowest-level object system and Amulet adoptedthis approach as well. As a result, constraints are used ubiquitously throughoutthe Garnet and Amulet widget sets and all Garnet and Amulet applications. Alarge Garnet or Amulet application might have 20,000 constraints.4.5 Event-Handling ModelGarnet and Amulet introduced a novel, high-level, event-handling model called in-teractors. The interactors model is based on the observation that users interactwith graphical interfaces in a few stereotypical ways, such as creating new objects,moving/resizing objects, choosing one or more objects from a collection of objects,or editing a text string. The interactors model encapsulates each of these stereo-typical behaviors into a prototype interactor object. For example, Amulet providesthe following six interactor objects:(1) Choice Interactor: Allows the user to select one or more objects from a collec-tion of objects.(2) Text Edit Interactor: Allows the user to edit a text string.(3) Move/Grow Interactor: Allows the user to move or resize an object.(4) New Points Interactor: Allows the user to create an object by entering anarbitrary number of points.(5) Gesture Interactor: Allows one of a pre-de�ned set of gestures to be recognizedbased on the path traced out by the mouse. A gesture can be any path tracedout by a mouse, such as a circle, a line, a checkmark, the letter D, etc.(6) One Shot Interactor: Allows an action to be executed immediately when anevent happens, such as a key being pressed on the keyboard.The programmer creates an interactive behavior by creating an instance of the ap-propriate interactor2. The programmer then customizes the behavior by modifyingthe instance's properties (each prototype interactor de�nes a rich set of propertiesthat can be inherited or overridden).Properties may be divided into behavior-de�ning properties that control an in-teractor's behavior and graphics-de�ning properties that describe which graphicalobjects are a�ected by the interactor.The most fundamental behavior-de�ning properties describe the start, stop, abort,and running events for the interactor and the action procedures that should be ex-ecuted when each of these events are received. Running events are events receivedwhile the interactor is running, such as mouse moved events for a move/grow inter-actor or keyboard events for a text editing interactor. For example, a move/growinteractor might specify a left mouse button pressed event as the start event, a left2Both Garnet and Amulet refer to instances and prototypes of interactor objects as interactors.This paper adopts this terminology, so the term interactor means an interactor object, and thisobject may be either a prototype or an instance.



16 �mouse button released event as the stop event, a mouse moved event as the runningevent and a Ctrl-G key as the abort event. The procedure associated with the startevent for a move/grow interactor might make a dashed line feedback object appear,the procedure associated with the running event might make the feedback objecttrack the mouse, the procedure associated with the stop event might make the feed-back object disappear and move/resize the object that was under the mouse whenthe start event was received, and the abort procedure might make the feedbackobject disappear.Each interactor also de�nes additional behavioral properties that are interactor-speci�c. For example, the behavior-de�ning properties for a move/grow interactormight specify whether the interactor is moving or growing an object, whether aline or non-line object is being acted upon, whether there is a minimum size for aresized object, and whether the object being acted on should snap to a grid.The graphical properties for an interactor specify which graphical objects it oper-ates on and what type of feedback it provides. For example, a start-where propertylists the objects the interactor operates on and an interim-feedback property pro-vides a graphical object or objects that the interactor should display as it operatesso that the user can see what the interactor is doing.The separation of the behavioral speci�cation from the graphical speci�cation ofthe interactors makes it possible to reuse the interactors in many di�erent ways.For example, a choice interactor can be used to select objects in an editor or toimplement a radio button panel. A new point interactor can be used to createa new object or to specify a selection area on the screen (e.g., it can sketch outa rectangular area which is then used to select all the objects that intersect thatarea).Constraints support the interactors model in two ways:(1) They can be used to compute the properties of an interactor. For example,a constraint can be used to select a feedback object based on the type of the objectthat the interactor is currently operating over.(2) They automatically propagate changed values to the appropriate graphi-cal objects, so the action procedures can be relatively succinct. For example, amove/grow interactor might change the left and top slots of an object. In a boxesand arrows editor, constraints would automatically ensure that any arrows thatare attached to the moved object are moved as well. Similarly, if the object is acomposite object with a frame and a label, constraints will ensure that both theframe and label are appropriately repositioned.4.6 Programming ModelThe programming model that a programmer uses to create an interface can be de-scribed as follows. The programmer writes an initialization procedure that createsa collection of graphical objects that comprise the interface and attaches constraintsto the objects in order to compute various properties. In the initialization proce-dure the programmer also creates a collection of interactor objects that describethe behavior of the interface. The programmer writes a series of action proceduresthat are attached to each interactor which update the graphics on the displayand call appropriate application procedures. Typically the action procedures up-



� 17date the graphics by modifying certain properties in the object that the interactoris operating on. Constraints then automatically propagate these changes to anyother graphical objects that need to know about them. The application proceduresperform whatever computations are needed to implement the application, and ifnecessary, they also change the properties of appropriate graphical objects. Again,the changes tend to be limited to a few objects since the constraints can be usedto propagate the changes to the remaining objects on the display.The programmer then writes a short main procedure that 1) calls a procedurethat starts-up the Garnet or Amulet run-time system, 2) calls the initializationprocedure and, 3) calls an event-handler provided by either Garnet or Amulet. Theevent-handler enters an event loop and handles events by dispatching them to theappropriate interactor based on the interactors' start-where property. The selectedinteractor then calls the appropriate action procedure, which causes the graphicson the display to be updated and the appropriate procedures in the application tobe executed. These application procedures may perform certain computations thatalso cause parts of the graphical display to be updated.The event loop continues inde�nitely until an event �nally activates an interactorthat noti�es the event handler that it should exit the event loop. For example, whena quit button is pressed the interactor associated with the quit button will notifythe event handler that it should exit the event loop.Once the event loop exits, the programmer written main procedure calls a pro-cedure that shuts-down the Garnet or Amulet run-time system and exits.Most main procedures look as follows:begin main()InitializeAmulet();InitializeInterfaceObjectsAndInteractors();AmuletEventLoop();ShutdownAmulet();end5. OVERALL USER EXPERIENCEIn preparing this paper, we posted separate electronic survey forms for the Gar-net and Amulet constraint systems on the Garnet and Amulet user newsgroups.These survey forms asked for users' experiences with the constraint systems andasked them to comment, if they desired to do so, about various features of theseconstraint systems. We received responses from 5 Garnet users and 12 Amuletusers. The information we received in these responses has been combined with ourown experience with users, students, and project members and is reported in thenext two sections. This section summarizes general feedback that we have receivedregarding constraints. The next section describes design guidelines we have learnedthat we feel are applicable to constraint systems in general.The general feedback we have received about constraints can be summarized asfollows. Most users reported that they found constraints helpful for creating theirinteractive applications. Users were most impressed with the exibility they pro-vided for de�ning custom graphical layouts, for computing graphical properties,and for the modularity they promoted. Users were most concerned with how dif-



18 ��cult constraints could be to debug and with how they sometimes had to worryabout the evaluation order of constraints.5.1 Graphical LayoutUsers reported that they primarily used constraints to specify graphical layout andto a lesser extent, to compute graphical properties. In our Garnet and Amuletsurveys, we asked users to compare using constraints for layout against pre-de�nedlayout managers of the type provided by Java or other toolkits such as Tcl/Tk. Theresponses we received indicated that for simple layouts, users preferred a pre-de�nedlayout manager, such as those provided in the other toolkits. Neither Garnet norAmulet provided such layout managers, which, given the responses, would appearto have been a useful feature (Amulet does have an extensive library of pre-de�nedlayout constriants that partially but not fully meets these needs). However, userswere very positive about the exibility a�orded by constraints in de�ning theirown custom layouts and in laying out objects created dynamically. Some of thecomments we received included:| \Constraints are the ONLY good way to lay out objects that are created on they, and that have speci�c relations to other objects: : : e.g., laying out hierarchicaltask network graphs or building `ribbon-chart' displays of schedules. Pre-de�nedlayout managers do not handle this situation at all well."| \Simple parameterizable layout managers are preferable most of the time.When my layout needs are simple, I'd rather just grab a BorderLayout o� the shelfthan muck around with constraints. But constraints are better as a fundamentalinfrastructure that you can fall back on when the layout managers don't satisfyyour needs. Even if your toolkit supports user-de�ned layout managers, de�ning afew constraints is far easier than designing a new layout manager."Users reported layouts that they were able to achieve with constraints that theyfelt they could not have achieved with a pre-de�ned layout manager included:(1) Connecting objects using arrows,(2) Tiling algebraic expressions,(3) Graph layouts,(4) Tree layouts,(5) Grid layouts,(6) Ring layouts, and(7) \Ribbon-chart" displays of schedules.Pictures of several of these types of layouts are shown in Figure 3.In general, it appears that widgets can often be laid out using pre-de�ned layoutmanagers but that programmer-de�ned objects often require custom layouts thatare best de�ned via constraints.5.2 ModularityA number of users reported that they liked the fact that constraints made theirapplications more modular. Two comments that we received were:
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(a) (b)
(c) (d)Fig. 3. Some of the layouts created by Amulet users, including (a) connectingobjects using arrows,(b) tiling algebraic expressions, (c) creating tree layouts, and (d) creating ring layouts.



20 �| \Constraints help to encapsulate behavior directly into the object. You couldchange an object without having to modify objects that were constrained to it orfrom it."| \[I liked] the `setup once, never look at it again' feel of it. Compare this withTCL/TK: : :. With constraints you don't have to set all these `state variables' atinteresting events. It all goes automatically. Amulet scales very well, just becauseof the constraint system (constraints are local to objects)."In this case, what is meant by modularity is that from an application program-mer's point of view, the only object that knows about a constraint is the objectto which the constraint is attached. In languages and toolkits that do not supportconstraints, both the object that wishes to observe a property (the observer) andthe object whose property is being observed (the observee) need to know aboutone another's existence. The observer must notify the observee of the observer'sinterest in one of the observee's properties. The observee must then explicitly no-tify the observer when the property of interest changes. In addition, if either theobserver or observee is deleted, they must notify the other object of their deletion.These interconnections between objects break down the modularity of the set anddelete operations. The programmer must maintain data structures to keep track ofthe interconnections and must perform additional noti�cation or bookkeeping workwhenever a set or delete operation is executed.In contrast, with constraints the programmer simply sets a property or deletesan object and the constraint solver automatically handles any side e�ects of theoperation, such as re-evaluating constraints or deleting dependencies. Hence, froman application programmer's viewpoint, a constraint is local to an object and is notknown outside the object. This means that the programmer can delete the objectwithout worrying about notifying other objects that might depend on this object,or notifying other objects on which this object depends. Consequently, constraintsimprove the modularity of objects and reduce the complexity of various operationsby allowing the programmer to worry only about the local e�ects of an operation.5.3 DebuggingUsers were almost unanimous in agreeing that debugging represented the greatestdrawback of constraints. Some of the problems that were reported with debuggingconstraints included: 1) constraint cycles were easy to create but hard to �nd,2) bugs often manifested themselves far from the point where they �rst occurred,and 3) constraints started to look like spaghetti code as the number of constraintsincreased. Some of the representative comments we received regarding debuggingincluded:| \In general debugging's easy because of help given by the system, but whenthere are situations of complex cycles, one hasn't any clue in what part of thesystem the cycle can be."| \They are very nice for getting something working quickly and easily. Later,as the program grows in size and complexity however, many of my constraints havebecome more spaghetti-like and now pose challenging debugging problems."| \[Debugging was] incredibly, frustratingly hard (on the order of several hoursspent per serious bug): : :hard because of the non-linear execution of constraint



� 21programs|setting a slot can have the side e�ect of prematurely triggering a re-evaluation of constraints (or di�erent order of constraint evaluation) which leads toa bug|but the trigger that set o� that bug can be anywhere in the program code."| \It is hard to set a breakpoint on the failing invocation of a constraint. Sinceit may run and fail many times in trivial ways as the program initializes, it canbe hard to �nd the `interesting' failing execution, the one that actually matters.: : :Constraints may fail far from the point where the actual �rst failure occurred.Better ways of tracing how failures propagate through the constraint network wouldhelp."The comments for the most part are self-explanatory. The comments aboutfailures happening far from the point of the �rst actual failure reects the fact thatconstraints form chains that can propagate a bad value far from the point whereit is �rst set or computed. Hence the �rst constraint to break may be far from theactual point where the bug �rst occurred.The most frequent debugging tools used were print statements and Amulet'sinspector. Amulet's inspector pops up a property sheet showing the slot/valuepairs associated with an object. It also allows a programmer to select a constraintand print a list of the constraint's dependencies.What most users wanted, however, was a visual editor that would pictoriallydisplay the constraint network. One user suggested that it would also be helpful totag the constraints with information about what values they have computed andwhen they were computed. Several users said that cycles would be far easier todetect using such a visual editor.A second tool that two users said would be helpful is the ability to dynamicallyadd and remove constraints from slots using the inspector. They indicated that thiscapability would give them the ability to see what e�ect constraints were havingon the system or to see if they could break a constraint cycle.Interestingly, a previous study of spreadsheets found that users' spreadsheetscontained substantial numbers of errors [Brown and Gould 1987]. Those �ndings,combined with our �ndings, suggest that the creation of e�ective debugging toolsshould be a top priority for constraint researchers.5.4 Getting Constraints to Execute at the Right TimeOne-way constraint solvers are supposed to relieve programmers of the burden ofworrying about when and how constraints are re-evaluated. However, Garnet andAmulet programmers experienced problems with both the premature evaluationof constraints, and less often, with constraints not getting evaluated when theyexpected them to be evaluated.5.4.1 Premature Evaluation in Amulet.. Amulet programmers experienced prob-lems with premature evaluation. Programmers had to \harden" the code of theconstraint's formula by introducing conditional statements that test whether therequested slot has been initialized, and if not, to return a default value. The prob-lem was caused by the fact that Amulet uses an eager evaluator. Eager evaluationbrings constraints up-to-date as soon as possible, both when they are �rst createdand when they are later marked out-of-date. The key problem is that \as soon aspossible" is ambiguous. One solution is to force the programmer to tell the con-



22 �straint solver when to initiate constraint satisfaction. However, when this manualapproach was experimentally tried in Garnet, we found that it was both too easy toforget to invoke the constraint solver and annoying to have to do so. So Amulet'sconstraint solver is invoked automatically by the system, but sometimes it is in-voked before all the necessary slots have been initialized. This in turn leads toconstraint crashes, debugging, and requires hardening of the constraint's formulacode.In early versions of Garnet, the premature evaluation problem also occasionallymanifested itself and it was solved using the following technique:(1) Programmers were allowed to specify a default value for a constraint. Thisvalue was returned if the constraint could not be successfully executed.(2) The constraint solver was modi�ed so that it checked whether a constraint'sformula was accessing an uninitialized slot. When an unitialized slot was ac-cessed, the constraint solver terminated the constraint's execution and returnedthe constraint's default value.This solution was not implemented in Amulet because it requires a try/catchconstruct that can be terminated if a statement protected by the try/catch con-struct fails. At the time that Amulet was implemented, most C++ compilers eitherdid not have such a construct, or else had a unique mechanism for handling theconstruct. We also found that applications that id use it were extremely slow andine�cient. Since Amulet was meant to be portable, it could not use the try/catchconstruct and hence had to forego this solution.Even if this premature evaluation problem is �xed, there is still the problem ofrepeated, unnecessary evaluations of a constraint as its formula parameters become,one at a time, initialized. However, since constraint evaluation is such a smallpercentage of the total execution time of an application (see Section 9.1), thisproblem is less signi�cant than the premature evaluation problem.5.4.2 Lack of Constraint Evaluation in Garnet.. Garnet programmers experi-enced problems with constraints not getting evaluated. This problem was causedby two di�erent shortcomings of the constraint solver:(1) Dependencies not getting properly established. In both Garnet and Amulet,programmers can explicitly set slots whose values are also computed using a con-straint. One reason for doing this is to propagate values through a constraint cycle(sometimes users intentionally create cycles) and another is to set a slot with atemporary value. If the slot is set before the slot's constraint is evaluated, the slotis marked up-to-date and the constraint is never evaluated. Because the constraintis never evaluated, the constraint solver cannot determine on which parameters theconstraint depends. Therefore, it cannot establish dependencies from these param-eter slots to the constraint. As a result, the constraint is never noti�ed of changes tothese parameter slots and the constraint is not re-evaluated when the user expectsit to be. In Amulet this problem was solved by placing all new constraints on aqueue and evaluating them, regardless of whether or not the slots to which theyare attached are up-to-date. If the slot is up-to-date, the constraint is computedbut its value is temporarily discarded. This evaluation allows the dependencies tobe established so that it is correctly re-evaluated in the future.



� 23(2) Not being able to tell the constraint solver to always keep a slot up-to-date.Unlike Amulet, Garnet uses lazy evaluation. This means that a constraint will notbe automatically evaluated unless the constraint's value is explicitly demanded.Programmers would therefore occasionally be surprised or bewildered when a con-straint they expected to be re-evaluated was not re-evaluated. A partial solution tothis problem would have been to allow a programmer to specify that a slot shouldalways be kept up-to-date. Then the constraint associated with that slot wouldalways be re-evaluated when one of its parameters changed. This solution wouldstill require the programmer to know that a slot must be declared as an \alwaysup-to-date" slot, which is why the solution is only a partial one. The lack of asatisfactory solution to this problem is one reason we switched to eager constraintsolving in Amulet.Lessons Learned. The problem with premature evaluation in Amulet and lackof evaluation in Garnet reveals that both eager and lazy evaluation still have prob-lems that need to be resolved. In our implementations, the premature evaluationassociated with eager evaluation was far more problematic for users than the occa-sional lack of evaluation caused by lazy evaluation. However, try/catch constructsthat protect the premature evaluation of a constraint, in conjunction with defaultvalues, seem to provide a solution to the problem of premature evaluation. Simi-larly, allowing users to tag a slot as a slot to be eagerly evaluated seems to provideat least a partial solution to the problem of not evaluating a constraint in lazyevaluation. Further testing of these two solutions is required before more de�nitivestatements can be made about the choice of either lazy or eager evaluation.6. DESIGN GUIDELINES FOR CONSTRAINT SYSTEMSThis section describes some of the design guidelines we learned in working withusers. The guidelines can be summarized as follows:(1) Use the underlying language: A constraint should be able to contain arbitrarycode. In other words, a programmer should be able to use any of the languageconstructs supported by the toolkit's underlying implementation language.(2) Avoid annotations if possible: Forcing a programmer to annotate code inways that provide information to the constraint solver did not work well. Program-mers �nd it burdensome to do so. If it is optional, they will avoid doing it and sooptimizations based on these annotations cannot be made. If it is mandatory, theywill provide the annotations but confusion and errors often abound.(3) Syntax matters: Programmers should be able to de�ne a constraint at thepoint where it is assigned to a variable. Additionally, the programmer should nothave to specify a great deal of excess verbiage when de�ning a constraint. Program-mers feel most comfortable with constraints when the creation of a formula basicallyinvolves only a keyword like Formula and the code that de�nes the constraint.(4) Path expressions are a two-edged sword: Path expressions were a powerfulfeature that helped facilitate structural inheritance but users often wrote themincorrectly.



24 �6.1 Use the Underlying LanguagePrior to Garnet, one-way constraint systems de�ned their own special constraintlanguage. Such languages have two drawbacks{they force a programmer to learna new language and they often have restricted functionality (e.g., lack of certaincontrol structures, such as loops and procedures, and lack of many operators beyondsimple arithmetic and boolean operators).As noted in Section 4.4, Garnet and Amulet allow a constraint's formula touse any of the features in the underlying toolkit implementation language. Hencea constraint can contain arbitrary loops, conditionals, functions, and pointers toother objects. Amulet additionally supports side e�ects. Allowing programmersto write arbitrary code and to commit side-e�ects permits them to de�ne verypowerful constraints that perform more than simple graphical layout operations.For example, Garnet and Amulet programmers have used constraints to do thefollowing, which would be impossible in most other constraint systems:| De�ne complicated layout constraints. In both Amulet and Garnet a singleconstraint is used to lay out the items in a list based on such parameters as the ori-entation of the list (vertical or horizontal), the spacing between items, the length ofa row or column (expressed either in pixels or as a maximumnumber of items), andthe amount of space to be consumed by each item (�xed or variable width). Garnetalso has complete graph and tree layout algorithms implemented as constraints. Asimple example of a list layout constraint might be the following3:layout =beginspacing = self.horizontal spacingnext left = self.leftfor each child in self.items doif child.visible = true thenchild.left = next leftnext left = next left + child.width + spacingend| Perform semantic computations on trees, graphs, and lists. For example, userswrote constraints that computed the critical path in a directed graph and that kepttrack of the largest value of a leaf in a 2-3 tree. A simple example of a constraintthat computes the longest path from a node to itself might be the following:path cost =begincost = 0for each edge 2 self.predecessors doif (edge.from vertex.path cost + edge.cost) > cost thencost = edge.from vertex.path cost + edge.costreturn costThis constraint is helpful in computing the critical path through a graph.3In this constraint and all remaining constraints in the paper, a variable pre�xed with \self"belongs to the same object as the variable on the left side of the constraint. Any variable notpre�xed by \self" is a local variable.



� 25| Control the visibility of an object, such as a feedback object, based on whetheror not other objects are selected. For example, the visibility of the selection handlescould be controlled by whether its obj over slot points to an object:visible = if self.obj over then true else false| De�ne an object's visual properties based on the values of application data.For example, to make the color of a graphical object depend on the temperature ofan application object, the programmer might write the constraint:color = if self.temperature object.temperature < 32 then blueelse if self.temperature object.temperature < 212 then whiteelse red| Type check the value input by a user and revert to a saved value if the typeis incorrect. For example:value = beginif TypeOf(self.value) = INTEGER thenif self.value >= 0 and self.value <= 100 thenself.saved value = self.valuereturn self.valueelsepop up alert dialog box indicating that the value must be between 0 and 100return self.saved valueelsepop up alert dialog box indicating that the value must be an integerreturn self.saved valueend| Compute the parameters that control the processing of an event, such ascomputing what type of feedback object to draw based on what object the mouseis currently over. For example:feedback object = switch TypeOf(mouse.obj over)case RECTANGLE:case TEXT:case ICON: self.rectangle feedbackcase CIRCLE: self.circle feedbackline LINE: self.line feedbackThe slots rectangle feedback, circle feedback, and line feedback point toappropriate feedback objects for rectangle-like objects, circles, and lines respec-tively.| De�ne monitors that invoke various application functions when a value ex-ceeds a threshold amount. For example:monitor =beginif self.obj being monitored.temperature > 212 thenself.obj being monitored.excessive temperature handler(self.obj being monitored)return true



26 � elsereturn falseend| Create the set of items that should be displayed in a browser by reading adirectory name from the appropriate widget, passing the name to the appropriatesystem command, and creating and then returning a list of graphical text objectsthat can display the result. For example:items = begindirectory name = widget.value�lename list = system(\list �les(directory name)")graphical items list = ;for each �lename 2 �lename list dotext item = new TEXT ;; create a new graphical text objecttext item.text = �lenamegraphical items list.append(text item)return graphical items listend6.1.1 Lessons Learned. The lessons we learned about using the underlying toolkitlanguage as the constraint language can be divided into the lessons we learned aboutarbitrary code, about pointer variables, and about side e�ects.Arbitrary Code. The ability to write arbitrary code in constraints was oneof the factors that allowed constraints to be integrated with the object systemand allowed the rest of Garnet and Amulet to be built on top of the constraintsystem. Since the introduction of Garnet, a number of other systems, includingRendezvous [Hill 1993] and EvalVite [Hudson 1993] have allowed the limited useof the underlying toolkit language in writing constraints. However, both systemshave not supported loops, which as the above examples show, is a crucial elementin many of the constraints written in Garnet and Amulet. Loops complicate con-straint satisfaction because they allow a constraint to reference a dynamic, ratherthan a �xed, number of parameters. However, loops also considerably enhancethe expressiveness of constraints because they make it possible to write constraintsthat handle dynamically changing sets of objects, such as the neighbors of a nodein a graph or the set of parts in a composite object. Loops therefore present atradeo� but it is better to design for the user of the constraint system than thedeveloper of the constraint system, and our experience shows that allowing a userto use all aspects of a language, including loops, greatly enhances the richness ofthe constraints that are written.The one drawback of arbitrary code is that it restricts some performance opti-mizations that might be otherwise possible since arbitrary code is hard to analyze.However, as shown in Section 9.1, constraint evaluation represents such a smallportion of an application's overall execution time that performance optimization isnot a crucial issue.Pointers. The rami�cations of pointer variables for constraints were twofold: 1)they allowed constraints to be used with data structures that are typically imple-mented using pointers, such as lists, trees, and graphs, and 2) they combined withloops to allow constraints to reference a variable number of objects. Consequently,



� 27the unrestricted use of pointer variables was another crucial element that allowedusers to write very expressive constraints.Pointers do have two potential drawbacks. First, dangling pointers that referencede-allocated memory are a common problem in programming languages. However,they are easily detected in Garnet and Amulet because both systems use garbagecollection. When an object is destroyed by the application, it is only deleted ifthere are no references remaining to it. If there are still references, the object ismarked as deleted but its memory is not actually released. Every slot access inboth Garnet and Amulet checks to see whether the object is marked deleted beforereturning a value. If the object is marked deleted, an error message about theo�ending constraint and the object and slot it tried to access is printed and anerror interrupt is raised.A second problem with pointer variables is that they complicate the implementa-tion of constraint satisfaction algorithms. This problem is discussed in Section 8.1.2.As with loops, however, we feel that it is better to design for the user rather thanthe developers. Our experience was that users obtained signi�cant bene�ts fromusing unrestricted pointer variables. These bene�ts easily outweighed any problemswe, as developers, encountered in developing constraint satisfaction algorithms toaccommodate unrestricted pointer variables.Side E�ects. As noted in Section 4.4, Garnet does not have a mechanism forhandling side e�ects in constraints whereas Amulet does4. The side-e�ect mecha-nism was added to Amulet because Garnet users often found that they wanted tocommit side e�ects from within constraints. There were two types of side e�ectsthat they wanted:(1) The ability to set multiple slots. There are certain situations where a con-straint performs a calculation that is useful to several slots. For example, the mostnatural way for a constraint to compute an object's bounding box is to computethe left, top, width and height of the bounding box simultaneously. Similarly, aconstraint that lays out the elements of a list needs the ability to set multiple slots.The ability to set multiple slots can be elegantly handled using multiple-outputconstraints but they have the disadvantage that the programmer must somehowannotate the constraint to declare which slots the constraint will set. In the case ofa constraint that lays out the slots of a list, the programmer must be given a wayto specify not just the slots but also the objects that will be set by the constraint.Unfortunately, as discussed in Section 6.2, we have found that programmers tendto resist annotations and often get them wrong. Consequently, a decision was madenot to require Amulet programmers to declare which slots they were setting in aconstraint. An Amulet constraint is still expected to return a value that may beused to set a single slot. However, the constraint body itself may set an arbitrarynumber of slots.(2) The ability to create and delete objects. In Garnet, a constraint could beused to compute the set of labels that should appear in a menu or a list, but aconstraint was unable to allocate text objects in the menu or list elements in the4A Garnet constraint can be programmed to commit side e�ects but since Garnet does not have amechanism for handling constraint side e�ects, the side e�ects frequently are not executed whenthe programmer expects them to be executed.



28 �list. Programmers were frustrated by this restriction because their code would haveto explicitly test whether the set of labels had changed. They would have preferredthat the constraint automatically allocate and deallocate the menu and list itemsas needed, just like a constraint automatically computes other values. As a result,we decided that Amulet would allow a constraint to create and delete arbitrarynumbers of objects.The implementation of Amulet's side-e�ect mechanism has been described else-where [Myers et al. 1997]. The implementation can potentially lead to both non-deterministic results and to in�nite cycles. So from a theoretical standpoint thealgorithm is not elegant. However, from a practical standpoint, the algorithmworks.Users have not reported di�culties with non-determinism or in�nite loops. Similarpositive experiences with side e�ects implemented using unsound algorithms havebeen reported in the Rendezvous system [Hill 1993] and an experimental versionof Garnet that was extended to include multi-output constraints and side e�ects[Rosener 1994].The introduction of side e�ects into constraints has had the desired e�ect ofallowing users to write the type of side-e�ect producing constraints that they wouldhave liked to have written in Garnet, and they have done so.Based on the side-e�ect producing constraints that we have seen, we can drawsome inferences as to why users have not run into problems with in�nite loops andnon-determinism. The side e�ects are simple side e�ects that do not introduceany complication into the constraint system, such as feedback cycles that mightcause other side-e�ect producing constraints to be triggered. Typically the sidee�ects are committed on objects which are encapsulated within another object (e.g.,within a menu or a list). The side e�ects create or delete a set of objects whosepositions are then computed using non-side-e�ect producing constraints. Theseobjects may cause the container object to grow or shrink, and these changes willbe propagated to other objects. However, these size and positional changes do nottrigger other side-e�ect producing constraints. In other words, the side e�ects arecon�ned locally.6.2 Avoid Annotations If PossibleAnnotations are declarative statements made by a programmer that allow a systemto obtain information about a program. This information is often di�cult to obtainotherwise and is either essential to the functioning of the system or allows thesystem to optimize the program's performance. An example of annotations inprogramming languages is declaring variables to have a certain type. In one-wayconstraint systems, annotations are frequently used to specify the parameters usedby a constraint. Garnet and Amulet made use of annotations in two ways. First,early versions of both Garnet and Amulet required the programmer to specify whichslots were parameters to a constraint. Second, Garnet allowed the programmer touse annotations to specify which slots were constant so that constant propagationcould be used to eliminate constraints. In both cases we found that programmerswere confused by the annotations, and so annotations were eventually completelyabolished in Amulet.



� 296.2.1 Annotating Parameters.. In order for a one-way constraint solver to knowwhen it needs to re-evaluate a constraint, it needs to know on which variables theconstraint depends (i.e., it needs to know the parameters, or equivalently, the right-hand side variables).Most one-way constraint systems require that a user either declare the parametersthat will be used by a constraint or else annotate the parameters in some fashion.For example, in Eval/vite the programmer annotates a parameter by pre�xing thevariable name with an at-sign (@) [Hudson 1993].Early in Garnet's design we decided that declaring the parameters was unwork-able because constraints could have tricky control code (e.g., loops, conditionals,and function calls) that would have to be duplicated in the declaration code. Wejudged that such duplication was certain to cause programming errors. As an exam-ple of the di�culties involved with declaring parameters, reconsider the constraintpresented earlier for laying out the children in a list:layout = beginspacing = self.horizontal spacingnext left = self.leftfor each child 2 self.items doif child.visible = true thenchild.left = next leftnext left = next left + child.width + spacingendIn order to declare the parameters for this constraint, we would have to write codethat would look something as follows:parameters = fself.horizontal spacing, self.itemsgfor each child 2 self.items doparameters = parameters [ fchild.visiblegif child.visible = true thenparameters = parameters [ fchild.left, child.widthgIt is easy to write this code incorrectly and it is also easy to forget to update thiscode if the constraint is rewritten. If either event happens, the constraint solver maynot operate correctly. As a result we abandoned the idea of making the programmerdeclare a constraint's parameters.The annotation idea did seem workable and so both the original versions of Garnetand Amulet implemented the annotation approach. In particular, a programmerwas required to use a special get method in order to declare that a variable was aparameter. For example, the constraint that was shown earlier for calling a monitorwhen an object exceeds a certain temperature might be written as:monitor =beginmonitored obj = self.Get(obj being monitored)if monitored obj.GetParameter(temperature) > 212 thenhandler = monitored obj.Get(excessive temperature handler)handler(monitored obj)return trueelse



30 � return falseendThe programmer has declared that temperature is the only parameter that shouldcause this constraint to be re-evaluated. The obj being monitored and excessive -temperature handler slots are assumed to be constants.Unfortunately, we found that users were constantly getting confused by the twodi�erent forms of the get method and would often use the wrong get method. As aresult, slots that the programmers thought were parameters were not getting anno-tated as parameters. The programmers would then be ba�ed when the constraintsin their programs did not get re-evaluated properly.In both Garnet and Amulet, this problem was remedied by e�ectively eliminatingone of the get methods and using an automatic parameter detection scheme. BothGarnet and Amulet retained a mechanism for allowing a programmer to annotate aslot as not being a parameter in a constraint. Although annotation is still requiredwhen a slot should not be a parameter, it is the lesser of two evils because rarelydoes a programmer not want a slot to be a parameter. Typically the only reasonthat a slot should not be a parameter is that it is a constant and some storagein the dataow graph can be saved by not storing a dependency edge from theparameter to the constraint. However, the correctness of the constraint solver isnot compromised by having these edges. Normal Amulet programmers do not worryabout these storage e�ciency issues. For example, in the above constraint a normalAmulet programmer would allow all three slots to be parameters|the fact that twoof them are constant simply means that there are two edges in the dataow graphthat are unnecessary.6.2.2 Annotating Constant Slots.. In Garnet we observed that many of the con-straints were evaluated exactly once because they depended entirely on slots thatwere constants. These formulas could be e�ectively thrown away, thus allowing asavings in storage. To take advantage of this opportunity, we allowed a Garnetprogrammer to declare that a slot was constant. If all the slots referenced by aconstraint were constants, then the slot computed by the constraint was markedas a constant, the value computed by the constraint was assigned to the slot, andthe constraint was eliminated. As a result of marking the slot constant, other con-straints might also become eliminable because their parameters were all constants.Unfortunately this scheme did not work well in practice for a number of reasons:(1) Constraints were not eliminated as expected. Many of the constraints thatprogrammers wanted to eliminate via constant propagation were Garnet-providedconstraints. For example, the width of a text object was computed by a constraintthat took the text object's string and font as parameters. Programmers woulddeclare the text string to be constant and expect the constraint to be eliminated.Often they did not realize that the constraint also used the font as a parameter. Sothe constraint was not eliminated as expected and programmers grew frustrated.(2) Changes to a program made the annotations obsolete. Even after an appli-cation is released, the code is not static and changes to the code often made theannotations obsolete. For example, the code might start changing a slot that waspreviously declared constant. In this case, constraints did not get updated as the



� 31programmer expected. In other cases, additional slots were added and constraintswere modi�ed to include these additional slots. Programmers would forget to de-clare that these new slots were constant, with the result that previously eliminatedconstraints started mysteriously reappearing.Both of these factors frustrated the few programmers who tried to use the con-stant propagation mechanism and as a result it proved to be ine�ective. Ultimately,the e�ort required to annotate the code and to understand how to annotate it ef-fectively proved to be too burdensome.6.3 Pay Attention to SyntaxGarnet was implemented in Lisp whereas Amulet was implemented in C++. Al-though C++ is the more popular language, we found that constraints felt clumsierin C++ because of the way C++ is designed.6.3.1 Syntax Issues.. Users found it easier to write constraints in Garnet than inAmulet because Garnet allowed users to write a constraint's formula at the locationwhere the constraint is assigned to a variable. In contrast, Amulet requires that theuser de�ne the constraint's formula and a name for the formula in a separate partof the program and then assign the formula's name to the variable. The followingexample code shows the contrasting styles in Garnet and Amulet5:Garnet AmuletFormula Compute Right freturn (self.left + self.width);g: : :A.right = Formula(self.left + self.width) A.right = Compute RightAmulet users complained about having to separate the de�nition of the formulafrom the use of the formula. The extra code is inconvenient to write, increasesthe probability of syntax errors, and makes the code less readable because someonetrying to understand or maintain the code must constantly shift back and forthbetween two points in the program: the location where formulas are de�ned andthe location where they are used.The reason for the separation is that the formula code has to be wrapped insidea function. Unlike Lisp, C++ does not allow a function to be de�ned inside an-other function, so the formula de�nitions have to be moved outside the scope ofall functions (i.e., they must be global de�nitions). Being a research project, wedid not want to spend a lot of time writing a pre-processor that would allow theformulas to be written \in-line" and then lifted outside the function. However, itis clear that syntax does matter and that commercial toolkit developers would bewell-advised to expend the time and e�ort required to write such a pre-processor.5Although Garnet formulas are written in Lisp and Amulet's formulas are written in C++, theformulas in this paper are written using Algol-like syntax to 1) simplify the presentation, and 2)make it easier to compare the programming constructs that were used in the two systems.



32 �6.3.2 Global Variables.. Amulet programmers often wanted to use constraintsto connect the slots of top-level objects in a graphical editor or in a dialog box.Because the constraints' formulas are global functions, the only way to referencethese objects in the formulas was to declare the objects globally as well. Hence oneof the rami�cations of de�ning formulas as global functions was a proliferation ofglobal variables, about which a number of programmers complained.Garnet does not su�er from this problem because the formulas used by Garnet'sconstraints are bound to the environment of the function in which they are de�ned.In particular, Lisp has an operator that allows the inline creation of anonymousfunctions (the lambda operator) and that treats the function as a nested proceduredeclaration, as in Pascal. For example, one can write:procedure CreateDialogBox()Button Ok;Button Cancel;Cancel.left = Formula(Ok.left + Ok.width + 10): : :end procedureFormula is a macro that expands into the code shown in Figure 4. Note thatthe formula code is placed within a lambda function. Since the lambda function isde�ned within the CreateDialogBox procedure, Ok is accessable within the lambdafunction.6.3.3 Lessons Learned.. The primary lessons we learned are that 1) syntax doesmatter, 2) programmers prefer to de�ne formulas at the point where they are used,and 3) programmers expect a formula to be able to reference variables in the func-tion in which the formula is created.Our experiences with the syntax issue in Lisp and C++ also identi�ed severallanguage features that C++ lacks which would have helped us write a better con-straint de�nition facility for users (Figure 4 helps illustrate these features):(1) A Powerful Macro Facility: Lisp's macro facility allowed us to write a For-mula macro that could be placed directly at the point where the formula is as-signed to a variable. This macro expanded into code that: 1) wrapped a formulade�nition in a function, 2) performed a number of other bookkeeping activities re-quired to initialize the formula, and 3) returned the formula object. Lisp's macrofacility also can execute Lisp code at compile time so that a certain amount ofpreprocessing can be done to the code. In Figure 4, the macro code has changedself.left and self.width into the executable statements self.get(LEFT) andself.get(WIDTH) where LEFT and WIDTH are appropriate constants.(2) Inline Function De�nitions: As noted earlier, Lisp's lambda operator allowsformula functions to be de�ned inline and allows the formula functions to accessobjects declared in the same procedure as the formula functions. It is interesting tonote that Java's anonymous inner class mechanism provides similar functionality.For example, in Java one can write:Cancel.left = new Formula Object () f



� 33Cancel.left = Formula(Ok.left + Ok.width + 10) expands into:Cancel.left = begin;; A formula object contains information about a;; formula including a pointer to the formula's functionformula obj = new Formula Object(compile (lambda()f Ok.get(LEFT) + Ok.get(WIDTH) +10 g)): : :bookkeeping code: : :return formula obj;endFig. 4. The pseudo-code produced by Garnet's formula macro. The code 1) converts Ok.leftand Ok.width into executable get statements, 2) wraps the resulting formula de�nition in ananonymous function, 3) compiles the anonymous function, 4) passes the function to a constructorthat creates a formula object, 5) performs some bookkeeping, and 6) returns the formula objectso that it can be attached to the appropriate variable.public int Formula() f// Ok must be declared �nal in the enclosing methodreturn Ok.get(LEFT) + Ok.get(WIDTH);gg;Lisp's lambda operator and Java's anonymous inner classes provide two advantageswhen designing a constraint language: 1) they allow programmers to de�ne formulasat the point where they are assigned to a slot, and 2) they allow programmers totie together the slots of objects without having to de�ne those objects globally.(3) Run-time Function De�nitions: Lisp's lambda operator also allows a func-tion to be de�ned dynamically at run-time. This functionality is nice because aprogrammer can create new formulas on the y without having to shutdown an ap-plication and recompile it. Being able to create dynamic functions greatly enhancesthe rapid prototyping capabilities of a language. Of course, dynamic function cre-ation requires an interpreter, which in turn requires the overhead of a run-timeenvironment. If speed is an issue, then an interpreter can be used during the devel-opment phase of the program and a compiler can be used for the �nal productionversion.(4) Giving Compiler Instructions in a Macro: In Garnet, the Formula macrowas able to tell the compiler to create a formula function at compile time (i.e., toexecute the lambda operator at compile time) and to compile the function. Thusthe function for a formula could be created and compiled at compile-time, whichreduces the run-time overhead of creating a formula object.(5) Blocks that Return a Value: In Lisp a block of statements (e.g., a begin/endblock) can be treated as an expression that returns a value. In Figure 4 the macroexpands into a block that creates the formula object, does some bookkeeping withthe formula object, and then returns the formula object. In Garnet we frequentlyencountered situations where this ability to execute several statements before com-



34 �puting a result that was assigned to a variable was very helpful. Of course, one canwrite a function to accomplish the same purpose, but often that location is the onlyplace that uses the code so writing a function is burdensome. Further, the functionwill have to be de�ned in another part of the program, forcing a person trying tounderstand the code to shift back and forth in the program.Language designers would be well-advised to consider implementing these fea-tures in future languages. Most of these features pertain to preprocessing so theywould not a�ect the run-time e�ciency of the program. The current situation inC++ requires a toolkit developer to write a preprocessor to keep the syntax simple.The preprocessor essentially requires a C++ parser which can be both di�cult toobtain and modify.6.4 Path Expressions: Boon and CurseIn both Garnet and Amulet, programmers can string together combinations ofparent and children pointers in order to traverse their way through a compositeobject. For example, in the label part of the graph node in Figure 2, a constraint'sformula might use the pathname self.parent.frame.left to retrieve the framepart's left slot. The path follows the parent pointer to the label's parent, then theframe pointer in the parent to the frame object, and �nally retrieves the left slot.Paths are what allow a constraint to be inherited and still reference the appro-priate parts in the instance. For example, in every instance of a labeled box, theabove path will properly return the left slot in the instance's frame rather than theleft slot in the prototype's frame.Unfortunately, two commonproblems arose with path expressions: 1) users foundit easy to write path expressions incorrectly, and 2) path expressions break whenobjects are moved around the composite object hierarchy or renamed.6.4.1 Incorrect Path Expressions.. While users did not have much problem writ-ing path expressions involving children and parents, they encountered more prob-lems writing path expressions that went beyond either a parent or a child. Forexample, writing self.parent.left typically was not problematic but writingself.parent.frame.left was somewhat problematic. In general, the farther onehas to traverse the composite object hierarchy to �nd an object, the harder it is towrite the path expression.The result of writing an incorrect path expression is that a constraint referencesthe wrong objects and hence gets incorrect values. One solution would be to allowa programmer to directly name the desired object. Both the Garnet and Amuletconstraint systems support such direct references (e.g., label0123.left). However,this solution is not practical because all part names would have to be unique andbe global variables. In addition, constraints could not be inherited because theywould refer to the prototype's part rather than the instance's part.A second solution would be to provide a more limited name scope within anobject. Unfortunately, objects can be composed from previously de�ned objects soeither the programmer would have to ensure that part names were not duplicatedin objects that become siblings or else there would have to be restrictions on partreferences (e.g., only parent and child references might be allowed). Unfortunatelyneither of these design alternatives were appealing so we were never able to develop



� 35an acceptable design [Myers et al. 1998].A limited solution that worked reasonably well in Amulet was the introductionof path macros such as Get Sibling, Get Parent, and Get Child. For example,Get Sibling(frame, left) would expand into self.parent.frame.left and re-turn the frame part's left slot. An analysis of Amulet code shows that most pathexpressions do not extend beyond the grandparent or grandchild level (i.e., no morethan 2 levels up or down in the hierarchy), so it is possible that a reasonably com-plete solution could be achieved by providing grandparent, grandchild, and nephewmacros.Another solution that several Amulet users developed was to split a path intomultiple parts and put constraints that computed the multiple parts at di�erentparts of the composite object. For example, rather than writing the constraint:left = self.parent.parent.frame.left + 10the programmer might write the three constraints:in the grandparent:frame left = self.frame.leftin the parent:frame left = self.parent.frame leftin the part:left = self.parent.frame leftIt would have been interesting to see if a more complete set of macros could havealleviated the need to do this kind of splitting.6.4.2 Broken Path Expressions.. A second problem that arises with path ex-pressions is that they break when objects are moved around the composite objecthierarchy or objects are renamed. For example, in Figure 2, the path expressionself.parent.frame.leftwill break if either 1) a new object is interposed betweenGraph Node and label so that label's new parent is the new object, or 2) frame isrenamed border. Allowing the programmer to directly name an object would solvethe problem of moving objects around in the composite object hierarchy. However,it would not solve the problem of renaming objects. Here again we never arrivedat a satisfactory solution.6.4.3 Lessons Learned.. In summary, paths proved to be a boon from an imple-mentation perspective. They are a very powerful construct that enable the inher-itance of constraints and that allow a constraint to maneuver about a compositeobject hierarchy. From a user perspective, paths that extend beyond the immedi-ate parent/child neighborhood of a constraint are a bit of a curse because they areproblematic to write and to maintain, and as a result, tend to be buggy. Despiteseveral di�erent tries, we were never able to completely overcome this problem.7. HOW CONSTRAINTS ARE USEDTo determine how programmers use constraints in actual applications, we examinedthe source code of 22 Amulet applications. Three of the applications were writtenby non-Amulet members, ten of the applications were distributed as samples withthe Amulet source code, and nine of the applications were written by students in a



36 �graduate course at the University of Tennessee. We also examined the source codethat comprises the Amulet run-time system (every Amulet application runs on topof the Amulet run-time system). The application programs contained a total of65,000 lines of code. The Amulet run-time environment contained 38,000 lines ofcode.Since Amulet users create constraints by writing formulas and then attachingthese formulas to slots, our examination focused on counting the number of formulasthat were de�ned and the number of places in the source code where these formulaswere attached to slots. Based on this examination, we divided the purpose of aformula into four categories:(1) Graphical Layout: These formulas compute an object's size and position.(2) Visibility: These formulas compute an object's visibility. They return true ifthe object should be visible and false if the object should be invisible.(3) Graphical Properties: These formulas compute the graphical attributes of anobject, such as its color, line style, �ll style, and text and font if the object is atext object. For example, a formula that computes a menu item's color based onthe item's enabled status would be placed in this category.(4) Non-graphical: These formulas compute values that are used by the appli-cation to perform some non-graphical task. The values computed may be usedas parameters to the event handling routines, as parameters to application call-back procedures, or as error-checking values. In essence application maintenanceconstituted an \other" category.In a few cases a formula could logically �t in more than one category. In thesecases, the formula was placed in the category with which it had the strongestconnection. Formulas that simply copied values around were categorized accordingto the slot to which they were attached. For example, a formula that copied theparent's width to a child would be categorized as a graphical layout formula.Note that many of the formulas in the last three categories are not numeric andso could not be handled by many powerful, but domain-speci�c numerical solvers.Hence, even if more powerful solvers were provided for graphical layout constraints,dataow constraints would still have an important niche in graphical applications.7.1 TerminologyIn this section it is important to be especially precise about terminology. In par-ticular, it is necessary to di�erentiate among three di�erent concepts:(1) The number of formulas written by programmers. This number refers to thenumber of formula functions that are de�ned in the source code.(2) The number of places in the source code where these formulas are used. Sincea formula is declared separately from its use in Amulet, it can be used in multipleplaces. For example, a programmer might de�ne a formula that centers one objectwith respect to another object. This formula could be assigned to the left slotof a text object, thus centering the text object within another object, or to theleft slot of a bitmap, thus centering the bitmap within another object. Hence thisformula has two uses. In order to clearly di�erentiate a formula use from a formulade�nition, we will say that each time that the source code assigns a formula to



� 37Table I. The distribution of formula functions de�ned in the source code of application programsand the Amulet run-time system. For example, there are 224 unique formulas in the Amuletrun-time source code.Category Formulas De�ned in Formulas De�ned inApplication Programs the Amulet Run-TimeEnvironmentGraphical Layout 419 67% 111 49%Visibility 42 7% 4 2%Graphical Properties 87 14% 31 14%Non-graphical 79 12% 78 35%Total 627 224a slot (i.e., each place in the source code where the formula is used) it creates aconstraint equation.(3) The number of constraint instances dynamically created from constraintequations at run-time. Each constraint object created by Amulet, whether it isattached to a prototype or to an instance object, is counted as a constraint in-stance. Hence, for counting purposes, the assignment of a formula to a slot bothcreates a constraint equation in the source code and creates an instance of thatconstraint equation at run-time.The statistics for the de�nition and use of formulas are discussed in this sectionbecause they pertain to how programmers used constraints in the source code. Thestatistics for the actual number of constraint instances dynamically created by thevarious applications are deferred until Section 9.2, because the number of dynami-cally created instances is storage performance issue rather than a programmer usageissue.7.2 Types of Formulas De�ned.Table I shows the number of formula functions that were de�ned in the source codeof the application programs and the Amulet run-time system, and the categoriesinto which these formulas fell. Graphical layout formulas were the primary type offormula de�ned by both the programs and the run-time system. The predominanceof graphical layout formulas can be traced to three factors. First, they representthe most obvious use of constraints in a graphical interface. Second, each graphicalobject has four layout properties, left, top, width, and height, that would typicallybe constrained, whereas it would have only one visibility property and two graphi-cal properties, line style and �ll style, that would typically be constrained (a coloris speci�ed with a line style and a �ll style). Third, our experience in teaching con-straints to students shows that students immediately grasp how constraints can beused to compute graphical layout while they must be more carefully instructed onhow constraints can be used for other purposes. Consequently novice to intermedi-ate programmers of constraints tend to write far more graphical layout constraintsthan any other type of constraint.The biggest discrepancy between the application programs and the Amulet run-time environment occurs in the percentage of application maintenance formulasthat are de�ned, with the Amulet run-time environment de�ning, percentagewise,



38 �twice as many of these types of formulas as application developers. In general,Amulet developers are more skilled in the use of constraints than application pro-grammers and hence it is not surprising that they have de�ned a greater percentageto perform tasks other than computing various graphical aspects of an object. Forexample, while the Amulet developers de�ned a large number of formulas that laidout the pre-de�ned widgets, such as menus and radio buttons, they also de�neda large number of formulas to compute many of the properties of the interactorobjects. This result also agrees with our own empirical observations of students.Typically as they progress from novice constraint programmers to more experiencedconstraint programmers, they begin to de�ne a greater percentage of non-graphicalconstraints.We also examined the types of parameters that formulas used. The most interest-ing thing we found was that formulas typically depended on the syntactic propertiesof an application rather than on the semantic properties. Syntactic properties de-�ne an object's appearance in the user interface whereas semantic properties de�nethe object's \intrinsic" meaning in the application. Examples of syntactic prop-erties include position, size, visibility, color, and selection status (i.e., whether ornot an object is currently selected by the user). Examples of semantic proper-ties include the age of a tree in a landscaping application, the hull integrity of aship in a ship-to-ship combat game, or the value of a variable in a visual languageapplication.One of the explanations for the greater frequency of syntactic properties as pa-rameters in constraints is that Amulet formulas cannot be used to connect the in-stance variables of standard C++ class-instance objects with the slots of Amulet'sprototype-instance objects. The reason is that the slots contain special methodsand storage that allow constraints to establish dependencies from the slots to theconstraints. Instance variables in standard C++ code do not have these methodsor storage. Over the years, several users have indicated that they would have likedto write constraints that connected application objects written in standard C++code to Amulet objects but were unable to do so because of this restriction.A second explanation, observed over years of experience with programmers, isthat programmers just seem more comfortable with explicitly setting graphicalproperties that depend on application semantics. One possible reason for this be-havior is that syntactic properties tend to be automatically set by the system whilesemantic properties tend to be set explicitly by the programmer in callback proce-dures. So constraints may seem like a natural way to monitor the values of thesesyntactic properties, since they seem to be \beyond" the control of the programmer.On the other hand, since the semantic properties are set by the programmers, theprogrammers may feel more comfortable with also setting the graphical propertiesthat display these semantic properties.7.3 Usage of Formulas.Once a formula is de�ned in Amulet, it can be used in multiple places in the sourcecode to create constraint equations. Table II shows the number of uses of formulasin the source code of Amulet applications and the Amulet run-time system. Thetable also shows the number of uses of pre-de�ned formulas in the source code(these pre-de�ned formulas are counted in the Amulet run-time system in Table I).



� 39Table II. The number of times formulas were actually used in the source code of (a) applicationprograms and (b) the Amulet run-time system. Each percentage represents the proportion offormulas that belonged to that category. For example, 69% of the formulas in the source code ofapplication programs were graphical layout formulas.Category Formulas Used in Application ProgramsProgrammer- Pre- TotalDe�ned De�ned De�nedGraphical Layout 754 31% 939 38% 1693 69%Visibility 95 3.5% 12 0.5% 107 1%Graphical Properties 211 9% 147 6% 358 15%Non-graphical 166 7% 122 5% 288 12%Total 1226 50% 1220 50% 2446 100%(a)Category Formulas Used in theAmulet Run-Time EnvironmentProgrammer- Pre- TotalDe�ned De�ned De�nedGraphical Layout 125 30% 50 12% 175 42%Visibility 4 1% 3 1% 7 2%Graphical Properties 55 13% 43 10% 98 23%Non-graphical 122 29% 18 4% 140 33%Total 306 73% 114 27% 420 100%(b)Amulet provides 14 pre-de�ned formulas for 1) aligning the lefts, tops, centers,bottoms, and rights of objects, 2) computing the width or height of a compositeobject, 3) laying out the parts of a list, and 4) for retrieving a slot from a part, aparent, or a sibling.The table shows that formulas are used in roughly the same proportion as theyare de�ned. For example, 67% of the formula functions de�ned by applicationprogrammers are graphical layout formulas and these formulas account for 62%of the constraint equations that are created by programmer-de�ned formulas inthe source code6. The results show programmer-de�ned formulas are used just asfrequently as pre-de�ned formulas, and predominate by a 3-1 ratio in the Amulettoolkit itself. However, the fact that a collection of 14 formulas could accountfor 50% of the formula usage for application programs is still indicative that ifpre-de�ned formulas are chosen carefully, they can signi�cantly aid an applicationprogrammer.Figure 5 presents another way of looking at formula usage. It shows the frequencywith which individual formulas were used to create constraint equations for bothapplication programs and the Amulet runtime system. For example, it shows that391 of the formulas de�ned in the application programs were used only once in thesource code, 85 of the formulas were used twice, and so on. The �gure shows that6The 62% �gure is derived by dividing the 31% in the programmer-de�ned column of Table II bythe 50% total line in this column.
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(b)Fig. 5. The frequency with which individual formulas were used to create constraint equationsin the source code for both application programs (a) and the Amulet runtime system (b). Forexample, graph (a) shows that 391 of the formulas de�ned in the application programs were usedonly once in the source code, 85 of the formulas were used twice, and so on.



� 41there was a moderate of amount of re-use of formulas. The pre-de�ned formulasaccounted for 13 of the 26 formulas that were reused 10 times or more in theapplication programs and accounted for the only formula that was reused 10 timesor more in the Amulet runtime system.The most commonly re-used formulaswere the pre-de�ned formulas that retrieveda slot from another object. The pre-de�ned formula that retrieved slots from anowner was the most commonly used formula in both application programs and theAmulet runtime system. The most commonly used of the remaining pre-de�nedformulas are the ones that 1) center an object with respect to another object, 2)lay out the parts of a list, and 3) compute the width or height of an object as thewidth or height of the bounding box of its parts.An analysis of the other commonly re-used formulas revealed only one type offormula that was re-used consistently across multiple applications. This type wasa formula that used a pointer to copy a slot from an object that was not a partof the formula's composite object. For example, an arrow object might use theformula x2 = self:to obj:left to attach itself to the left side of an object. A pre-de�ned formula that allowed a programmer to specify both a pointer slot and a slotto be copied from the object pointed to by the pointer slot would therefore havebeen helpful. Overall, the lack of other candidates for pre-de�ned formulas is nottoo surprising given that the set of pre-de�ned formulas was based on initial usageinformation gathered at the beginning of the Amulet project.7.4 Lessons LearnedWhen we �rst started the Garnet project we thought that programmers wouldreadily use constraints for many programming tasks because they have been usedso successfully in spreadsheets. However, as both the usage statistics and our ownexperiences with programmers bear out, programmers will readily use constraintsfor graphical layout but must be carefully and time consumingly trained to usethem for other purposes. In retrospect this result should not have been surprising.Business people readily use constraints in spreadsheets because constraints matchtheir mental model of the world. Similarly, using constraints for graphical layoutreadily matches many programmer's mental model of the world, both because theyuse constraint-like commands, such as left align or center, to align objects in drawingeditors, and because constraint-like language is typically used to specify layout inprecision paper sketches, such as blueprints. In contrast, most programmers thinkimperatively, not declaratively, for other programming tasks. Hence it should notbe surprising that 1) programmers do not think of using constraints for these othertasks and, 2) programmers require extensive training to overcome their proceduralinstincts so that they will use constraints.8. ALGORITHMIC EXPERIENCEThis section describes lessons we have learned in designing and implementing Gar-net and Amulet's constraint solvers. The lessons included:(1) Mark-sweep algorithms work better in graphical interfaces than topological-ordering algorithms(2) It is not important to avoid unnecessary evaluations in graphical interfaces, and



42 �(3) Lazy evaluation performs better than eager evaluation, but generally not bymuch.8.1 Mark-Sweep Algorithms Work BestDuring the course of the Garnet and Amulet projects, we experimented with varioustypes of mark-sweep and topological-ordering algorithms for performing constraintsatisfaction. We found that mark-sweep algorithms were the most versatile, theeasiest to implement, and the most e�cient. These �ndings were surprising tous because the programming languages community has predominantly investigatedtopological-ordering algorithms [Reps et al. 1983; Alpern et al. 1990] because oftheir supposedly greater speed.8.1.1 Versatility.. The mark-sweep strategy gives the implementor a constraintsystem the option of using either lazy or eager evaluation whereas the topological-ordering strategy supports only eager evaluation. The reason for the mark-sweepalgorithm's greater versatility lies in the di�erent directions in which the two strate-gies traverse the dataow graph. The mark-sweep algorithm starts at internal nodesin the directed graph and works its way down to the leaf nodes (also called sourcenodes or nodes with no incoming edges). In contrast, the topological-ordering al-gorithms start at the leaf nodes and work their way up to the \root" nodes (alsocalled sink nodes or nodes with no outgoing edges).Lazy evaluation requires that an algorithm be able to start at an arbitrary nodein the dataow graph. The mark-sweep algorithms have this ability since they canstart at an arbitrary internal node. The topological-ordering algorithms do nothave this ability since they must start at the leaves, and they cannot determinein advance which set of leaves will need to be evaluated in order to determine thevalue of an arbitrary node.8.1.2 Implementation.. Mark-sweep algorithms proved to be simple to imple-ment even when features like cycles and pointer variables were added to the con-straint system. In contrast, the topological-ordering algorithms proved to be verybrittle when cycles and pointer variables were added to the constraint system andhence their implementation proved to be very complex.Basic Implementation. The simplest case for both a mark sweep algorithmand a topological ordering algorithm is the case where the dataow graph has no cy-cles and does not change as constraints are evaluated. Even in this simplest case, amark-sweep algorithm is much easier to implement than a topological-ordering algo-rithm. The mark phase of a mark-sweep algorithm is simply a depth-�rst search. Incontrast, the numbering phase of a topological-ordering algorithm typically requireseither the use of sophisticated algorithms in order to keep the topological numbersup-to-date [Vander Zanden et al. 1994; Alpern et al. 1990] or simpler algorithmsthat keep the topological numbers only partially up-to-date [Hoover 1987]. In thelatter case, constraints may be evaluated more than once because the topologicalnumbers are not completely up-to-date.The evaluation phase of a mark-sweep algorithm is also simple relative to topological-ordering schemes. The mark-sweep algorithm simply checks the out-of-date ag fora constraint, sets it to false if the ag is true, and executes the constraint's code.In contrast, the topological-ordering scheme must implement a priority queue to



� 43handle constraints' evaluation.Cycles. The mark-sweep algorithm handles cycles trivially. As long as a con-straint is marked up-to-date before its evaluation starts, any cycle will halt when itreaches this constraint again. The second time the constraint's value is requested, itwill simply return its original value because it has been marked up-to-date. Henceevery constraint is evaluated at most once.In contrast, a topological-ordering algorithm requires an elaborate algorithm tohandle cycles. Basically it must treat all the constraints in the cycle as one big nodein the dataow graph, each of which has the same order number. In order to dothis, we found that the constraint solver must use a strong connectivity algorithmin order to locate cycles [Vander Zanden et al. 1994] (a cycle is a strongly connectedcomponent). Every time the dataow graph changes, this strong connectivity al-gorithm must be invoked. In addition, we found that the easiest way to guaranteethat each constraint in a cycle is evaluated at most once is to use a mark-sweepalgorithm. Hence one ends up implementing the mark-sweep algorithm in additionto the topological-ordering algorithm.Pointer Variables. Both pointer variables and conditionals may cause thedataow graph to change dynamically during constraint satisfaction. For exam-ple, consider the constraint A.left = A.obj over.left in Figure 6.a. Note thatobj over is computed by a constraint that depends on the mouse's postion andthat obj over currently points to object B. Figure 6.b shows the resulting dataowgraph. Now suppose the mouse moves, and that this change causes obj over topoint to object C. The change will cause the dataow graph to change, since A.leftwill now depend on C.left rather than B.left. Figure 6.d shows the new dataowgraph.Since arbitrary code is allowed and since it is not possible to statically analyzearbitrary code, we cannot assume that the constraint solver can discover staticallythat the dataow graph has changed. The change becomes known only when C3starts executing and requests A.obj over. At this point the constraint solver dis-covers that A.obj over now points to C rather than B and that the dataow graphmust be updated. Hence the dataow graph changes during constraint satisfaction.Other than updating the dataow graph, the mark-sweep algorithm does nothave to change in any way to handle dynamic dependency changes. When A.left'sconstraint requests the value of A.obj over, it will �nd that it now needs to requestthe value of C.left rather than B.left. Since the mark-sweep algorithm can beginits evaluation at an arbitrary node, choosing to evaluate C.left next rather thanB.left does not cause any problem.
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C3: A.left = A.obj_over.left
C2: C.left = D.left + 100
C1: A.obj_over = if (mouse.x < window.left) then B else C
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7Fig. 6. (a) Three constraints that illustrate how a dataow graph can change during the course ofconstraint evaluation. The initial dataow graph is shown in (b). The numbers to the upper rightof each variable in (b) denote the variable's position in topological order. The ... denotes elidedparts of the dataow graph with edges coming into D.left. As the mouse moves, A.obj overmight switch from pointing to B to pointing to C. If this happens, the evaluation of A.left willdynamically change the dataow graph from the one in (b) to the one in (c). The bold arrowdenotes the added edge. The added edge results in C.left and A.left being out of order so thesetwo variables must be renumbered (d). In addition, the evaluation of C3 must be terminated sothat C.left can be brought up-to-date.



� 45In contrast, a topological-ordering scheme must renumber the dataow graphbefore it can proceed. In other words, it must suspend the evaluation phase andenter the numbering phase. For example, in Figure 6.c, C.left and A.left arenow out of order so A.left must be renumbered. The renumbering can causeconstraints that have already been placed on the priority queue to become out oforder, so the priority queue may also have to be re-ordered. Finally, the evaluationof the current constraint may have to be aborted because the current constraintmay no longer have the lowest topological number. For example, the evaluation ofA.left in Figure 6.c must be aborted because C.left now has a lower topologicalnumber. Each of these tasks requires that additional and often tricky code be addedto the constraint satisfaction algorithm.In sum, while the introduction of cycles and pointer variables is easily accommo-dated by the mark-sweep algorithms, it signi�cantly complicates the implementa-tion of the topological-ordering algorithms. It should be noted that despite thesedi�culties, we did fully implement and test a topological-ordering algorithm thathandled cycles and pointer variables [Vander Zanden et al. 1994]7.8.1.3 E�ciency.. In Garnet we experimentally implemented a topological-orderingscheme to see if we would get a performance improvement out of the constraintsolver. However, we found that the topological-ordering scheme was much slowerthan the mark-sweep Garnet algorithm.We were surprised to �nd that the mark-sweep algorithm was faster becauseproponents of topological-ordering algorithms have made some persuasive argu-ments in their favor [Reps et al. 1983; Alpern et al. 1990]. First, the numberingphase of the topological-ordering algorithm should have to visit fewer nodes of thedataow graph than the mark phase of the mark-sweep algorithm. Second, al-though both algorithms evaluate only OjAFFECTEDj constraints, the evaluationphase of mark-sweep algorithm examines more constraints because it looks at allout-of-date constraints whereas the evaluation phase of a topological algorithm onlylooks at constraints whose parameters have actually changed 8.However, our Garnet implementation revealed that this theoretical analysis ig-nores important practical considerations:(1) The depth-�rst search of the mark phase is so much simpler than the num-bering algorithms used by the topological-ordering algorithm's numbering phasethat in practice the mark phase is much faster than the numbering phase.(2) The priority-queue handling code in the topological ordering scheme is severaltimes slower than the simpler evaluation code in the mark-sweep scheme. Hence,even though the evaluation phase of the mark-sweep scheme might have to examinemore constraints than the topological-ordering scheme, in practice, the evaluationphase of the mark-sweep scheme is much faster than the evaluation phase of thetopological-ordering scheme.(3) An empirical study of Amulet applications [Vander Zanden and Venckus7The dynamism of pointer variables is su�ciently problematic that no algorithm for multi-way,dataow constraints has yet been devised that handles the unrestricted use of pointer variables.8A mark-sweep algorithm does not have to evaluate a constraint if none of its parameters havechanged but it needs to check to see whether any parameters have changed.



46 �Table III. The benchmark Amulet applications that were used to obtain the empirical results.Application DescriptionCheckers Game of checkersTree Debugger Program for visualizing the execution of an algorithm that insertsnodes into a binary tree. Short Version: User quits before binarytree completely constructed Long Version: Binary tree is com-pletely constructed.Testwidgets Application for testing all of Amulet's widgetsLandscape Visual editor for creating landscapes of a yardCircuit Visual editor for creating electrical circuitsGilt Interface builderMessage Sender Editor for visualizing message sending among a number of processorsCard Catalog Program for browsing book titles1996] revealed that 60-80% of variables have fewer than 10 constraints that de-pend on them, either directly or indirectly. Further, in 6 of the 7 Amulet applica-tions surveyed, almost no variable was depended on by more than 100 constraints.These �ndings indicate that very few constraints will be marked out-of-date orre-evaluated for most variable changes. As a result, the theoretically better topo-logical ordering scheme does not get a chance to be better because its constants areso much larger than the mark-sweep scheme.(4) In graphical applications, almost all the constraints that depend on a changedvariable compute a new value and hence must be re-evaluated (this issue is discussedfurther in the next section). Hence the size of the AFFECTED and INFLUENCEDsets are nearly identical, meaning that the mark phase wastes very little time ex-amining unnecessary variables.Once the algorithms are modi�ed to handle cycles and pointer variables, the em-pirical performance advantage of mark-sweep algorithms over topological-orderingalgorithms becomes even more pronounced, because of the greatly increased com-plexity of the topological-ordering algorithms.8.2 Avoiding Unnecessary EvaluationsOne of the characteristics that distinguishes some mark-sweep algorithms fromothers is whether or not they avoid unnecessary evaluations. An unnecessary eval-uation is one in which a constraint's inputs have not changed, but the constraint isnonetheless re-evaluated 9. If a constraint evaluation takes a signi�cant amount oftime, then avoiding an unnecessary evaluation of that constraint could signi�cantlyimprove an application's response time.Note that unnecessary evaluations are only an issue with mark-sweep algorithms.Topological-ordering algorithms only evaluate constraints whose inputs have changedbecause a constraint is not added to the re-evaluation queue unless one of its inputshas changed. In contrast, a mark-sweep algorithm will mark a constraint out-of-date if one of its inputs has potentially changed (i.e., it depends indirectly on a9Some advocates of lazy evaluation describe an unnecessary evaluation as an evaluation whoseresult is never used but throughout this paper we de�ne an unnecessary evaluation as one in whichthe constraint's inputs have not changed.



� 47changed variable). This input may or may not actually change, depending on theoutcome of its own constraint evaluation. If the input does not change, then theconstraint that depends on it does not have to be re-evaluated (assuming of coursethat none of the constraint's other inputs have changed either). Unless the mark-sweep algorithm performs some bookkeeping to determine whether the input hasactually changed, the constraint may be unnecessarily re-evaluated.To assess the potential impact of unnecessary evaluations on graphical applica-tions, we measured the number of required and unnecessary constraint evaluationsin a number of Amulet applications. The applications are summarized in Table IIIand snapshots of the applications are shown in Figure 7. The results for bothlazy and eager evaluation are shown in Figure 8. The released version of Amuletactually performs these unnecessary evaluations. To perform the measurements,we modi�ed Amulet in a manner suggested by Hudson [Hudson 1991] so that itdetected and avoided unnecessary constraint evaluations (in essence, when a slot isevaluated, it checks whether it actually changed, and if it did, it noti�es all con-straints that depend on it|additionally, before a constraint is evaluated, it forcesany out-of-date inputs to be brought up-to-date so that it can determine whetherthese inputs have changed).The results show that in general most evaluations are required. The reason is thatwhen the graphical appearance of one object changes, the graphical appearance ofrelated objects will change in a related way. For example, if a gate moves in thecircuit application, then all the attached wires also move. Similarly, when the age ofthe trees is adjusted in the landscape application, all of the trees change graphicalappearance. Hence, almost all the constraints that depend on a changed value willactually change value themselves.We also measured the constraint evaluation time saved by not having to performunnecessary evaluations. Interestingly, the savings in time is often less than thesavings in number of constraints evaluated. Although not large, these savings stillseem to be fairly good. However, the savings in time is savings in constraint eval-uation time, not overall application time. In Section 9, we will see that constraintevaluation time typically represents less than 10% of an application's overall time.Consequently the savings in overall application time is insigni�cant. Indeed thesavings was so insigni�cant that we checked to see whether the overhead of avoid-ing unnecessary computations was worth the savings. It was, since the overheadalmost always amounted to less than 1% of the total constraint evaluation time.8.2.1 Lessons Learned.. Given the small amount of time that most graphicalapplications spend on constraint satisfaction (see Section 9.1), saving unnecessaryevaluations does not result in noticeable speedup in most applications. However,it is relatively easy to check for unnecessary computations and the overhead isless than the time saved by avoiding the computations. Hence, it is a worthwhileoptimization to add to the constraint satisfaction algorithm, but only because theoptimization is so simple.8.3 Lazy Versus Eager EvaluationWe have previously discussed the tradeo�s of lazy versus eager evaluation from anease-of-use standpoint (Section 5.4). However, they can also be compared with
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Checkers Test Widgets

Tree Visualizer Landscape EditorFig. 7. Snapshots of sample applications created using Amulet. The speed and storage resultsreported in this paper are derived from these applications.
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Logic Circuit Editor Gilt Interface Builder

Message Passing Visualizer Card CatalogFigure 7 continued.
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36(b) eager evaluationFig. 8. The percentageof unneeded evaluations for the benchmarkapplicationsand the percentageof constraint evaluation time saved if the unneeded evaluations are not performed.
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Fig. 9. The percentage of constraint evaluations and the percentage of time saved by lazy evalu-ation versus eager evaluation for the benchmark applications.respect to e�ciency. Proponents of lazy evaluation claim that lazy evaluation canpotentially avoid a signi�cant number of unnecessary evaluations and thus increasean application's response time. To determine what types of time savings are pos-sible, we compared our benchmark set of applications using both eager and lazyevaluation. The released version of Amulet uses eager evaluation but a one linechange in the Amulet code changes Amulet into a lazy evaluator10. Figure 9 showsthe percentage of constraint evaluations and the percentage of time that lazy eval-uation saved over eager evaluation for the various benchmark applications.The results generally show that the expected savings for graphical applicationsis less than 20%, both in terms of number of constraints evaluated and constraintsatisfaction time. The reason why lazy evaluation does not secure greater gains isbecause the display manager causes most constraints to be evaluated when it triesto determine whether or not an object should be drawn on the display. Objectswhose positions place them outside the current viewing area do not have to bedrawn but the only way a display manager can ascertain this fact is to demand thevalues of their position and size slots. Hence, regardless of whether lazy or eagerevaluation is used, the constraints on these slots must be re-evaluated. The onlyway to avoid the evaluation of the position and size constraints is if the object'svisible attribute is false, indicating that the object should not be drawn. However,almost all the graphical objects in the benchmark applications have their visibility10When Amulet is changed into a lazy evaluator, it is possible to specify that a slot should beevaluated eagerly. In several of the applications, a couple of the slots had to be marked eager tomake the applications work properly.



52 �slots set to true.The relatively small percentage reduction in evaluated constraints achieved bylazy evaluation might be more impressive if the constraint evaluations that arebeing avoided are expensive evaluations. However, the percentage time savingsachieved by lazy evaluation is typically less than the percentage reduction in con-straints evaluated. Especially striking is the message passing application wherea 46% savings in constraints evaluated results in only an 11% reduction in con-straint evaluation time. This suggests that rather than lazy evaluation avoidingthe unnecessary evaluation of expensive constraints, it actually tends to avoid theunnecessary evaluation of inexpensive constraints.The one exception to this rule was the tree visualization application. In this ap-plication, many nodes of the tree can be created before they are actually displayed.In this case, lazy evaluation leads to enormous savings in constraint evaluationtime because the eager evaluator re-evaluates the layout constraints every time anew node is created, even though the tree is not yet visible. In contrast, the lazyevaluator does not re-evaluate these constraints because the display manager hasnot yet been asked to display the tree. Despite the signi�cant savings in constraintevaluation time, Figure 10 shows that less than 20% of the tree visualizer's time isspent performing constraint evaluation. Hence, even in this case, lazy evaluationdoes not achieve a signi�cant reduction in overall application execution time.8.3.1 Lessons Learned.. Given that constraint satisfaction already accounts fora rather small percentage of an application's time, lazy evaluation typically pro-vides almost no speedup in most applications because 1) it does not actually avoidvery many unnecessary evaluations, and 2) those that it does avoid tend to beinexpensive evaluations. Thus, we feel that the choice of lazy versus eager eval-uation typically should be made based on usability issues, which as discussed inSection 5.4.1, are mixed.9. PERFORMANCE EXPERIENCEIn this section we examine the time and storage e�ciency of the Amulet and Garnetconstraint systems.9.1 Time E�ciencyBoth the Garnet and Amulet constraint systems were able to solve constraintsquickly enough to support interactive behavior. For example, feedback objectscan track the mouse in real time and applications can perform smooth, real-timeanimations, even in large, constraint-based applications.Pro�les of both Garnet and Amulet applications verify that the constraint solveris e�cient. For example, Figure 10.a shows the percentage of several Amulet ap-plications' time spent updating the display, executing formula functions, and per-forming the overhead required to maintain the formula and dataow graph datastructures. The percentages were obtained by running the applications on a Sparc20 machine with 64 megabytes of RAM. The applications were compiled under g++version 2.7.2.1 using the -O2 option and ran under X Windows version 6 (severalapplications crashed under the -O3 option).
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(b)Fig. 10. (a) The percentage of time spent updating the display, executing formula functions, andperforming constraint bookkeeping in the benchmark applications. The remaining time went toassorted other tasks such as input handling and executing various callback routines. (b) Thenumber of constraints and the number of dependencies created in the benchmark applications.The �gures are aligned to make it clear how the percentage of time spent on the various taskschanges as the number of constraints in an application increases.



54 �The percentages indicate that the constraint overhead is a small fraction of thetime spent executing formula functions, which are in turn a small fraction of thetime spent updating the display. These percentages are consistent with the numbersrecorded for Garnet applications [Vander Zanden et al. 1994].The numbers indicate a few interesting facts. First, display time absolutelydominates any other activity that the application performs. Since all constraints aresatis�ed before the display manager is called, the percentage shown for the displaymanager is purely devoted to updating the display, and includes the time spentdetermining which objects need to be redrawn and making calls to the appropriatewindow system routines. The only exception to the display time dominance isthe card catalog application, and the times shown are skewed by the fact that52% of the application's time was spent shutting down the application after theexit button had been pressed. If only the time that the user spent interactingwith the application is counted, then the display time climbs to around 50% andthe bookkeeping overhead for constraints falls under 6%. The high bookkeepingoverhead is almost exclusively accounted for by the destruction of the constraintdataow graph in the clean up procedure.The second fact that emerges is that the constraint solver adds almost no timeto the execution of the application. The formula functions would have to be exe-cuted whether or not there was a constraint solver, so the only real time added bythe constraint solver is in its bookkeeping overhead (an eager evaluator may alsounnecessarily evaluate some formulas, but as shown in the previous section, thisadditional evaluation is not typically signi�cant). As shown by Figure 10.a, thisnumber is typically under 2% for an application, and is often under 1%. Clearlyif one is looking for a place to optimize an application, the constraint solver is notthe �rst place to look.The third fact that emerges is that the percentage of time spent in constraint sat-isfaction, both in overhead and executing formula functions, does not signi�cantlyincrease as the number of constraints in the application increases. This result mightseem somewhat anomalous since one might expect that large applications shouldhave large chains of constraints which would consume a considerable amount of con-straint satisfaction time. However, an earlier study that we conducted of Amuletapplications revealed that constraint networks tend to be modular, that is, dividedinto a number of small, independent sets of constraints rather than one monolithicset of constraints [Vander Zanden and Venckus 1996]. Since any given interactivetransaction, such as moving an object on the screen, typically only changes a smallnumber of variables, and since constraint networks tend to be small and modu-lar, only a few constraints will have to be re-evaluated on any given interactivetransaction, no matter how big the application.9.2 Storage E�ciencyBoth the Garnet and Amulet constraint systems consume a signi�cant amount ofstorage. Table 9.2 summarizes the constraint overhead imposed by both systems.In general, Garnet and Amulet applications were not large enough for the constraintsystem size to pose a problem. For example, Figure 10.b shows the number of con-straint instances and dependencies created by each of the benchmark applications.None of them have enough constraints or dependencies to pose a serious memory



� 55Table IV. Size of formula objects and dependency objects in Garnet and Amulet.System Bytes Per Formula Bytes Per DependencyGarnet 44 16Amulet 48 24problem. The largest application in terms of constraint storage is the card catalogapplication, and its constraints plus dependencies only require 5.5 megabytes ofmemory.However, the current set of Garnet and Amulet applications is somewhat mis-leading. Both Garnet and Amulet use extremely heavyweight objects that limitthe number of objects that can be held in RAM memory to less than roughly 5000.Beyond this amount the application is forced into virtual memory and performancesigni�cantly degrades. Hence, the size of Garnet and Amulet applications is e�ec-tively limited to a few thousand objects. Indeed, one survey respondent did reportthat too much memory usage made constraints a bad choice for their application,although it is unclear whether it was just the constraints, or whether the overallsize of Amulet objects also contributed to the problem.For various types of information visualization applications, it is quite conceivablethat the number of objects an application would need to create would be in thehundreds of thousands, or even millions, in which case constraint storage wouldbecome problematic.9.3 Lessons LearnedThere is a time versus storage trade-o� in performing constraint satisfaction. Inthe early interactive toolkits, such as Garnet, ThingLab [Borning 1981], Penguims[Hudson 1994], and Rendezvous [Hill 1993], there was considerable concern thatthe performance of the constraint solver could seriously degrade the performance ofan interactive application. Since this degradation was unacceptable, a considerableamount of e�ort went into devising constraint algorithms that minimized the timespent in constraint satisfaction. These algorithms use costly bookkeeping datastructures, such as �ne-grained dataow graphs, and maintain a variety of agsand other information in both constraints and dependencies in an e�ort to speedup performance. Since early interactive applications were relatively small, thistrade-o� did not constitute a problem.As the speed numbers in Figure 10 illustrate, the performance battle has beenwon. However, the storage battle may be lost as the size of interactive applicationscontinues to increase. Consequently, researchers have begun to look into ways totrade speed for storage. For example, Hudson and Smith have introduced the no-tion of microconstraints to reduce the physical storage required for constraints anddependencies in certain common graphical layout relationships [Hudson and Smith1996]. These constraints �t in four bytes of memory, thus saving considerable stor-age. However, they require that the dataow graph be dynamically inferred, thusincreasing the amount of time spent in constraint satisfaction. We are currently ex-aminingways that a dataow graph can be stored in a prototype and then generatedfor an instance on demand [Halterman and Vander Zanden 1998]. This approachalso saves storage by using far less memory to store a dataow graph. Like the



56 �microconstraints approach, it requires the dataow graph to be dynamically in-ferred, thus increasing the time spent in constraint satisfaction. Initial experiencewith this algorithm indicates that the trade-o� is a good one, as might be expectedgiven the dominance of redisplay time over constraint solving overhead.10. CONCLUSIONS AND FUTURE WORKA great deal of research activity in the user interface community has centered onconstraints over the past decade. The Garnet and Amulet projects represent two ofthese e�orts. Because of their widespread distribution and use, they have providedvaluable insights into both the successes and shortcomings of constraints. Perhapsthe biggest successes have been:(1) the acceptance by programmers of constraints as a useful tool for graphicallayout, and to a lesser extent, for de�ning the graphical properties of objects,(2) the development of simple, e�cient algorithms for performing constraint satis-faction, and(3) the development of algorithms that allow arbitrary code to be used within aconstraint without requiring any annotations from the programmer.The areas that researchers need to focus on to gain further acceptance of con-straints are:(1) the development of better debugging tools for constraints,(2) the development of more storage e�cient algorithms, even if it means tradingspeed for storage,(3) the re�nement of constraint satisfaction algorithms so that constraints areevaluated when users expect them to be evaluated, and(4) the development of theoretically sound constraint satisfaction algorithms thatcan tolerate side e�ects. A theoretically sound constraint satisfaction algorithm isone that does not enter an in�nite loop or produce non-deterministic results. Thedevelopment of such algorithms would help us understand what side e�ects are\safe" side e�ects and what side e�ects are \unsafe" side e�ects. An unsafe side-e�ect would be one that would cause the constraint solver to enter an in�nite loopor produce non-deterministic results. Our experience with algorithms involving sidee�ects suggests that theoretically sound algorithms may require some annotationsfrom a programmer (e.g., which variables will be a�ected by the constraint). Ifthis proves to be the case, an implementor may have to decide between an unsoundalgorithm that does not use annotations and a sound algorithm that uses annota-tions. Our positive experience with Amulet's unsound algorithm and our negativeexperience with annotations suggest that an implementor should not rush to use asound algorithm if the annotation burden is too great.The experience of the two projects also show that developers of constraint systemswould be well advised to keep constraints usable for programmers. Some of thelessons we have learned are that:(1) Allowing programmers to write constraints using all the capabilities of theunderlying language reduces the learning curve and increases the power of theconstraint system. Even allowing side e�ects is something that a developer may



� 57wish to consider since programmers naturally do it and our experience has shownthat it does not increase the di�culty of debugging the system.(2) The programmer should not be required to provide annotations if at allpossible. Our experience is that programmers often provide incorrect or incompleteannotations, which leads to errors in the initial development. Maintenance problemslater arise because programmers often fail to update the annotations when theyupdate the code.(3) Allowing constraints to be de�ned at the point of use makes the relationshipbetween the variable and the constraint much clearer to both the programmer andthe maintainer.(4) Adding more complicated mechanisms, such as path mechanisms for travers-ing object hierarchies, should be carefully weighed. They may be necessary, aswas the path mechanism in Garnet and Amulet, but they can signi�cantly increasethe learning curve of the constraint system and introduce debugging and maintain-ability problems. In general, these mechanisms should be added only if they areabsolutely essential to the success of the constraint system, not if they marginallyincrease the power of the constraint system.Overall, programmers' experience with constraints in the Amulet and Garnetprojects has been quite positive. Programmers generally agree that they simplifythe task of creating user interfaces and that they are a valuable and useful program-ming tool. The resolution of some of the problems identi�ed in this paper shouldhelp make constraints an even more valuable tool in the future.APPENDIXA. CONSTRAINT SATISFACTION ALGORITHMSIn this appendix, we have included algol-like pseudocode showing how the mark-sweep (Figure 11) and topological-ordering algorithms (Figure 12) are implemented.The variables used by the algorithms are shown in Table A. These algorithms havebeen adapted and simpli�ed from the algorithms we presented in [Vander Zandenet al. 1994]. The intention is to provide the reader with a general understandingof how these two algorithms are implemented, without delving into some of theintricacies of the algorithms. Consequently, the mark-sweep algorithm shown inthis appendix handles cycles, pointer variables, and the automatic detection ofparameters but it does not attempt to avoid evaluating constraints if none of theirparameters has changed and it does not attempt to remove a constraint from aslot's dependency list when the constraint no longer uses the slot as a parameter.The topological-ordering algorithm shown in this appendix does not handle cycles,pointer variables, or the automatic detection of parameters. We also have not shownhow the order numbers get updated. All of these elements signi�cantly complicatethe code for the topological-ordering algorithm. Readers who wish to see the fullimplementation details for these algorithms are referred to [Vander Zanden et al.1994].The one implementation detail we have chosen to show in the mark-sweep algo-rithm is the automatic detection of parameters [Vander Zanden et al. 1991; 1994;Hoover 1992]. This detection is done by maintaining a stack of constraints, with



58 �Table V. De�nition of the variables used by the mark-sweep algorithm in Figure 11 and thetopological-ordering algorithm in Figure 12. These algorithms assume that slots and constraintsare objects containing the variables de�ned below.Global Variables De�nitionconstraint queue A queue that contains constraints which need to be re-evaluated.In themark-sweep algorithmthis queue is an ordinary queue andin the topological-ordering algorithm it is a priority queue.dependency stack The stack of constraints that is used for inferring parameters.Slot Variablesvalue The value of the slot.owner The object to which this slot belongs.out of date In the mark-sweep algorithm, this ag indicates whether or notthe slot's value is out-of-date. In the topological-ordering algo-rithm, this ag indicates whether or not the slot's constraint ison the constraint queue.dependents A pointer to the set of constraints that depend on the slot.constraint A pointer to the constraint that computes the value of the slot.Constraint Variablesoutput slot A pointer to the slot computed by this constraint.formula A pointer to the function that computes this constraint's value.the currently executing constraint being the top-most stack element. When a con-straint is about to be executed, the constraint solver pushes the constraint ontothe stack and when the constraint �nishes executing, the constraint solver pops theconstraint o� the stack. The stack ensures that when a constraint requests a slot'svalue, the slot can locate the requesting constraint by consulting the top elementof the stack.When a slot's value is accessed by Garnet or Amulet's get method, the getmethod checks whether there is a constraint currently on the constraint stack11. Ifthere is no constraint on the stack, then the value was requested by an applicationfunction and no dependency needs to be created. However, if there is a constrainton the stack, then the get method knows that it was the topmost constraint thatrequested the slot's value. It therefore adds the topmost constraint to the slot'slist of dependents, if it is not already there. Thereafter, when the slot's value ischanged, it can notify the set of constraints on its dependents list.ACKNOWLEDGEMENTSWe would like to thank John Reppy for his helpful comments on an earlier draft ofthis paper.11The get method is the only way that a slot's value can be accessed, regardless of whether theapplication or a constraint is requesting the value. For example, a sample constraint might lookas follows: my box.right = Formula(self.get(LEFT) + self.get(WIDTH)). self refers to the objectcontaining the constraint, in this case, my box.



� 59;; Programmers call set to change the slot to the designated value.procedure set(slot, value)slot.value = valuemark(slot)slot.out of date = false ;; indicate that the slot is up-to-date;; mark recursively tags as out-of-date all slots that depend on the parameter;; slot and saves all of these slots' constraints on an ordinary queue.procedure mark(slot)slot.out of date = true;for each constraint 2 slot.dependents doif constraint.output slot.out of date = false thenconstraint queue.Insert(constraint)mark(constraint.output slot);; Programmers call solve to bring the values of all slots up-to-date. solve;; evaluates each constraint on the constraint queue and assigns the result to the constraint's output slot.procedure solve()while not constraint queue.Empty() doconstraint = constraint queue.Dequeue()slot = constraint.output slotslot.out of date = falsedependency stack.Push(constraint)slot.value = constraint.formula(slot.owner)dependency stack.Pop(constraint);; Programmers call get to retrieve the slot's value. If the slot's value is out-of-date, get �rst;; evaluates the slot's constraint and assigns the result to the slot's value �eld.procedure get(slot)if not dependency stack.Empty() thenslot.dependents = slot.dependents [ dependency stack.Top()if slot.out of date = true thenslot.out of date = falsedependency stack.Push(slot.constraint)slot.value = slot.constraint.formula(slot.owner)dependency stack.Pop(slot.constraint)return slot.valueFig. 11. A mark-sweep algorithm implemented as an eager evaluator.
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