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omputation are not somu
h mathemati
al as epistemologi
al. The Turing ma
hine model makes assumptions about informationrepresentation and pro
essing that are badly mat
hed to the realities of natural 
omputation (informationrepresentation and pro
essing in or inspired by natural systems). This points to the need for new models of
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tionHyper
omputation may be de�ned as 
omputation that trans
ends the bounds of Turing
omputability, that is, super-Turing 
omputation. Why would we suppose that su
h a thingis possible, when Chur
h's thesis e�e
tively de�nes 
omputation to be Turing 
omputation?One line of argument 
omes from philosophers, su
h as Penrose (1989), who argue thathuman 
ognitive abilities ex
eed those of digital 
omputers; spe
i�
ally, mathemati
ians 
ande
ide G�odel's (formally) unde
idable proposition. However, sin
e human 
ognitive abilitiesreside in the neural networks of the brain, one might 
on
lude (or at least spe
ulate) thatanalog neural networks have super-Turing 
omputational power.Indeed, there is now 
onsiderable theoreti
al work showing that 
ertain 
lasses of ana-log 
omputers have super-Turing power. For example, Pour-El and Ri
hards (1979, 1981,1982) showed that non-Turing 
omputable solutions 
an result from a Turing-
omputablewave equation with Turing-
omputable initial 
onditions. Garzon and Franklin (1989, 1990;Franklin and Garzon, 1990) have shown that dis
rete-time neural networks with a 
ountablein�nity of neurons are more powerful than Turing ma
hines (TMs), sin
e they 
an solvethe Halting Problem. Stannett (1990) demonstrated that 
ertain ma
hines with 
ontinuousdynami
s 
an also solve the Halting Problem. Siegelmann and Sontag (1994) have provedy This paper has been invited for a spe
ial issue of Minds and Ma
hines on hyper
omputation.



2that dis
rete-time re
urrent neural nets with real-valued weights 
an have super-Turingpower. These results have been extended by Bournez and Cosnard (1995), who have shownsuper-Turing power in a number of 
ontinuous-time and hybrid 
omputation systems. Onthe other hand, Maass and Sontag (1999) have shown that, in the presen
e of Gaussian orsimilar noise, re
urrent neural networks 
annot re
ognize arbitrary regular languages, andtherefore have sub-Turing power.Thus we may anti
ipate that the theoreti
al power attributed to analog 
omputers maydepend somewhat deli
ately on the assumptions made in the theory. Interesting thoughthese investigations are, this paper will take a di�erent approa
h to trans
ending Turing
omputability. First, however, we must re
all the assumptions underlying the theory ofTuring 
omputability.2. Assumptions Underlying Turing Computability2.1. Histori
al ContextIt is important to remember that the theory of Turing 
omputability arose out of questionsof e�e
tive 
al
ulability in the formalist program in mathemati
s. The theory addresses thesort of 
al
ulation that 
ould be a

omplished by me
hani
ally manipulating formulas ona bla
kboard of unlimited size, but using only �nite e�ort and resour
es. Spe
i�
ally, themathemati
ians that developed the theory were interested in what 
ould be proved in formalaxiomati
 theories. As a 
onsequen
e, the theory makes a number of assumptions, whi
hare appropriate to its histori
al purpose, but must be questioned when the theory is usedfor other purposes. Some of the developers of the theory of Turing 
omputability were quiteexpli
it about their assumptions (e.g., Markov, 1961, 
hs. 1{2; see also Goodman, 1968,
h. 5), but, as is often the 
ase, later investigators have a

epted them un
riti
ally.The roots of these assumptions go mu
h deeper however, and rea
h into the foundationsof Western epistemology. For example, in the La
hes (190C) So
rates says, `that whi
hwe know we must surely be able to tell'. That is, `true knowledge' or `s
ienti�
 knowledge'(epistêmê) must be expressible in verbal formulas; nonverbalizable skill is relegated to `mereexperien
e' (empeiria; e.g., Gorgias 465A). These notions were developed further by, amongmany others, Aristotle, who investigated the prin
iples of formal logi
, and Eu
lid, whoshowed how knowledge 
ould be expressed in a formal dedu
tive stru
ture.Key to this epistemologi
al view is the idea that knowledge 
an be represented in a
al
ulus and pro
essed by means of it, an idea whi
h goes ba
k at least as far as thePythagorean use of �gurate numbers to 
al
ulate and demonstrate simple theorems innumber theory. The idea re
urs throughout Western philosophy, for example in Hobbes'assertion that thought is 
al
ulation (Leviathan I.5), and in Leibniz' attempts to design aknowledge representation language and to develop a me
hani
al 
al
ulator for automatingreasoning (Parkinson, 1966).Models are idealizations of what they model; that is what makes them models. What isin
luded in a model depends on its intended purpose, what it is supposed to talk about.It is a 
li
he to say that one should not 
onfuse the map with the territory, but it is anapt analogy. Di�erent maps give di�erent information about the territory. If you try to getinformation from a map that it is not designed to provide, it may give you no answer or an



3in
orre
t answer. So also with models. If we ask them questions that they are not intendedto answer, then they may provide no answer or even an in
orre
t answer.The Turing ma
hine (and equivalent models of 
omputation) are good models for theirpurpose: studying the 
apabilities and limits of e�e
tively 
al
ulable pro
esses in formalmathemati
s. They are also, it turns out, good models of digital 
omputers with very large(i.e. approximately unlimited) memories. However, before we apply the model to issuesarising in analog 
omputation in natural and arti�
ial intelligen
e, we must look 
riti
ally atthe assumptions built into the foundations of the model to determine if they are suÆ
ientlya

urate. That will be our next task.Many of the assumptions of Turing 
omputability theory 
an be exposed by 
onsideringthe engineering problems of 
onstru
ting a physi
al Turing ma
hine or by looking at otherpra
ti
al engineering problems in signal dete
tion, pattern re
ognition, 
ontrol, et
. If wedo so, we will dis
over that the assumptions are problemati
; they are not obviously true.This phenomenologi
al exer
ise will be my strategy in the remainder of this se
tion. (For amore detailed dis
ussion, see Ma
Lennan, 1994b.)2.2. Information RepresentationThe traditional theory of 
omputation assumes that information representation is formal,�nite and de�nite (Ma
Lennan, 1994b). Formality means that information is abstra
t andsynta
ti
 rather than 
on
rete and semanti
. Abstra
t formality means that only the formof a representation is signi�
ant, not its 
on
rete substan
e. Therefore there is no limit tothe produ
tion of further representations of a given form, sin
e the supply of substan
e isassumed to be unlimited. (This in�nite produ
ibility is the ultimate sour
e of the potential,
ountable in�nities of formal mathemati
s; see Markov, 1961, lo
. 
it.) Synta
ti
 formalitymeans that all information is expli
it in the form of the representation and independentof its meaning. Therefore information pro
essing is purely me
hani
al. Sin
e an
ient Greekphilosophy, �niteness has been assumed as a pre
ondition of intelligibility. Therefore, rep-resentations are assumed to be �nite both in their size and in the number of their parts.De�nitenessmeans that all determinations are simple and positive, and do not require subtleor 
omplex judgements. Therefore there is no ambiguity in the stru
ture of a representation.Be
ause representations are �nite in their parts, they must have smallest elements, indi-visible or atomi
 
onstituents. Individual physi
al instan
es of these atomi
 
onstituents areoften 
alled tokens, ea
h of whi
h belongs to one of a �nite number of types. For example,`A' and `A' are two di�erent tokens of the letter-A type.Tokens are assumed to be indivisible and de�nite with respe
t to their presen
e or ab-sen
e. However, in the 
ontext of pra
ti
al signal pro
essing it is not always obvious whetheror not a signal is present. For example, if we see ` _x' in a badly reprodu
ed do
ument, wemay be unsure of whether we are seeing `x dot', the time-derivative of x, or just x with aspe
k of dust above it. Similarly, we may observe the pra
ti
al problems of dete
ting veryweak signals or signals embedded in noise (e.g. from distant spa
e
raft).Types are assumed to be de�nite and �nite in number. That is, in 
lassifying a token,there are only a �nite number of 
lasses among whi
h to dis
riminate; there are no 
ontin-uous gradations. Furthermore, the 
lassi�
ation is de�nite: it 
an be a

omplished simply,me
hani
ally, and with absolute reliability; there 
an be no ambiguity or un
ertainty.



4That su
h an assumption is problemati
 
an be seen by 
onsidering the 
onstru
tion ofa physi
al Turing ma
hine. It would have to have a 
amera or similar devi
e to dete
t thetoken on the tape and a me
hanism to determine its type (e.g., letter-A, letter-B, et
.).Certainly any su
h pro
ess would have some probability of error, whi
h is ignored by themodel. Even in everyday life and in the absen
e of signi�
ant noise, it might not be obviousthat `1' and `l' are of di�erent types, as are `0' and `O'. We 
onstru
t digital 
omputersso that the assumptions about tokens and types are reasonably a

urate, but in a broader
ontext, pattern 
lassi�
ation is a 
omplex and diÆ
ult problem. In the real world, all
lassi�
ations are fuzzy-edged and there is typi
ally a 
ontinuum between the 
lasses.Next we may 
onsider 
ompound representations 
omprising two or more tokens in somerelation with ea
h other. As examples, we may take the 
on�guration of 
hara
ters on aTuring-ma
hine tape or the arrangement of symbols in a formula of symboli
 logi
. As withthe tokens and types of the atomi
 
onstituents, we may distinguish the individual physi
alinstan
es, whi
h I'll 
all texts, from their formal stru
tures, whi
h I'll 
all s
hemata. Thes
hema to whi
h a text belongs depends only on the types of its 
onstituents and theirformal relations. Typi
ally there is a 
ountable in�nity of s
hemata, but they are built upfrom a �nite number of types and basi
 formal relations. For example, we have the 
ountablein�nity of Turing ma
hine tape 
on�gurations (sequen
es of 
hara
ters on a �nite stret
hof tape).Texts are assumed to be �nite and de�nite in their extent; that is, we 
an de�nitelydetermine whether they are present and where they begin and end (in spa
e, time, or someother domain of extension). On the other hand, there is no a priori bound on the size of atext (e.g., the TM tape 
an in
rease without bound). Pra
ti
ally, however, there are alwaysbounds on the extent of a text; the `stu�' whi
h physi
ally embodies texts (whether TMtape or bits in 
omputer memory) is never unlimited. Indeed, the limits may be quite severe.S
hemata are assumed to be �nite in `breadth' (size) and `depth' (number of 
ompo-nents). That is, as we analyze a s
hema into its parts, we will eventually rea
h a `bottom' (theatomi
 
onstituents). This is a reasonable assumption for mathemati
al or logi
al formulas,but is problemati
 when applied to other forms of information representation. For example,an image, su
h as an auditory signal or a visual image, has no natural `bottom' (level ofatomi
 
onstituents). Don't think of digital 
omputer representations of these things (e.g.,in terms of pixels or samples), but look out your window or listen to the sounds around you.Phenomenologi
ally, there are no atomi
 
onstituents. That is, 
ontinua are more a

uratemodels of these phenomena than are dis
rete stru
tures.Similarly to the types of the atomi
 
onstituents, the basi
 formal relations from whi
hs
hemata are 
onstru
ted are assumed to be reliably and de�nitely determinable. Digital
omputers are designed so that this assumption is a good one, but in other 
ontexts it isproblemati
. For example, if someone writes `2 n', does it mean twi
e n or the nth power of2? Many basi
 relations, su
h as spatial relations, exist in a 
ontinuum, but the traditionaltheory of 
omputation assumes that they 
an be perfe
tly dis
riminated into a �nite numberof 
lasses.2.3. Information Pro
essingLike information representation, Turing 
omputation assumes that information pro
essingis formal, �nite and de�nite. Thus a 
omputation is assumed to 
omprise a �nite number



5of de�nite, atomi
 steps, ea
h of whi
h is a formal operation of �nite e�ort and de�nite inits appli
ation. However, these assumptions are problemati
 even in a Turing ma
hine, ifwe imagine it physi
ally implemented. For example, there will always be some possibility oferror, either in the dete
tion and 
lassi�
ation of the symbol on the tape, or in the internalme
hanism that moves the tape, 
hanges the internal state of the 
ontrol, and so forth.Also, the assumption that the steps are dis
rete is an idealization, sin
e the transition fromstate to state must be 
ontinuous, even if there is a `digital' 
lo
k (itself an idealization ofwhat 
an physi
ally exist). A 
ip-
op does not 
hange state instantaneously.Again, my goal is not to 
laim that these idealizations are always bad; 
ertainly, theyare sometimes a

urate, as in the 
ase of a modern ele
troni
 digital 
omputer. Rather, mygoal is to expose them as idealizations, so that we will not make them mindlessly when theyare inappropriate. For example, information pro
essing in nature is mu
h more 
ontinuous.Certainly, when I write the word `the' there is a sense in whi
h the writing of the `t' pre
edesthe writing of the `h', but the steps are not dis
rete, and the writing of ea
h letter (as apro
ess of motor 
ontrol) interpenetrates with the writing of the pre
eding and followingletters (see, e.g., Rumelhart et al., 1986, vol. 1, 
h. 1).Therefore, we will have to 
onsider information pro
essing that 
annot be divided intode�nite dis
rete atomi
 operations, as well as pro
esses that are e�e
tively nonterminating(as are most 
ontrol pro
esses in the nervous system).One of the important 
hara
teristi
s of 
omputation, in the Turing sense, is that it 
analways be expressed in terms of a �nite number of dis
rete, �nite rules. This is a

omplishedby spe
ifying, for ea
h fundamental (s
hemati
) relation that 
an o

ur, the fundamentalrelations that will hold at the next time step. By the assumptions of Turing informationpro
essing, there 
an be only a �nite number of su
h fundamental relations, so a �nitenumber of rules suÆ
es to des
ribe the pro
ess. As a 
onsequen
e, these 
omputations 
anbe expressed as programs on whi
h universal ma
hines (su
h as a universal Turing ma
hine)
an operate.However, underlying the expression of information pro
essing in su
h rules lies the as-sumption that a �nite number of 
ontext-free features suÆ
es to des
ribe the states on whi
hthe 
omputation depends. Pra
ti
ally, however, many features are 
ontext-sensitive, that is,they depend on the whole text or image for their interpretation. For example, the interpreta-tion of partially obs
ured letters or sounds depends on their surrounding 
ontext (of lettersor sounds, but also of meaning; see for example Rumelhart et al., 1986, vol. 1, 
h. 1). Whenwe try to des
ribe natural information pro
essing (e.g. 
ognitive pro
esses) with in
reasinga

ura
y, we require an exponentially in
reasing number of rules, an observation made byDreyfus long ago (Dreyfus, 1979).2.4. InterpretationSin
e the theory of Turing 
omputability arose in the 
ontext of the formalist s
hool ofthe philosophy of mathemati
s, the texts were often representations of propositions inmathemati
s. Therefore the domain of interpretation was assumed to be some well-de�ned(e.g. mathemati
al) domain, with de�nite obje
ts, predi
ates, and propositions with de-terminate truth values. While this is a reasonable assumption in the theory's histori
al
ontext, it is problemati
 in the 
ontext of natural 
ognitive pro
esses, where propositionalrepresentations may have less de�nite interpretations. Indeed, as will be dis
ussed later, in



6natural intelligen
e many representations are non-propositional and their pragmati
 e�e
tis more important than their semanti
 interpretation. In 
ontrast, the traditional theoryignores the pragmati
s of representations (e.g., whether a representation is more easilypro
essed).The 
onventional theory of interpretation assumes a determinate 
lass of synta
ti
ally
orre
t well-formed formulas. This 
lass is important sin
e only the well-formed formulasare assumed to have interpretations. Typi
ally the well-formed formulas are de�ned by somekind of formal generative grammar (essentially a non-deterministi
 program | a �nite setof dis
rete, �nite rules | for generating well-formed formulas).In 
ontrast, in pra
ti
al situations well-formedness and interpretability are matters ofdegree. Linguists distinguish 
ompeten
e, the hypotheti
al grammati
al knowledge of alanguage user, from performan
e, the user's a
tual ability to interpret an utteran
e, andfo
us their attention on 
ompeten
e, but from the pra
ti
al perspe
tive of natural 
ognition,performan
e is everything. In the natural 
ontext, the interpretation of an utteran
e maybe a basis for a
tion, and its ability to perform that pragmati
 role is the foundation ofinterpretability.The approa
h to interpretation pioneered by Tarski (1936) 
onstru
ts the meaning of awell-formed formula from elementary units of meaning (obje
ts, predi
ates, fun
tions), 
or-responding to the atomi
 units of the formula, by means of de�nite 
onstru
tors parallelingthe 
onstituent stru
ture of the formula. However, we have seen that in many important
ontexts the representations (e.g., visual input, ta
tile input) have no natural atomi
 units,and the meanings of the basi
 features are generally 
ontext-sensitive. To put it di�erently,Tarski's re
ursive approa
h assumes a dis
rete 
onstituent stru
ture with a de�nite `bottom';this assumption is a poor model of many important information representations.2.5. TheoryTraditionally, the theory of 
omputation looks at a 
al
ulus from the outside and addressessu
h issues as its 
onsisten
y and 
ompleteness. However, natural and arti�
ial intelligen
eoften must pro
ess information that is non-propositional, and pragmati
 e�e
tiveness isoften more relevant than 
onsisten
y or 
ompleteness.Of 
ourse, the fundamental issue in the theory of Turing 
omputability is whether a
omputation eventually terminates, whi
h is an important issue in the theory's histori
al
ontext, whi
h was 
on
erned with modeling �nite proofs. However, `eventual termination'is of little value in many pra
ti
al appli
ations, for whi
h information pro
essing must returnuseful results in stri
tly bounded real time. Furthermore, useful information pro
essing neednot be terminating. For example, many roboti
 appli
ations use non-terminating 
ontrolpro
esses, whi
h must deliver their results in real time.Traditionally the theory of Turing 
omputability has fo
used on the power of a 
al
ulus,normally de�ned in terms of the 
lass of mathemati
al fun
tions it 
an 
ompute (whensuitably interpreted). However, in many important appli
ations (e.g. 
ontrol problems), thegoal is not to 
ompute a fun
tion at all, and it may distort the goal to put it in these terms.Rather, we may be more interested in real-time 
ontrol pro
esses and in the robustness oftheir 
omputations in the presen
e of noise and other sour
es of error and un
ertainty.Sin
e Turing 
omputation makes use of dis
rete information representations and pro-
esses, 
ontinuous quantities 
annot be manipulated dire
tly. For example, a real number



7is 
onsidered 
omputable if it 
an be approximated dis
retely to any spe
i�ed a

ura
y.However, analog 
omputational pro
esses dire
tly manipulate 
ontinuous quantities, and sothe dis
rete 
omputational model is very far from the reality it is supposed to represent.Certainly noise and other sour
es of error limit the pre
ision of analog 
omputation, butsu
h issues are best addressed in a theory of 
ontinuous 
omputation, whi
h better mat
hesthe phenomena (e.g., Maass and Sontag, 1999). Of 
ourse, analog pro
esses may 
omputeapproximations to a real number, but then the approximations themselves are real numbers,and often the pro
ess is one of 
ontinuous approximation rather than dis
rete steps. Progressin the right dire
tion has also been made by Blum and her 
olleagues, who have extended(traditional, dis
rete) 
omputational pro
esses to operate on the reals (e.g., Blum et al.,1988), but the programs themselves are 
onventional (�nite rules operating in dis
rete time).The foregoing illustrates some of the questions that are assumed to be interesting andrelevant in the theory of Turing 
omputation, but we have seen that other issues maybe more important in the analog 
omputational pro
esses found in natural and arti�
ialintelligen
e.2.6. Ubiquity of AssumptionsBefore 
onsidering models of 
omputation that trans
end Turing 
omputability, it will beworthwhile to note how diÆ
ult it is to es
ape the network of assumptions that underlie it.Histori
ally, formal logi
al and mathemati
al reasoning were the motivation for the theory ofTuring 
omputation. These a
tivities make use of dis
rete formulas expressing propositionswith well-de�ned truth values. This sort of `
odi�able pre
ision' is the purpose for whi
hformal logi
 and mathemati
s were developed. Therefore we must use the language of logi
and mathemati
s whenever we want to talk pre
isely about analog 
omputation.However, when we do so we �nd ourselves 
aught in the web of assumptions underlyingTuring 
omputation. For example, in point-set topology and set theory we take for grantedthe self-identity of a point and its distinguishability from other points. Points are assumedto be well-de�ned, de�nite. That is, two points are either equal or not | there is no `middle'possibility | although of 
ourse they may be near or far from ea
h other.The dubiousness of this assumption is revealed, as before, by 
onsidering pra
ti
al situa-tions, for we 
an never determine with absolute a

ura
y whether or not two points are dis-tin
t. Pra
ti
ally, all points are fuzzy. (But how do we express this fuzziness mathemati
ally?By asso
iating a probability with ea
h point !)We 
an hardly avoid thinking of the real 
ontinuum but as made up of idealized points,whi
h are like idealized tokens. Pra
ti
ally, however, `points' may be far from this ideal.Dis
rete knowledge representation and inferen
e is also taken for granted in our formalaxiomatization of theories. As part of the histori
al mathemati
al program of redu
ing the
ontinuous to the dis
rete, we use �nite, dis
rete axioms to de�ne un
ountable sets, su
has the real 
ontinuum. Yet the L�owenheim-Skolem Paradox suggests that any su
h axiomsystem must be inadequate for 
ompletely 
hara
terizing a 
ontinuum. (The paradox, whi
hdates to 1915, shows that any su
h axiom system must have a 
ountable model, and therefore
annot uniquely de�ne an un
ountable 
ontinuum.)Arguably, these assumptions underlie all rational dis
ourse, but there are forms of know-ing (i.e. forms of information representation and pro
essing) that are not a

urately approx-imated by rational dis
ourse. Therefore, I am not arguing for the abandonment of logi
 and



8mathemati
s, but indi
ating the fa
t that their very stru
ture biases our understandingof other kinds of knowing. These kinds of knowing are very important in natural andarti�
ial intelligen
e, and should be understood from their own perspe
tive, not throughthe distorting lens of dis
rete 
omputation. Therefore we need a theory of 
ontinuous 
om-putation, whi
h 
an 
ontribute to an expanded epistemology, whi
h addresses nonverbal,nondis
ursive information representation and pro
essing (Ma
Lennan, 1988).3. Natural Computation3.1. DefinitionNatural 
omputation is 
omputation o

urring in nature or inspired by 
omputation innature; two familiar examples are neural networks and geneti
 algorithms (see, e.g., Ballard,1997). Natural 
omputation is quite similar to bio
omputation, whi
h may be de�ned as
omputation o

urring in or inspired by living systems.There are several reasons that it is important to understand the prin
iples of natural
omputation. The �rst is purely s
ienti�
: we want to understand the me
hanisms of naturalintelligen
e in humans and other animals, the operation of the brain, information pro
essingin the immune system, the prin
iples of evolution, and so forth.Another reason is that many important appli
ations of 
omputer s
ien
e depend onthe prin
iples of natural 
omputation. For example an autonomous robot, su
h as a plan-etary explorer, needs to be able to move 
ompetently through a natural environment,a

omplishing its goals, without supervision by a human being.Natural 
omputation shifts the fo
us from the abstra
t dedu
tive pro
esses of the tradi-tional theory of 
omputation to the 
omputational pro
esses of embodied intelligen
e (see,e.g., Lako� and Johnson, 1999). In the following subse
tion I will 
onsider some of the keyissues that a theory of natural 
omputation should address.3.2. Some Key IssuesOne of the prin
ipal issues of natural 
omputation is real-time response. If a bird dete
tssome motion on the periphery of its �eld of vision, it must de
ide within a fra
tion of ase
ond whether or not it is being stalked by a predator. Su
h hard real-time 
onstraintsare typi
al of natural 
omputation, whi
h must deliver usable results either in bounded realtime or 
ontinuously (as in motor 
ontrol). Eventual termination, su
h as studied in thetraditional theory of 
omputation, is irrelevant to natural 
omputation.Furthermore, the traditional theory of 
omputational 
omplexity (e.g. NP-
ompleteness)studies how the termination time of algorithms varies with the size of their inputs. Forexample, an algorithm will be 
onsidered linear if its running time is proportional to the sizeof the input. However, the theory intentionally ignores the 
onstant of proportionality, sin
ethe 
omplexity 
lass is supposed to be independent of spe
i�
 hardware implementation (i.e.,it treats disembodied 
omputation). Therefore, an algorithm that, for a size N input, takesN millise
onds is 
onsidered to be of the same 
omplexity as an algorithm that takes Nhours (or N 
enturies!). This is a useless map for �nding one's way in the wilderness ofnatural 
omputation.



9On the other hand, in natural 
omputation the size of the input is usually determined bythe stru
ture of the sense organs or other `hardware', so it is �xed. For example, there areabout a million nerve �bers in our opti
 nerves, whi
h our visual systems are able to pro
essin the required fra
tion of a se
ond. How our visual systems would handle twi
e, ten times,or a hundred times that number of inputs, is not a very interesting or relevant question.Therefore, in natural 
omputation we are mostly 
on
erned with nongeneral algorithms,that is, algorithms designed to handle inputs of a spe
i�
, �xed size. Or, in the terminologyof linguisti
s, performan
e is 
riti
al; abstra
t 
ompeten
e is unimportant.Natural 
omputation must exhibit toleran
e to noise, error, faults and damage, bothinternal to the system and external, in the environment. The real world is messy anddangerous, and natural 
omputational systems need to be able to respond robustly.The real world is also unpredi
table, and natural 
omputational systems must expe
t toen
ounter situations that they have not been expli
itly designed to handle. Traditional AIsystems, based on dis
rete, rule-based knowledge representation and pro
essing, are oftenbrittle in the fa
e of novelty; that is, they behave stupidly. Be
ause novelty is expe
ted innatural environments, autonomous systems must respond to it in a 
exible way, bendingrather than breaking. Therefore most natural 
omputation is 
ontinuously adaptive; sin
ethe environment is 
ontinually 
hanging, so must an autonomous agent's response to it. Theadaptation may be gradual or rapid, but representations of algorithms (`programs') musta

ommodate it.In natural 
omputation we are generally interested in `good enough' answers ratherthan optimal solutions, whi
h are usually a luxury that 
annot be a�orded in a demandingreal-time environment. Indeed, broad (robust) suboptimal solutions are often preferable tobetter, tightly de�ned optima, sin
e the latter are more brittle in the presen
e of noise andother sour
es of un
ertainty. In Herb Simon's terminology, natural 
omputation is satis�
ingrather than optimizing (Simon, 1969, pp. 64{5).With this overview of some key issues in natural 
omputation, we 
an look at the sort ofidealizing assumptions that might underlie a theory addressing those issues. Some of themform the basis of a theory of 
ontinuous formal systems (or simula
ra; see Ma
Lennan,1993a, 1994a, 1994b, 1994
, 1995).4. Dire
tions Towards a Theory of Natural Computation4.1. Information RepresentationWe may begin by 
onsidering idealizations of information representation that are appropri-ate to natural 
omputation.4.1.1. All quantities, qualities, et
. are 
ontinuous.First, all quantities, qualities, et
. are assumed to be 
ontinuous (analog), as opposed todis
rete (digital). Certainly this applies to sensory input: think of 
ontinuously varyingintensities, frequen
ies, and so forth. It also applies to motor output, whi
h is ne
essarily
ontinuous, even when it is abrupt. Information representations within the nervous system,between sensation and motion, are also 
ontinuous. Although the nerve impulses are `all ornothing', the information is usually represented by the frequen
y and phase of the impulses,



10both of whi
h are 
ontinuously variable. Further, in the `graded' responses that take pla
ein the dendrites, the 
ontinuous shape of the wave forms of the impulses is signi�
ant.Finally, the synapti
 
onne
tions between neurons, where memory is believed to reside, have
ontinuously variable `eÆ
a
ies', whi
h are 
omplex fun
tions of the number, distributionand pla
ement of 
hemi
al re
eptors.4.1.2. Information is represented in 
ontinuous images.Information in natural 
omputation is generally extended 
ontinuously in either spa
e ortime (or both); that is, information is represented in 
ontinuous images. For examples,
onsider a sound (a pressure wave varying 
ontinuously over time), or a visual s
ene (apattern of light and 
olor varying 
ontinuously over spa
e and time), or the ta
tile inputover the surfa
e of an animal's body. Similarly, the motor output from an animal varies
ontinuously in time over its 
ontinuous mus
le mass. Within the brain, information isoften represented in 
orti
al maps, a
ross whi
h neural a
tivity varies 
ontinuously in spa
eand time. Position in su
h maps may represent 
ontinuously variable features of sensoryinput or motor output, su
h as frequen
y, orientation, and intensity (Ma
Lennan, 1997,1999).The fa
t that neurons, sensory re
eptors, mus
le �bers, et
. are dis
rete does not 
ontra-di
t spatial 
ontinuity, sin
e the number of elements is so large that the ideal of a 
ontinuumis a good model (Ma
Lennan, 1987, 1994b, 1999). For example, sin
e there are at least 15million neurons per square 
entimeter of 
ortex, even small 
orti
al maps (several squaremillimeters) have enough neurons that a 
ontinuum is a good approximation. Mathemat-i
ally, information is most dire
tly and a

urately des
ribed as a time-varying ve
tor or�eld.4.1.3. Images are treated as wholes.If we think about the pre
eding examples of sensory input and motor output, we 
an seethat images are generally pro
essed in parallel as wholes. Any segmentation or `parsing' ofthe image is se
ondary and a 
ontinuous fun
tion of the image as a whole. For example,the separation of foreground information from ba
kground information in visual or auditoryinput depends 
ontinuously on the entire image. Furthermore, images 
annot be assumedto have meaningful atomi
 
onstituents in any useful sense (e.g., as individually pro
essable`atoms' of information). Mathemati
ally, we may think of a 
ontinuum as 
omprising anin�nite number of in�nitely dense in�nitesimal points, but they bear their meaning only inrelation to the whole 
ontinuum.Images 
annot be assumed to be de
omposable in any single unambiguous way (as 
andis
rete representations, typi
ally), sin
e there is no `preferred' way in whi
h they were
onstru
ted (Ma
Lennan, 1993a, 1994b). That is, we think of dis
rete representations asbeing 
onstru
ted from atomi
 
onstituents, but for 
ontinuous representations the whole isprimary, and any de
ompositions are se
ondary. (Even if we think of su
h de
ompositionsas Fourier or wavelet de
ompositions, the `
omponents' are 
ontinuous quantities that arefun
tions of the entire image or extended regions of it.)



114.1.4. Noise and un
ertainty are always present.In nature, nothing is perfe
t or exa
t. Even approximate perfe
tion is rare. Therefore,all images (both external and internal) should be assumed to 
ontain noise, distortion,and un
ertainty, and pro
essing should be robust in their presen
e. Indeed, as in quantumme
hani
s, it is generally misleading to assume that there is one `
orre
t' image; ea
h imageshould be treated as a probability distribution (a fuzzy or indeterminate image). (Themathemati
s of the Heisenberg un
ertainty prin
iple is dire
tly appli
able to the nervoussystem; for a survey, see Ma
Lennan, 1991; see also Ma
Lennan, 1999.)4.2. Information Pro
essing4.2.1. Information pro
essing is 
ontinuous in real time.In natural 
omputation, information pro
essing is generally required to deliver usable resultsor to generate outputs 
ontinuously in real time. Be
ause natural 
omputation must deliverresults in real time using 
omparatively slow 
omponents (neurons), the stru
ture of the
omputations is typi
ally shallow but wide, that is, there are relatively few (at most about ahundred) pro
essing stages from input to output, but there is massively parallel pro
essingat ea
h stage. In 
ontrast, Turing 
omputation is typi
ally deep but narrow, exe
uting fewoperations (often only one) at a time, but exe
uting very large numbers of operations beforeit produ
es a result.Furthermore, pro
esses in nature are 
ontinuous, rather than pro
eeding in dis
rete steps.Certainly the nervous system 
an respond very qui
kly (as when the bird de
ides to 
eethe predator) and (approximately) dis
ontinuously, and neurons 
an exhibit similar abrupt
hanges in their a
tivity levels, but these 
hanges 
an be approximated arbitrarily 
loselyby 
ontinuous 
hanges. As in the theory of Turing 
omputation we use dis
rete pro
essesto approximate 
ontinuous 
hange, so in the theory of natural analog 
omputation we mayuse 
ontinuous approximations of dis
rete steps. Thus there is a kind of 
omplementaritybetween 
ontinuous and dis
rete models (Ma
Lennan, 1993b, 1993d, 1994
), but natural
omputation is more a

urately modeled by 
ontinuous pro
esses.4.2.2. Information pro
essing is usually nonterminating.In natural 
omputation, real-time 
ontrol pro
esses are more 
ommon than the 
omputationof fun
tion values. Therefore, most 
omputations are nonterminating, although they maypass through temporary equilibria. Rather than `eventually' 
omputing a result, natural
omputation must produ
e a 
ontinuous, unending signal in real time.4.2.3. Noise, error, un
ertainty, and nondetermina
y must be assumed.Sin
e noise, error, damage and other sour
es of un
ertainty must be presumed in both theexternal environment and the internal operation of a natural 
omputation system, infor-mation pro
essing is typi
ally nondeterministi
; that is, we have a 
ontinuous probabilitydistribution of states. Therefore, the 
orre
tness of an answer is a matter of degree, as isthe agent's 
on�den
e in it, and hen
e its pro
livity to a
t on it.



124.2.4. There is a 
ontinuous dependen
e on states, inputs, et
.Sin
e pro
esses should be insensitive to noise and other sour
es of error and un
ertainty,they should be 
ontinuous in all respe
ts (i.e., 
ontinuous fun
tions of input, internal state,et
.).4.2.5. Pro
esses need not be des
ribable by rules.We must 
onsider information pro
esses that are orderly, yet have no �nite des
ription (evenapproximate) in dis
rete formulas, su
h as mathemati
al equations. It may be surprisingthat su
h pro
esses even exist, but a simple 
ardinality argument shows that it must be so(Ma
Lennan, 2001). The set of programs, whi
h 
ould be used to 
ompute or approximatea real number, is 
ountable, but the set of real numbers in un
ountable. Therefore most realnumbers are not Turing-
omputable. Thus, even if a 
ontinuous pro
ess 
an be des
ribedby di�erential equations, it may not, in general, be expressible in �nite formulas, sin
ethe 
oeÆ
ients might be real numbers that are not 
omputable or approximatable by aTuring ma
hine. On the other hand, su
h pro
esses may be �nitely expressible by the useof 
ontinuous representations, whi
h I have 
alled guiding images (Ma
Lennan, 1995).4.2.6. Pro
esses may be gradually adaptive.As previously dis
ussed, natural 
omputation must deal with novelty in its environment.Therefore typi
ally, information pro
essing must adapt | slowly or qui
kly | to improvethe system's performan
e. This is possible be
ause the guiding images that organize thepro
ess 
an 
hange 
ontinuously in time. Sin
e rule-like behavior is an emergent phe-nomenon, gradual adaptation 
an lead to reorganization of an entire system of apparentrules (Ma
Lennan, 1995).4.2.7. Pro
esses are mat
hed to spe
i�
 
omputational resour
es and requirements.We are primarily 
on
erned with pro
esses that 
an handle prespe
i�ed input and out-put 
hannels and run on prespe
i�ed hardware, and that 
an meet the required real-time
onstraints. Asymptoti
 
omplexity is largely irrelevant. Or, to put it in linguisti
 terms,performan
e (versus 
ompeten
e) is everything.4.3. Interpretation4.3.1. Images need not represent propositions; pro
esses need not represent inferen
e.In natural 
omputation, images need not represent propositions, and pro
esses need notrepresent inferen
e. However, images may have a nonpropositional interpretation and infor-mation pro
essing may 
orrespond systemati
ally with pro
esses in the domain of interpre-tation. (This is, indeed, the original meaning of analog 
omputation; see also Ma
Lennan,1993
, 1994
.)4.3.2. Interpretability and interpretations are 
ontinuous.When an image is interpretable, the interpretation must be a 
ontinuous fun
tion of theimage, so there 
an be no dis
rete 
hanges of meaning. Furthermore, if some images areinterpretable and others are uninterpretable, there must be 
ontinuous variation betweenthese extremes, and thus degrees of interpretability. In other words, well-formedness (as apre
ondition of interpretability) must be a matter of degree. This is one basis for the robust



13response of natural 
omputation to noise, error and un
ertainty. However, it does mean weneed a di�erent, 
ontinuous way of des
ribing the well-formedness of images. For example,one 
an de�ne 
ontinuous-time nondeterministi
 pro
esses for generating images that areanalogous to grammars for dis
rete languages (Ma
Lennan, 1995).4.3.3. Pragmati
s is primary; there need not be an interpretation.Finally, we must note that natural 
omputations need not be interpretable. Pragmati
s isprimary; the 
omputation is ful�lling some purpose for the agent. Semanti
s (interpreta-tion) and syntax (well-formedness) are se
ondary. The traje
tory of natural informationpro
essing may pass through phases in whi
h it is more or less interpretable, while stilla

omplishing its pragmati
 end.4.4. Theory4.4.1. Unimportant issues:First, it will be worthwhile to remind the reader of the issues traditionally addressed by thetheory of Turing 
omputation, whi
h are unimportant, or less important, in the theory ofnatural 
omputation.As previously dis
ussed, termination is not an interesting question sin
e (1) many use-ful information pro
esses do not terminate, and (2) `eventual termination' is irrelevant,sin
e information pro
essing must satisfy 
ontinuous, real-time 
onstraints. Even when we
hoose to address traditional de
ision problems, we must do it in the 
ontext of 
ontinuousinformation representation and pro
essing (e.g., Ma
Lennan, 1994b).For the same reasons, asymptoti
 
omplexity and 
omplexity 
lasses (su
h as `NP-
omplete') are uninteresting. First of all, `the 
onstants matter', when we are operatingin real time; the di�eren
e between millise
onds and minutes is 
riti
al! Se
ond, we arenot 
on
erned with how the performan
e of the algorithm s
ales with larger inputs, sin
eit will not have to pro
ess inputs larger than those a
tually provided by the hardware. Itdoesn't matter whether an algorithm is O(N);O(N2);O(2N ), or something else, so long asthe algorithm meets the real-time 
onstraints for the parti
ular N that it must pro
ess.Universal 
omputation | the ability to have a programmable universal Turing ma
hine| is important both in the traditional theory of 
omputation and in pra
ti
e, for it isthe basis for programmable digital 
omputers. Whether there 
ould be a 
orrespondingnotion of a universal analog 
omputer is 
ertainly an interesting question, whi
h has beenaddressed in several 
ontexts (e.g., Ma
Lennan, 1987, 1990, 1999; Pour-El, 1974; Rubel,1981, 1993; Shannon, 1941). However, it is not 
entral to natural 
omputation, for natural
omputation systems are typi
ally 
onstru
ted from the inter
onne
tion of large numbersof spe
ial-purpose modules. (Even `abstra
t thought' is spe
ial-purpose 
ompared to otherinformation pro
essing done by brain modules.)4.4.2. Important Issues:Finally, we 
an enumerate a few of the issues that a theory of natural 
omputation shouldaddress.One important issue is a natural 
omputation system's generalization ability and 
ex-ibility in response to novelty. Natural 
omputation systems should not behave stupidly,as many rule-based systems do, when 
onfronted with the unexpe
ted. Therefore, su
h



14systems must be able to dis
over pragmati
ally useful stru
ture that 
an be a basis forreliable extrapolation.As already stated many times, the theory must address the behavior of the system inresponse to noise, error, and other sour
es of un
ertainty, and these e�e
ts must be assumedfrom the beginning, not added onto a �
titious `perfe
t' system.We need to know how to optimize performan
e subje
t to �xed real- time and resour
e
onstraints. Given the hardware, how do we get the best results for the widest variety ofinputs most qui
kly? The generality of natural 
omputation algorithms derives from thepro
edures for �tting the pro
ess to the hardware and real-time 
onstraints.Another important problem is adapting pro
esses to improve their performan
e. Thatis, the theory must address learning algorithms and means for avoiding the pitfalls of learn-ing (rote learning, destru
tive learning, instability, et
.). Related is the issue of designingpro
esses that adapt when their hardware is degraded (by damage, age, et
.).Finally, we observe that the `power' of natural 
omputing is not de�ned in terms of the
lass of fun
tions it 
an 
ompute, nor in terms of numeri
al `
apa
ity' (number of memories,asso
iations, et
. that 
an be stored). Rather, power is de�ned in terms of su
h fa
tors asreal-time response, 
exibility, adaptability, and robustness. Some of these fa
tors may bediÆ
ult to quantify or de�ne formally (e.g. 
exibility), but that is why we need the theory.5. Con
lusionsWe 
an summarize our thesis as follows:Turing Ma
hine theory is not wrong but irrelevant.This is, of 
ourse, an overstatement. Turing ma
hine theory is relevant to questions ofe�e
tive 
al
ulability in logi
 and mathemati
s, and to the 
lasses of fun
tions 
omputableby digital 
omputers. However, the assumptions of TM theory are not a good mat
h tonatural analog 
omputation. Therefore, although it is important to engage the traditionalissues (su
h as 
omputability), it is also imperative to trans
end them. New paradigms bringnew questions as well as new answers. Turing 
omputability asked one kind of question, butnatural 
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