
Transending Turing ComputabilityTehnial Report UT-CS-01-473November 12, 2001Brue J. MaLennanyDepartment of Computer SieneUniversity of Tennessee, Knoxvillemalennan�s.utk.eduAbstrat. It has been argued that neural networks and other forms of analog omputation may transendthe limits of Turing omputation; proofs have been o�ered on both sides, subjet to di�ering assumptions.In this report I argue that the important omparisons between the two models of omputation are not somuh mathematial as epistemologial. The Turing mahine model makes assumptions about informationrepresentation and proessing that are badly mathed to the realities of natural omputation (informationrepresentation and proessing in or inspired by natural systems). This points to the need for new models ofomputation addressing issues orthogonal to those that have oupied the traditional theory of omputation.Keywords: omputability, Turing mahine, hyperomputation, natural omputation, bioomputation,analog omputer, analog omputation, ontinuous omputation1. IntrodutionHyperomputation may be de�ned as omputation that transends the bounds of Turingomputability, that is, super-Turing omputation. Why would we suppose that suh a thingis possible, when Churh's thesis e�etively de�nes omputation to be Turing omputation?One line of argument omes from philosophers, suh as Penrose (1989), who argue thathuman ognitive abilities exeed those of digital omputers; spei�ally, mathematiians andeide G�odel's (formally) undeidable proposition. However, sine human ognitive abilitiesreside in the neural networks of the brain, one might onlude (or at least speulate) thatanalog neural networks have super-Turing omputational power.Indeed, there is now onsiderable theoretial work showing that ertain lasses of ana-log omputers have super-Turing power. For example, Pour-El and Rihards (1979, 1981,1982) showed that non-Turing omputable solutions an result from a Turing-omputablewave equation with Turing-omputable initial onditions. Garzon and Franklin (1989, 1990;Franklin and Garzon, 1990) have shown that disrete-time neural networks with a ountablein�nity of neurons are more powerful than Turing mahines (TMs), sine they an solvethe Halting Problem. Stannett (1990) demonstrated that ertain mahines with ontinuousdynamis an also solve the Halting Problem. Siegelmann and Sontag (1994) have provedy This paper has been invited for a speial issue of Minds and Mahines on hyperomputation.



2that disrete-time reurrent neural nets with real-valued weights an have super-Turingpower. These results have been extended by Bournez and Cosnard (1995), who have shownsuper-Turing power in a number of ontinuous-time and hybrid omputation systems. Onthe other hand, Maass and Sontag (1999) have shown that, in the presene of Gaussian orsimilar noise, reurrent neural networks annot reognize arbitrary regular languages, andtherefore have sub-Turing power.Thus we may antiipate that the theoretial power attributed to analog omputers maydepend somewhat deliately on the assumptions made in the theory. Interesting thoughthese investigations are, this paper will take a di�erent approah to transending Turingomputability. First, however, we must reall the assumptions underlying the theory ofTuring omputability.2. Assumptions Underlying Turing Computability2.1. Historial ContextIt is important to remember that the theory of Turing omputability arose out of questionsof e�etive alulability in the formalist program in mathematis. The theory addresses thesort of alulation that ould be aomplished by mehanially manipulating formulas ona blakboard of unlimited size, but using only �nite e�ort and resoures. Spei�ally, themathematiians that developed the theory were interested in what ould be proved in formalaxiomati theories. As a onsequene, the theory makes a number of assumptions, whihare appropriate to its historial purpose, but must be questioned when the theory is usedfor other purposes. Some of the developers of the theory of Turing omputability were quiteexpliit about their assumptions (e.g., Markov, 1961, hs. 1{2; see also Goodman, 1968,h. 5), but, as is often the ase, later investigators have aepted them unritially.The roots of these assumptions go muh deeper however, and reah into the foundationsof Western epistemology. For example, in the Lahes (190C) Sorates says, `that whihwe know we must surely be able to tell'. That is, `true knowledge' or `sienti� knowledge'(epistêmê) must be expressible in verbal formulas; nonverbalizable skill is relegated to `mereexperiene' (empeiria; e.g., Gorgias 465A). These notions were developed further by, amongmany others, Aristotle, who investigated the priniples of formal logi, and Eulid, whoshowed how knowledge ould be expressed in a formal dedutive struture.Key to this epistemologial view is the idea that knowledge an be represented in aalulus and proessed by means of it, an idea whih goes bak at least as far as thePythagorean use of �gurate numbers to alulate and demonstrate simple theorems innumber theory. The idea reurs throughout Western philosophy, for example in Hobbes'assertion that thought is alulation (Leviathan I.5), and in Leibniz' attempts to design aknowledge representation language and to develop a mehanial alulator for automatingreasoning (Parkinson, 1966).Models are idealizations of what they model; that is what makes them models. What isinluded in a model depends on its intended purpose, what it is supposed to talk about.It is a lihe to say that one should not onfuse the map with the territory, but it is anapt analogy. Di�erent maps give di�erent information about the territory. If you try to getinformation from a map that it is not designed to provide, it may give you no answer or an



3inorret answer. So also with models. If we ask them questions that they are not intendedto answer, then they may provide no answer or even an inorret answer.The Turing mahine (and equivalent models of omputation) are good models for theirpurpose: studying the apabilities and limits of e�etively alulable proesses in formalmathematis. They are also, it turns out, good models of digital omputers with very large(i.e. approximately unlimited) memories. However, before we apply the model to issuesarising in analog omputation in natural and arti�ial intelligene, we must look ritially atthe assumptions built into the foundations of the model to determine if they are suÆientlyaurate. That will be our next task.Many of the assumptions of Turing omputability theory an be exposed by onsideringthe engineering problems of onstruting a physial Turing mahine or by looking at otherpratial engineering problems in signal detetion, pattern reognition, ontrol, et. If wedo so, we will disover that the assumptions are problemati; they are not obviously true.This phenomenologial exerise will be my strategy in the remainder of this setion. (For amore detailed disussion, see MaLennan, 1994b.)2.2. Information RepresentationThe traditional theory of omputation assumes that information representation is formal,�nite and de�nite (MaLennan, 1994b). Formality means that information is abstrat andsyntati rather than onrete and semanti. Abstrat formality means that only the formof a representation is signi�ant, not its onrete substane. Therefore there is no limit tothe prodution of further representations of a given form, sine the supply of substane isassumed to be unlimited. (This in�nite produibility is the ultimate soure of the potential,ountable in�nities of formal mathematis; see Markov, 1961, lo. it.) Syntati formalitymeans that all information is expliit in the form of the representation and independentof its meaning. Therefore information proessing is purely mehanial. Sine anient Greekphilosophy, �niteness has been assumed as a preondition of intelligibility. Therefore, rep-resentations are assumed to be �nite both in their size and in the number of their parts.De�nitenessmeans that all determinations are simple and positive, and do not require subtleor omplex judgements. Therefore there is no ambiguity in the struture of a representation.Beause representations are �nite in their parts, they must have smallest elements, indi-visible or atomi onstituents. Individual physial instanes of these atomi onstituents areoften alled tokens, eah of whih belongs to one of a �nite number of types. For example,`A' and `A' are two di�erent tokens of the letter-A type.Tokens are assumed to be indivisible and de�nite with respet to their presene or ab-sene. However, in the ontext of pratial signal proessing it is not always obvious whetheror not a signal is present. For example, if we see ` _x' in a badly reprodued doument, wemay be unsure of whether we are seeing `x dot', the time-derivative of x, or just x with aspek of dust above it. Similarly, we may observe the pratial problems of deteting veryweak signals or signals embedded in noise (e.g. from distant spaeraft).Types are assumed to be de�nite and �nite in number. That is, in lassifying a token,there are only a �nite number of lasses among whih to disriminate; there are no ontin-uous gradations. Furthermore, the lassi�ation is de�nite: it an be aomplished simply,mehanially, and with absolute reliability; there an be no ambiguity or unertainty.



4That suh an assumption is problemati an be seen by onsidering the onstrution ofa physial Turing mahine. It would have to have a amera or similar devie to detet thetoken on the tape and a mehanism to determine its type (e.g., letter-A, letter-B, et.).Certainly any suh proess would have some probability of error, whih is ignored by themodel. Even in everyday life and in the absene of signi�ant noise, it might not be obviousthat `1' and `l' are of di�erent types, as are `0' and `O'. We onstrut digital omputersso that the assumptions about tokens and types are reasonably aurate, but in a broaderontext, pattern lassi�ation is a omplex and diÆult problem. In the real world, alllassi�ations are fuzzy-edged and there is typially a ontinuum between the lasses.Next we may onsider ompound representations omprising two or more tokens in somerelation with eah other. As examples, we may take the on�guration of haraters on aTuring-mahine tape or the arrangement of symbols in a formula of symboli logi. As withthe tokens and types of the atomi onstituents, we may distinguish the individual physialinstanes, whih I'll all texts, from their formal strutures, whih I'll all shemata. Theshema to whih a text belongs depends only on the types of its onstituents and theirformal relations. Typially there is a ountable in�nity of shemata, but they are built upfrom a �nite number of types and basi formal relations. For example, we have the ountablein�nity of Turing mahine tape on�gurations (sequenes of haraters on a �nite strethof tape).Texts are assumed to be �nite and de�nite in their extent; that is, we an de�nitelydetermine whether they are present and where they begin and end (in spae, time, or someother domain of extension). On the other hand, there is no a priori bound on the size of atext (e.g., the TM tape an inrease without bound). Pratially, however, there are alwaysbounds on the extent of a text; the `stu�' whih physially embodies texts (whether TMtape or bits in omputer memory) is never unlimited. Indeed, the limits may be quite severe.Shemata are assumed to be �nite in `breadth' (size) and `depth' (number of ompo-nents). That is, as we analyze a shema into its parts, we will eventually reah a `bottom' (theatomi onstituents). This is a reasonable assumption for mathematial or logial formulas,but is problemati when applied to other forms of information representation. For example,an image, suh as an auditory signal or a visual image, has no natural `bottom' (level ofatomi onstituents). Don't think of digital omputer representations of these things (e.g.,in terms of pixels or samples), but look out your window or listen to the sounds around you.Phenomenologially, there are no atomi onstituents. That is, ontinua are more auratemodels of these phenomena than are disrete strutures.Similarly to the types of the atomi onstituents, the basi formal relations from whihshemata are onstruted are assumed to be reliably and de�nitely determinable. Digitalomputers are designed so that this assumption is a good one, but in other ontexts it isproblemati. For example, if someone writes `2 n', does it mean twie n or the nth power of2? Many basi relations, suh as spatial relations, exist in a ontinuum, but the traditionaltheory of omputation assumes that they an be perfetly disriminated into a �nite numberof lasses.2.3. Information ProessingLike information representation, Turing omputation assumes that information proessingis formal, �nite and de�nite. Thus a omputation is assumed to omprise a �nite number



5of de�nite, atomi steps, eah of whih is a formal operation of �nite e�ort and de�nite inits appliation. However, these assumptions are problemati even in a Turing mahine, ifwe imagine it physially implemented. For example, there will always be some possibility oferror, either in the detetion and lassi�ation of the symbol on the tape, or in the internalmehanism that moves the tape, hanges the internal state of the ontrol, and so forth.Also, the assumption that the steps are disrete is an idealization, sine the transition fromstate to state must be ontinuous, even if there is a `digital' lok (itself an idealization ofwhat an physially exist). A ip-op does not hange state instantaneously.Again, my goal is not to laim that these idealizations are always bad; ertainly, theyare sometimes aurate, as in the ase of a modern eletroni digital omputer. Rather, mygoal is to expose them as idealizations, so that we will not make them mindlessly when theyare inappropriate. For example, information proessing in nature is muh more ontinuous.Certainly, when I write the word `the' there is a sense in whih the writing of the `t' preedesthe writing of the `h', but the steps are not disrete, and the writing of eah letter (as aproess of motor ontrol) interpenetrates with the writing of the preeding and followingletters (see, e.g., Rumelhart et al., 1986, vol. 1, h. 1).Therefore, we will have to onsider information proessing that annot be divided intode�nite disrete atomi operations, as well as proesses that are e�etively nonterminating(as are most ontrol proesses in the nervous system).One of the important harateristis of omputation, in the Turing sense, is that it analways be expressed in terms of a �nite number of disrete, �nite rules. This is aomplishedby speifying, for eah fundamental (shemati) relation that an our, the fundamentalrelations that will hold at the next time step. By the assumptions of Turing informationproessing, there an be only a �nite number of suh fundamental relations, so a �nitenumber of rules suÆes to desribe the proess. As a onsequene, these omputations anbe expressed as programs on whih universal mahines (suh as a universal Turing mahine)an operate.However, underlying the expression of information proessing in suh rules lies the as-sumption that a �nite number of ontext-free features suÆes to desribe the states on whihthe omputation depends. Pratially, however, many features are ontext-sensitive, that is,they depend on the whole text or image for their interpretation. For example, the interpreta-tion of partially obsured letters or sounds depends on their surrounding ontext (of lettersor sounds, but also of meaning; see for example Rumelhart et al., 1986, vol. 1, h. 1). Whenwe try to desribe natural information proessing (e.g. ognitive proesses) with inreasingauray, we require an exponentially inreasing number of rules, an observation made byDreyfus long ago (Dreyfus, 1979).2.4. InterpretationSine the theory of Turing omputability arose in the ontext of the formalist shool ofthe philosophy of mathematis, the texts were often representations of propositions inmathematis. Therefore the domain of interpretation was assumed to be some well-de�ned(e.g. mathematial) domain, with de�nite objets, prediates, and propositions with de-terminate truth values. While this is a reasonable assumption in the theory's historialontext, it is problemati in the ontext of natural ognitive proesses, where propositionalrepresentations may have less de�nite interpretations. Indeed, as will be disussed later, in



6natural intelligene many representations are non-propositional and their pragmati e�etis more important than their semanti interpretation. In ontrast, the traditional theoryignores the pragmatis of representations (e.g., whether a representation is more easilyproessed).The onventional theory of interpretation assumes a determinate lass of syntatiallyorret well-formed formulas. This lass is important sine only the well-formed formulasare assumed to have interpretations. Typially the well-formed formulas are de�ned by somekind of formal generative grammar (essentially a non-deterministi program | a �nite setof disrete, �nite rules | for generating well-formed formulas).In ontrast, in pratial situations well-formedness and interpretability are matters ofdegree. Linguists distinguish ompetene, the hypothetial grammatial knowledge of alanguage user, from performane, the user's atual ability to interpret an utterane, andfous their attention on ompetene, but from the pratial perspetive of natural ognition,performane is everything. In the natural ontext, the interpretation of an utterane maybe a basis for ation, and its ability to perform that pragmati role is the foundation ofinterpretability.The approah to interpretation pioneered by Tarski (1936) onstruts the meaning of awell-formed formula from elementary units of meaning (objets, prediates, funtions), or-responding to the atomi units of the formula, by means of de�nite onstrutors parallelingthe onstituent struture of the formula. However, we have seen that in many importantontexts the representations (e.g., visual input, tatile input) have no natural atomi units,and the meanings of the basi features are generally ontext-sensitive. To put it di�erently,Tarski's reursive approah assumes a disrete onstituent struture with a de�nite `bottom';this assumption is a poor model of many important information representations.2.5. TheoryTraditionally, the theory of omputation looks at a alulus from the outside and addressessuh issues as its onsisteny and ompleteness. However, natural and arti�ial intelligeneoften must proess information that is non-propositional, and pragmati e�etiveness isoften more relevant than onsisteny or ompleteness.Of ourse, the fundamental issue in the theory of Turing omputability is whether aomputation eventually terminates, whih is an important issue in the theory's historialontext, whih was onerned with modeling �nite proofs. However, `eventual termination'is of little value in many pratial appliations, for whih information proessing must returnuseful results in stritly bounded real time. Furthermore, useful information proessing neednot be terminating. For example, many roboti appliations use non-terminating ontrolproesses, whih must deliver their results in real time.Traditionally the theory of Turing omputability has foused on the power of a alulus,normally de�ned in terms of the lass of mathematial funtions it an ompute (whensuitably interpreted). However, in many important appliations (e.g. ontrol problems), thegoal is not to ompute a funtion at all, and it may distort the goal to put it in these terms.Rather, we may be more interested in real-time ontrol proesses and in the robustness oftheir omputations in the presene of noise and other soures of error and unertainty.Sine Turing omputation makes use of disrete information representations and pro-esses, ontinuous quantities annot be manipulated diretly. For example, a real number



7is onsidered omputable if it an be approximated disretely to any spei�ed auray.However, analog omputational proesses diretly manipulate ontinuous quantities, and sothe disrete omputational model is very far from the reality it is supposed to represent.Certainly noise and other soures of error limit the preision of analog omputation, butsuh issues are best addressed in a theory of ontinuous omputation, whih better mathesthe phenomena (e.g., Maass and Sontag, 1999). Of ourse, analog proesses may omputeapproximations to a real number, but then the approximations themselves are real numbers,and often the proess is one of ontinuous approximation rather than disrete steps. Progressin the right diretion has also been made by Blum and her olleagues, who have extended(traditional, disrete) omputational proesses to operate on the reals (e.g., Blum et al.,1988), but the programs themselves are onventional (�nite rules operating in disrete time).The foregoing illustrates some of the questions that are assumed to be interesting andrelevant in the theory of Turing omputation, but we have seen that other issues maybe more important in the analog omputational proesses found in natural and arti�ialintelligene.2.6. Ubiquity of AssumptionsBefore onsidering models of omputation that transend Turing omputability, it will beworthwhile to note how diÆult it is to esape the network of assumptions that underlie it.Historially, formal logial and mathematial reasoning were the motivation for the theory ofTuring omputation. These ativities make use of disrete formulas expressing propositionswith well-de�ned truth values. This sort of `odi�able preision' is the purpose for whihformal logi and mathematis were developed. Therefore we must use the language of logiand mathematis whenever we want to talk preisely about analog omputation.However, when we do so we �nd ourselves aught in the web of assumptions underlyingTuring omputation. For example, in point-set topology and set theory we take for grantedthe self-identity of a point and its distinguishability from other points. Points are assumedto be well-de�ned, de�nite. That is, two points are either equal or not | there is no `middle'possibility | although of ourse they may be near or far from eah other.The dubiousness of this assumption is revealed, as before, by onsidering pratial situa-tions, for we an never determine with absolute auray whether or not two points are dis-tint. Pratially, all points are fuzzy. (But how do we express this fuzziness mathematially?By assoiating a probability with eah point !)We an hardly avoid thinking of the real ontinuum but as made up of idealized points,whih are like idealized tokens. Pratially, however, `points' may be far from this ideal.Disrete knowledge representation and inferene is also taken for granted in our formalaxiomatization of theories. As part of the historial mathematial program of reduing theontinuous to the disrete, we use �nite, disrete axioms to de�ne unountable sets, suhas the real ontinuum. Yet the L�owenheim-Skolem Paradox suggests that any suh axiomsystem must be inadequate for ompletely haraterizing a ontinuum. (The paradox, whihdates to 1915, shows that any suh axiom system must have a ountable model, and thereforeannot uniquely de�ne an unountable ontinuum.)Arguably, these assumptions underlie all rational disourse, but there are forms of know-ing (i.e. forms of information representation and proessing) that are not aurately approx-imated by rational disourse. Therefore, I am not arguing for the abandonment of logi and



8mathematis, but indiating the fat that their very struture biases our understandingof other kinds of knowing. These kinds of knowing are very important in natural andarti�ial intelligene, and should be understood from their own perspetive, not throughthe distorting lens of disrete omputation. Therefore we need a theory of ontinuous om-putation, whih an ontribute to an expanded epistemology, whih addresses nonverbal,nondisursive information representation and proessing (MaLennan, 1988).3. Natural Computation3.1. DefinitionNatural omputation is omputation ourring in nature or inspired by omputation innature; two familiar examples are neural networks and geneti algorithms (see, e.g., Ballard,1997). Natural omputation is quite similar to bioomputation, whih may be de�ned asomputation ourring in or inspired by living systems.There are several reasons that it is important to understand the priniples of naturalomputation. The �rst is purely sienti�: we want to understand the mehanisms of naturalintelligene in humans and other animals, the operation of the brain, information proessingin the immune system, the priniples of evolution, and so forth.Another reason is that many important appliations of omputer siene depend onthe priniples of natural omputation. For example an autonomous robot, suh as a plan-etary explorer, needs to be able to move ompetently through a natural environment,aomplishing its goals, without supervision by a human being.Natural omputation shifts the fous from the abstrat dedutive proesses of the tradi-tional theory of omputation to the omputational proesses of embodied intelligene (see,e.g., Lako� and Johnson, 1999). In the following subsetion I will onsider some of the keyissues that a theory of natural omputation should address.3.2. Some Key IssuesOne of the prinipal issues of natural omputation is real-time response. If a bird detetssome motion on the periphery of its �eld of vision, it must deide within a fration of aseond whether or not it is being stalked by a predator. Suh hard real-time onstraintsare typial of natural omputation, whih must deliver usable results either in bounded realtime or ontinuously (as in motor ontrol). Eventual termination, suh as studied in thetraditional theory of omputation, is irrelevant to natural omputation.Furthermore, the traditional theory of omputational omplexity (e.g. NP-ompleteness)studies how the termination time of algorithms varies with the size of their inputs. Forexample, an algorithm will be onsidered linear if its running time is proportional to the sizeof the input. However, the theory intentionally ignores the onstant of proportionality, sinethe omplexity lass is supposed to be independent of spei� hardware implementation (i.e.,it treats disembodied omputation). Therefore, an algorithm that, for a size N input, takesN milliseonds is onsidered to be of the same omplexity as an algorithm that takes Nhours (or N enturies!). This is a useless map for �nding one's way in the wilderness ofnatural omputation.



9On the other hand, in natural omputation the size of the input is usually determined bythe struture of the sense organs or other `hardware', so it is �xed. For example, there areabout a million nerve �bers in our opti nerves, whih our visual systems are able to proessin the required fration of a seond. How our visual systems would handle twie, ten times,or a hundred times that number of inputs, is not a very interesting or relevant question.Therefore, in natural omputation we are mostly onerned with nongeneral algorithms,that is, algorithms designed to handle inputs of a spei�, �xed size. Or, in the terminologyof linguistis, performane is ritial; abstrat ompetene is unimportant.Natural omputation must exhibit tolerane to noise, error, faults and damage, bothinternal to the system and external, in the environment. The real world is messy anddangerous, and natural omputational systems need to be able to respond robustly.The real world is also unpreditable, and natural omputational systems must expet toenounter situations that they have not been expliitly designed to handle. Traditional AIsystems, based on disrete, rule-based knowledge representation and proessing, are oftenbrittle in the fae of novelty; that is, they behave stupidly. Beause novelty is expeted innatural environments, autonomous systems must respond to it in a exible way, bendingrather than breaking. Therefore most natural omputation is ontinuously adaptive; sinethe environment is ontinually hanging, so must an autonomous agent's response to it. Theadaptation may be gradual or rapid, but representations of algorithms (`programs') mustaommodate it.In natural omputation we are generally interested in `good enough' answers ratherthan optimal solutions, whih are usually a luxury that annot be a�orded in a demandingreal-time environment. Indeed, broad (robust) suboptimal solutions are often preferable tobetter, tightly de�ned optima, sine the latter are more brittle in the presene of noise andother soures of unertainty. In Herb Simon's terminology, natural omputation is satis�ingrather than optimizing (Simon, 1969, pp. 64{5).With this overview of some key issues in natural omputation, we an look at the sort ofidealizing assumptions that might underlie a theory addressing those issues. Some of themform the basis of a theory of ontinuous formal systems (or simulara; see MaLennan,1993a, 1994a, 1994b, 1994, 1995).4. Diretions Towards a Theory of Natural Computation4.1. Information RepresentationWe may begin by onsidering idealizations of information representation that are appropri-ate to natural omputation.4.1.1. All quantities, qualities, et. are ontinuous.First, all quantities, qualities, et. are assumed to be ontinuous (analog), as opposed todisrete (digital). Certainly this applies to sensory input: think of ontinuously varyingintensities, frequenies, and so forth. It also applies to motor output, whih is neessarilyontinuous, even when it is abrupt. Information representations within the nervous system,between sensation and motion, are also ontinuous. Although the nerve impulses are `all ornothing', the information is usually represented by the frequeny and phase of the impulses,



10both of whih are ontinuously variable. Further, in the `graded' responses that take plaein the dendrites, the ontinuous shape of the wave forms of the impulses is signi�ant.Finally, the synapti onnetions between neurons, where memory is believed to reside, haveontinuously variable `eÆaies', whih are omplex funtions of the number, distributionand plaement of hemial reeptors.4.1.2. Information is represented in ontinuous images.Information in natural omputation is generally extended ontinuously in either spae ortime (or both); that is, information is represented in ontinuous images. For examples,onsider a sound (a pressure wave varying ontinuously over time), or a visual sene (apattern of light and olor varying ontinuously over spae and time), or the tatile inputover the surfae of an animal's body. Similarly, the motor output from an animal variesontinuously in time over its ontinuous musle mass. Within the brain, information isoften represented in ortial maps, aross whih neural ativity varies ontinuously in spaeand time. Position in suh maps may represent ontinuously variable features of sensoryinput or motor output, suh as frequeny, orientation, and intensity (MaLennan, 1997,1999).The fat that neurons, sensory reeptors, musle �bers, et. are disrete does not ontra-dit spatial ontinuity, sine the number of elements is so large that the ideal of a ontinuumis a good model (MaLennan, 1987, 1994b, 1999). For example, sine there are at least 15million neurons per square entimeter of ortex, even small ortial maps (several squaremillimeters) have enough neurons that a ontinuum is a good approximation. Mathemat-ially, information is most diretly and aurately desribed as a time-varying vetor or�eld.4.1.3. Images are treated as wholes.If we think about the preeding examples of sensory input and motor output, we an seethat images are generally proessed in parallel as wholes. Any segmentation or `parsing' ofthe image is seondary and a ontinuous funtion of the image as a whole. For example,the separation of foreground information from bakground information in visual or auditoryinput depends ontinuously on the entire image. Furthermore, images annot be assumedto have meaningful atomi onstituents in any useful sense (e.g., as individually proessable`atoms' of information). Mathematially, we may think of a ontinuum as omprising anin�nite number of in�nitely dense in�nitesimal points, but they bear their meaning only inrelation to the whole ontinuum.Images annot be assumed to be deomposable in any single unambiguous way (as andisrete representations, typially), sine there is no `preferred' way in whih they wereonstruted (MaLennan, 1993a, 1994b). That is, we think of disrete representations asbeing onstruted from atomi onstituents, but for ontinuous representations the whole isprimary, and any deompositions are seondary. (Even if we think of suh deompositionsas Fourier or wavelet deompositions, the `omponents' are ontinuous quantities that arefuntions of the entire image or extended regions of it.)



114.1.4. Noise and unertainty are always present.In nature, nothing is perfet or exat. Even approximate perfetion is rare. Therefore,all images (both external and internal) should be assumed to ontain noise, distortion,and unertainty, and proessing should be robust in their presene. Indeed, as in quantummehanis, it is generally misleading to assume that there is one `orret' image; eah imageshould be treated as a probability distribution (a fuzzy or indeterminate image). (Themathematis of the Heisenberg unertainty priniple is diretly appliable to the nervoussystem; for a survey, see MaLennan, 1991; see also MaLennan, 1999.)4.2. Information Proessing4.2.1. Information proessing is ontinuous in real time.In natural omputation, information proessing is generally required to deliver usable resultsor to generate outputs ontinuously in real time. Beause natural omputation must deliverresults in real time using omparatively slow omponents (neurons), the struture of theomputations is typially shallow but wide, that is, there are relatively few (at most about ahundred) proessing stages from input to output, but there is massively parallel proessingat eah stage. In ontrast, Turing omputation is typially deep but narrow, exeuting fewoperations (often only one) at a time, but exeuting very large numbers of operations beforeit produes a result.Furthermore, proesses in nature are ontinuous, rather than proeeding in disrete steps.Certainly the nervous system an respond very quikly (as when the bird deides to eethe predator) and (approximately) disontinuously, and neurons an exhibit similar abrupthanges in their ativity levels, but these hanges an be approximated arbitrarily loselyby ontinuous hanges. As in the theory of Turing omputation we use disrete proessesto approximate ontinuous hange, so in the theory of natural analog omputation we mayuse ontinuous approximations of disrete steps. Thus there is a kind of omplementaritybetween ontinuous and disrete models (MaLennan, 1993b, 1993d, 1994), but naturalomputation is more aurately modeled by ontinuous proesses.4.2.2. Information proessing is usually nonterminating.In natural omputation, real-time ontrol proesses are more ommon than the omputationof funtion values. Therefore, most omputations are nonterminating, although they maypass through temporary equilibria. Rather than `eventually' omputing a result, naturalomputation must produe a ontinuous, unending signal in real time.4.2.3. Noise, error, unertainty, and nondeterminay must be assumed.Sine noise, error, damage and other soures of unertainty must be presumed in both theexternal environment and the internal operation of a natural omputation system, infor-mation proessing is typially nondeterministi; that is, we have a ontinuous probabilitydistribution of states. Therefore, the orretness of an answer is a matter of degree, as isthe agent's on�dene in it, and hene its prolivity to at on it.



124.2.4. There is a ontinuous dependene on states, inputs, et.Sine proesses should be insensitive to noise and other soures of error and unertainty,they should be ontinuous in all respets (i.e., ontinuous funtions of input, internal state,et.).4.2.5. Proesses need not be desribable by rules.We must onsider information proesses that are orderly, yet have no �nite desription (evenapproximate) in disrete formulas, suh as mathematial equations. It may be surprisingthat suh proesses even exist, but a simple ardinality argument shows that it must be so(MaLennan, 2001). The set of programs, whih ould be used to ompute or approximatea real number, is ountable, but the set of real numbers in unountable. Therefore most realnumbers are not Turing-omputable. Thus, even if a ontinuous proess an be desribedby di�erential equations, it may not, in general, be expressible in �nite formulas, sinethe oeÆients might be real numbers that are not omputable or approximatable by aTuring mahine. On the other hand, suh proesses may be �nitely expressible by the useof ontinuous representations, whih I have alled guiding images (MaLennan, 1995).4.2.6. Proesses may be gradually adaptive.As previously disussed, natural omputation must deal with novelty in its environment.Therefore typially, information proessing must adapt | slowly or quikly | to improvethe system's performane. This is possible beause the guiding images that organize theproess an hange ontinuously in time. Sine rule-like behavior is an emergent phe-nomenon, gradual adaptation an lead to reorganization of an entire system of apparentrules (MaLennan, 1995).4.2.7. Proesses are mathed to spei� omputational resoures and requirements.We are primarily onerned with proesses that an handle prespei�ed input and out-put hannels and run on prespei�ed hardware, and that an meet the required real-timeonstraints. Asymptoti omplexity is largely irrelevant. Or, to put it in linguisti terms,performane (versus ompetene) is everything.4.3. Interpretation4.3.1. Images need not represent propositions; proesses need not represent inferene.In natural omputation, images need not represent propositions, and proesses need notrepresent inferene. However, images may have a nonpropositional interpretation and infor-mation proessing may orrespond systematially with proesses in the domain of interpre-tation. (This is, indeed, the original meaning of analog omputation; see also MaLennan,1993, 1994.)4.3.2. Interpretability and interpretations are ontinuous.When an image is interpretable, the interpretation must be a ontinuous funtion of theimage, so there an be no disrete hanges of meaning. Furthermore, if some images areinterpretable and others are uninterpretable, there must be ontinuous variation betweenthese extremes, and thus degrees of interpretability. In other words, well-formedness (as apreondition of interpretability) must be a matter of degree. This is one basis for the robust



13response of natural omputation to noise, error and unertainty. However, it does mean weneed a di�erent, ontinuous way of desribing the well-formedness of images. For example,one an de�ne ontinuous-time nondeterministi proesses for generating images that areanalogous to grammars for disrete languages (MaLennan, 1995).4.3.3. Pragmatis is primary; there need not be an interpretation.Finally, we must note that natural omputations need not be interpretable. Pragmatis isprimary; the omputation is ful�lling some purpose for the agent. Semantis (interpreta-tion) and syntax (well-formedness) are seondary. The trajetory of natural informationproessing may pass through phases in whih it is more or less interpretable, while stillaomplishing its pragmati end.4.4. Theory4.4.1. Unimportant issues:First, it will be worthwhile to remind the reader of the issues traditionally addressed by thetheory of Turing omputation, whih are unimportant, or less important, in the theory ofnatural omputation.As previously disussed, termination is not an interesting question sine (1) many use-ful information proesses do not terminate, and (2) `eventual termination' is irrelevant,sine information proessing must satisfy ontinuous, real-time onstraints. Even when wehoose to address traditional deision problems, we must do it in the ontext of ontinuousinformation representation and proessing (e.g., MaLennan, 1994b).For the same reasons, asymptoti omplexity and omplexity lasses (suh as `NP-omplete') are uninteresting. First of all, `the onstants matter', when we are operatingin real time; the di�erene between milliseonds and minutes is ritial! Seond, we arenot onerned with how the performane of the algorithm sales with larger inputs, sineit will not have to proess inputs larger than those atually provided by the hardware. Itdoesn't matter whether an algorithm is O(N);O(N2);O(2N ), or something else, so long asthe algorithm meets the real-time onstraints for the partiular N that it must proess.Universal omputation | the ability to have a programmable universal Turing mahine| is important both in the traditional theory of omputation and in pratie, for it isthe basis for programmable digital omputers. Whether there ould be a orrespondingnotion of a universal analog omputer is ertainly an interesting question, whih has beenaddressed in several ontexts (e.g., MaLennan, 1987, 1990, 1999; Pour-El, 1974; Rubel,1981, 1993; Shannon, 1941). However, it is not entral to natural omputation, for naturalomputation systems are typially onstruted from the interonnetion of large numbersof speial-purpose modules. (Even `abstrat thought' is speial-purpose ompared to otherinformation proessing done by brain modules.)4.4.2. Important Issues:Finally, we an enumerate a few of the issues that a theory of natural omputation shouldaddress.One important issue is a natural omputation system's generalization ability and ex-ibility in response to novelty. Natural omputation systems should not behave stupidly,as many rule-based systems do, when onfronted with the unexpeted. Therefore, suh



14systems must be able to disover pragmatially useful struture that an be a basis forreliable extrapolation.As already stated many times, the theory must address the behavior of the system inresponse to noise, error, and other soures of unertainty, and these e�ets must be assumedfrom the beginning, not added onto a �titious `perfet' system.We need to know how to optimize performane subjet to �xed real- time and resoureonstraints. Given the hardware, how do we get the best results for the widest variety ofinputs most quikly? The generality of natural omputation algorithms derives from theproedures for �tting the proess to the hardware and real-time onstraints.Another important problem is adapting proesses to improve their performane. Thatis, the theory must address learning algorithms and means for avoiding the pitfalls of learn-ing (rote learning, destrutive learning, instability, et.). Related is the issue of designingproesses that adapt when their hardware is degraded (by damage, age, et.).Finally, we observe that the `power' of natural omputing is not de�ned in terms of thelass of funtions it an ompute, nor in terms of numerial `apaity' (number of memories,assoiations, et. that an be stored). Rather, power is de�ned in terms of suh fators asreal-time response, exibility, adaptability, and robustness. Some of these fators may bediÆult to quantify or de�ne formally (e.g. exibility), but that is why we need the theory.5. ConlusionsWe an summarize our thesis as follows:Turing Mahine theory is not wrong but irrelevant.This is, of ourse, an overstatement. Turing mahine theory is relevant to questions ofe�etive alulability in logi and mathematis, and to the lasses of funtions omputableby digital omputers. However, the assumptions of TM theory are not a good math tonatural analog omputation. Therefore, although it is important to engage the traditionalissues (suh as omputability), it is also imperative to transend them. New paradigms bringnew questions as well as new answers. Turing omputability asked one kind of question, butnatural omputation is asking a di�erent kind.ReferenesBallard, D. H.: 1997, An Introdution to Natural Computation. Cambridge, MA: MIT Press.Blum, L., M. Shub, and S. Smale: 1988, `On a Theory of Computation and Complexity over the RealNumbers: NP Completeness, Reursive Funtions and Universal Mahines'. The Bulletin of the AmerianMathematial Soiety 21, 1{46.Bournez, O. and M. Cosnard: 1995, `On the Computational Power and Super-Turing Capabilities of Dynam-ial Systems'. Tehnial Report 95-30, Eole Normale Sup�erieure de Lyon, Laboratoire de l'Informatiquedu Parall�elisme.Dreyfus, H. L.: 1979, What Computers Can't Do: The Limits of Arti�ial Intelligene. New York: Harper &Row, revised edition.Franklin, S. and M. Garzon: 1990, `Neural Computability'. In: O. M. Omidvar (ed.): Progress in NeuralNetworks, Vol. 1. Norwood, NJ: Ablex, pp. 127{145.
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