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11 Setting the SeneA real symmetri n�n matrix has a full set of orthogonal eigenvetors and users of softwareexpet omputed eigenvetors to be orthogonal to working auray. Exellent programsare available to diagonalize real symmetri matries so we ould say that the problem ofomputing orthogonal eigenvetors is solved. Unfortunately users are always in a hurryand the standard programs require O(n3) arithmeti operations in diÆult ases. The timeonsuming alulation in the standard QR algorithm is the aumulation of O(n2) planerotations, eah of whih requires O(n) operations. Yet we must remember that it is thisaumulation that guarantees numerially orthogonal eigenvetors however lose some ofthe eigenvalues may be and that is a beautiful feature of the QR-based algorithm.As values of n near 103 beome ommon and values exeeding 104 do our it is hardto stop people dreaming of an O(n2) algorithm to do the job. An expert will point outthat it requires (8=3)n3 operations to redue a dense matrix to tridiagonal form so that anO(n2) algorithm is not possible. Nevertheless operation ounts, though useful, are not asure guide to exeution time on urrent omputers. Even with n exeeding 1000 there areases where the O(n3) redution of a dense matrix to tridiagonal form T takes muh lesstime (10{20%) than omputing T 's eigenpairs. So it seems desirable to seek a guaranteedO(n2) algorithm for T 's eigenproblem.It is the presene of parallel distributed memory omputer systems that has vitalized thesearh for algorithms that an ompute eah eigenvetor of a tridiagonal matrix indepen-dently of the others. Ideally the n eigenvalues would be distributed to n proessors, alongwith a opy of the tridiagonal, and all n eigenvetors would be omputed independently atthe same time and would turn out to be orthogonal to working auray.There are formidable obstales that impede the realization of this dream and these willbe reviewed in the next setion.This paper presents a useful step towards the goal. The main Theorem 9 in Setion 7shows that in speial, but important, situations our new algorithm produes an eigenvetorthat is guaranteed to be within O(n") of the true eigenvetor whenever the eigenvalue hasa relative separation from its neighbors that exeeds 1=n. It has been known for years thatinverse iteration an produe fully aurate eigenvetors whenever the eigenvalue has anabsolute separation that is above the average (�max � �min)=(n � 1). So our ontributionis to hange absolute to relative in the separation ondition. Our examples show thatthe resulting speedups an be dramati (from 822 seonds to 6 seonds). See Setion 8for details. To establish our result, roundo� errors inluded, we were obliged to jettisonthe traditional representation of a tridiagonal matrix by its diagonal and next-to-diagonalentries. Instead, we use a bidiagonal fatorization LDLT of a arefully hosen translate ofthe original tridiagonal T . Properties of L and D allow us to ompute eigenpairs of LDLTvery aurately.The proof of the main Theorem 9 rests on the existene of relative perturbation resultsfor the bidiagonal fators and on a speial interpretation of the roundo� errors in di�erentialqd algorithms that yields what is alled mixed stability: arefully seleted small relativeperturbations of both the input and the output of our subroutines reveal the existene ofan exat relationship of the form �L �D �Lt� �I = ~N ~D ~N t, where ~N is a twisted fator de�nedin Setion 4. The translation by � preserves eigenvetors while shifting the eigenvalue of



2interest very lose to 0. The middle part of this paper presents the relevant error analysis.Although essential for our results this analysis will be indigestible for most readers but ittells us that hanges of only 3 or 4 units in the last digit of eah entry of the input L, Dand the output N̂ and D̂ (rather than 300 or 30000 units) suÆe to give the exat relation.Let us sketh our new sequential algorithm that is based on the results of this paper.Compute the extreme eigenvalues of T and start with a base � at one end of the spetrum.Compute the positive (or negative) de�nite fatorization LDLt = �(T � �I) and �nd all itseigenvalues to high relative auray. Next �nd the eigenvetors for all the shifted eigenval-ues ��� that have large relative gaps. If some eigenvalues remain without eigenvetors thenpik a new base �new at, or lose to, one end of the remaining spetrum. Perform a arefulfatorization LnewDnewLtnew = LDLt � �newI and monitor element growth. If growth istoo great then perturb � (away from the luster) until growth is aeptable. Then re�ne,to high relative auray, all new small eigenvalues with large relative gaps and omputetheir eigenvetors. Repeat the proess with suitable bases � until all eigenvetors have beenomputed. A more detailed outline of this algorithm is given in [9℄ and [10℄.The organization of the paper is revealed in the list of ontents. Householder notation(apital letters for matries, Greek lower ase for salars, and lower ase bold Roman forvetors) is generally followed. Eigenvalues are ordered by �1 � �2 � �3 � � � � � �n.Setion 4 is derived from Chapter 4 of [9℄.2 DiÆultiesThe quality of an approximate eigenvetor y is measured by its residual. The basi resultthat goes bak to Temple in the 1930's, if not earlier, will be needed later. See [33, Chaps. 10and 11℄ for details and a proof.Theorem 1 Let A = At be a real matrix that has a simple eigenvalue � with normalizedeigenvetor v. For any unit vetor y and a salar �, loser to � than to any other eigenvalue,j sin\(v;y)j � kAy � y�k=gap(�); (1)where gap(�) = minfj� � �j : � 6= �; � 2 spetrum(A)g. In addition, the error in theeigenvalue is bounded by the residual norm, i.e.,j�� �j � kAy � y�k:The sad fat is that a small residual norm does not guarantee an aurate eigenvetorwhen gap(�) is also small. On the other hand, aurate approximations y and z to u andv respetively (where u and v are eigenvetors), in the strong sense thatj sin\(u;y)j < n" and j sin\(v;z)j < n"; (2)where " is the roundo� unit, do ensure numerially orthogonality of the omputed eigenve-tors sine j os\(y;z)j � j sin\(u;y)j+ j sin\(v;z)j < 2n":



3Thus auray yields orthogonality. This observation is not as vauous as it appears. Inthe QR algorithm the omputed eigenvetors are aeptable beause they are orthogonal(numerially) and their residuals are small but they are not always aurate in the senseof (2). Part of the explanation for this anomaly is that A may not determine some of itseigenpairs to high auray. Thus the eigenvetor v used above may be highly sensitive assoon as there is unertainty in the entries of A and so the onept of auray goes outof fous. That is why, in the sense of (2), auray is not the only way, or even the bestway, to ompute numerially orthogonal eigenvetors. The QR algorithm does produe anumerially orthonormal basis for all the invariant subspaes that are well de�ned by thetridiagonal.Let us return to the residual norm. In general, the best we an hope for is to produeresiduals r = r(y) = Ay � y� satisfyingkrk � " � (�max � �min): (3)The average separation between eigenvalues is�max � �minn� 1 (4)and so, by (1) and (3), if gap(�) is above this average thenj sin\(v;y)j � (n� 1)"and auray is assured. On the other hand in the many ases when gap(�)� (4) then theresidual norm must be muh smaller than the right hand side of (3) in order to deliver suhauray.In general we see no possibility for reduing the residuals without using higher preisionarithmeti in parts of the omputation. Instead we turn to speial matries and speialsituations, in partiular, to a symmetri tridiagonal matrix T . Our goal is to omputeresiduals satisfying krk = kTy � y�̂k � K"j�̂j; (5)for some modest onstant K independent of y and �̂, so thatj sin\(v;y)j � K"j�̂jgap(�̂) = K"relgap(�̂) : (6)Note that if �̂ = O("(�max � �min)) then (5) requires krk = O("2). How is that possiblesine even the rounded version of the `true' eigenvetor may not ahieve (5)?We an ahieve (5) in the presene of three separate properties.(I) � must be determined to high relative auray by the matrix parameters.(II) The omputed �̂ must approximate � to high relative auray.(III) The vetor y must be omputed so that kr(y)k � j�� �̂j � "j�̂j.



4A tridiagonal matrix T is traditionally represented by its diagonal and o�-diagonalentries. We ahieve Property I by disarding this representation in favor of LDLt = T � �Ifor a suitable shift � . Setion 3 shows the neessity for this hange of representation.Property II is then easily ahieved by using bisetion or, in the positive de�nite ase, by thedqds algorithm, see [13℄. Given a fatorization LDLt, and a highly aurate �̂, we an thinkof satisfying Property III by using inverse iteration. While traditional inverse iteration oftenworks well in pratie, we employ an elegant alternative that uses a rank-revealing twistedfatorization of T � �̂I.A subtle point in our analysis is that (5) is ahieved, not for T or LDLt but for a smallrelative perturbation of LDLt.Muh of this paper, from Setion 4 onwards, is devoted to a proof that Property III anbe ahieved in the presene of roundo� error.3 Standard Tridiagonal Form is InadequateIn this Setion, we show that the standard representation of tridiagonals is inadequate forour purpose of omputing highly aurate eigenvetors. Reent work has shown that sometridiagonal lasses do determine all their eigenvalues to high relative auray. However formost tridiagonals small relative hanges in the diagonal and o�-diagonal entries an ausehuge relative hanges in the small eigenvalues.We now give a arefully ontrived example whih exhibits this relative instability evenwhen n = 3.Example 1 Consider the tridiagonalT1 = 24 1�p" "1=4p1� 7"=4 0"1=4p1� 7"=4 p"+ 7"=4 "=40 "=4 3"=4 35 ;and a small relative perturbation to the o�-diagonals of T1,T1 + ÆT1 = 24 1�p" "1=4(1 + ")p1� 7"=4 0"1=4(1 + ")p1� 7"=4 p"+ 7"=4 "(1 + ")=40 "(1 + ")=4 3"=4 35 :where " is a small quantity of the order of the mahine preision. The two smallest eigen-values of T1 and T1 + ÆT1 are1�1 = "=2 + "3=2=8 +O("2); �1 + Æ�1 = "=2� 7"3=2=8 +O("2)�2 = "� "3=2=8 +O("2); �2 + Æ�2 = "� 9"3=2=8 +O("2)while �3 = 1 + "+O("2); �3 + Æ�3 = 1 + "+O("2):1we arefully onstruted this matrix to have the desired behavior whih may be veri�ed by using asymbol manipulator suh as Maple [4℄ or Mathematia [40℄.



5Thus ����Æ�i�i ���� = (3� i)p"+O("); i = 1; 2and the relative hange in these eigenvalues is muh larger than the initial relative pertur-bations in the entries of T1. Similarly the orresponding eigenvetors of T1 and T1 + ÆT1are: v1 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2 (1� p"2 ) +O(")1p2(1� 3"4 ) +O("3=2) 3775 ; v1 + Æv1 = 2664 "1=4p2 (1 + 5p"2 ) +O("5=4)� 1p2(1 + 3p"2 ) +O(")1p2(1� 2p") +O(") 3775 :andv2 = 2664 � "1=4p2 (1 + p"2 ) +O("5=4)1p2(1� p"2 ) +O(")1p2 (1 + 3"4 ) +O("3=2) 3775 ; v2 + Æv2 = 2664 � "1=4p2 (1� 3p"2 ) +O("5=4)1p2(1� 5p"2 ) +O(")1p2(1 + 2p") +O(") 3775 ;whereby ����Ævi(j)vi(j) ���� = O(p") for i = 1; 2 and j = 1; 2; 3:Sine a small relative hange of " in the o�-diagonal entries of T1 results in a muhlarger relative hange in its eigenvalues and eigenvetors, we say that T1 does not determineits eigenvalues and eigenvetor omponents to high relative auray. Consequently, in thefae of roundo� errors, it is unlikely that we an ompute numerially orthogonal eigen-vetors without expliit orthogonalization. To orroborate this, we gave the best possibleapproximations to �1 and �2 as input to the EISPACK and LAPACK implementations ofinverse iteration but turned o� all orthogonalization within these proedures. As expeted,we found the omputed vetors to have dot produts as large as O(p"). 2In ontrast, when T is positive de�nite, the representations LDLt and ~L~Lt, where ~L =LD1=2, eah determine all the eigenvalues to high relative auray. See [8, Theorem 5.13℄ formore details. Thus these fatored forms are preferable to the standard form for eigenvaluealulations.When D is not positive de�nite the situation is more ompliated. Often LDLt deter-mines its eigenvalues to high relative auray, partiularly the small ones. Of ourse wemay use the representation U�D�U t� derived from Gaussian elimination in reverse orderor even a twisted fatorization. The important point is that the positive de�nite ase isnot the only one in whih some eigenvalues are determined to high relative auray by afatored form.Let LDLtv = v�, � 6= 0. An appropriate relative ondition number de�ned in [9℄ isrelond(�) := vtLjDjLtv=j�j:Note that when D is positive de�nite then relond(�) = 1 but we do not need suh stabilityfor our results. A value of relond(�) suh as 10 or 20 is adequate to ensure numeriallyorthogonal eigenvetors.The fous of this paper is on how to exploit high relative auray when it ours, notto give onditions for its ourrene. See Setion 5 and [30℄ for more details.



64 Computation with BidiagonalsIn the remaining pages, we show that we an ompute a very aurate eigenvetor when(i) relond(�) is modest and (ii) � has a large relative gap. Our algorithm ahieves thisby obtaining residual norms that are small in a relative sense. In this setion, we �rstreview twisted fatorizations, and then present a novel \mixed" relative error analysis forthe methods that ompute them. This error analysis, given in Setion 4.3, is essential forour results; indeed a \standard" bakward error analysis turns out to be totally inadequate.4.1 Twisted FatorizationsIf �̂ is an extremely aurate approximation to an eigenvalue � of T then T � �̂I is almostsingular. In order to ompute the eigenvetor, i.e., to solve (T � �̂I)z � 0, we seek afatorization that reveals this singularity. In the tridiagonal ase we an always onstrutsuh a fatorization from the forward and bakward triangular fators. This proedure isdesribed in [29℄ along with the neessary theory. For referene in later setions we quotehere the results we need, without proof, and add a few omments and re�nements.Suppose that LDLt � �̂I = L+D+Lt+ = U�D�U t�where L+ is unit lower bidiagonal and U� is unit upper bidiagonal. Note that by thedisussion in Setion 3, we have replaed T by LDLt. It may happen that neither D+ norD� reveals the rank. A twisted fatorization, written asLDLt � �̂I = NkDkN tkis onstruted as follows. Nk and Dk are formed by fatoring the matrix from top downand from bottom up meeting at row k. Nk takes rows 1 : k of L+ and rows k : n of U�.Thus row k has three nonzero entries (l+k�1 1 u�k )and Dk = diag(D+(1); : : : ;D+(k � 1); k;D�(k + 1); : : : ;D�(n)):Clearly, there are n suh twisted fatorizations, one for eah k = 1; : : : ; n. One suh twistedfator, with n = 6 and k = 3 is shown in Figure 1.The only new entry is k and it is of great importane. There are several formulae fork and we will give some of them in Fat 2.Fat 1. �1k = etk(LDLt � �̂I)�1ek:Our twisted fatorization will reveal the rank if k � � � �̂. Fat 1 implies that, inases of interest, there exists suh a k (see Theorem 2 below). The goal is to �nd an
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37777775Figure 1: Twisted Triangular Fator Nk with n = 6, k = 3.appropriate index k and we do so by omputing k for every hoie of k, 1 � k � n, andthen hoosing an index whih gives a minimal or nearly minimal value to jkj. The surpriseis that this an be done for little extra work as shown in Fat 2 below. The ase k = 1for all k an our but we are free to hoose �̂ to avoid suh situations, see also [9, Se. 3.3℄.Fat 2. In exat arithmeti,k = � D+(k) +D�(k)� (dk�1l2k�1 + dk � �̂);D+(k)� (dklk)2=D�(k + 1):The expression in parentheses in the �rst formula above is the (k; k) entry of LDLt � �̂I(here dk = D(k; k) and lk�1 = L(k; k � 1)). More robust expressions are given in (16).We present next the relation of k to the spetral fatorization of LDLt � �̂I using aneigenvetor expansion. These results do not rely on the tridiagonal form.Let LDLt = V �V t. Replae LDLt by V �V t in Fat 1 to �nd, for eah k,1k = jvj(k)j2�j � �̂ +Xi 6=j jvi(k)j2�i � �̂ ; (7)where � = �j is the eigenvalue losest to �̂ and its normalized eigenvetor is vj . Theorem 2shows that the twist index k for whih jvj(k)j is large leads to a small value of k.Theorem 2 Let k be as in (7), where �̂ approximates �j, and let �j be isolated enough,i.e., j�j � �̂jgap(�̂) � 1M � 1n� 1 ;where M > 1 and gap(�̂) = mini 6=j j�i � �̂j. Then, for k suh that vj(k) � 1=pn,jkj � j�j � �̂jjvj(k)j2 � MM � 1 � nj�j � �̂j � MM � 1 :Proof. A proof is given in [9, Setion 3.2℄. 2Next we show how to exploit the twisted fatorizations to ompute an aurate approxi-mate eigenvetor. Let z(k) be de�ned by (LDLt� �̂I)z(k) = ekk where I = [e1;e2; : : : ;en℄



8and z(k)(k) = 1. Theorem 3 shows that z(k) enjoys a small relative residual norm undersuitable onditions and serves as an exellent approximation to the eigenvetor vj [15, 29℄.Note that our approximate eigenvetor z(k) is a arefully hosen olumn of (LDLt� �̂I)�1.Theorem 3 Let k be as in (7), where �̂ approximates �j, �̂ 6= �j. Then, if vj(k) 6= 0, theresidual norm jkjkz(k)k � j�j � �̂jjvj(k)j ;and thus for at least one k, jkjkz(k)k � pnj�j � �̂j:Proof. A proof is given in [29, Setion 5℄ and [9, Setion 3.2℄, but we repeat it here forthe sake of ompleteness. Reall that LDLt = V�V t. Thenz(k) = (LDLt � �̂I)�1ekk;) kz(k)k2 = jkj2eTk V (�� �̂I)�2V Tek;= jkj2 nXi=1 jvi(k)j2j�̂� �ij2 ;) jkjkz(k)k � j�j � �̂jjvj(k)j ; 8k:Noting that jvj(k)j � 1=pn for at least one k ompletes the proof. 2However (�̂; z(k)) is not the best approximate eigenpair beause �̂ is not the Rayleighquotient of z(k). By using the Rayleigh quotient we obtain a useful derease in residualnorm.Lemma 1 Let LDLt = T and (T � �̂I)z(k) = ekk; z(k)(k) = 1. Then the Rayleighquotient � with respet to T � �̂I is �(z(k)) = k=kz(k)k2;and k(T � (�̂+ �)I)z(k)k=kz(k)k = kkz(k)k2 �kz(k)k2 � 1�1=2 :Proof. Write z for z(k),  for k, and note thatzt(T � �̂I)z = ztek = ; sine z(k) = 1;and (T � (�̂+ �)I)z = ek � z�;k(T � (�̂+ �)I)zk2 = 2 + kzk2�2 � 2�;= 2kzk2 �kzk2 � 1� : 2



94.2 qd-like ReurrenesTo �nd an individual eigenvetor we need to know the L+D+Lt+ and U�D�U t� deomposi-tions. Algorithm 4.1 given below implements the transformationLDLt � �I = L+D+Lt+: (8)We all this the \stationary quotient-di�erene with shift"(stqds) transformation for his-torial reasons. The term was �rst oined by Rutishauser for similar transformations thatformed the basis of his qd algorithm �rst developed in 1954 [34℄, [36℄ and [37℄. Although (8)is not idential to the stationary transformation given by Rutishauser, the di�erenes arenot signi�ant enough to warrant inventing new terminology. The term `stationary' is usedfor (8) sine it represents an identity transformation when � = 0. Rutishauser used theterm `progressive' instead for the formation of U�D�U t� from LDLt � �I or of L+D+Lt+from UDU t � �I.In the rest of the paper, we will denote L+(i+ 1; i) by L+(i), U�(i; i+ 1) by U�(i) andthe ith diagonal entries of D+ and D� by D+(i) and D�(i) respetively.Algorithm 4.1 (stqds)D+(1) := d1 � �for i = 1; n� 1L+(i) := (dili)=D+(i) (9)D+(i+ 1) := dil2i + di+1 � L+(i)dili � � (10)end forWe now see how to eliminate some of the additions and subtrations from the abovealgorithm. We introdue the intermediate variablesi+1 = D+(i+ 1)� di+1;= dil2i � L+(i)dili � �; by (10)= L+(i)li(D+(i) � di)� �; by (9)= L+(i)lisi � �: (11)Using this intermediate variable, we get the so-alled di�erential form of the stationaryqd transformation (dstqds). This term was again oined by Rutishauser in the ontext ofsimilar transformations in [34℄, [36℄. We will see later that the di�erential transformationsplay a ruial role in proving the main result of the paper, Theorem 9.Algorithm 4.2 (dstqds)-di�erential form of the stationary qd transformations1 := ��for i = 1; n� 1D+(i) := si + diL+(i) := (dili)=D+(i)si+1 := L+(i)lisi � �end forD+(n) := sn + dn



10In the next setion we will show that the above di�erential algorithm has some nieproperties in the fae of roundo� errors.We also need to ompute the transformationLDLt � �I = U�D�U t�:whih we all the \progressive quotient-di�erene with shift"(qds) transformation. Thefollowing algorithm gives an obvious way to implement this transformation.Algorithm 4.3 (qds)U�(n) := 0for i = n� 1; 1;�1D�(i+ 1) := dil2i + di+1 � U�(i+ 1)di+1li+1 � � (12)U�(i) := (dili)=D�(i+ 1) (13)end forD�(1) := d1 � U�(1)d1l1 � �As in the stationary transformation, we introdue the intermediate variablepi = D�(i)� di�1l2i�1; (14)= di � U�(i)dili � �; by (12)= diD�(i+ 1)(D�(i+ 1)� dil2i )� �; by (13)= diD�(i+ 1) � pi+1 � �: (15)Using this intermediate variable, we get the di�erential form of the progressive qd trans-formation,Algorithm 4.4 (dqds)-di�erential form of the progressive qd transformationpn := dn � �for i = n� 1; 1;�1D�(i+ 1) := dil2i + pi+1t := di=D�(i+ 1)U�(i) := litpi := pi+1t� �end forD�(1) := p1Note that we have denoted the intermediate variables by the symbols si and pi to standfor stationary and progressive respetively.



11We also need to �nd all the k's in order to hoose the appropriate twisted fatorizationfor omputing the eigenvetor. Sine (LDLt)k;k+1 = dklk, Fat 2 in Setion 4.1 leads tok = D+(k)� (dklk)2D�(k + 1) ;= sk + dk � (dklk)2D�(k + 1) ; by (Algorithm 4:2)= sk + dkD�(k + 1) �D�(k + 1)� dkl2k� :Substituting from (14), (15) and (11) in the above equation, we an express k by any ofthe following formulae: k = 8<: sk + dkD�(k+1) � pk+1;sk + pk + �;pk + L+(k � 1)lk�1sk�1: (16)In the next setion, we will see that the top and bottom formulae in (16) are `better'for omputational purposes. To reveal the near-singularity of LDLT � �I, we hoose r asthe index where jkj is minimum. The twisted fatorization at position r is given byLDLt � �I = NrDrN tr ;where Dr = diag(D+(1); : : : ;D+(r � 1); r ;D�(r + 1); : : : ;D�(n)) and Nr is the orre-sponding twisted fator, see the beginning of Setion 4.1. It may be formed by the following\di�erential twisted quotient-di�erene with shift"(dtwqds) transformation whih is justthe appropriate blend of Algorithms 4.2 and 4.4.Algorithm 4.5 (dtwqds) s1 := ��for i = 1; r � 1D+(i) := si + diL+(i) := (dili)=D+(i)si+1 := L+(i)lisi � �end forpn := dn � �for i = n� 1; r;�1D�(i+ 1) := dil2i + pi+1t := di=D�(i+ 1)U�(i) := litpi := pi+1t� �end forr := sr + drD�(r + 1) � pr+1



12Note: In ases where we have already omputed the stationary and progressive transforma-tions, i.e., we have omputed L+, D+, U� and D�, the only additional work needed fordtwqds is one multipliation and one addition to ompute r.In the next setion, we exhibit desirable properties of the di�erential forms of our qd-like transformations in the fae of roundo� errors. Before we do so, we emphasize that thepartiular qd-like transformations presented in this setion are new. Similar qd reurreneshave been studied by Rutishauser [34℄, [36℄ and [37℄, Henrii [20℄, [21, Chapter 7℄, Fernandoand Parlett [13℄, and Yao Yang [41℄.4.3 Roundo� Error AnalysisFirst, we introdue our model of arithmeti. We assume that the oating point result of abasi arithmeti operation Æ satis�esfl(x Æ y) = (x Æ y)(1 + �) = (x Æ y)=(1 + Æ)where � and Æ depend on x, y, Æ, and the arithmeti unit but satisfyj�j < "; jÆj < "for a given " that depends only on the arithmeti unit. We shall hoose freely the form (�or Æ) that suits the analysis. As usual, we will ignore O("2) terms in our analyses. We alsoadopt the onvention of denoting the omputed value of x by x̂.Ideally, we would like to show that the di�erential qd transformations introdued inSetion 4.2 produe an output that is exat for data that is very lose to the input matrix.Sine we desire relative auray, we would like this bakward error to be relative. However,our algorithms do not admit suh a pure bakward analysis (see [41℄ for a bakward analysiswhere the bakward errors are absolute but not relative). Nevertheless, we will give a hybridinterpretation involving both bakward and forward relative errors.The best way to understand our �rst result is by studying Figure 2. Following Rutishauser,we merge elements of L and D into a single array,Z := fd1; l1; d2; l2; : : : ; dn�1; ln�1; dng:Likewise, the array !Z is made up of elements !di and !l i, Ẑ+ ontains elements D̂+(i), L̂+(i)and so on. The aronym ulp in Figure 2 stands for units in the last plae held. It is thenatural way to refer to relative di�erenes between numbers. When a result is orretlyrounded the error is not more than half an ulp.Notational Guide. In all results of this setion, numbers in the omputer are representedby letters without any overbar, suh as Z, or by \hatted" symbols, suh as Ẑ+. Forexample in Figure 2, Z represents the input data while Ẑ+ represents the output dataobtained by exeuting the dstqds algorithm in �nite preision. Intermediate arrays,suh as !Z and _Z+, are introdued for our analysis but are typially unrepresentablein a omputer's limited preision. Note that we have hosen the symbols! and_ inFigure 2 to indiate a proess that takes rows and olumns in inreasing order, i.e.,from \left to right" and \top to bottom". Later, in Figure 3 we use  and ^ toindiate a \right to left" and \bottom to top" proess.
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6-
?!Z _Z+
Z Ẑ+

dstqdsexat
dstqdsomputedhange eahdi by 1 ulp,li by 3 ulps. hange eah_D+ (i) by 2 ulps,_L+ (i) by 3 ulps.

Figure 2: E�ets of roundo� | dstqds transformationFigure 2 states that the omputed outputs of the dstqds transformation (see Algo-rithm 4.2), D̂+(i) and L̂+(i) are small relative perturbations of the quantities _D+ (i) and_L+ (i) whih in turn are the results of an EXACT dstqds transformation applied to the per-turbed matrix represented by !Z. The elements of !Z are obtained by small relative hangesin the inputs L and D. Analogous results hold for the dqds and dtwqds transformations(see Algorithms 4.4 and 4.5). As we mentioned above, this is not a pure bakward erroranalysis. We have put small perturbations not only on the input but also on the output inorder to obtain an exat dstqds transform. This property is alled mixed stability in [3℄ and[6℄ but note that our perturbations are relative ones. A trustful reader may wish to skipthe proofs but the very speial `interpretation' of the roundo� errors is the rok on whihour results are founded.Theorem 4 Let the dstqds transformation be omputed as in Algorithm 4.2. In the abseneof overow and underow, the diagram in Figure 2 ommutes and !di (!l i) di�ers from di(li) by 1 (3) ulps, while D̂+(i) (L̂+(i)) di�ers from _D+ (i) (_L+ (i)) by 2 (3) ulps.Proof. We write down the exat equations satis�ed by the omputed quantities.D̂+(i) = (ŝi + di)=(1 + "+);L̂+(i) = di li(1 + "�)(1 + "=)=D̂+(i) = di li(1 + "�)(1 + "=)(1 + "+)ŝi + di ;and ŝi+1 = L̂+(i) liŝi(1 + "Æ)(1 + "��)� �1 + "i+1 :In the above, all "'s depend on i but we have hosen to single out the one that aounts forthe subtration as it is the only one where the dependene on i must be made expliit. Inmore detail the last relation is(1 + "i+1)ŝi+1 = di l2i ŝiŝi + di (1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)� �:The trik is to de�ne !di and !l i so that the exat dstqds relation!s i+1 = !di !l 2i !s i!s i + !di � � (17)
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? Z Ẑ�
Z Ẑ�

dqdsexat
dqdsomputedhange eahdi by 3 ulps,li by 3 ulps. hange eahD̂� (i) by 2 ulps,Û� (i) by 4 ulps.

Figure 3: E�ets of roundo� | dqds transformationis satis�ed. This may be ahieved by setting!di = di(1 + "i);!s i = ŝi(1 + "i); (18)!l i = li s(1 + "�)(1 + "=)(1 + "+)(1 + "Æ)(1 + "��)1 + "i :In order to satisfy the exat mathematial relations of dstqds,_D+ (i) = !s i + !di; (19)_L+ (i) = !di !l i!s i + !di ; (20)we set _D+ (i) = D̂+(i)(1 + "+)(1 + "i);_L+ (i) = L̂+(i)s (1 + "Æ)(1 + "��)(1 + "�)(1 + "=)(1 + "+)(1 + "i) (21)and the result holds. 2A similar result holds for the dqds transformation.Theorem 5 Let the dqds transformation be omputed as in Algorithm 4.4. In the abseneof overow and underow, the diagram in Figure 3 ommutes and  di ( l i) di�ers from di(li) by 3 (3) ulps, while D̂�(i) (Û�(i)) di�ers from D̂� (i) (Û� (i)) by 2 (4) ulps.



15Proof. The proof is similar to that of Theorem 4. The omputed quantities satisfyD̂�(i+ 1) = (di l2i (1 + "�)(1 + "��) + p̂i+1)=(1 + "+); (22)t̂ = di(1 + "=)=D̂�(i+ 1);Û�(i) = lit̂(1 + "Æ) = di li(1 + "=)(1 + "Æ)(1 + "+)di l2i (1 + "�)(1 + "��) + p̂i+1 ;p̂i = (di=D̂�(i+ 1))p̂i+1(1 + "=)(1 + "ÆÆ)� �1 + "i ;) (1 + "i)p̂i = di p̂i+1di l2i (1 + "�)(1 + "��) + p̂i+1 (1 + "=)(1 + "ÆÆ)(1 + "+)� �:Note that the above "'s are di�erent from the ones in the proof of the earlier Theorem 4.As in Theorem 4, the trik is to satisfy the exat relation, p i =  di  p i+1 di  l 2i +  pi+1 � �; (23)whih is ahieved by setting  di = di(1 + "=)(1 + "ÆÆ)(1 + "+); pi = p̂i(1 + "i); (24)and  l i = li s(1 + "�)(1 + "��)(1 + "i+1)(1 + "=)(1 + "ÆÆ)(1 + "+) ; (25)so that  di  l 2i = di l2i (1 + "�)(1 + "��)(1 + "i+1):The other dqds relations, D̂� (i+ 1) =  di  l 2i +  p i+1; (26)Û� (i) =  d i  l i di  l 2i +  pi+1 ; (27)may be satis�ed by settingD̂� (i+ 1) = D̂�(i+ 1)(1 + "+)(1 + "i+1);Û� (i) = Û�(i)1 + "Æs (1 + "�)(1 + "��)(1 + "ÆÆ)(1 + "=)(1 + "+)(1 + "i+1) : (28)2By ombining parts of the analyses for the dstqds and dqds transformations, we analso exhibit a similar result for the twisted fatorization omputed by Algorithm 4.5. InFigure 4, the various Z arrays represent orresponding twisted fators that may be obtained
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?�Z ~Zk
Z Ẑk

dtwqdsexat

dtwqdsomputedhange eahdi by 1 ulp, 1 � i < k,li by 3 ulps, 1 � i < k,dk by 4 ulps, lk by 3 12 ulps,di by 3 ulps, k < i � n,li by 3 ulps, k < i < n.
hange eah_D+ (i) by 2 ulps, 1 � i < k,_L+ (i) by 3 ulps, 1 � i < k.~k by 2 ulps, ~U�(k) by 4 12 ulps,D̂� (i) by 2 ulps, k < i � n,Û� (i) by 4 ulps, k < i < n.

Figure 4: E�ets of roundo� | dtwqds transformationby \onatenating" the stationary and progressive fators. In partiular, for any twistposition k,Ẑk := fD̂+(1); L̂+(1); : : : ; L̂+(k � 1); ̂k; Û�(k); D̂�(k + 1); : : : ; Û�(n� 1); D̂�(n)g;~Zk := f_D+ (1);_L+ (1); : : : ;_L+ (k � 1); ~k; ~U�(k); D̂� (k + 1); : : : ; Û� (n� 1); D̂� (n)g;while �Z := f!d1;!l 1; : : : ;!l k�1; �dk; �lk; : : : ; l n�1; dng:Ẑk and ~Zk represent the twisted fatorizationsN̂kD̂kN̂ tk and ~Nk ~Dk ~N tkrespetively (note that � is a onatenation of the symbols_ and ^, while � may also bederived by onatenating  and !).Theorem 6 Let the dtwqds transformation be omputed as in Algorithm 4.5. In the abseneof overow and underow, the diagram in Figure 4 ommutes and !di (!l i) di�ers from di(li) by 1 (3) ulps for 1 � i < k, �dk (�lk) di�ers from dk (lk) by 4 (312 ) ulps, while  di ( l i)di�ers from di (li) by 3 (3) ulps for k < i � n. On the output side, D̂+(i) (L̂+(i)) di�ersfrom _D+ (i) (_L+ (i)) by 2 (3) ulps for 1 � i < k, ̂k ( ~U�(k)) di�ers from ~k ( ~U�(k)) by 2(412 ) ulps, while D̂�(i) (Û�(i)) di�ers from D̂� (i) (Û� (i)) by 2 (4) ulps for k < i � n.Proof. The ruial observation is that for the exat stationary transformation (i. e., (17),(19) and (20)) to be satis�ed for 1 � i � k � 1, roundo� errors need to be put only ond1; d2; : : : ; dk�1 and l1; l2; : : : ; lk�1. Similarly for the progressive transformation (i. e., (23),



17(26) and (27)) to hold for k+1 � i < n, roundo� errors need to be put only on the bottompart of the matrix, i.e., on dk+1; : : : ; dn and lk+1; : : : ; ln�1.Next we turn to the entries assoiated with the twist position k. By the top formulain (16), ̂k =  ŝk + dkD̂�(k + 1) p̂k+1(1 + "�= )(1 + "�ÆÆ)!�(1 + "k):Note that in the above, we have put the supersript � on some "'s to indiate that they areidential to the orresponding "'s in the proof of Theorem 5. By (18) and (22),(1 + "k)̂k = !sk1 + "+k + p̂k+1 � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)dk l2k(1 + "�� )(1 + "���) + p̂k+1 ;) (1 + "k)(1 + "+k )̂k = !sk + p̂k+1(1 + "�k+1) � dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k )dk l2k(1 + "�� )(1 + "���)(1 + "�k+1) + p̂k+1(1 + "�k+1) :Note that we are free to attribute roundo� errors to dk and lk in order to preserve exatmathematial relations at the twist position k. In partiular, by setting~k = ̂k(1 + "k)(1 + "+k );�dk = dk(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k );�lk = lks (1 + "�� )(1 + "���)(1 + "�k+1)(1 + "�= )(1 + "�ÆÆ)(1 + "�+)(1 + "+k ) ;and realling that  pk+1= p̂k+1(1 + "�k+1) (see (24)), the following exat relation holds,~k = !sk + �dk  pk+1�dk �l2k+  pk+1 :In addition, the exat relation ~U�(k) = �dk �lk�dk �l2k+  pk+1holds if we set ~U�(k) = Û�(k)1 + "�Æ s(1 + "�� )(1 + "���)(1 + "�ÆÆ)(1 + "+k )(1 + "�= )(1 + "�k+1)(1 + "�+) ; (29)where "�Æ is idential to the "Æ of (28). Note that sine �dk �l2k = dk  l 2k the (k+1)-st diagonalelement in ~Zk remains D̂� (k + 1) as:�dk �l2k+  pk+1 =  dk  l 2k +  pk+1 = D̂� (k + 1); from (26): 2Note: A similar result may be obtained if k is omputed by the last formula in (16).



185 Perturbations of Produts of BidiagonalsThis setion studies the e�et of small relative hanges in the nontrivial entries of L andD on the eigenvalues and eigenvetors of LDLt. However LDLt should be thought of asthe most familiar of the n twisted fatorizations and the results below extend, with smallmodi�ations, to any twisted fatorization.5.1 Multipliative FormFor the sake of ompleteness, we present the following well-known lemma and its proof.Lemma 2 Let L be a unit bidiagonal matrix with no zero o�-diagonal entries. Independentrelative perturbations in the o�-diagonals may be represented by the two-sided salingE�1LEwhere E = diag(e1; : : : ; en) is a diagonal saling matrix unique to within a onstant multiple.Proof. Let Lij�ij represent the perturbation of Lij. The equations to be solved areLi+1;ieiei+1 = Li+1;i�i+1;i; 1 � i < n:Letting en = 1 we get en�1 = �n;n�1. Dereasing the index i further, we getei = ei+1 � �i+1;i = n�1Yj=i �j+1;j i = n� 1; n� 2; : : : 1: 2Independent relative perturbations to nonzero entries of D are diretly represented bya diagonal saling matrix that we hoose to write as F 2. Thus independent relative pertur-bations to the non-trivial entries of L and D lead to the perturbed matrix�T = E�1LEFDFELtE�1 (30)5.2 Perturbation BoundsLet (�;u) be an eigenpair of LDLt, � 6= 0, kuk = 1. We may write �T in (30) in standardmultipliative form as �T = GtLDLtG; (31)where G := L�tFELtE�1 (32)is an upper triangular matrix sometimes lose to I. There is an eigenpair (��; �u) of �Tassoiated with (�;u) and we want to investigate the loseness of � to �� and u to �u. We�rst look at the published bounds, in terms of G, on j�� ��j and j sin\(u; �u)j. For our aseof a single eigenvetor, not a subspae, the results of Ipsen and Eisenstat [11℄ and Ren-CangLi [24℄ are extremely lose to eah other. Sine Li hose to keep u expliit in his bounds weuse a slight variant of the bound (3.5) from [24℄:



19Theorem 7 (Variant of Theorem 3.1 in [24℄) There is an eigenpair (��; �u) of �T , with�� 6= 0, suh that j sin\(u; �u)j � k(I �G�1)uk+ k(Gt �G�1)ukrelgap(�) (33)where relgap(�) := minfj�� ��j : �� 6= ��; det[ �T � ��I℄ = 0gj�j :A bound on j�� ��j=j�j omes from a residual norm by standard tehniques. Try (G�1u; �)as an approximate eigenpair of �T ;�r := �TG�1u�G�1u�kG�1uk= (Gtu�G�1u)�kG�1uk ; by (31):By Theorem 1, j�� ��j � k�rk = kGtu�G�1uk j�jkG�1uk : (34)Note that (34) and (33) yield uniform relative ondition numbers for all the eigenvalues andeigenvetors respetively sinej�� ��jj�j � k(GtG� I)G�1ukkG�1uk � kGtG� Ik; (35)and j sin\(u; �u)j � kI �G�1k+ kGt �G�1krelgap(�) : (36)Writing E = I +�1, E�1 = I +�2, EF = I +�3 and (EF )�1 = I +�4, it an be shownthat kI �G�1k � k�1k+ ond(L)k�4k(1 + k�1k);kGt �G�1k � k�1k+ k�2k+ ond(L) fk�3k(1 + k�2k) + k�4k(1 + k�1k)g ;and kGtG� Ik � k�2k(2 + k�2k) + ond(L)k�3k(1 + k�2k)2(2 + ond(L)k�3k):Thus, after substituting the above values in (35) and (36), we an de�nerelond(�) := 1 + ond(L);and relond(u) := (1 + ond(L))�1 + 1relgap(�)�for all eigenpairs (�;u) of LDLt. Hene when L is well-onditioned, all eigenpairs of LDLtare \relatively robust".



20However, we have enountered many ases where L is ill-onditioned, and some of theeigenpairs of LDLT , often its small eigenvalues and orresponding eigenvetors, are deter-mined to high relative auray. To get bounds that make a distintion between di�erenteigenpairs we need to retain the vetor u in the bounds (33) and (34).Thus we manipulate (33) into a revealing form using (32). Write L = I+ oL and exploitthe bidiagonal form of L to pass the diagonal matrix EF to the other side of L. FromLemma 2, E = diag(e1; : : : ; en) and F = diag(f1; : : : ; fn) satisfyen = 1; ej = (1 + �j)ej+1; 1 � j < n;fj = p1 + "j; 8 j:It may be veri�ed that LEF = EF (L+H1 oL) (37)where H1 = diag�0; (1 + �1)f1f2 � 1; : : : ; (1 + �n�1)fn�1fn � 1� :Hene, to �rst order, kH1k � h := maxi j�ij+ kF 2 � Ik: (38)Note that in ontrast to the bound on E there is no fator of n in h. In Setion 7 weshall give spei� values to maxi j�ij and maxj j"j j, the relative hanges in the li and djrespetively. Use (37) to �nd thatGt = E�1LEFL�1= E�1EF (L+H1 oL)L�1= F (I +H1 oL L�1):In order to keep our bound (49) as simple as possible we derive an expression, in (40), forG�1 that avoids the inverse of I +H1 oL L�1. As in (37), we an write(EF )�1Lt = (Lt+ oLt H2)(EF )�1 (39)where H2 = diag�0; 11 + �1 f2f1 � 1; : : : ; 11 + �n�1 fnfn�1 � 1� ;with kH2k � h, to �rst order. Hene, by (39),G�1 = EL�t(EF )�1Lt = (I +E( oL L�1)tE�1H2)F�1: (40)



21Letting P1 = H1 oL L�1 and P2 = E( oL L�1)tE�1H2, we an writeGt = F (I + P1); and G�1 = (I + P2)F�1: (41)Given Gt and G�1 in the above form,k(Gt �G�1)uk = k(F � F�1)u+ (FP1 � P2F�1)uk� kF � F�1k+ hkFkk oL L�1uk+ hkEkkE�1kkF�1kkj oL L�1jtjujk;� hkEkkE�1kkF�1k�1 + k oL L�1uk+ kj oL L�1jtjujk� ; (42)sine kF � F�1k � kF 2 � Ik kF�1k � h kF�1k, by (38). Note that jM j denotes the matrixwith entries jmij j. In order to derive relond(�) from (34), we need to bound kG�1uk frombelow. From (41), FG�1u = (I + P t1)�1u;) kG�1uk � k(I + P t1)�1ukkFk : (43)Writing u = (I + P t1)(I + P t1)�1u = (I + P t1)�1u+ P t1(I + P t1)�1u, we getk(I + P t1)�1uk � 11 + kP1k : (44)By (43) and (44), and using P1 = H1 oL L�1,kG�1uk � 1kFk(1 + hk oL L�1k) : (45)Hene, by (34), (42) and (45),j�� ��jj�j � hkEkkE�1kkF�1kkFk(1 + hk oL L�1k) �1 + k oL L�1uk+ kj oL L�1jtjujk� ; (46)whene we de�ne (assuming that hk oL L�1k � 1)relond(�) := 1 + k oL L�1uk+ kj oL L�1jtjujk: (47)Furthermore,k(I �G�1)uk = k(I � F�1)u� P2F�1uk;� kI � F�1k+ hkEkkE�1k kF�1k kj oL L�1jtjujk;� hkEkkE�1k kF�1k �1 + kj oL L�1jtjujk� ; (48)where the last inequality above holds sine F is diagonal, thus implyingkI � F�1k � kF�1k kF � Ik � kF�1k kF 2 � Ik � h kF�1k; by (38):



22By (33), (42) and (48),j sin\(u; �u)j � hkEkkE�1k kF�1k �1 + kj oL L�1jtjujk+ 1 + k oL L�1uk+ kj oL L�1jtjujkrelgap(�) ! : (49)The above bound persuades us to de�nerelond(u) := �1 + k oL L�1uk+ kj oL L�1jtjuj k��1 + 1relgap(�)� : (50)Thus, from (46), (47) and (49), (50) we havej�� ��jj�j � hkEkkE�1kkF�1kkFk relond(�);j sin\(u; �u)j � hkEkkE�1kkF�1k relond(u); (51)where h is de�ned in (38).In ases where there is no element growth when fatoring T into LDLt, say k oL k � 0:96,then k oL L�1k � k oL kkL�1k;� k oL k1� k oL k � 24; (52)and, from (50), relond(u) � 49�1 + 1relgap(�)�for all eigenvetors of LDLt.This result shows the importane of not automatially using LDLt but hoosing thetwisted fatorization NDN t with minimal k oN k. An extreme example is the followingmatrix, with � � 1:diag(T ) = diag(1; 1 + �2; : : : ; 1 + �2); Ti;i+1 = � for all i.The fatorization LD+Lt, with twist at n, has D+ = I, oL= � diag([1; : : : ; 1℄;�1)whereas the bottom-up fatorization, UD�U t, with twist at 1, has oU� ��1 diag([1; : : : ; 1℄;+1)and D� � diag(�2(1�n); �2; : : : ; �2+1). The omitted entries in D� inrease slowly from �2to �2 + 1.So, as in (52), k oU U�1k � ��1=(1� ��1) = (� � 1)�1. For this fatorization,relond(u) = �k1+ oU U�1uk+ k j oU U�1jt juj k��1 + 1relgap(�)�� �1 + 2� � 1��1 + 1relgap(�)�



23for all u, whereas relond(u) for LD+Lt is muh larger.The relative ondition numbers given in (50) and (47) are spei� to eah eigenvalue,and we use them in the proof of Theorem 9 in Setion 7. However, as we disuss in the nextsetion, these relonds are not entirely satisfatory.5.3 Element GrowthThe above analysis suggests that element growth (k oL L�1k � 1) is dangerous. However, wehave found that the presene of element growth does not prevent some of the eigenvetorsof LDLt, usually those with small eigenvalues, from being relatively robust. The relativerobustness of (�;u) seems to be governed by Dhillon's relative ondition number�rel(�) := utLjDjLtuj�j = utLjDjLtujutLDLtuj ; (53)introdued in [9℄, and in many ases the relond(u) given in (50) is too pessimisti. Unfortu-nately, as yet we have not been able to prove a guaranteed bound in terms of (53). We haveestimates that are orret to �rst order but no bounds. The small relative perturbationsrelevant to our algorithm, i.e., E and F , are not independent and it may be neessary to usethis property. In [31℄ one of us onneted the study of LDLt to an inde�nite (or hyperboli)singular value deomposition. We report on these results but will not give proofs. WriteD = �
�, 
 = sign(D), and � = �2sign(�). Then if LDLtu = u�, kuk = 1, we write�Ltu = p�;L�
p = u�sign(�);pt
p = sign(�):The new quantity p is alled the left 
-singular vetor of �Lt. It is not hard to see that�rel(�) de�ned above in (53) equals kpk2. There is an expression for the `relative' derivativeof � with respet to eah of the entries of �Lt, namely the diagonal elements Æi = pjdij,and o�-diagonals bi := liÆi. Theorem 2 of [31℄ shows that for � > 0 and !i = 
ii,�(k) := Æk� � ���Æk = kXi=1 u(i)2 � sign(�) k�1Xj=1 !jp(j)2�(k) := bk� � ���bk = sign(�) kXi=1 !ip(i)2 � kXj=1 u(j)2:It was shown that j�(k)j � kpk2 and j�(k)j � kpk2. The total `relative derivative' of � isbounded by (2n � 1)kpk2. When 
 = I then kpk = 1 and we reover the known (almost)attainable bound in [7℄.Our �rst order perturbation analysis (derivation omitted) reveals the dominant role ofp in determining relative robustness. Let �" := maxi;jfj�ij; j"j jg where li �! li(1 + �i),di �! di(1 + "i) and T = LDLt. Then for (�;u) we an show thatjÆ�j � j�j 2 n�1Xk=1 j�(k)j + kpk2! (�"+ �"2) + ut oL jDj oLt u �"2 +O(kÆTk2): (54)



24Reall that Æ� = �� �� = utÆTu+O(kÆTk2).In order to get a bound on tan\(u; �u) we must refer to all eigenpairs and put subsriptson �;u;p and on the �'s, denoting by �j(k) the �(k) for the triplet (�j;uj;pj). In additionwe must de�ne the quantity	ij :=  n�1Xk=1 j�i(k)j ����pj(k)pi(k) ����+ j�j(k)j ���� pi(k)pj(k) ����!+ jpijt jpjj:Then, for the jth eigenvetor uj,j tan\(uj ; �uj)j � 24Xi 6=j  	ijpj�i�j jj�i � �jj !2351=2 (�"+ �"2)+ �"2 24Xi 6=j  pj�i�j jj�i � �j j n�1Xk=1 �����i(k)pi(k) �j(k)pj(k) ����!2351=2 +O(kÆTk2): (55)The leading term in (55) is ompliated. It is well approximated, for very small �j , by	jj 24Xi 6=j j�i�jj(�i � �j)2351=2 �"and 	jj < (2n� 1)kpjk2.In the ases we have examined, the quantities in (54) and (55) have been realisti andmuh smaller than our relond(u) in Setion 5.2. The seond term in (54) is not, in general,proportional to � and we hope to show that it is anelled by the O(kÆTk)2 term in theexpansion of Æ� as a power series. We hope that future work will show that the �rstorder terms do, in fat, dominate the higher order ones and then we may inorporate amore realisti de�nition of relond(u), namely the leading term in (55), into the bounds ofTheorem 9.We emphasize that relative perturbation theory is not the main onern of this paper.More analysis of relative ondition numbers is given in [30, 32℄. For the rest of this paperwe assume that all relonds are bounded by a modest onstant like 10.6 Algorithm for an EigenvetorThe method presented below is lose in spirit to the one presented by Godunov and his o-workers in the USSR in 1985, see [16℄ and [17℄. They formulated the idea of taking the topentries in the vetor from one sequene and the bottom entries from another one and thenhoosing the right index at whih to join the two piees into an aurate eigenvetor. Inde-pendently Fernando disovered a similar idea in terms of running the well known two-termreurrene for D+, both forwards from D+(1) and bakwards from D+(n) = 0, and thenjoining the two sequenes where they are losest. In [29℄, Parlett and Dhillon formulatedand proved Theorems 2 and 3 in Setion 4 whih show that at least one twisted fatorizationmust reveal the size of the smallest eigenvalue, thus yielding an aurate eigenvetor.



25However neither Godunov nor Fernando reap the full reward for hoosing the best plaeto join two piees.The reasons are quite di�erent in the two ases. Godunov et. al. arefully seletapproximate eigenvalues on opposite sides of the true eigenvalue for the two sequenes thatprovide the eigenvetor entries. However they need direted rounding in order to establishtheir bounds in �nite preision arithmeti. Direted rounding is available in most modernomputer hardware sine it is part of the IEEE oating point standard[1℄; however, modernprogramming languages do not make it available to the user. Fernando does not onsiderthe e�ets of roundo� error but, as with Godunov et. al., omputes the two fatorizationsfrom a translate of the original matrix T that may not de�ne its eigenvalues to high relativeauray. The 3 � 3 example in Setion 3 illustrates the problem. The algorithm given byFernando in Setion 5 of [15℄, even with highly aurate eigenvalue approximations, yieldseigenvetors with error exeeding p".Thus we use the LDLt representation instead of the diagonal and o�-diagonal elementsof T . Even use of a good representation is not enough to ensure that the residual normk(LDLt� �̂I)zk = O("j�� �̂j) for the omputed z. For example, if Rutishauser's stationaryqd algorithm were used to ompute L+ and D+ satisfying LDLt� �̂I = L+D+Lt+ we ouldnot prove our main result, Theorem 9 in the next setion. That result requires a seondinnovation, beyond the use of LDLt, namely use of the di�erential qd algorithms introduedin Setion 4.2 to ompute the entries of the twisted fators. The ommutative diagramsin Setion 4.3 are not valid for Rutishauser's implementation. Hene the LDLT represen-tation and di�erential qd transformations are ruial to our goal of omputing orthogonaleigenvetors when relative gaps are large. We now give details of our algorithm.Algorithm GetveAssume that �̂ is muh loser to one eigenvalue of LDLt than to any other.I. Fator LDLt � �̂I = L+D+Lt+ by the dstqds transform (Algorithm 4.2).II. Fator LDLt � �̂I = U�D�U t� by the dqds transform (Algorithm 4.4).III. Compute k, k = 1; : : : ; n by the top formula of (16). Pik an r suh that jrj =mink jkj. Then NrDrN tr = LDLt � �̂I is the desired twisted fatorization, see Se-tion 4.1.IV. Form the approximate eigenvetor z by solving N trz = er whih is equivalent tosolving NrDrN trz = err via z(r) = 1;For i = r � 1; : : : ; 1; z(i) = � �L+(i)z(i + 1); z(i+ 1) 6= 0;�(di+1li+1=dili)z(i+ 2); otherwise:For j = r; : : : ; n� 1; z(j + 1) = � �U�(j)z(j); z(j) 6= 0;�(dj�1lj�1=djlj)z(j � 1); otherwise:V. If wanted, ompute znrm = kzk and v = z=znrm.



26Remark 1 In Step IV above, a zero entry in an eigenvetor requires speial handling. Forexample, when z(i+ 1) = 0, i < r, we use the (i+ 1)-st equation of the tridiagonal system(LDLT � �̂I)z = err to onnet z(i) with z(i + 2). The ase when z(j) = 0, j > r, ishandled similarly.Remark 2 It is possible to avoid some omputation in Steps I and II by using Gershgorindisks. In partiular, it is easy to show that if the eigenvalue is not ontained in the i-thGershgorin disk, then r 6= i. See [9, Se. 3.4.1℄ for details.Remark 3 The above algorithm an also be used to improve the auray of �̂. ByLemma 1, r=kzk2 is the Rayleigh Quotient orretion to �̂ and so it an double the numberof orret digits when �̂ is not quite aeptable.Remark 4 The vetor z sometimes has small numerial support. During the omputationof z this situation an be deteted as follows. We ontinue the reurrene for z until 2onseutive entries fall below " in magnitude. In many ases all further entries of z an beset to 0. Suppose jz(i�1)j < " and jz(i)j < ", i < r. If the elements z(j), j < i�1, are set tozero then equations i�2 and i�1 of (LDLt� �̂I)z = err are no longer satis�ed and resultin a residual that equals �i�2(z(i�1)ei�2� z(i�2)ei�1), where �i�2 = D+(i�2)L+(i�2).For the omputed vetor z to be aurate (see Theorem 1), we must ensure thatjD+(i� 2)L+(i� 2)j (jz(i� 1)j + jz(i � 2)j) < " � gap(�̂);where z(i � 2) = �L+(i � 2)z(i � 1). Similarly when i > r and both z(i � 1) and z(i) dipbelow " we set the elements z(j), j > i, to 0 ifjD�(i)U�(i� 1)j (jz(i)j + jz(i+ 1)j) < " � gap(�̂);where z(i + 1) = �U�(i)z(i). Thus all our omputed vetors have a �rst and last nonzeroomponent and we all the index set f�rst:lastg the numerial support of z and sojsupp(z)j = last� first+ 1: (56)Note that in exat arithmeti the �rst and last entries of an eigenvetor of an unreduedtridiagonal matrix are nonzero but in pratie they are often extremely small, and so theabove situation is not so unommon.There is more to be said about the support. Before z is omputed all the fig areomputed in order to �nd the smallest among them. By Lemma 11 in [29℄, as �̂! �j ,ri ! vj(i)2vj(r)2 ; (57)where vj is �j 's eigenvetor. This suggests that if i > r="2 then z(i) may be negleted andit might be argued that this gives us a better way to approximate supp(z) at the time r ishosen. Unfortunately, mahine preision is sometimes not suÆient to put �̂ lose enoughto �j for (57) to hold for indies where jvj(i)j � p". However, when j�̂� �j j = O("j�̂j) theabove strategy almost always gives us the orret list of indies with jvj(i)j � p" (see (7)).



27Remark 5 It is not essential that jrj be minimal. In priniple one keeps a list of indiesi suh that jminj < jij < 2jminj, and an hoose r to be any of these indies.Remark 6 Suppose �̂ approximates �j . In the next setion we will show that in thepresene of roundo� errors, the omputed vetor z satis�esj sin\(z;vj)j = O nj�j � �̂jgap(�̂) ! = O n"j�̂jgap(�̂)! = O n"relgap(�̂)! ;and thus z is an aurate eigenvetor when relgap(�̂) = O(1). A natural question to askis: an suh an aurate approximation be omputed when the relative gap is smaller, say,relgap(�̂) = p"? A tempting solution is to extend Algorithm Getve to do a step of inverseiteration: (LDLT � �̂I)y = z ) (LDLT � �̂I)2y = rer. The tempting argument is thatby doing so, j sin\(y;vj)j = O nj�j � �̂j2gap(�̂)2 ! = O n"2relgap(�̂)2! ;sine the eigenvalues of (LDLT��̂I)2 are just (�i��̂)2. When relgap(�̂) = p", this strategyseems to yield an aurate eigenvetor y.Unfortunately this simple solution does not work. In our experiene the extra step ofinverse iteration inreases the auray by a fator of .1 or .01 and not by a fator of p" asthe above reasoning indiates. As the analysis of the next setion will show, this failure isdue to the presene of roundo� errors and the relative perturbation theory of Setion 5.The ase of relgap(�̂) � 1=n requires radially di�erent strategies. One strategy is totake a new shift to improve the relative gaps and to stay with the z vetor. This is notthe subjet of this paper but the interested reader may see [9, 10℄ for details. Very tightlusters of eigenvalues that are well-separated from the rest of the spetrum may also behandled by the overlapping submatrix ideas of [27℄ and [28℄.7 Bounds on Auray (Proof of Corretness)The formal analysis begins here. We start by showing that the vetor ẑ omputed byAlgorithm Getve is very lose to a vetor ~z that obeys the exat relationship (58), where~Nr and ~Dr are perturbed fators determined by step IV of the algorithm.Theorem 8 Let N̂r and D̂r, ~Nr and ~Dr be the twisted fators represented by Ẑr and ~Zrrespetively in Figure 4 (see also Theorem 6 and Figure 5). Let ẑ be the vetor omputedin Step IV of Algorithm Getve, and let ~z be the exat solution of~Nr ~Dr ~N tr~z = ~rer: (58)Then, barring underow, ẑ is a small relative perturbation of ~z. Spei�ally,ẑ(r) = ~z(r) = 1;ẑ(i) = ~z(i) � (1 + �i); i 6= r; j�ij � 5ji� rj"; (59)where " is the mahine preision.



28Proof. The above bound aounts for the roundo� errors in the reurrene in Step IV ofAlgorithm Getve. For now, assume that no omponent of ẑ is zero (so that only the topformulae for ẑ(i) and ẑ(j+1) in Step IV are used). The matrix ~Nr, built out of _L+ and Û�,was de�ned in Theorem 6 so that the equality �L �D�Lt � �̂I = ~Nr ~Dr ~N tr holds. Thus ~Nr is agiven matrix, not to be modi�ed, in the ontext of this theorem. Beause of the roundo�error in multipliation the top entries of ẑ omputed in Step IV of Algorithm Getve satisfyẑ(i) = �L̂+(i)ẑ(i+ 1)(1 + "i); i < r;and the bottom entries satisfyẑ(i) = �Û�(i� 1)ẑ(i� 1)(1 + "i); i > r; (60)where j"ij � ". In ontrast, the ideal vetor ~z satis�es~z(i) = � _L+ (i)~z(i+ 1); i < r; (61)and ~z(i) = � Û� (i� 1)~z(i� 1); i > r:Sine ẑ(r) = ~z(r) = 1, we may de�ne �r = 0 and trivially write ẑ(r) = ~z(r)(1 + �r)with j�rj � 4(r � r)". Now proeed by indution as i dereases in order to prove (59).Examine (21) to �nd thatL̂+(i) = _L+ (i)(1 + Æi);where jÆij < p(1 + ")6 � 1 = 3" +O("2) for all i < r:Thusẑ(i� 1) = � _L+ (i� 1)(1 + Æi�1)ẑ(i)(1 + "i�1);= � _L+ (i� 1)(1 + Æi�1)~z(i)(1 + �i)(1 + "i�1); j�ij � 4(r � i)" by indution;= ~z(i� 1)(1 + Æi�1)(1 + �i)(1 + "i�1); by (61)= ~z(i� 1)(1 + �i�1); thus de�ning �i�1 � (1 + �i)(1 + Æi�1)(1 + "i�1)� 1;j�i�1j � (1 + j�ij)(1 + ")3(1 + ")� 1 = [4(r � i) + 4℄"+O("2); as laimed:For the lower half of ẑ, i � r, the argument is similar with Û� and Û� involved insteadof L̂+ and _L+. Note that Û� is related to Û� by (29) and (28), whih, respetively, involve112 and 1 more ulps than (21).To begin, de�ne �r = 0 so that j�rj � 5(r�r)". For i = r+1, (59) holds sine (29) gives4:5 ulps for Û� (r) in (60), while "r+1 = 0 (beause ẑ(r) = 1). For i > r + 1, (28) gives 4ulps and "i gives one more ulp for an inrease of at most 5 ulps eah time i inreases. Thus(59) holds for all values of i.We now onsider the ase when an eigenvetor entry vanishes, i.e., ẑ(i+ 1) = 0. In thisase the alternate formulae in Step IV of Algorithm Getve are used to ompute the nexteigenvetor entry, i.e., if i < r thenz(i) = �(di+1li+1=dili)z(i + 2); (62)



29where di and li are elements of the input matries L and D. Examining the relationsbetween di and !di, and between li and!l i in the proof of Theorem 4, we an see that theprodut dili = !di!l i (1 + �i) = _D+ (i) _L+ (i)(1 + �i); j�ij � 3"; i < r:Thus the term (di+1li+1=dili) in (62) ontributes 6 ulps, and ombining these with the 4arithmeti operations in (62), we an writeẑ(i) = �(!di+1!l i+1 = !di!l i)ẑ(i+ 2) � (1 + Æi);where jÆij � 10" (a loser analysis reveals that jÆij � 8"). Thus (59) holds in this ase also.The ase when ẑ(i) = 0, i > r an be handled similarly. 2Corollary 1 (to Theorem 8) Under the hypotheses of Theorem 8,j sin\(~z; ẑ)j � 5"jsupp(ẑ)j+O("2)where jsupp(ẑ)j is the numerial support of ẑ as de�ned in (56).Proof. First we establish a general result on elementwise perturbation of vetors whihshows that the term jsupp(ẑ)j above ould be replaed by a weighted standard deviation ofthe relative hanges to ẑ's entries.Let 0 6= v 2 Rn and let �v be given by �v(i) = (1 + �i)v(i). For expressions onerningthe angle \(v; �v) there is no loss in assuming that kvk2 = vtv = 1. We writeavg(�i;v) = X �iv(i)2;var(�i;v) = X �2i v(i)2 � avg(�i;v)2;std. dev.(�i;v) = pvar(�i;v):Now, j os2 \(v; �v)j = (�vtv)2�vt�v= 1 + 2 P �iv(i)2 + (P �iv(i)2)21 + 2 P �iv(i)2 +P �2i v(i)2j sin2 \(v; �v)j = P �2i v(i)2 � (P �iv(i)2)21 + 2 P �iv(i)2 +P �2i v(i)2� var(�i;v)1 + 2 avg(�i;v) + avg(�i;v)2 ; sine avg2 �X �2i v(i)2;) j sin\(v; �v)j � std. dev.(�i;v)1 + avg(�i;v) :A rude but simple bound on the numerator is maxi j�ij and, if eah �i = O("), then1 + avg(�i;v) = 1 + O("). Finally substitute ~z for v and ẑ for �v and use (56) and (59) toverify that maxi j�ij � 5"(last� r) + 5"(r � first) � 5"jsupp(ẑ)j: 2
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? � ~Nr ~Dr ~N tr~z = er ~r�L �D �Lt � �̂I = ~Nr ~Dr ~N tr ,) (�L �D �Lt � �̂I)~z = er~r:

� N̂rD̂rN̂ tr; ẑ�LDLtu = u�
��L �D �Lt�u = �u�� dtwqdsexat

dtwqdsomputed3 to 312 ulps in L1 to 4 ulps in D 2 ulps in ~Dr3 to 412 ulps in ~Nr
Figure 5: Relationships onneting u to ẑ.The following theorem is the heart of the paper. Figure 5 lays out the essentials givenin Figure 4 and should be onsulted.Theorem 9 Let (�;u) be an eigenpair of the real symmetri unredued tridiagonal matrixLDLt with kuk = 1. Let �̂ be an aurate approximation loser to � than to any othereigenvalue of LDLt and let ẑ be the vetor omputed in Step IV of Algorithm Getve inSetion 6 using �̂, N̂r, D̂r, and twist index r. Let �L and �D be the perturbations of L andD determined by the error analysis of Setion 4.3 and let (��; �u) be the eigenpair of �L �D�Ltwith �� the losest to �̂. Let " denote the roundo� unit. Thenj sin\(ẑ;u)j � 5jsupp(ẑ)j" + j��� �̂jj�u(r)jgap(�̂) + 7:5" relond(u) +O(n2"2): (63)Here jsupp(ẑ)j is the numerial support of ẑ de�ned in (56) andgap(�̂) := minfj�̂� ��j; �� 6= �� 2 spetrum of �L �D �Ltg:For the de�nition of relond(u) see Setion 5.Proof. There are three terms in the upper bound on sin\(ẑ;u) beause we onnet ẑ tou via two `ideal' vetors ~z, �u and eah transition ontributes a term: ẑ �! ~z, ~z �! �u,�u �! u, see Figure 5. Reall from Theorem 6 that the matries �L, �D, ~Nr, ~Dr depend on�̂ and were de�ned so that the equality�L �D�Lt � �̂I = ~Nr ~Dr ~N tr (64)



31holds. That was the ulmination of the error analysis in Setion 4.3. Reall that ~Dr(r) = ~r.Then ~z is de�ned as the exat solution of~Nr ~Dr ~N tr~z = er~r: (65)First onsider ẑ and ~z. Theorem 8 shows that eah ~z(i) is of the form ẑ(i)(1 + �i) andCorollary 1 proves that j sin\(ẑ; ~z)j < 5"jsupp(ẑ)j+O("2): (66)Next onsider ~z and �u. Combine (64) and (65) and then invoke Theorem 3, in Setion 4,to �nd that j~rjk~zk � j��� �̂jj�u(r)j :By Theorem 1, j sin\(�u; ~z)j < j��� �̂jj�u(r)jgap(�̂) : (67)Finally onsider �u and u. The left side of Figure 5 indiates that �u and u are relatedthrough the matrix perturbations given in Setion 5 (see Lemma 2):LDLt �! �L �D �Lt = E�1LEFDFELtE�1:From Theorem 6, no entry in L hanges by more than 3 ulps exept for the entry at thetwist whih hanges by at most 3:5". By Lemma 2, the largest entry in I � E is boundedby �3(n� 1) + 12	 " so that max �kEk; kE�1k� � 1 + 3n": (68)The perturbation F omprises half the ulps needed for hanges to entries of D, namely 12for i < r, 2 for i = r and 32 for i > r (see Figure 4 and Theorem 6). Thusmax �kFk; kF�1k� � 1 + 2": (69)By (38), h � 3:5"+ 4" = 7:5": (70)Substituting (68), (69) and (70) into the perturbation bound (51) we obtain,j sin\(u; �u)j � 7:5" f1 + (6n+ 2)"g relond(u) +O(n2"2): (71)Note that relond(u) has the term relgap(�) in the denominator, see (50). Adding theontributions in (66), (67), and (71) yields the theorem's bound on j sin\(ẑ;u)j. 2



32The above theorem is the main result of this paper. We now examine its impliationsin obtaining numerially orthogonal eigenvetors from Algorithm Getve. The best we anhope for is that j sin\(ẑ;u)j = O n "relgap(�̂)! ; (72)where relgap(�̂) = gap(�̂)=j�j. Let us examine (63) to understand the onditions underwhih (72) an be ahieved. The �rst term in (63) is always O(n"). The seond term(with �u(r)) requires that the twist index should not be perversely hosen. We aim forj�u(r)j = k�uk1 but as long as j�u(r)j is above average, 1=j�u(r)j � pn. When � is relativelywell-onditioned, i.e., relond(�) = O(1), then it is possible to ompute �̂ suh that j�̂���j �K"j�̂j, and so the middle term is O(n"=relgap(�̂)). Note that with our de�nition we anhave relgap(�̂) � 1 and to obtain an aurate eigenvetor in this ase, it is not neessaryto ompute �̂ to full relative auray. However whenever relgap(�̂) < 1 then it is essentialto ompute �̂ so that j�̂ � ��j � K"j�̂j. The �nal term in the bound depends entirely onrelond(u), whih is a property of the fatorization LDLt. For most LDLt, relond(u) isbounded by M=relgap(�) where M is a modest onstant; see Setion 5 for more details.Thus (72) holds when (i) relond(�) = O(1), (ii) relond(u) = O(1=relgap(�̂)), and (iii) �̂is omputed aurately enough (often to high relative auray).The reader may have notied that the bound (63) ontains quantities from both thefatorizations LDLt and �L �D�Lt, for example gap(�̂) in the middle term is with respet tothe eigenvalues of �L �D �Lt. Reall that �L �D �Lt is an intermediate fatorization reated solelyfor our roundo� error analysis. We ould try and obtain a bound just in terms of the inputfatorization LDLt, as in our stated goal at the beginning of the paper, see (6). Howeverwe hoose not to do so sine we invoke Algorithm Getve only when relgap(�̂) is not toosmall (> 1000") and relond(�) and relond(u) are modest, implying that �� and �u are loseto � and u respetively. Thus we an preserve the spirit of (63) by replaing the eigenvaluesand eigenvetors of �L �D�Lt by those of LDLt; a formal argument is possible but is messyand does not add to our exposition, so we omit it.The following orollary summarizes a typial situation in whih Algorithm Getve isinvoked.Corollary 2 In addition to the assumptions of Theorem 9 suppose that (i) r is suh that�u(r) � 1=pn, (ii) �̂ is omputed to satisfy j�̂ � ��j=j�̂j < K", (iii) relgap(�̂) exeeds 2�8,and (iv) relond(u) �M . Thenj sin\(ẑ;u)j < 5n"+ 28Kpn"+ 7:5M": 28 Numerial ExamplesWe �rst ompare and ontrast the behavior of Algorithm Getve on two 3� 3 tridiagonals.These aptly illustrate various aspets of the theory.



33Example 1 First onsider the matrixT0 = 24 1 p" 0p" 7"=4 "=40 "=4 3"=4 35where " is the mahine preision (" � 2:2�10�16 in IEEE double preision). The eigenvaluesof T0 are : �1 = "=2 +O("2); �2 = "+O("2); �3 = 1 + "+O("2);while the orresponding normalized eigenvetors arev1 = 264 �p"=2 +O("3=2)1p2(1 + "4) +O("2)� 1p2(1� 3"4 ) +O("2) 375 ; v2 = 264 �p"=2 +O("3=2)1p2 (1� 5"4 ) +O("2)1p2 (1 + 3"4 ) +O("2) 375 ; v3 = 24 1� "2 +O("3)p"+O("3=2)"3=24 +O("5=2) 35 :The exat triangular fatorization is given by T0 = Lexat0 Dexat0 (Lexat0 )T , whereLexat0 = 24 1 0 0p" 1 00 1=3 1 35 ; and Dexat0 = 24 1 0 00 3"=4 00 0 2"=3 35 :When applying Algorithm Getve to the above matrix, we observe the following.1. The fatorization omputed in IEEE double preision arithmeti, L0D0LT0 , turns outto be exat, i.e., L0 = Lexat0 and D0 = Dexat0 .2. The omputed eigenvalues �̂i satisfyj�̂i � �ij � 2"j�̂ij; 1 � i � 3:3. For eah �̂i, (i)k an be omputed by applying Steps I-III of Algorithm Getve. Theomputed values are(1) = 24 1:11 � 10�162:46 � 10�322:46 � 10�32 35 ; (2) = 24 2:22 � 10�164:93 � 10�324:93 � 10�32 35 ; (3) = 24 4:44 � 10�16�2:00�1:00 35 :Algorithm Getve hooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that forthe �rst two eigenvalues jrj = O("2) = O("j�ij)� "kT0k.4. The eigenvetors v̂i omputed in Step IV of Algorithm Getve are suh thatmax jv̂Ti v̂j j = 1:66 � 10�16 < "; 1 � i � 3; 1 � j < i;max jv̂i(k)� vi(k)jjvi(k)j = 8:88 � 10�16 < 4"; 1 � i � 3; 1 � k � 3:Amazingly eah eigenvetor entry is omputed to high relative auray, even the tinyv3(3) entry.



345. Instead of Algorithm Getve, we an use one step of inverse iteration,(L0D0Lt0 � �̂iI)xi = random vetor;to ompute the eigenvetors. These omputed vetors also turn out to be aurateand numerially orthogonal (however, the tiny v3(3) entry is not omputed to highrelative auray). Note that the analysis of Setion 7 does not extend to randomright-hand sides.6. Both (3)2 and (3)3 are O(1) while the orresponding eigenvetor entries are O(p")and O("3=2) respetively. Thus the numerial support of an eigenvetor annot solelybe determined by the magnitudes of i, and illustrates our omments at the end ofRemark 4 in Setion 6. 2Example 2 The above matrix T0 is a \benign" example. Our seond example, also dis-ussed in Setion 3, is a harder ase.T1 = 24 1�p" "1=4p1� 7"=4 0"1=4p1� 7"=4 p"+ 7"=4 "=40 "=4 3"=4 35 ;The eigenvalues of T1 are�1 = "2 + "3=28 +O("2); �2 = "� "3=28 +O("2); �3 = 1 + "+O("2):while the orresponding normalized eigenvetors arev1 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2 (1� p"2 ) +O(")1p2(1� 3"4 ) +O("3=2) 3775 ;v2 = 2664 "1=4p2 (1 + p"2 ) +O("5=4)� 1p2(1� p"2 ) +O(")� 1p2 (1 + 3"4 ) +O("3=2) 3775 ;v3 = 264 1� p"2 +O(")"1=4(1 + p"2 ) +O("5=4)"5=44 (1 + p"2 ) +O("9=4) 375 :In exat arithmeti, T1 = Lexat1 Dexat1 (Lexat1 )T , whereLexat1 = 264 1 0 0"1=4p1�7"=41�p" 1 00 1�p"3 1 375 ; and Dexat1 = 264 1�p" 0 00 3"4(1�p") 00 0 "(8+p")12 375 :On this example, Algorithm Getve behaves quite di�erently than on T0 from Example 1:1. The omputed fatorization L1D1LT1 does not have high relative auray. The rela-tive errors in L1(2);D1(2) and D1(3) are as large as 4:97 � 10�9.2. Consequently, some of the omputed eigenvalues �̂i do not have high relative auraywith respet to the eigenvalues of T1. In partiular,j�̂i � �ij � 10�9j�̂ij; for i = 1; 2:Unlike �1 and �2, the third eigenvalue �3 is omputed to high relative auray, i.e.,j�̂3 � �3j = O("). However, the important point is that all the �̂i have high relativeauray with respet to the eigenvalues of L1D1LT1 .



353. The values of (i)k omputed by Steps I-III of Algorithm Getve are(1) = 24 �4:13 � 10�24�7:40 � 10�32�9:86 � 10�32 35 ; (2) = 24 �6:62 � 10�24�9:86 � 10�32�9:86 � 10�32 35 ; (3) = 24 2:22 � 10�161:49 � 10�8�1:00 35 :Algorithm Getve hooses r = 2 for �̂1, r = 2 for �̂2, and r = 1 for �̂3. Note that forthe �rst two eigenvalues jrj = O("2)� "kTk.4. The eigenvetors v̂i omputed in Step IV of Algorithm Getve are numerially orthog-onal, i.e., max jv̂Ti v̂j j = 5:55 � 10�17 < "; 1 � i � 3; 1 � j < i:But as in the ase of the omputed eigenvalues, the relative errors in the omputedeigenvetors (with respet to the eigenvetors of T1) are muh larger than O("), i.e.,max jv̂i(k)� vi(k)jjvi(k)j = 3:72 � 10�9; 1 � i � 2; 1 � k � 3:All omponents of the third eigenvetor v3 are omputed to high relative auray.5. The following inverse iteration step:L1D1Lt1 � �̂iI = L+D+LT+; (73)L+D+LT+ xi = random vetor;also leads to omputed eigenvetors that are numerially orthogonal when the dstqdstransformation is used to ompute (73). From our experiene, the use of a twistedfatorization in Algorithm Getve does not appear to be essential in pratie; inverseiteration using dstqds also works well. However, twisted fatorizations are more elegantto use, have better numerial behavior and allow us to prove the auray of ouralgorithm.6. When the diagonal and o�-diagonal elements of T1 are diretly used to omputeeigenvalues and eigenvetors (either by using inverse iteration or twisted fatorizationsas in Algorithm Getve), the dot produts between the omputed eigenvetors are aslarge as 10�8. See Example 1 in Setion 3 for an explanation of this failure. Thus theuse of L1D1LT1 is essential for ahieving numerial orthogonality in this ase. 2The above example beautifully illustrates our tehniques. We do not promise highrelative auray for eigenvalues and eigenvetors of the given tridiagonal matrix. In fat,it is unrealisti to hope for suh auray as explained in Setion 3. However, we get a\good" fatorization of the tridiagonal, and then proeed to ompute its eigenvalues andeigenvetors to high auray, whih automatially leads to orthogonality.Example 3 Our third example isT2 = 264 :520000005885958 :519230209355285:519230209355285 :589792290767499 :36719192898916:36719192898916 1:89020772569828 2:7632618547882 � 10�82:7632618547882 � 10�8 1:00000002235174 375



36with eigenvalues �1 � "; �2 � 1 +p"; �3 � 1 + 2p"; �4 � 2:0:Note that the interior eigenvalues have relgap(�i) = O(p"). When we apply Algorithm Getveto the LDLT fatorization of T2, the orresponding omputed eigenvetors havejv̂T2 v̂3j = 1:12 � 10�8 = O(p"):As disussed in Remark 6 in Setion 6, inverse iteration appears to be a natural remedy toure the problem. However even after ten inverse iteration stepsjv̂T2 v̂3j = 3:45 � 10�9 = O(p"):Thus the simple approah of using multiple inverse iteration steps does not lead to numerialorthogonality, as explained in Remark 6. For an approah that an ahieve orthogonalityin this situation, see Chapter 5 in [9℄. 28.1 Timing ComparisonsAlgorithm Getve an lead to substantial speedups over earlier LAPACK software2 to om-pute eigenvetors when the relative gaps between eigenvalues are O(1) but the absolutegaps are less than 10�3. We illustrate this speedup on four examples in Table 1. Matriesof the �rst type have eigenvalues in an arithmeti progression,�i = i � "; i = 1; 2; : : : ; n� 1; and �n = 1:The seond type has eigenvalues that ome from a uniform random distribution in the inter-val ["; 1℄. The third type are the Toeplitz tridiagonal matries with 2's on the diagonals and1's as the o�-diagonal elements, with eigenvalues �i = 4 sin2[i(n+ 1)�2 ℄. The �nal exampleomes from a real appliation in omputational quantum hemistry | more spei�ally itarises in the modeling of the biphenyl moleule using M�ller-Plesset theory [9℄. Most ofthe eigenvalues of this positive de�nite 966� 966 Biphenyl matrix are small ompared to itsnorm. See Figure 6 for a plot of its eigenvalues and their relative gaps.In Table 1 we ompare the speed of Algorithm Getve to various existing algorithms. Inour implementation, we fator T = LDLt and then use the dqds software in LAPACK (sub-routine DLASQ1) to ompute all eigenvalues of LDLt to high relative auray before invok-ing Algorithm Getve. DSTEIN and TINVIT are inverse iteration routines from LAPACKand EISPACK respetively that perform Gram-Shmidt orthogonalization when eigenval-ues have small absolute gaps, in partiular, when j�i+1 � �ij � 10�3kTk. DSTEQR usesthe QR iteration to ompute orthogonal eigenvetors[22℄ while DSTEDC is the Divide andConquer ode in LAPACK[19℄. Table 1 shows that on most examples, Algorithm Getveis about two orders of magnitude faster than DSTEIN, TINVIT and DSTEQR. Also see2sine we �rst wrote this paper, our software has been inorporated in the latest release of LAPACKwhere Algorithm Getve appears as subroutine DLAR1V
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Time Taken (in seonds)Matrix Matrix LAPACK EISPACK LAPACK LAPACK AlgorithmType Size DSTEIN TINVIT DSTEDC DSTEQR Getve125 0.21 0.14 0.01 0.13 0.04Arithmeti 250 1.30 0.73 0.04 0.99 0.12Progression 500 8.36 4.42 0.20 7.76 0.40(" apart) 1000 91.98 40.10 1.26 91.18 1.512000 824.00 335.41 6.66 3212.80 6.77125 0.11 0.10 0.05 0.13 0.04Uniform 250 0.44 0.38 0.26 1.04 0.11Distribution 500 1.81 1.55 1.63 7.78 0.38(" to 1) 1000 91.74 6.25 12.87 91.65 1.542000 823.63 336.04 161.60 1308.26 6.34125 0.12 0.10 0.05 0.13 0.02(1,2,1) 250 0.44 0.38 0.17 0.94 0.09Matrix 500 1.95 1.60 1.09 7.25 0.331000 13.23 7.58 8.84 100.79 1.412000 821.85 130.64 109.91 1737.15 5.94Biphenyl 966 85.11 33.78 9.71 238.42 2.41Table 1: Timing Results
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Figure 6: (a)Eigenvalue distribution, and (b)Relative Gaps for Biphenyl



38that Algorithm Getve is several times faster than DSTEDC on three of the four matrixtypes, and is omparable in speed on the �rst example where DSTEDC is very fast dueto deation of lustered eigenvalues. The reader should observe the O(n2) behavior of Al-gorithm Getve whereas the other subroutines, in general, show an O(n3) behavior3. Allalgorithms delivered adequate numerial orthogonality on the test ases.9 Singular VetorsA natural appliation of the proedures analyzed in this paper is to ompute the SVD ofa bidiagonal matrix Lt: Lt = U�V t, U t = U�1, V t = V �1. Sine LLt = V �2V t, theCholesky fator of the symmetri positive de�nite matrix LLt is the initial input and so theoutput of our method is V whose olumns are the right singular vetors of Lt.What must be done to ompute U? The tempting formulau = Ltv=�; � 6= 0;solve Lu = 0; � = 0;is well-known to be treaherous. Orthogonal v's do not give rise to orthogonal u's beauseof the anellation in forming Ltv.A better way is to invoke Algorithm Getve again, as shown below. Note that a naturaloperation on bidiagonal and diagonal arrays is to `ip' them: L �!� L. In pratie theorder of the entries is reversed. Formally� L = ~ILt ~Iwhere ~I is the reversal matrix, ~I = (en; : : : ;e1) when I = (e1; : : : ;en). For diagonalmatries ipping is just reversal. If ost were of no onsequene then U ould be omputedby ipping the given Lt, alling our algorithm, and reversing the output. The justi�ationis that (� L)(� Lt) = (~ILt ~I)(~ILt ~I)t= ~ILtL~I = ~IU�2U t ~I:The defet of the high level proedure mentioned above is that the singular values willbe omputed twie; a signi�ant waste. The remedy is to apply the reversal mehanismloally. When an eigenvalue (�2) has been omputed our algorithm invokes Algorithms 4.2and 4.4 to obtain a double fatorization and, after seleting an index, the desired singularity-revealing twisted fatorization. From this omes the singular vetor v. In order to omputeu it is only neessary to reverse L, apply Algorithms 4.2 and 4.4 again, selet a possiblydi�erent index, and form the orresponding twisted fatorization. Then Algorithm Getve,in Setion 6, will yield f~Iug. In other words very little extra ode is needed in order toompute u as well as v.However even the use of Getve outlined in the previous paragraph is not adequate. Itprodues matries U and V that are orthogonal to working preision but the extra oupling3all timings were measured using Fortan BLAS on a 333-MHz UltraSPARC proessor



39relations kLtv � u�k = O("kLk) and kLu� v�k = O("kLk) may fail when singular valuesare lustered.In an interesting reent dissertation [18℄, Benedit Grosser has presented oupling rela-tions that onnet fatorizations of LLt � �2I and LtL � �2I. By foring these relationsto hold for the omputed fatorizations he found a way to use our Algorithm Getve andsatisfy all the desired properties to working auray:Ltv � u� � 0; Lu� v� � 0; U tU � I � 0; V tV � I � 0:This algorithm is to beome part of the LAPACK library.Aknowledgements. We would like to thank an anonymous referee for an extraordi-narily detailed reading of our original manusript and for several onstrutive suggestionsthat, at the ost of some delay, greatly improved the presentation of this paper.Referenes[1℄ ANSI/IEEE, New York. IEEE Standard for Binary Floating Point Arithmeti, Std754-1985 edition, 1985.[2℄ J. Barlow and J. Demmel, `Computing Aurate eigensystems of saled diagonallydominant matries'. SIAM J. Num. Anal., vol. 27, (1990), pp. 762{791.[3℄ J. R. Bunh, `The weak and strong stability of algorithms in numerial linear algebra'.Lin. Alg. Appl., vol. 88/89 (1987), pp. 49{66.[4℄ B. Char, K. Geddes, G. Gonnet, B. Leong, M. Monagan, and S. Watt,`Maple V Library Referene Manual'. Springer-Verlag, Berlin, 1991.[5℄ T. S. Chihara, `An Introdution to Orthogonal Polynomials'. Gordon and Breah, 1978.[6℄ L. S. De Jong, `Towards a formal de�nition of numerial stability'. Numer. Math., vol.28 (1977), pp. 211{219.[7℄ J. Demmel and W. Kahan, `Aurate singular values of bidiagonal matries'. SIAM J.Si. Stat. Comput., vol. 11 (1990), pp. 873{912.[8℄ J. Demmel, Applied Numerial Algebra. SIAM Publiations, 1997.[9℄ I. S. Dhillon, `A New O(n2) Algorithm for the Symmetri Tridiagonal Eigen-value/Eigenvetor Problem'. PhD thesis, Computer Siene Division, University ofCalifornia, Berkeley, May 1997. Also available as Computer Siene Division TehnialReport No. UCB//CSD-97-971.[10℄ I.S. Dhillon and B.N. Parlett. Multiple representations for orthogonality. Lin. Alg.Appl., 2001. Submitted for publiation.[11℄ S. Eisenstat and I. C. F. Ipsen, `Relative perturbation bounds for eigenspaes andsingular vetor subspaes'. In J.G. Lewis, editor, Proeedings of the Fifth SIAM Conf.on Applied Linear Algebra, pp. 62{65. SIAM, 1994.
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