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1 The dqds TransformH. Rutishauser introdued the qd algorithm (not dqds) and the Z notation in1953/54, see [9℄, in onnetion with transformations of ontinued frations.However our interpretation is aimed at tridiagonal matries. WriteZ = (q1; e1; q2; e2; : : : ; en�1; qn; en)but, by onvention, en = 0. We assoiate with Z two bidiagonal matriesU = bidiag� 1 1 : 1 1q1 q2 : : qn�1 qn �and L = bidiag� 1 1 1 : 1 1e1 e2 : : en�1 � :Rutishauser's qds transform (qd with shifts) and the dqds transform eahwith shift � map Z into Ẑ where the assoiated bidiagonals L̂, Û satisfyL̂Û = UL� �Iprovided that the transformation does not break down. However the formulaein dqds are di�erent from those in qds as shown later in this setion. Thealgorithms onsist of repeated appliations of the transforms with variousshifts � and it is obligatory to introdue �, the aumulated sum of all shifts� used so far. At any stage in the algorithm, the urrent qd-array Z and theurrent � de�ne a matrix �I + LUthat has the same eigenvalues as the matrix LU assoiated with the originalZ. In exat arithmeti if initially Z is positive, and if all � = 0, then Zonverges, very slowly, to(�1; 0; �2; : : : ; �n�1; 0; �n; 0)where �1 > �2 > : : : �n > 0, are the wanted eigenvalues. The shift � is usedto hasten onvergene. In pratie the algorithm uses deation: as soon asen�1 is negligible qn is delared an eigenvalue and n is replaed by n� 1.In exat arithmeti the LR, qds and dqds transforms are the same but theadvantage of qds and dqds is that L and U together hold more information1



than the produt UL used by LR and the advantage of dqds over qds is that,in the positive ase, in �nite preision, dqds preserves the eigenvalues to highrelative auray (in the absene of underow) whereas qds does not. Nextwe o�er a few historial remarks.The �rst d in dqds stands for di�erential- a somewhat misleading adjetiveoined by Rutishauser in his notes. The algorithm is quite distint from theLR and QR ows introdued in the 1980's. See [1℄ and [12℄, [13℄.Rutishauser never used the dqds transform exept with � = 0 and heseems to have invoked that option (we all it dqd) only when his preferred,and faster algorithm, qds or \qd with shifts", got into diÆulties. He neverpublished the dqd algorithm. See [11, Appendix℄. The lower ase letters qdstand for quotient-di�erene, the name he hose in 1953/54 for his opera-tionally minimal implementation.The dqds algorithm was redisovered independently by Fernando andParlett in 1992 and they showed that the extra multipliation, omparedto Rutishauser's qds, allowed dqds to ompute all the eigenvalues, howeversmall, to high relative auray. See [3℄. Here ends the historial ommen-tary.Here is the transform applied to a segment of Z, Z(i0 : n0), with shift � .dqds (1�) : d = q(i0)� �for i = i0; n0 � 1 doq̂(i) = d + e(i)temp = q(i+ 1)=q̂(i)ê(i) = e(i) � tempd = d � temp� �end forFor ontrast we present Rutishauser's qd transform with shiftqds: q̂(i0) = q(i0) + e(i0)� �for i = i0; n0 � 1 doê(i) = e(i) � q(i+ 1)=q̂(i)q̂(i+ 1) = (q(i+ 1) � ê(i)) + e(i+ 1) � �end for 2



No intermediate variables are needed in qds and the arithmeti e�ort is min-imal. Note that the intermediate quantity in dqds satis�esd(i+ 1) = q(i+ 1)� ê(i)� �:The initial array Z is rarely the primary data. For example, to ompute thesingular values of a bidiagonalB = bidiag� b1 b2 : bn�2 bn�1a1 a2 : : an�1 an �one de�nes qi = a2i , ei = b2i , i = 1; : : : ; n, and remembers, at the end, to takethe square roots of the eigenvalues (of B�B) whih are omputed by the dqdsalgorithm.Given a symmetri tridiagonal matrix T with diagonal entries �i, o�diagonals �i, i = 1; : : : ; n and a salar � suh that �I + T is positive de�niteone omputes Z by Gaussian elimination as follows.q1 = �1 + �for j = 1; n� 1 doej = (�j=qj) � �jqj+1 = �j+1 � ej + �end forAn alternative, areful, expression for qj+1 isqj+1 = (max(�j+1; �)� ej) + min(�j+1; �):One must remember to subtrat � from the eigenvalues omputed by thealgorithm in order to reover those of T .1.1 OverowIn [3℄ it was shown that dqds preserves eigenvalues to high relative aurayin the absene of overow and underow. In this setion we identify andeliminate those exeptions that are "unneessary".The onerns of this subsetion arise almost exlusively in single preisionwhere the exponent range is so small thatmaheps�6 overows andmaheps63



underows. The rest of the paper is independent of the material presentedhere. Example 1 is important to the understanding of dqds when the exponentrange is narrow.If Z is positive and if � < �min then the new qd-array Ẑ omputed by dqdswill also be positive. If � > �min then dmin = mini di will be negative and ifsome q̂(i) = 0 then the next d =1 and the one after that is1� 0� � whihis reorded (in IEEE onforming arithmeti units) as NaN (Not a Number).See [4℄.When dmin > 0 then the new variables q̂(i) and ê(i) are bounded by oldvalues: ê(i) � q(i + 1), q̂(i) = di + e(i) � q(i + 1) + e(i). However for thevariable temp we an only saytempi := q(i+ 1)=(di + e(i))� q(i+ 1)=e(i);� qmax=emin:Thus there is danger of overow unless the quantities qmax and emin aremonitored. Sometimes reversal of the qd array (see Setion 6.2) an avert anoverow and sometimes a areful hek for splitting (see Setion 3) an allowa tiny e(i) to be negleted. Unfortunately these measures are not suÆientto avoid all overows and a small example is given next. Suppose that 1038and 10�38 are the thresholds for overow and underow.Example 1q e d (true) q̂ ê temp10�25 1020 10�25 1020 1020 11020 10�25 10�25 210�25 121020 12 (1020=10�25) = overow1020 1020 121020 321020 2310�25 23 (10�25=1020) = underow10�25 0 1310�25 1310�25 0 �����Even though Ẑ is well de�ned the algorithm dqds (1�) in Setion 1 provokesoverow in temp. Looking ahead to Setion 3 we an say that even thoughe2 = 10�25 appears to be negligible ompared to its neighbors the riterionfor setting e2 to zero is not satis�ed and so the replaement of e2 by 0 wouldprovoke large relative hanges in the smaller eigenvalues. Note that thedeterminant �iqi is preserved by the transformation.4



The obvious remedy in this ase is simple but expensive.dqds (2�) : d = q(i0)� �for i = i0; n0 � 1 doq̂(i) = d + e(i)ê(i) = q(i+ 1) � (e(i)=q̂(i))d = q(i+ 1) � (d=q̂(i))� �end forThe quotients are bounded by one and overow will not our. If � = 0 ordmin > 0 then no intermediate quantity exeeds �max(LU).Unfortunately dqds (2�) esapes the disaster (Sylla) of overow only tofall into the misfortune (Charybdis) of underow.q e d (omp) q̂ (omp) ê (omp)10�25 1020 10�25 1020 10201020 10�25 1020(10�25=1020) = 0 10�25 10201020 1020 0 1020 10�2510�25 0 0 0 0Note that the determinant �iq̂i = 0 instead of 10�10 ! The small eigenvaluesof Ẑ have huge relative errors.There is a way out of the diÆulty: test at eah step. The parametersfmin is the smallest number whose reiproal is representable.dqds (safe): d = q(i0)� �for i = i0; n0� 1 doq̂(i) = d + e(i)if (q̂(i) = 0) thenê(i) = 0d = q(i+ 1)� �else if (safemin � q(i+ 1) � q̂(i)) thentemp = q(i+ 1)=q̂(i)ê(i) = e(i) � temp5



d = d � temp� �elsêe(i) = q(i+ 1) � (e(i)=q̂(i))d = q(i+ 1) � (d=q̂(i))� �end ifend forThis algorithm produes the orret values and, in general, is lose in arith-meti operations to dqds (1�) but it does su�er from tests in the inner loop.There is a subtle point to be made here. If � exeeds �min beause of anaggressive shift strategy then a d an be negative and a q̂ an vanish. Ourode expets this to happen and reats appropriately. However when � = 0then, in exat arithmeti, the dqd transform is well de�ned and may be usedas a default after a failure (di � 0) in dqds. Thus it is essential to have odethat an exeute a dqd step without overow or unneessary underow. Bysaling up the initial Z as muh as possible the ourrene of underow isminimized.Our poliy is perhaps too autious. We keep variables emin and qmax upto date. As shown at the beginning of the setion temp � qmax=emin for anyshift � � �min. Our strategy is:if (safemin � qmax � emin) thenuse dqds (1�)elseuse dqd (safe) ( i.e. � = 0)end ifIt is not essential to fore � = 0 in the safe version of dqds but we hose todo it.1.2 UnderowThe emphasis so far has been on overow. However underow, marked byushing to zero, also undermines the high auray property of the algorithm.If the true value of a variable is too small to be represented then there isnothing to be done. On the other hand we an have expressions of the form6



a(b=) whih will underow as written but an return a orret value whenrewritten as (a=)b. Neither the (1�) nor the (2�) version is safe from these"unneessary" underows but we an modify the test in the safe dqd givenabove so that suh underows do not our. The new test iselse if (safemin � q(i+ 1) � q̂(i) and safemin � q̂(i) � q(i+ 1)) thenWhen should safe dqd be invoked? In ontrast to overow we do not havean easily omputed lower bound on ê(i) nor q̂(i) so we test after eah dqdstransform. If emin = 0 or dmin = 0 we assume that the underow was notneessary, we disregard Ẑ, and invoke safe dqd on Z. Suh aution degradesperformane slightly on diÆult ases but on the LAPACK test matries oftype 16 (wild exponent ranges) our ode, in single preision, did omputeorretly some tiny eigenvalues that had previously been reorded as 0. Thesame phenomenon in double preision is shown in Setion 15.2 The Prototype dqds AlgorithmThe �nal proedure for omputing the eigenvalues of a tridiagonal matrixwith the aid of the dqds algorithm is made ompliated by �ve features:splitting, ipping, ping-pong, an aggressive shift strategy,and over/underow.These features reeive due attention above or below. For the moment letus ignore them and see how simple the resulting program an be. As eaheigenvalue is aepted the qd-array Z disards the last q and the last e. Onewhile loop gives the whole proedure.while Z un�nished doexamine Z 0s �nal entries;if negligible then redue Z aordingly end ifif Z un�nished thenhoose a shift (less than �min)apply the dqds transform to Zend if 7



end whileThe body of the while loop given above onstitutes what we will all below`a good step'. It has three vital parts:1. Deate any onverged eigenvalues2. Choose a shift3. Invoke dqds with that shiftThe whole proedure may be put in one line,while Z un�nished do take a good step end whileThe ompliations in the atual program are of two kinds. The low levelones are those hidden in the proedure Goodstep. The high level ones foreus to embed our while loop inside another one.These high level troubles are not obvious. In order to guarantee highrelative auray the ode aepts the limitation of omputing the eigenvaluesin monotone inreasing order. Thus the ode is onstrained to bring thesmallest eigenvalue to the end of Z. However this annot be done if oneor more of the e-values in Z vanishes: No information an ross over azero ej. Consider, as an extreme ase, the array Z = (1; 0; 2; 0; 3). Thisorresponds to the diagonal matrix (1; 2; 3). When the 0's are replaed bytiny positive numbers then the simple ode desribed above will waste muhtime slowly onverting (1; 2; 3) into (3; 2; 1). This phenomenon was alled`disorder of the latent roots' by Rutishauser. If an e-value is negligible thenwe say that Z `splits' into two independent qd-arrays Z1 and Z2 that maybe proessed independently. A split enhanes eÆieny but ompliates theprogram. Even to hek for any negligible e's seems to require a pass throughthe Z-array and this will degrade performane. Details are disussed inSetion 3.The program looks for the smallest eigenvalue to appear at the end of theqd-array. If, at some stage, the small entries in Z are at the beginning thenit is prudent to simply reverse the array. This is alled a ip.Flip(q1; e1; q2; e2; q3) = (q3; e2; q2; e1; q1):8



Flipping is equivalent to reversing the assoiated tridiagonal matrix, anoperation that preserves the eigenvalues.Splitting and Flipping are high level ompliations. The ping-pong for-mulation and aggressive shifting are low level features that are disussedlater.A swith to allow the user to selet either relative auray or absoluteauray (error < �kTk) also ompliates the program and after extensivetests we have simply disabled this option beause the redution in total timeusing absolute auray was only 10% or 15%.3 Splitting3.1 Monotoniity PropertiesIn order to justify the riteria for negleting an ei ertain properties of thetransforms are needed. These elementary results have not appeared elsewhereso we present them here. This subsetion may be skipped without loss ofontinuity.At any step in the algorithm we possess L, U , and � � 0 but might wishwe had �L and �U satisfying �L �U = LU + �I. So Lemma 1 an be useful.Lemma 1 Let L and U be the bidiagonals assoiated with the positive qd-array Z and let �Z be the qd-array assoiated with �L and �U de�ned by�L �U = �I + LU; � > 0: (1)Then �ek < ek and �qk+1 > qk+1 + � for k = 1; : : : ; n � 1.Proof. By equating orresponding entries in (1)�q1 = q1 + �;�ek = ekqkq̂k ;�qk+1 = qk+1 + (ek � �ek) + �; k = 1; : : : ; n� 1:The relation �q1 � q1 + � is the base for an indutive argument: �qk � qk + �implies that �ek = (qk=�qk)ek < ek and hene �qk+1 > qk+1 + �. 2Even more useful than �L and �U would be the quantities �di that our inthe dqd transform of �Z. Lemma 2 assures us that �di > �.9



Lemma 2 As in Lemma 1 let �L �U = LU+�I. Let f �dig be the auxiliary quan-tities that appear in the dqd transform of �Z = f�q1; �e1; : : : ; �en�1; �qng. Thendi > �; i = 1; 2; : : : ; n:Proof. In [3℄ it was shown that�dj = 1[(�L �U)�1℄jj :Sine Bjj � �max(B) for any matrix B that is diagonally similar to a positivede�nite matrix and sine �L �U (as well as its inverse) is suh a matrix,dj � 1�max[(�L �U)�1℄ = �min(�L �U); j = 1; 2; : : : ; n:Thus dj � �min(LU + �I) = � + �min(LU) > �with strit inequality sine Z = fq1; e1; : : : ; en�1; qng is assumed positive inLemma 1. 2We will often be in possession of the auxiliary d's after invoking dqdswith a shift � > 0 on Z to produe another positive qd-array Ẑ. For testingej we would prefer to have auxiliary od's that ome from dqd (� = 0) appliedto Z. Fortunately 0 < di <odi, i = 1; : : : ; n.Lemma 3 Consider a suessful dqds transform with shift � , 0 < � < �minthat maps Z into ~Z. Let fdi = di(� )gn1 be the assoiated d's but write odi fordi(0). Then 0 < di <odi; i = 1; : : : ; n:Proof. From the dqds transform in Setion 1di+1 = didi + ei qi+1 � �whereas odi+1= odiodi +ei qi+110



for i = 1; 2; : : : ; n � 1. Initially d1 = q1 � � < q1 =od1. Sine x=(x + e) ismonotone inreasing in x for x > 0, then if di <odi it follows thatdi+1 < odiodi +ei qi+1 � � < odiodi +ei qi+1 =odi+1 :By indution the laim holds for i = 1; : : : ; n. 23.2 Results of Demmel/Kahan and LiFor this setion we revert to the bidiagonal ase. ThusB = bidiag� b1 b2 : bn�2 bn�1a1 a2 : : an�1 an �where ai = pqi, bi = pei. The goal is to �nd onditions on an o�-diagonalentry bk that permit it to be set to 0 without ausing a large relative errorin any singular value of B. In [2℄ several lemmas and theorems were provedto justify a riterion based on a ouple of reurrenes. These reurrenes arequite expensive. Later, in [6℄, Reng-Cang Li found alternative reurrenesthat gave sharper (better) riteria for negleting bk. All the results mentionedabove are impressive, not to say intimidating. Indeed Li's paper [6℄ does notpresent his justi�ation expliitly but only as a Corollary of theorems in otherpapers [5, Th1℄. Those theorems require signi�ant preparation on the partof the reader.We are not going to reprodue all that theory. Instead we explain, inmuh simpler terms, why these riteria are appropriate and natural.When bk, 1 < k < n � 1, is set to 0 the resulting matrix is a diret sumof diag(B1; B2). The surprise is that B may be related to diag(B1; B2) as amultipliative perturbation:B = Dldiag(B1; B2); B = diag (B1; B2)Dr; (2)where Dl and Dr have the form � I FO I �11



An old result of Ostrowski (redisovered by Eisenstat and Ipsen) says thatthe relative hange in any singular value due to annihilating bk is boundedby kDlDtl � Ik and by kDtrDr � Ik and k � k is the spetral norm. Thesebounds equal kFk+ kFk2 and when F is tiny they are essentially kFk.The old result omes from Weyl's theorem that says that no eigenvalueof a symmetri matrix an hange by more than the (spetral) norm of an(additive) perturbation. So, if ~� is any singular value of oB:= (B1; B2), thenit is only neessary to rewrite (2) above in the illuminating formBBt � ~�2I = Dl( oB oBt �~�2I)Dtl + ~�2(DlDtl � I): (3)The �rst term on the right is singular and the seond is an additive per-turbation with norm ~�2kDtlDl � Ik. Hene there is a singular value � of Bsatisfying j�2 � ~�2j � ~�2kDtlDl � Ik:So, j� � ~�j � ~�~� + � ~�kDtlDl � Ik < ~�kDtlDl � Ik: (4)One the idea of using Dl and Dr is absorbed it is not hard to �nd out whatF is in eah ase. Certainly it is a multiple of bk. Not only is 1bkF rank-onebut it has a single non-zero row or olumn, either the last olumn of B�11 orthe �rst row of B�12 . Indeed the reurrenes mentioned above generate theentries in these two vetors. However Demmel/Kahan generate the 1-normwhereas Li generates the 2-norm of these vetors. This brings us to thequestion of ost.In the ontext of the singular value QR algorithm with zero shift appliedto B both riteria require 2n divisions to test all bk but the 1-norm requiresfewer multipliations. The mirale is that in the ontext of the dqd algorithmthe auxiliary quantity dk is preisely k 1bkFk�2 for one of Li's tests (row 1 ofB�12 ). Thus kFk � " beomes Li's testek := b2k � "2dk: (5)The other test (involving olumn 1 of B�11 ) would require running dqdon the reversed, or ipped qd array to produe auxiliary quantities odi, i =n; n � 1; : : : ; 1. Then one ould test ek � "2 odk+1 but that does not omefree. 12



As Li remarks at the end of [6℄ the introdution of nonrestoring shiftsinto dqds ompliates the situation signi�antly. That is the fous of Setion3.4.3.3 In the BeginningIt is worthwhile to apply both of Li's tests at the start of the algorithm. Thevariables emin and qmax are formed when the data are heked. If (emin >"2qmax) then there will be no splits and the standard dqds subroutine maybe employed in the interest of eÆieny.The following example shows that there may be no splits on the originaldata and yet after one dqd transform the new array may have all its e'snegligible. This enourages us to apply Li's tests for at least two iterations.Example 2 (From No Splits to All Splits) Consider a Toeplitz qd-arrayof order 10 with qi = ", all i, and ei = "�1. Here " is the single preisionroundo� unit, " � 10�7. In single preision "6 underows.On the �rst dqd transform there are no splits. Moreover q̂i = "�1, i =1; : : : ; n� 1, êi = ", i = 1; : : : ; n� 1, but q̂n = "19 = underow = 0. On theseond dqd transform the �rst n � 1 d's ompute to "�1 and, by Li's test,eah êi is then set to 0. If we applied Li's reverse test to the array Ẑ all d'swould be 0 and no splits would be reorded.pseudo ode for initial heks for splitsinput: Z = (q; e); emin; qmaxip Z if warrantedif (emin � "2qmax) thenapply Li's reverse test on Z;dqd: Z �! Ẑ with Li's test;(emin is updated)else�  � 0dqds: Z �! Ẑ(emin is updated)end ifupdate qmax (= maxi q̂(i))13



if (emin � "2qmax) thenapply Li's reverse test on Ẑ;dqd: Ẑ �! Z with Li's test;(emin is updated)else�  � 0dqds: Ẑ �! Z(emin is updated)end ifOn ompletion the latest qd-array is in Z, the old array is in Ẑ and allpossible splitting using both of Li's tests have been reorded.It is possible to repeat this testing yle until no new splits are reordedbut we deided to run it just twie.3.4 When to Neglet ejThere are, at least, two obstales to invoking Li's test inside the main whileloop. First the algorithm uses dqds with � > 0 for most steps. Li's testis still valid when � > 0, by Lemma 3, but will be striter than neessary.Seond is the presene of �, the aumulated shift. We want the eigenvaluesof �I + LU , not of LU alone. It is not heap to inorporate � into Li'sriterion.From a pratial point of view the presene of � has lead us to a verysimple set of tests. Sine � is a lower bound on the eigenvalues of �I + LUthe following test is always valid.� �-test: if ej � "2� then set ej to 0.Li was thinking of an implementation of dqd that would test ej within theinner loop and thus at every step of the algorithm. In order to keep our dqdstransform free of tests the heking for a split will be a separate alulationundertaken only when the variable emin is small enough. The ode presentedhere keeps this test alulation as heap as possible.This leaves us with the task of using Li's test in some form beause the �-test is useless when � = 0 and even when � is tiny. Our solution is to exploitthe ping-pong implementation of the algorithm. For our purposes here itmeans that two qd-arrays are available, OldZ and Z. Their eigenvalues di�er14



by � . Let odi denote the auxiliary variables omputed in the dqds transformof OldZ to Z. From the algorithm in Setion 1qi =odi + old ei; i = 1; 2; : : : ; n� 1:Consequently odi an be reovered as qi � old ei. Li's test applied to OldZ is`neglet old ei if old ei � "2di = "2(qi � old ei)'. Sine 1 + "2 omputes to 1the test may be simpli�ed.� Li's test: neglet old ek if old ek � "2qk.Note that setting old ek to 0 would automatially fore ek to 0 sineek = old ek � old qk+1qk :Moreover, in `�nite preision', if old ek is negligible thenodk+1 = old qk+1 odkodk +old ek � �= old qk+1 � �just as though old ek were 0.Thus, at no ost, we an disover a split but with a one step delay.It is not neessary to reognize splits as soon as they are warranted.The only danger in delaying a valid split is that the smallest eigenvaluemight be trapped in the upper part of the qd-array. This ould produe thewrethed situation that the shifts would be onstrained by the top part andso not hasten onvergene of the bottom part. This would degrade eÆienyseverely.When should our two tests be invoked? Sine our implementation keepsthe variables emin and qmax up to date it is natural to invoke the testing looponly when old emin � "2qmax or emin � "2�: (6)This guarantees that if a split is warranted by our tests then the loop will beinvoked.The way splits are marked is disussed next.15



3.5 Marking SplitsThe Z-array may split up into many subarrays. In order to keep the odesimple the dqds transform is applied only to the last unsplit segment i0 : n0.The parameter n0 never inreases and dereases when, and only when, aneigenvalue is deated. Until a segment is �nished i0 never dereases andinreases when, and only when, a split ours in i0 : n0.Suppose that the �rst split ours at ej when the value of � is �0. Thesegment 1 : j of Z then freezes until the segment j + 1 : n is �nished. Bythat stage � = �00 � �0. When omputation resumes on segment 1 : j it isessential to know the old value �0. The only book-keeping required when asplit ours is to reord the urrent value �. The natural plae to keep thisinformation is in the loation of the negligible ej. The negative sign attahedto � signals that a split has ourred.The pseudo-ode for the segment Spltk (short for Split Chek) �nds theindex `splt' where the last negligible e-value ours.Spltk: splt i0� 1for k  i0; n0� 3 doif ek negligible thenek  ��splt kend ifend forBy onstrution of i0, either i0 = 1 or else e(i0�1) < 0. Several e's may befound negligible during one all of Spltk, eah one is marked (by ��) butonly the last one is reorded by splt. Thus after eah all to Spltk the newsegment is given by i0 splt+ 1:The loop stops at k = n0 � 3 beause en�2 and en�1 are heked at everystep. When they beome negligible we have deation, not a split.4 The High Level ProgramWhen splitting is inorporated into the program there must be an inner loopto diagonalize the last unsplit segment and an outer loop over the separate16



segments. This struture demands one extra piee of book-keeping in theouter loop. The hoie of shift makes heavy use of information obtained inthe previous dqds transform. At the start of a new unsplit segment there isno previous dqds transform available. Inside the inner while loop there is noway to know whether the urrent segment is new and so the outer loop mustset a ag to signal this situation. We may do this by setting the variabledmin to a negative value. The urrent segment is always Z(i0 : n0).Input Z(1 : n); a positive qd-array (but e(n) = 0):all Prologue (disussed in Setion 10)n0 = nwhile (n0 � 1) do� = �e(n0) * reset � �i0 = n0 * seek i0 �while (i0 > 1 and e(i0� 1) > 0) do i0 = i0� 1 end whiledmin = �0 * signal a new segment *while (i0 � n0) doall Goodstep(i0; n0; Z; �; dmin)if emin is small enough thenhek for splits; update i0; emin; qmax;end ifend whileend whileall Epilogue (disussed in Setion 11)Later we will ompliate the while loop that �nds i0 so that it omputes qminand emax as well. These values give us a heap lower bound on the Gersgorindisks. We set dmin = �max(0; qmin � 2pqminemax) and give justi�ation inSetion 6.3.1 but here is the motivation.When Z's matrix is lose to one of low rank a stage will our when allthe small eigenvalues have been found and the smallest eigenvalue of theremaining Z array is far from 0. Our shift strategy shifts too autiously inthis situation and � = qmin � 2pqminemax is a muh better start than � = 0.17



For example, in one ase all e's were O(10�15) and all q's were O(10�1). Thusat the start of a new unsplit segment the variable dmin arries a reasonableshift that overrides the regular hoies beause it is agged by not beingpositive.5 Low Level CompliationsPseudoode for Goodstep(i0; n0; Z; �; dmin):1. while (e(n0� 1) or e(n0� 2)) negligible doreord eigenvaluesredue n0end whileif (n0 < i0) return end if2. if warranted thenip qd arrayupdate qmax, eminend if3. if no danger of overow or new segment thenhoose a shift4. repeatall dqds; output dmin; eminif (shift too big or dmin=NaN or underow) thenif (dmin < 0) thenhoose another shiftelse (a NaN or underow)all safe dqd; output dmin; eminend ifend ifuntil dmin > 0elseall safe dqd; output dmin; eminend if5. update � 18



As written above Step 4 ould give rise to an in�nite loop. For the sake ofeÆieny we want to esape this loop after 3 steps at most. The hoie � = 0ensures a suessful transform but the phenomenon of `late failure', disussedlater, exhorts us not to pani and so set � = 0 immediately. Frequently afailed shift is too large only in the 5th deimal plae of �min.The various parts of Goodstep are disussed in turn below.6 A Good Step6.1 Test for Eigenvalues (Eigtest)Convergene Versus DeationIn this setion let n = n0. The goal of the dqds transform is to drive qn,the last q, to zero. Even if qn = 0 it is still not valid to deate, i. e. to reduen by 1, beause en�1 must also be negligible. Note that, with � = 0,ên�1 = en�1qn=q̂n�1 = qn � en�1dn�1 + en�1 < qn;so that one more transform, after qn is negligible, will ensure that the newen�1 will also be negligible.However we shall not retain this way of thinking beause onvergene (isqn lose enough to 0?) is seondary to deation (n  n � 1 or n � 2) andthat is what we seek. If en�1 = 0 then qn + � is an eigenvalue however largeqn may be.
19



Aepting EigenvaluesWe hek en�2 as well as en�1 beause there is a short setion of odethat omputes the eigenvalues in the 2�2 ase to high relative auray. SeeSetion 8.From Setion 3.4 en�1 is negligible if old en�1 � "2qn�1 or en�1 � "2�.Similarly en�2 is negligible if old en�2 � "2qn�2 or en�2 � "2�. By usingLi's reverse test we may neglet en�1 if en�1 � "2qn and en�2 if en�2 �"2qn�1(qn=(qn+en�1)). This is beause the dqd algorithm on the ipped arrayyields dn = qn and dn�1 = qn�1qn=(qn + en�1). Sine a+ b � 2max(a; b) wehave invoked the following simple tests (perhaps these tests are too severe):if old en�1 � "2qn�1 or en�1 � "2(� + qn) then neglet en�1if old en�2 � "2qn�2 or en�2 � "2�� + qn�1 qnqn + en�1� then neglet en�2:Note that the seond test is only invoked when en�1 is not negligible, so thedivision is proper. We have softened the test on the old values by multiplying"2 by 104. This was the largest value that aused no deterioration in aurayon our LAPACK test bed of matries.When en�2 is negligible the simple deating ode isbig = larger root of trailing 2� 2 submatrix (Setion 8)qn = qnqn�1=big + �qn�1 = big + �n = n� 2These simple odes beome more ompliated in the ping-pong implementa-tion disussed in Setion 9. The ode that tests en�1 and en�2 is in a repeatloop so that ontrol passes out of this segment only when either n0 < i0 orelse neither en�1 nor en�2 is negligible. Goodstep is omplete if n0 < i0.6.2 Chek for FlippingThe goal of the algorithm is to drive q(n0) to 0. If q(i0) < q(n0) then itseems plausible that onvergene would be faster if the array were ipped.In priniple one ould make more elaborate shemes for heking whether20



the smallest eigenvalue is `loated' near the top of the matrix. To introduea bias against ipping we demand that1:5q(i0) < q(n0):A rival test would demand that 2q(i0)e(i0) < q(n0)e(n0� 1) before ippingbut so far we have used the simpler test.We make the hek only after an eigenvalue has been deated at theprevious step (signaled by n0in > n0) or when the segment is `new', i. e. hasjust been passed from the outer while loop. After ipping we set dmin to�0 so that the ipped array is treated as `new'. Thusif (dmin < 0 or n0in > n0) thenif(1:5q(i0) < q(n0)) thenall Flipif (n0in:gt:n0) dmin = �0 end ifupdate emin and qmaxend ifend if6.3 Choie of ShiftAt an abstrat level both qds (Rutishauser's qd with shifts) and dqds areequivalent to LR and two LR steps are equivalent to one QR step. So onemight expet onvergene rates to be similar. The advantage of dqds overthe other transforms is the auxiliary variable d and the fat that dmin is aninreasingly good approximation to �min. Setion 6.3.2. The index of dmin(i. e. the index j suh that dj = dmin) an also be useful in `loating' �minbefore it migrates to the end of the array.The hief feature of the implementation given here is the deision todispense with dmin's index. To make up for this omission we unroll the lasttwo steps of dqds and reord dn, dn�1, dn�2 as well as dmin, dmin1, dmin2,where dmin1 = mini�n�1 di and dmin2 = minj�n�2 dj. These six values givethe index of dmin in the asymptoti regime when dmin = dn, or dn�1, ordn�2.It ould be the ase that the use of dmin's index an be made ost e�e-tive, but that is for the future. 21



Our shift strategy is essentially one long if-statement giving a di�erentvalue to the shift � for eah of about 10 di�erent situations. Eah formulauses information from the previous dqds-transform, in partiular the last 3values of the auxiliary variable d.At the start of proessing a new segment of Z there is no previous trans-formation. This situation is signaled by dmin � 0. In early versions of thisprogram we used the obvious hoie� = 0when dmin < 0, beause we seek the smallest eigenvalue. Now we use theGersgorin shift when it positive.6.3.1 The Gersgorin ShiftIf the minimum point among all Gersgorin disks is positive then it serves asa better shift than 0. A straightforward omputation of this point mini(qi +ei �pqiei�1 �pqi+1ei) osts more than a dqds transform beause of all thesquare roots. Our shift strategy ensures that most of the time the minimumGersgorin point is negative. It is only when the e's are muh smaller thanthe q's that it is appropriate to onsider Gersgorin. We use a rude lowerbound qmin�2pqminemax beause qmin and emax are heap to ompute in theloop that �nds i0 at the start of a new segment. Moreover we only updateqmin and emax while qmin � 4emax so that, in most ases, this alulationstops almost immediately. In speial ases (all q's > 0:01, all e's < 10�9) thisfeature is most valuable.6.3.2 Use of dminAt eah all of Goodstep there are four situations at eah hoie of shift: atStep 1 Eigtest found either 0, 1, 2, or more than 2 eigenvalues.The �rst situation is the basi one and the others are variations on the �rst.Before desribing the seletion we reall some results on eigenvalue bounds.See [8, Setions 4.5 and 11.7℄.Let kxk = 1, � = �(x) = x�Ax, r = r(x) = Ax� x� for any symmetrimatrix A. Let � be the losest eigenvalue of A to � and let gap be thedistane of � from the rest of A's spetrum. Then� > �� krk; (7)22



� > �� krk2=gap: (8)Our main appliation of this result is to a tridiagonal T with x = (0; : : : ; 0; 1)�.In that ase � = �n; krk = �n�1:In our appliation �2n�1 = qnen�1 and T = symmetrized UL, as shown atthe end of this subsetion.We also reall some results on the intermediate quantities dj omputedby the dqds transform with shift � . See [3℄.If � = 0 then 1dj = [(UL)�1℄jj < 1�min(UL) : (9)If � > 0 then �j(Û L̂) = �j(UL)� �;dmin � �min(Û L̂);1dj � [(Û L̂)�1℄jj:As � inreases from 0 to �min(UL) so does dmin dereasefrom 1=maxj [(UL)�1℄jj to 0:Thus the smaller the value of dmin the better it approximates �min(Û L̂) withequality when, and only when, dmin = 0. However dmin is always too bigand we would prefer to have a lower bound. Our program is set up to rejet,as a failure, any dqds transform in whih dmin is not positive. The penaltyfor hoosing � too large is a wasted dqds transform, exept in the ase oflate failure disussed below, and in view of all this we use a fairly aggressivehoie of shift and hope to keep failures at the 2 or 3% level.In order to keep the dqds transform as simple as possible we reorddmin = min1�j�n dj but not its loation. To make up for this loss we `unroll'the last two steps of the dqds transform and this yields, at no ost, 6 usefuld-values: dn, dn�1, dn�2, and dmin, dmin1, dmin2. Heredmin1 = min1�j�n�1 dj ;dmin2 = min1�j�n�2 dj :23



Our shift formulae make heavy use of these 6 values.It may turn out that giving up the preise loation of dmin, when it isless than n� 2, is a tatial error. More study is needed.One more rather subtle point must be borne in mind. Let Mn�1 denotethe leading prinipal (n � 1) � (n � 1) submatrix of M . Let Tn denote thesymmetrized version of UL = UnLn. ThenTn�1 6= sym(Un�1Ln�1):The matries di�er only in the last diagonal entries whih are respetivelyqn�1 + en�1 and qn�1. Now dmin1 approximates �min(Un�1Ln�1) while wewant to approximate �min(Tn�1). When dmin1 = dn�1 then we expet theassoiated eigenvetor of Un�1Ln�1 to be dominated by its last entry. Sowe sometimes use some fration ' of dmin1 + 12en�1 as an approximation to�min(Tn�1). The hoie of ' has been a worry. We use ' = 0:75 but have notheory to bak it up.Now we turn to our shift seletion. It is a long if-then-else statement.In order to simplify expressions (for humans) we use�n = qn = dn; �n�1 = pqnen�1;�n�1 = qn�1 + en�1; �n�2 = pqn�1en�2�n�3 = pqn�2en�3:By taking en�1 as an approximate eigenvetor of Tn�1 and using its resid-ual norm we onlude that some eigenvalue exeeds �n�1 �p�2n�1 + �2n�2.This is easier for us than the Gersgorin value �n�1 � �n�1 � �n�2.In the atual ode n is replaed by n0.6.3.3 No Eigenvalues Found in Eigtest (n0in = n0)The variable n0in is the value of n0 on entry to Eigtest.Case 1. If dmin � 0 then � = �dmin.This is the ase orresponding to a new qd-segment. No old informationavailable. See Setion 6.3.1.Cases 2 and 3. dmin = dn and dmin1 = dn�1.24



This is the asymptoti ase that determines the rate of onvergene (amisleading term when we strive for between 3 and 4 iterations per eigenvalue,on average). Our goal is to use (8) in the tests given in Setion 6.3.2 and sowe must appproximate �min(Tn�1)��n by a value gap1. To do this we guessat gap2 to approximate �min(Tn�2)� �n�1.gap2 = 34dmin2� �n�1:Now we estimate gap1 byif (gap2 > 0) and gap22 > �2n�2 thengap1 = �n�1 � �2n�2gap2 � dnelsegap1 = �n�1 �q�2n�1 + �2n�2 � dn;end ifFinally if (gap1 > 0 and gap12 > �2n�1) then� = max(dn � �2n�1gap1 ; 12dn) (Case 2)else (Gersgorin)8>>>><>>>>: x1 = maxf0; dn � �n�1g; row n;x2 = maxf0; �n�1 �p�2n�1 + �2n�2g; row n � 1;� = maxf13dn; minfx1; x2gg (Case 3)end ifNote that � � dn=2 (Case 2) or � � dn=3 (Case 3). Here lies the aggressionin our shift strategy.We expet Case 2 to our often. The formulae are simpler than thosefor Cases 4 and 5 and give good auray. Nevertheless it is possible that theapproximations used for Case 4 would be even better when used in Case 2.More study is needed.Case 4. Not quite asymptoti. 25



(a) dmin = dn but dmin1 6= dn1.(b) dmin 6= dn but dmin1 = dn1.WarningThe long analysis that follows for (a) and (b) uses new re�ned bounds andleads to only 20 lines of ode and approximately 4 divisions. It may beskipped without loss of ontinuity. LetL = bidiag� pq1 pq2 pq3 : pqn�1 pqnpe1 pe2 : : pen�1 � :For (a) onsider one step of inverse iteration starting with endn and yieldingz. (LtL� �I)z = L̂L̂tz = endn = enq̂n:Sine L̂�1en = en=pq̂n,L̂tz = enpq̂n ;z(n) = 1;z(i) = �z(i� 1)pêi=q̂i; i < n:As shown in Setion 7, the Rayleigh quotient �(z) satis�es�(z) = dminkzk2 ;and kL̂L̂tz � z�(z)kkzk = �(z)pkzk2 � 1:Thus there is an eigenvalue � of L̂L̂t satisfying�(z)(1 �pkzk2 � 1) � � � �(z): (10)and this funtion is a useful lower bound provided that kzk2 � 2. In theabsene of a satisfatory estimate ofgap(�) = minfj�� �j : � 6= �; � an eigenvaluegwe do not employ a re�ned bound. 26



How aurately should ' = kzk2� 1 be estimated? The reurrene for 'is simple: initial ondition: term = ên�1=q̂n�1; ' = 0;' = '+ termfor i = n� 2; 1;�1 doold = term (11)term = term � êi=q̂i' = '+ termend forOur �rst onsideration is to run the loop until two onseutive terms are lessthan 1% of the urrent '; repeat until100max(term; old) < ':If ' � 1 then the lower bound in (10) is negative and our e�ort is wasted.However, in the spirit of an aggressive strategy we wish to hoose � � dmin=4in these ases. Consequently when ' � 9=16 we will not employ (10). So werepeat the for loop until100max(term; old) < ' or 9=16 < ':We then inrease the omputed ' by 5% to ompensate for trunating theloop. Finally set  = dmin andif (' < 9=16) thenshift =  1 �p'1 + ' (12)elseshift = 4end ifFor (b) (dmin 6= dn but dmin = dn1) reate a twisted fatorizationLtL � �I = NN t with twist at n � 1. Here N t = L̂t exept for the last two27



rows shown below. See [7℄. N requires three new values: n�1; oen�1; oqn. Thelast three rows of the right twisted fator N t are shown here.264 pq̂n�2 pên�2 00 pn�1 00 qoen�1 qoqn 375By equating entries in LtL� �I = oLt oL we �ndoqn= qn � � ; oen�1= qnen�1= oqn; sn�1 = �� (1 + en�1= oqn)and, from the ode given in Case 5 below,n�1 = dn�1 + sn�1 + �;= dn�1 + [sn(en�1= oqn)� � ℄ + �= dn�1 � �en�1=(qn � � ) < dn�1 = dmin: (13)Our estimate of �min is based on one step of inverse iteration starting fromen�1n�1 (in ase (a) we started with endn):(LtL� �I)z = NN tz = en�1n�1:Sine Nen�1 = en�1pn�1,N tz = en�1pn�1;z(n� 1) = 1;z(i) = �z(i� 1)pêi=q̂i; i < n� 1;z(n) = �qoen�1 = oqn= �pqnen�1=jqn � � j:In addition �(z) = n�1kzk2kNN tz � z�(z)kkzk = �(z)pkzk2 � 1:28



We an use the same loop (11) as in Case (a) but with di�erent initial on-ditions, namely term = ên�2=q̂n�2' = z(n)2 = qnen�1=(qn � � )2:Compute n�1 from (13), set  = n�1, and the same ode (12) may be usedas in Case (a) for shift.Case 5. dmin = dn�2.This ondition suggests the use of a twisted fatorization of LtL��I withtwist at position n � 2. The upper part of the fatorization is given by L̂L̂tbut we do not have the lower part. Write LtL� �I = oLt oL. The lower part ofoL is 26664 qoen�3 qoqn�2qoen�2 qoqn�1qoen�1 qoqn 37775and the di�erential stationary algorithm yieldssn = ��oqn= = qn + snoen�1 = qn(en�1= oqn)sn�1 = sn(en�1= oqn)� �oqn�1 = qn�1 + sn�1oen�2 = qn�1(en�2= oqn�1)sn�2 = sn�1(en�2= oqn�1)� �:29



That is all that we need. The lower part of the twisted fator N t is266666666664 pq̂n�3 pên�3pn�2qoen�2 qoqn�1qoen�1 qoqn 377777777775 :The quantity n�2 is given byn�2 = q̂n�2+ oqn�2 �(qn�2 + en�2 � � )= (dn�2 + en�2) + (qn�2 + sn�2)� (qn�2 + en�2 � � )= dn�2 + sn�2 + �= dn�2 + [sn�1(en�2= oqn�1)� � ℄ + �= dn�2 + sn�1(en�2= oqn�1);= dn�2 + sn�1[en�2=(oqn�1 +sn�1)℄:Write the twisted fatorization as LtL� �I = NN t and de�ne z byNN tz = en�2n�2; z(n� 2) = 1:Thus N tz = en�2pn�2;z(n� 1) = �qoen�2 = oqn�1z(n) = �z(n� 1)qoen�1 = oqn =qoen�2oen�1 =(oqn�1 oqn)z(i) = �z(i+ 1)pêi=q̂i; i < n� 2�(z) = n�2=kzk2z(n� 1)2 + z(n)2 = oen�2oqn�1  1 + oen�1oqn != en�2qn�1(qn�1 + sn�1)2 �1 + en�1qn(qn + sn)2� :30



Thus the new entries, oq and oe, are not needed expliitly and the variables = sn�1 = �� (1 + en�1=(qn � � )) suÆes.As in Case 4 we sum the z(i)2; i 6= n � 2, until the sum settles down to1% or exeeds 9=16 whihever omes �rst. In the latter ase we use 14� as adefault shift. Otherwise, using our latest estimate of kzk2,� = ��1 �pkzk2 � 1� � n�2 �1�pkzk2 � 1� =kzk2:Reall that sn�1 < 0 and the virtue of the approximations used above lies inthe use of n�2 and n�2 < dn�2 = dmin.Case 5 osts approximately 5 divisions (3 for the loop).Case 6. dmin 6= dn nor dn�1 nor dn�2.This is the typial situation in early stages. Too muh aution an provokevery slow onvergene, too little aution provokes too many failures. Ouresape is to inrease the fration of dmin used if Case 6 ourred at theprevious step. This information is available free of harge.if (Case 6 last step) thenf = 14 + 34felse if (Case 6 just failed)f = 112elsef = 14end if� = f � dminLet us onsider a few instanes of Case 6. If dmin is muh too large so thatthe seletion � = 14dmin auses failure, and not a late failure, then � is resetto 14� , i. e. dmin=16. If that sueeds we use � = 112 (new dmin) the nexttime. On the other hand if dmin is lose to �min and �min � maxj ej thenimprovement with dmin=4 will be modest beause the shift is too autious.However the next iteration uses (1=2) (new dmin) and, after that, if Case 6persists, (2=3)(new dmin) and then (7=9)(new dmin). At some stage eitherCase 6 no longer holds or a failure ours and � is redued.31



The treatment of Case 6 is the weak point of this implementation. If theprogram is given a qd-array that has almost onverged (small e's) to eigenval-ues in non-monotoni order then the alulation will reorder the eigenvaluesslowly. The smaller the e's the slower is the reordering. Fortunately theseases seem to be rare.6.3.4 One Eigenvalue Found in Eigtest (n0 = n0in � 1)We note that the values dn and dmin refer to the eigenvalue aepted inEigtest and deated. Thus we are in the position of `no eigenvalues found'Setion 6.3.3 but with less information. Essentially dmin  dmin1, dn  dn�1 , et. We ould try to imitate the strategy in Cases 2 and 3 but withno natural andidate for gap2. Instead we use a more powerful but moreexpensive hoie that we all re�ned Rayleigh quotient and desribe, in de-tail, in Setion 7. Stritly speaking this is not an O(1) formula for � but, inextensive tests, it ost no more than 6 divisions (the minimum is 4).Cases 7 and 8. if (dmin1 = dn�1 and dmin2 = dn�2) thenompute � (Rayleigh quotient) and krkgap = 12dmin2 � �if (gap > 0 and gap2 > krk2) then� = max��� krk2=gap; 13dmin1�else� = max��� krk; 13dmin1�end ifend ifThese hoies orrespond to formulae (8) and (7) at the beginning of Se-tion 6.3.2. 32



Case 9, non-asymptoti ase.� = 8<: 12 dmin1; if dmin1 = dn�1;14 dmin1; otherwise:6.3.5 Two Eigenvalues Found in Eigtest (n0 = n0in � 2)In this situation dn; dn�1; dmin1 all refer to deated quantities. However there�ned Rayleigh quotient option is available. For gap we use the Gersgorindisk for the urrent �n�1 provided that en�1 < qn�1=2.Case 10, asymptoti ase.if (dmin2 = dn�2 and 2en�1 < qn�1) thenompute � (Rayleigh quotient) and krkgap = �n�1 � �n�2 � �if (gap > 0 and gap2 > krk2) then� = max�� � krk2=gap; 13dmin2�else� = max��� krk; 13dmin2�end ifend ifThese hoies orrespond to formulae (8) and (7) at the beginning of Se-tion 6.3.2.Case 11, non-asymptoti ase. � = 14 dmin2.6.3.6 More Than Two Eigenvalues Found in EigtestSet � = 0.6.4 Failure LoopIf � > �min(UL) then dj < 0 for some j < n in the dqds transform.33



The ourrene of NaN (Not a Number)Suppose that q̂i > 0 for i < j, but q̂j = 0. Thendj = �ej < 0temp = qj+1=q̂j = +1êj = ej � temp = +1dj+1 = dj � temp� � = �1q̂j+1 = dj+1 + ej+1 = �1temp = qj+2=q̂j+1 = �0êj+1 = ej+1 � temp = �0dj+2 = dj+1 � temp� � = (�1) � (�0)� � = NaN:Thus division by 0 for j < n � 2 auses all variables after dj+2 to be NaN,inluding dmin. Our response is to set � = 0. The test is as followsif (dmin 6= dmin) then f go to safedqdg end if:In IEEE arithmeti NaN is the only value not equal to itself. The payo� forhaving NaNs is that our inner loop in dqds is free of tests.Convergene Masked by Negative dnSometimes all values of d are positive exept the last whih is so smallthat we have onvergene, in partiular � + qn is evaluated as �. In suh aase it is a pity to invoke another dqds transform just beause dn = qn < 0.if (dmin < 0 and dmin1 > 0 and ên�1 is negligibleand jq̂nj is negligible) thenq̂n  � 0dmin � jdminjend ifNote that with the ping-pong implementation (Z �! Ẑ, Ẑ �! Z) q̂ andê here, will beome q and e at the next invoation of Eigtest and will foredeation.Late failureIf dmin1 > 0 but dmin = dn < 0 then we have `late failure'. This wasintrodued by Rutishauser in [10℄ and speialized to our ase in [3℄. There34



it is shown that � + dmin is an extremely aurate lower bound on �min sothis is our next shift and is guaranteed to sueed.Early failureWhen dmin1 < 0 then we set �  �=4 and try again. This is a somewhatpaniky reation beause in many ases � is less than 0.1% too big. Howeverthere are ases when � is muh too large and we want a rapid desent of �to 0. We allow two suessive early failures before we set � = 0 to ensuresuess.Here is the pseudo-ode for this segmentrepeatall Dqds(�; dmin)it = it+ 1if (dmin 6= dmin) then� = 0else if (dmin < 0) thenif (two times here) then� = 0else if (dmin1 > 0) then� = � + dminelse� = 14 �end ifend ifuntil dmin � 06.5 Chek for a SplitIn the ontext of a ping-pong implementation (Z ! ZZ; ZZ ! Z) we onlyhek for splits after `pong' steps ZZ ! Z. This is beause it is only e-valuesthat are marked with ��, not ee-values. Reall that it is only after a all toSpltk that the top index i0 an inrease. See Setion 3.35



The ode only invokes this hek if old emin < 104 "2 old qmax or if emin < "2�and so a split is likely to be found. The test must also update emin and qmaxin ase a split is found.7 Rayleigh Quotient Residual BoundsWe present some new eigenvalue bounds that exploit the Cholesky fatoriza-tion and so we begin with more generality than needed for dqds. Let u beany unit vetor and onsider one step of inverse iteration using any symmet-ri matrix A. We invoke a spei� A later. We employ a slightly unusualnormalization. Write Av = u; vtu = 1:Then �(v) = vtAvkvk2 = kvk2and sor = r(v) = (Av � v�)kvk ;= ukvk � vkvk3 ;= kvk3 �ukvk2 � v� :krk = kvk3 �kvk4 + kvk2 � 2kvk2�1=2 ; ( beause vtu = 1)= kvk2 �kvk2 � 1�1=2 = � �kvk2 � 1�1=2 :Invoke the lower bound (8) from Setion 6.3.2. The eigenvalue � losest to �satis�es � � �� krk2gap= � �1� (kvk2 � 1)�gap � : (14)The loser kvk is to 1 the better is the bound. Now apply (14) to the asewhen A = BtB; u = (0; : : : ; 0; 1)t; and dmin = dn:36



HereB = bidiag� pe1 pe2 : pen�2 pen�1pq1 pq2 : : pqn�1 pqn � :The ondition dmin = dn (= qn) suggests that the last entry in v, v(n) =utv = 1, is dominant. Solving BtBv = ushows that  = qn = dn and v(j) = �pej=qj � v(j + 1), j = n � 1; : : : ; 2; 1.Denote v(1 : n� 1) by x to �ndkvk2 = 1 + kxk2;= 1 + n�1Xj=1  n�1Yi=j eiqi! :and � = qn1 + kxk2 ;so that � � ��1 � kxk2�gap � :Our idea is to use this formula provided thatx2n�1 = en�1qn�1 � 12and to alulate kxk2 orret to 1% More preiselyj = n� 1prod = ejqjsum = prodrepeatj = j � 1oldprod = prodprod = prod ��ejqj�sum = sum+ produntil (100 �max(prod; oldprod) < sum)sum = 1:05 � sum37



Note that we ontinue until two suessive terms are less than sum=100 andthen we inrease our estimate of kxk2 by 5%. We measured the number oftimes through the loop for our test matries and the largest value was 3. Toestimate gap we use the default proedure in Setions 6.3.4 and 6.3.5;gap =8<: 34dmin2� �; one eigenvalue found�n�1 � �n�2 � �; two eigenvalues found:Finally if (gap > 0 and gap2 > �2 � kxk2) thenuse (8) for � (�� krk2=gap)elseuse (7) for � (�� krk)end if8 The 2� 2 CaseThere is a speial subroutine SLAS2 in the BLAS for the aurate ompu-tation of the singular values of a 2 � 2 bidiagonal matrix. To invoke it herewould require the extration of pq1, pq2, pe1 and the subsequent squaringof the output. There has to be a better way. There is also a subroutineSLAE2 for alulating the eigenvalues of a 2 � 2 real symmetri matrix butits use would not guarantee high relative auray.Our response is to takle the ase on its own merits. We seek the eigen-values of � q1 + e1 pq2e1pq2e1 q2 � :We may arrange that q1 � q2. Rutishauser's formulae for the eigenvalues,see [8, Chapter 9℄, are q1 + e1 + tpq2e1; q2 � tpq2e1where t � 0 is the smaller root of the quadratit2 + 2� Æpq2e1� t� 1 = 038



and Æ = (q1 � q2) + e12 � e12 :A standard formula for t is t = pq2e1Æ +pÆ2 + q2e1and the larger root r may be written asr = q1 + e1 + q2e1� : (15)In order to avoid large intermediate quantities � is omputed from� = � Æ[1 +p1 + (q2e1=Æ)=Æ℄; if q2(e1=Æ) < Æ;Æ +pÆ(Æ + q2e1=Æ); otherwise :Note that e1=Æ < 2 and � > pq2e1. So the third term in (15) satis�esq2e1� � pq2e1 � pq1e1 � 12(q1 + e1)and is below the mean of the �rst two terms. The smaller root omes fromdividing the produt q1q2 by the larger root r.From Rutishauser's formulae the smaller root isq2 � tpq2e1 = pq2(pq2 � tpe1)and 0 � t < 1. Thus if e1 � (maheps)2q2 then the eigenvalues are q1 and q2to working preision and there is no need to ompute �. The only subtrationin the whole alulation is q1 � q2 � 0.High relative auray follows from the fat that our algorithm an beinterpreted as one step of the dqds algorithm with shift s = the smaller rootand dqds enjoys high relative auray in the nonnegative ase, see [3℄. Morepreisely q̂1 = �, q̂2 = 0, and the larger root isr = q̂1 + ê1 + s = ((q1 � s) + e1) + e1q2̂q1 + s:39



Pseudoode for the 2� 2 Caseif (q1 < q2) then swap (q1; q2) end ifif (e1 > maheps2q2) thent = ((q1 � q2) + e1)=2s = q2(e1=t)if (s � t) thens = q2e1=(t(1 +p1 + s=t))elses = q2e1=(t+pt(t+ s))end ift = q1 + (s+ e1)q2 = q2(q1=t)q1 = tend ifroot1 = q1(+�)root2 = q2(+�)9 Ping-pong ImplementationRutishauser realized that in the ontext of a ontinued fration it is some-what unnatural to give di�erent names, q and e, to the variables and so heintrodued Z = (q1; e1; q2; e2; : : : ; en�1; qn; en)instead. This format aknowledges the `loality' in qd algorithms. The nextstep is to alloate two arrays, say Z and ZZ to the algorithm. So that dqdsmaps Z to ZZ or vie versa.There are two bene�ts that arue from doubling the storage.1. The ping-pong implementation alternates the mappings Z ! ZZ andZZ ! Z and wastes no time simply moving variables from one loationto another.2. In ase of failure, when the shift � exeeds �min, it is trivial to try againwith a new shift. The old array was not altered.40



We have gone one more step in this diretion. In order to improve `loal-ity' even more we use one array Z of length 4n, de�ned as followsZ = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : : ; qn; qqn; en; een)where the last two values en and een are treated as zero. This notation ishard on humans but nie for omputers. The assoiation isq(j) = Z(4j � 3); e(j) = Z(4j � 1)qq(j) = Z(4j � 2); ee(j) = Z(4j):To distinguish between ping and pong we use the integer variable pp; pp = 0for ping, and pp = 1 for pong. Here is the dqds transform in Z notationwithout the ode for dmin and emin.d = Z(1 + pp) � �for j = 1; n� 1Z(4j � pp � 2) = d+ Z(4j + pp � 1)temp = Z(4j + pp + 1)=Z(4j � pp � 2)Z(4j � pp) = Z(4j + pp � 1) � tempd = d � temp� �end forZ(4n � pp � 2) = dIn order to avoid unneessary index alulations the loop is written out twie,one for pp = 0, the other for pp = 1. The alulation moves through Z witha loal range of 6 indies at most. The reader is referred bak to Setion 1.1that justi�es the use of this fast dqds ode when safemin � qmax � emin.The LAPACK onvention that the user supply q's and e's as separatearrays prevents the use of Rutishauser's sensible idea of a single qd arrayand neutralizes our extension to permit the whole algorithm to operate ona single array Z of length 4n. Our approah would not onfer an advantageuntil 4n exeeds the ahe size.We have experimented with writing separate subroutines for ping andpong, thus removing the variable pp from the ode. On some platforms thedi�erene in speed is notieable but not enough to persuade us to use it.A test in the inner loop, (if d � 0) return ,is needed for arithmeti unitsthat do not onform to IEEE754. See Setion 13 for more details.41



10 PrologueCautious programming requires that we hek that the input is proper,namely1. initial index � �nal index2. 0 � Z(i), all i.If either ondition fails alulation is halted immediately with err set to anappropriate value.However there is more work to do. The top subroutine expets to reeivethe data in Rutishauser's Z format, q(1); e(1); q(2); e(2); : : : and it must berearranged for the ping-pong implementation desribed in Setion 9. This iseasily done by moving items from last to �rst, i. e.for k = 2 � n; 2; �1Z(2 � k) 0Z(2 � k � 1) Z(k)Z(2 � k � 2) 0Z(2 � k � 3) Z(k � 1)end forAt the same time we ompute the sum of the data whih happens to be thetrae of LU . At this time diagonal arrays are easily deteted.Note that if the trae is 0 then all the eigenvalues are 0 and the programan terminate immediatelywith no alulation. Finally, if trae > 0 then it issensible to sale Z by 2m so that trae �2m is lose to (overow threshold)1=2.This devie makes better use of the exponent range of the number represen-tation but are must be taken to avoid overow in intermediate quantitiesreated in hoosing shifts.11 EpilogueAt the start of EpilogueZ = (q1; qq1; e1; ee1; q2; qq2; e2; ee2; : : :)42



but all the e's are negligible. The eigenvalues are in the q's.Move all q's to the front: Z(k)  Z(4k � 3), k = 1; n. Then we sort theq's, if neessary, into monotone dereasing order and, at the same time, wenote the positions of any breaks in monotoniity in the q's. This knowledgeis relevant if a standard sort routine is eventually replaed by a merge-sortroutine. m = 0for k = 1; nif (Z(k � 1) < Z(k)) thenm = m+ 1Z(3 � n+m) = kend ifend forFinally any saling done in Prologue is undone and the sum of the eigenvaluesis omputed and stored in Z(2n + 1) for omparison with the trae that isstored in Z(2n + 2). The value of m is stored in Z(3n).12 Absolute or Relative Auray?The attration of the dqds algorithm is that it an ompute all the eigenvaluesof a positive array with high relative auray with either small or no penaltyin time ompared with, say, the root free QR algorithm. That is �ne, butsuppose that the user is satis�ed with absolute auray and wants speed.How muh faster will our algorithm perform if the aeptane tests in Eigtestare relaxed? In addition we ask whether our algorithm an be modi�ed nielyto allow either hoie, relative or absolute, by the user? More preisely wedo not want a parameter `absrel' passed down into the low level ode. ThediÆulty is that for relative auray the test for onvergene is qn < ��and � is hanging at eah step whereas for absolute auray we demandqn < �kZk.An ingenious solution was proposed by I.S. Dhillon. Create an extraparameter eigtest and update it in the ode in exatly the same way as �.However eigtest is initialized to 0 for relative auray and to maxi(qi + ei)for absolute auray. With this mehanism eigtest gradually rises from43



maxi(qi + ei) to maxi(qi + ei) + �max < 2�max. Any quantity less than" eigtest is set to zero.We found only a 10% or 15% speed up when using absolute aurayinstead of relative. This was deemed insuÆient improvement to warrantinlusion.13 Non-IEEE PlatformsIf the omputer system does not permit oating point exeptions suh as`divide by zero' or `0 �1' then it is neessary to make a test (d < 0) inside theinner loop of dqds. Suh a test prevents the eÆient pipelined implementa-tion of the ode and auses a signi�ant degradation of performane on somemahines. The reader is referred bak to Setion 1.1 where a two divisionversion of dqd is presented. To make the ode safe it is neessary to insertan extra test immediately after q̂(i) = d + e(i),if (d < 0) return:To permit our ode to run on any platform we pass a logial parameter ieeeto the dqds subroutine. If ieee is true then dqds (1 /div) is used, otherwisethe 2 division plus test version desribed here.This slowdown in dqds (2�) raises a subtle point. The dqd transform(� = 0) annot fail and there is no need for the test (d < 0). Now ithappens that eah iteration after whih an eigenvalue is deteted usuallyemploys a tiny or zero value of � . This suggests an alternative strategy forthe subroutine Eigtest. Instead of looking for negligible en�1 (deation) theprogram should hek for onvergene (qn negligible) and when this oursthe next iteration invokes dqd, not dqds, to make en�1 negligible. On average25% of the iterations would use dqd with a resulting redution in exeutiontime. We have not implemented this strategy in order to keep the IEEE andnon-IEEE versions as lose as possible to eah other.14 Fatal ErrorsIf the program terminates satisfatorily the value of err is 0. On exit, apositive value of err signals premature termination aused by a fatal error.The �rst two ases onern invalid data. Table 1 below gives the meaningattahed to positive values. Reall the nin is the length of the q-array.44



err Subroutine Meaning1 prologue nin < 12 prologue bad data: e(i) � 0 or q(i) � 0, for some i.3 geteigs a split was marked by a positive value in e4 geteigs urrent blok of Z not diagonalizedafter 10n iterations (in inner while loop)5 geteigs termination riterion of outer while loopnot met. Program reated more than ninunredued bloks.Disussion of Table 1.2. The program is intended to run on positive data, q(i) > 0, i = 1; nin,e(i) > 0, i = 1; nin � 1. However zero values of e indiate that Z is adiret sum of unredued subarrays and the program deals with this asenaturally. We do not allow zero values of q beause suh data does notome from the LU fatorization of a positive de�nite tridiagonal matrix.The values 3 and 5 should never our. They indiate violations ofthe logi of the ode.3. The program inspets the e-array for negligible values. Any suh valueis overwritten by �(urrent value of �, the aumulated shifts). Whenthe time omes to proess a segment that was split o� at an earlier stagethe ode searhes from the bottom for the �rst nonpositive e-value andsets � to its negation. This value should never be negative.4. We have set a maximumvalue, alled big, on the number of dqds trans-formations allowed to diagonalize an unredued setion. We have setbig to 10n for an array of length n. This is equivalent to 5n QR itera-tions exept that our shift strategy is more powerful than the Wilkinsonshift for tridiagonals. The ode terminate with err = 4 if onvergeneourred but was not deteted by Eigtest.5. The outer while loop is over the unredued subarrays of Z. With ninentries in q the maximal number of subarrays is nin. So whila shouldnever attain the value nin+ 1. 45



15 Timings and ComparisonsAs mentioned in Setion 1 the ode may be used to ompute singular valuesof a bidiagonal matrix B as well as the eigenvalues of a symmetri tridiagonalmatrix T.Here are the odes used in the omparisons.DBDSQR 1.0 (the original LAPACK 1.0 ode for singular values). Thisis based on the Demmel-Kahan (1991) algorithm whih uses a neatly odedbidiagonal QR transformation with 0 shift to ompute the small singularvalues to high relative auray. When the singular values less than kBk=103have been found the program swithes to the standard shift strategy for thesake of eÆieny.DSTERF (the Pal-Walker-Kahan version of root free QR). This is LA-PACK's urrent program for omputing eigenvalues of T. In general the smalleigenvalues are not omputed to high relative auray beause they are notdetermined to high relative auray by the entries in T.DLASQ1 2.0 (the LAPACK 2.0 routine for singular values of B). This isthe �rst implementation of dqds. Work on the ode was begun in Berkeley in1992 and was ompleted independently by K.Vine Fernando in 1994. Theode does not assume IEEE arithmeti. The program was delivered withoutenough doumentation to understand the reasons for the various features andit turned out to be signi�antly slower than DSTERF (=PWK) for �ndingeigenvalues. This presents the user with a trade-o� between high relative a-uray (when the data warrants it) and speed whereas the original promiseof the dqds algorithm (see [3℄) was that it might dominate PWK on bothounts. The new ode is sometimes faster and sometimes slower than PWKbut the timings are lose exept on the SUN Ultra 30.We now mention a few results from extensive tests on the new version.Arithmeti E�ort. On all ases in our hallenging olletion of test matries# divisions < 3n2;where n is the order of the matrix. It is more informative to give an operationount rather than the number of iterations. The oeÆient 3 was a pleasantsurprise. 46



Rejetion rate. (shift exeeds �min) This varies between 0 and 6% but isusually under 2% exept for the nastiest test matries. Reall that the shiftstrategy must balane the (obvious) ost of a rejeted transform and the(subtle) ost of shifts that are too autious. Clearly there is room for furtherstudy of this feature.IEEE platforms. There is a signi�ant performane payo� for using IEEEarithmeti, in partiular in�nity and NaN arithmeti (see details below). TheIEEE mode permits the ode to remove a test from the inner loop of the dqdstransform, see Setion 13.Notation. Heneforth IEEE and non-IEEE refer to the LAPACK 3.0 DLASQ1subroutine (it supersedes DLASQ1 2.0). The average speedups are as followsin Table 1, for 3 mahines: an HP712, IBM RS6000, and SUN Ultra 30 (theresults on the HP712 and IBM RS6000 were obtained with the LAPACK 3.0ode, June 30, 1999, while on the SUN Ultra 30 with the LAPACK 3.0 ode,modi�ed on Deember 14, 1999).WarningThere are mahines (SGI, for example) whih provide an IEEE option onlyby slowing down every arithmeti operation and thus negating the goal ofthe IEEE oating point standard. On suh mahines the non-IEEE versionof the new ode should be hosen.HP712 IBM RS6000 SUN Ultra 30non-IEEE / IEEE 1.70 1.80 1.28DLASQ1 2.0 / IEEE 2.97 3.16 2.64DSTERF / IEEE 0.92 1.02 0.65Table 1: IEEEPerformane Comparisons.Here are the results on 9 test matries, whih are desribed below, for thesame mahines used in Table 1.Here is the how the tables are organized. There are 6 rows:Row (1) matrix dimension 47



Row (2) Runtime(IEEE) in seondsRow (3) Runtime(non-IEEE) / Runtime(IEEE). This measures the bene�t ofIEEE arithmeti. High relative auray is attained.Row (4) Runtime(DLASQ1 2.0) / Runtime(IEEE). The ratios measure advan-tages of the new ode for IEEE mahines.Row (4*) Runtime(DLASQ1 2.0) / Runtime(non-IEEE). The ratios measure therelative eÆieny of the two versions of dqds whih ignore the advan-tages of IEEE arithmeti.Row (5) Runtime(DBDSQR 1.0) / Runtime(IEEE). The ratios measure im-provement over the Demmel-Kahan (QR) algorithm.Row (6) Runtime(DSTERF) / Runtime(IEEE). This row shows that there is lit-tle or no time penalty (exept on SUNs) for omputing the eigenvaluesto high relative auray.There are 10 olumns, the last nine for the 9 test matries, and the �rst forthe Average over all these. All runs are double preision.HP712From Table 2, we see that IEEE speeds up the ode 27% to 83%, 70% onaverage. The speed up over DLASQ1 2.0 is 1.40x to 7.48x, average 2.97x.The speedup over the DBDSQR 1.0 averages 4.88x. The ode is sometimesfaster and sometimes slower than DSTERF, 8% slower on average, but fasterif Matrix #4 is omitted.IBM RS6000From Table 3, we see that IEEE speeds up the ode 57% to 102%, 80% onaverage. The speed up over DLASQ1 2.0 is 1.34x to 8.52x, average 3.16x.The speedup over DBDSQR 1.0 averages 5.37x. The ode is sometimes fasterand sometimes slower than DSTERF, 2% faster on average, 8% if Matrix #4is omitted.SUN Ultra 30From Table 4, we see that IEEE speeds up 34%, 28% on average. The speedup over DLASQ1 2.0 is 1.15x to 7.82x, average 2.64x. The speedup over48



Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.08 0.21 0.25 0.01 0.77 2.59 3.92 3.72 2.95(3) 1.70 1.61 1.78 1.83 1.27 1.73 1.77 1.75 1.76 1.82(4) 2.97 1.40 7.48 1.78 4.18 1.57 1.60 1.40 1.52 5.82(4*) 1.78 0.87 4.20 0.97 3.29 0.91 0.90 0.80 0.86 3.20(5) 4.88 3.36 4.51 8.82 3.00 4.66 4.72 5.10 4.62 5.14(6) 0.92 0.66 1.01 1.21 0.27 0.99 0.99 1.09 1.01 1.09Table 2: HP712Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.08 0.20 0.24 0.01 0.73 2.68 4.36 3.88 2.85(3) 1.80 1.68 1.92 1.95 1.57 1.89 1.85 1.56 1.79 2.02(4) 3.16 1.48 8.52 1.95 5.29 1.82 1.69 1.34 1.59 4.73(4*) 1.74 0.88 4.44 1.00 3.37 0.96 0.91 0.86 0.89 2.34(5) 5.37 3.68 4.90 9.55 5.43 5.17 4.76 4.78 4.66 5.44(6) 1.02 0.69 1.23 1.24 0.57 1.21 1.11 0.97 1.12 1.10Table 3: IBM RS6000DBDSQR 1.0 averages 2.75x. The ode is 35% slower than DSTERF onaverage, 31% if Matrix #4 is omitted.Avg #1 #2 #3 #4 #5 #6 #7 #8 #9(1) 330 494 496 500 966 1687 2000 2000 2053(2) 0.04 0.08 0.06 0.004 0.40 1.40 1.94 2.04 1.57(3) 1.28 1.23 1.34 1.29 1.20 1.26 1.28 1.33 1.27 1.28(4) 2.64 1.23 7.82 1.35 4.61 1.25 1.27 1.15 1.19 3.91(4*) 2.06 1.00 5.85 1.04 3.86 0.99 0.99 0.86 0.94 3.04(5) 2.75 2.11 3.29 3.74 2.24 2.54 2.51 3.03 2.46 2.81(6) 0.65 0.51 0.89 0.72 0.34 0.66 0.64 0.77 0.65 0.71Table 4: SUN Ultra 3049



Desriptions of test matries: all exept #7 and #8 have lusters of losevalues.#1 330. This is a glued Wilkinson matrix-type bidiagonal B. Start with an11 by 11 bidiagonal with diag = (1,11,21,31,41,51,41,31,21,11,1) and 10o�-diagonal 1's. 30 opies of this are joined together by an o�-diagonalentry  = 10�4.The next 2 matries were produed by Dr. I. S. Dhillon, IBM, Almaden.#2 inder 494. The eigenvalues are seleted in geometri progression frommaheps to 1.0 but with a random sign. The leftmost eigenvalue wasapproximately -0.86 so the matrix was translated by 0.86 to make itssmallest eigenvalue maheps. Consequently there is a onentration at0.86.#3 inder 496. A tight luster of 247 eigenvalues at maheps, another tightluster of 248 at 2.0, and a singleton at 1.0.#4 lapak 500. A random bidiagonal matrix with eah entry of the formex where x is hosen uniformly from the interval [2 ln(ulp); �2 ln(ulp)℄.For double preision ulp � 2 � 10�16.Three symmetri tridiagonal matries supplied by George Fann of thePai� Northwest Laboratories (Washington). They arise from re-dution to tridiagonal form of matries generated in the modeling ofmoleules using Moller Plesset theory. The �rst two arrived positivede�nite and the third was made so by a suitable translation. Theirhief feature is the presene of large lusters of eigenvalues agreeing tomore than three deimals.#5 fann 966, #6 fann 1687, #9 fann 2053#7 tridiagonal [1 2 1℄ matrix.#8 bidiagonal from random normal(0,1) dense matrix (a "random" exam-ple).Additional experiments. 50



Additional tests were performed on the SUN Ultra 30, using matries de�nedin the same way as #4 above. We looked at the smallest eigenvalues ofthe matries to see the e�ets of underow, as shown in Tables 5, 6 and7. We have paid a modest performane penalty in order to guard againstunneessary underows, see Setion 1.2, and these examples show the reward.DLASQ1 2.0 does not deliver high relative auray in the small eigenvaluesin these admittedly extreme ases.Referenes[1℄ P. Deift, T. Nanda, and C. Tomei, ODEs and the Symmetri EigenvalueProblem, SIAM. J. Num. Anal.,vol. 20 (1983).[2℄ J. Demmel and W. Kahan, `Aurate singular values of bidiagonal ma-tries'. SIAM J. Si. Stat. Comput., vol. 11 (1990), pp. 873{912.[3℄ K. V. Fernando and B. N. Parlett, `Aurate Singular Values and Di�er-ential qd Algorithms'. Numerishe Mathematik, vol. 67, (Marh 1994),no. 2, pp. 191-229.[4℄ `Standard for Binary Floating Point Arithmeti', ANSI/IEEE, Standard754-1985, New York, 1985.[5℄ Ren-Cang Li, `Relative perturbation theory: (I) Eigenvalue and singularvalue variations'. SIAM J. Matrix Anal. Appl., vol. 19 (1998), pp. 956{982.[6℄ R. C. Li, `On Deating Bidiagonal Matries'. Manusript, Dept. ofMathematis, University Of California, Berkeley, 1994.[7℄ B. N. Parlett and I. S. Dhillon, `Fernando's Solution to Wilkinson'sProblem: An Appliation of Double Fatorization'. Linear Algebra andIts Appliations, vol. 267 (1997), pp. 247-279.[8℄ B. N. Parlett, `The Symmetri Eigenvalue Problem'. (2nd Edition)SIAM, Philadelphia, 1998. 398 pp.[9℄ H. Rutishauser, `Der Quotienten-Di�erenzen-Algorithmus' Z. Angew.Math. Phys., vol. 5 (1954), pp. 233{251.51



i DLASQ1 3.0 DLASQ1 2.0 DBDSQR 1.01 5.054705201724986D-201 0.000000000000000D+00 5.054705201724984D-2012 3.317864966646925D-149 0.000000000000000D+00 3.317864966646925D-1493 4.733752490783757D-144 0.000000000000000D+00 4.733752490783753D-1444 9.828918027083800D-111 9.828918027083799D-111 9.828918027083799D-111... Table 5: n = 176, �max =1.768773459351182D+31.i DLASQ1 3.0 DLASQ1 2.0 DBDSQR 1.01 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+002 1.057826100728532D-155 0.000000000000000D+00 1.057826100728532D-1553 3.333457324674396D-145 0.000000000000000D+00 3.333457324674396D-1454 4.796619388807402D-145 0.000000000000000D+00 4.796619388807396D-1455 2.332162748580873D-94 2.332162748580872D-94 2.332162748580873D-94... Table 6: n = 220, �max =1.222681157167759D+31.i DLASQ1 3.0 DLASQ1 2.0 DBDSQR 1.01 0.000000000000000D+00 0.000000000000000D+00 0.000000000000000D+002 1.609689649050070D-255 0.000000000000000D+00 1.609689649050069D-2553 7.950613279965629D-223 0.000000000000000D+00 7.950613279965628D-2234 1.604282196061483D-219 0.000000000000000D+00 1.604282196061484D-2195 2.682262848923080D-186 0.000000000000000D+00 2.682262848923082D-1866 1.347884608105250D-164 0.000000000000000D+00 1.347884608105250D-1647 2.474348548254357D-146 0.000000000000000D+00 2.474348548254356D-1468 4.886735556232942D-124 4.886735556232942D-124 4.886735556232941D-124... Table 7: n = 343, �max =1.147283779644497D+31.52



[10℄ H. Rutishauser, `Solution of eigenvalue problems with the LR-transformation'. Nat. Bur. Standards Appl. Math. Series, vol. 49 (1958),pp. 47{81.[11℄ H. Rutishauser, `Letures on Numerial Mathematis', Birkh�auser,Boston,1990.[12℄ D. S. Watkins, Isospetral Flows, SIAM Rev., vol. 26 (1984), pp. 379{391.[13℄ D. S. Watkins and L. Elsner, Self-Similar Flows, Linear Algebra and ItsAppliations, vol. 110 (1988), pp. 213{242.
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