

 1

An End-to-End Approach to Globally Scalable Network Storage

Micah Beck, Terry Moore, James S. Plank

{mbeck, tmoore, jplank}@cs.utk.edu

Abstract

This is a position paper on applying the principles of the end-to-end approach to network storage. While

it may seem to be a contradiction to end-to-end arguments to consider putting storage in the network, we

argue that not only is there no contradiction, but that adherence to end-to-end principles is the key to

achieving true scalability of shared storage. We discuss end-to-end arguments with respect to several
properties of network storage, and then describe the Internet Backplane Protocol and the exNode, which

are tools that have been designed to create a network storage fabric that adheres to end-to-end principles.

The name for this approach is Logistical Networking, and we believe it is fundamental to achieve truly

scalable communication.

1. Introduction

Logistical Networking seeks to model communication in both its synchronous and asynchronous aspects.

One of its essential goals, therefore, is to create a resource fabric that unifies the co-management and co-
scheduling of data transport and data storage, and that does so in a way that can scale up in terms of the

number of users and nodes it supports, the range of geographic, network and administrative boundaries it

spans, and the level of provisioning it accommodates. Our view is that if end-to-end design principles are

applied to network storage, then a scalably sharable communicative infrastructure with persistence can

be created that will increase the efficiency, performance, and functionality of distributed applications by

providing a general framework for the flexible co-management and co-scheduling of data transport and

storage.

Our position is that introducing a highly flexible mechanism for buffer management that is based on the

application of end-to-end principles to storage will change the way that networking is done.

2. Networking, Storage, and End-to-End Arguments

Consider a generalized scenario in which a quantum of data originates from a node Ns at time ts and either

does or does not arrive at a destination at a node Nr at time tr, and if it does arrive it may be corrupted.

If Ns and Nr can be members of a globally scalable network, and tr-ts is a delay that the delivery

mechanism seeks in general to minimize, then this scenario fits the characteristics of layers 1 through 3 of

the network stack. Under these conditions, minimizing both the delay and the probability of corruption,

while at the same time maximizing the probability of delivery, is understood to be problematic.

Sometimes one of these properties has to be compromised for the others.

If Ns and Nr are either identical or members of a small, closed network and there is no a priori bound on tr-

ts, then this scenario fits the conventional characterization of a storage device connected directly to a node
or a storage area network. It is traditionally understood that for closely coupled storage, delay and

probability of corruption can be very low while availability is very high.

The characterization of data delivery in the network has led to the adoption of the end-to-end approach

(also known as “end-to-end arguments” or “principles” [1, 2]) to network services. One simple

formulation of the end-to-end principle is that any guarantees in a communication over and above a bare

 2

minimum of functionality ought to be applied at the endpoints. Although greater complexity and

functionality in the middle of the network may enhance performance or reliability, the ultimate

responsibility for ensuring that communications have the required properties, which may vary with the

application, rests on the endpoints. The charm of the end-to-end approach stems from the fact that it does
not rely on the network to be timely or accurate in the delivery of any particular packet, only that high

delay and corruption be of sufficiently low probability and be inflicted fairly on competing network

participants. This allows for a high degree of autonomy and faulty behavior in the operation of the

network, and leads to the ultimate goal of global network architecture: scalability!

But application programmers have a difficult time using services that are unpredictable in every

dimension, which means that the end-to-end approach requires that higher software layers be developed

in order to implement more predictable services on top of the unpredictable lower layers. TCP achieves
this by requiring the sender Ns to maintain a copy of all data until its receipt is corroborated by the

receiver Nr. Of course the construction of new services that are predictable in one dimension tends to

burden the resources of the endpoints or to worsen unpredictability in other dimensions. TCP, for

instance, achieves a high probability of accuracy at the cost of increased variation in delay and lowered

availability.

The conventional characterization of closely coupled storage given above makes it clear that the end-to-
end approach is not relevant in that case. If a storage device can be relied upon to operate with

predictable delay, high accuracy and high availability, then it can be used without the burden of

implementing layered end-to-end services. As long as the storage device can be relied upon, the writer Ns

and reader Nr can be kept simple.

However, assuming that storage is reliable can impose a cost if the storage fails. Until the advent of

cheap, unreliable disks for personal computers, the only approach to mitigating this cost was redundant
storage of data on highly reliable storage systems. Of course, reliability comes at a price, and the price of

reliable storage is quite high – redundant storage on reliable disks was reserved for mission-critical

systems.

The advent of cheap, unreliable disks led to the realization that cheap and reliable storage can be

implemented by using storage devices that have a higher probability of failure. By weakening their

assumptions about the high availability of storage, the designers of RAID storage can indeed make use of

cheap and unreliable disks [3]. However, reliability has to be regained by layering algorithms for
redundantly encoded storage of data on multiple disks and, in the face of failure, active reconstruction of

the missing data. While these algorithms are often implemented in hardware, they unmistakably form a

layer that is above the physical storage and provides greater predictability.

It is interesting to note that the developers of RAID decided to weaken their assumptions about storage in

only one dimension: availability. Classical RAID algorithms rely strongly on the assumption that if data

is retrieved from a storage device it is retrieved accurately, and these algorithms will fail if this
assumption is violated. Weakening the assumption of accuracy leads to imposing the burden of checksum

calculation on higher layers that the developers of RAID sought to avoid. This decision has in fact caused

problems due to the use of very inexpensive disks in RAID systems that display not only low availability

but can also be inaccurate [4].

Globally scalable network storage, meaning storage systems attached to the global data transmission

network and accessed from arbitrary endpoints, presents a problem because it does not fit the

conventional characterization of closely coupled storage. As in data transmission, Ns and Nr can be
different members of the network, but as in storage there is no a priori bound on tr-ts. Because it relies on

the network, delay, accuracy and availability cannot be controlled. In other words, the shortcuts that are

 3

available to closely coupled storage do not apply to network storage. The solution is to embrace the end-

to-end approach.

The end-to-end approach to network storage is an extension of the design approach of RAID, but taken to
the extreme, abandoning strong assumptions of predictable delay and high accuracy along with high

availability. In the world of scalably sharable storage, data written/sent to storage may or may not be

accurately retrievable by the reader/receiver. While some basic guarantees may be provided by network

storage, we accept that the stronger they are the more likely they are to be violated, resulting in failure of

the network storage service as perceived by the endpoint.

The rest of this paper will consider a number of formulations of the possible properties of network

storage, the implications of those properties in the implementation and robustness of network storage
services, and the impact on the service provided to endpoints. We will discuss the Internet Backplane

Protocol, an experimental end-to-end storage service that is being deployed internationally and compare it

to other network storage approaches. Finally we will discuss Logistical Computing and Internetworking,

an approach to networked information resources that is based in the principles of the end-to-end approach.

3. End-to-End Properties of Network Storage

3.1 Availability

In any network setting, availability of stored data is contingent on both the availability of the storage
system(s) on which it is stored and on the connectivity to those systems. On simple attached disk

systems, both of these factors are of high enough reliability that users typically deal with issue of

availability only in an ad hoc fashion – they make periodic backups. RAID systems lower the probability

of disk failures to another degree, but do nothing to address the issue of communication failures. This is

because catastrophic communication failures typically do not happen between a disk and the processor to

which it is attached.

Storage Area Networks (SANs) have embraced the model of the directly-attached disk, inheriting the

assumption that connectivity will not fail unless the entire system fails catastrophically. This leads us to

question their applicability in the wide area.

In a scalable Wide Area Network (WAN), storage resources can be intermittently unavailable (or

available only with inadequate quality of service) due to a number of conditions in the network, including

traffic congestion, routing problems, topology changes and malicious interference. These conditions are
resolved in time frames ranging from less than a second to longer than days. As such, a variety of end-to-

end strategies should exist for ensuring availability. These range from simple retry, to redundant data

accesses spread across the network (augmented with RAID-like error correction to reduce data

redundancy), to maintinaing high-latency archival backups. Obviously, these algorithms must be

implemented at the end-point in order to ensure delivery to the end-point and in many cases must be

sensitive to the requirements of the end-point operating system, application or user. We believe the

design of Venti [5], where storage blocks are indexed by 160-bit hashes of their data, may be the right

approach to unifying the various end-to-end strategies for ensuring availability.

3.2 Correctness

Assumptions about the accuracy of storage systems have changed over time. At one time, tape was

considered unreliable due to environmental factors, while fixed disk was considered reliable. Therefore,
data stored on tape was verified using checksums while data on disk was not. This assumption underlies

the simplifying assumption in classical RAID systems, that disk storage fails only through corruption of

 4

entire sectors, which is easily detected by the hardware controller. However, the advent of cheap, mass-

produced disks for personal computers has given rise to disk subsystems that have a wider variety of

complex failure modes, including the undetected delivery of incorrect data [6].

In a SAN, the assumption is that RAID storage systems have sufficient internal checking to provide

essentially perfect accuracy and the storage network itself uses highly reliable protocols. The fact that

SAN is deployed in highly controlled environments leads to the assumption that the composition of

reliable components will be reliable. Whether or not this is a reasonable assumption in the SAN, an end-

to-end approach to the WAN requires that data accuracy be checked by the end-systems, meaning the

ultimate writers and readers of the data. This yields protection not only against errors in the composition

of reliable disk and network components, but also against unreliable or malicious components that might

be introduced undetectably in the Wide Area Network. Once again, the design of Venti may prove
beneficial here, since the handle to data is a checksum of the data itself.

3.3 Security

Directly attached storage and physically localized SAN solutions have an assumed level of physical
security that can be breached only by highly intrusive means (although in the case of SANs,

eavesdropping is easier to imagine). However, once SAN is extended to campus or metropolitan area

networks, and certainly if it is tunneled across the WAN, this assumption of security is lost. In IP

networking, there is no assumption that intermediate nodes are trusted and so security must be

implemented through end-to-end application of cryptographic techniques.

3.4 Unbounded Size

While every data management system has capacity limits, they are often assumed to be large enough to be

ignored by applications and managed in the time-frame of months or even years through administrative

mechanisms such as rearrangement of file systems on multiple disk volumes. The assumption that an

application can make unbounded allocations thus rests on assumptions that do not hold in the WAN: that

the use of the storage system is limited to a single administrative domain, and that it is within the power

of the administrators of that domain to control provisioning as required.

In the WAN, the application must assume that any particular storage resource may be used by other

administrative domains and so may not be able to fulfill a given request for storage resources. What this

means is that the end-system must take responsibility for anticipating or arranging for the availability of

resources, potentially distributed across the network in order to accommodate a request of a particular

size.

3.5 Unbounded Duration

Persistence, taken to mean unbounded duration, is often taken to be the defining characteristic of storage.

However, the implication of assuming unbounded duration for every allocation of storage resources is

that it is impossible for a storage resource manager to make an allocation for any user other than those for

whom that manager is willing to commit those storage resources indefinitely. Thus, for applications

where allocations can be useful even if they only last a limited time, and for which it is valuable to be able
to make allocations for unknown users, the assumption of unbounded allocation makes the sharing of

storage impossible. The result is that in the context of public networking, end-to-end delivery of

datagrams is the only allowable instance of resource sharing.

Thus, bounds on the duration of allocation are necessary in order to allow scalable sharing of storage

resources, but it only enables applications in which allocations of limited duration can be used. Since

 5

unbounded duration is the normal assumption in applications that make use of storage, it is worth asking

whether limited-duration storage allocations are even useful.

We have two answers to this question:

1. There are many natural uses of storage of limited duration. Two simple examples are

checkpointing and caching. In checkpointing, a snapshot of a computation state is stored, so that the

computation may be restored from the snapshot in the event of a failure. Typically, once a new

checkpoint has been taken, the old one may be discarded. Since checkpoints are often taken at fixed

intervals, checkpoint files are inherently of limited duration. In content delivery, data is often cached

near anticipated receivers for performance enhancement. However, if the cached data is not there,

the data may be retrieved from a faraway source. Thus, limited-duration storage fits caching
applications natrually.

2. All physical storage is inherently limited in duration, albeit on the scale of years. The assumption

of permanence requires a correlative assumption of active management by administrative means.
The problem with such active management is that it interferes with the predictable and correct

functioning of the storage system, often requiring periods of unavailability. The disruptions of

service caused by changes in generation of media can be severe enough to require that end-users be

notified and take account of them.

When data must be managed over periods of time that are longer than can be arranged in a single

allocation (either because the resource manager is unwilling to grant a long enough allocation to the user
in question, or because the physical medium cannot support an allocation for a sufficiently long period of

time), end-to-end principles must be used.

A common objection to the applying the end-to-end approach to the duration of storage allocations is that

it requires active management of storage by the end-point. It is commonly viewed as a positive aspect of

unbounded storage allocations that a client can fail, go off-line for other reasons fail to interact with a

storage allocation but it will continue to hold their data until they return. Storage with bounded allocation
cannot be used for the maintenance of state in case of failure of the end-point for unbounded periods of

time. However, if there is a bound on the longest failure, then the duration of allocation can be adjusted

to allow for it. In the case where the end-point can fail indefinitely, it will be necessary to employ storage

that can be permanently allocated, and this will generally require that the end-user is known to the storage

resource manager. We do not rule out unbounded allocations in these cases, but point out that the

solution does not scale, which is fine: typically one uses directly connected or closely coupled storage for

such core state.

4. The Internet Backplane Protocol and the exNode

4.1 IBP: The network layer of the storage stack

In the context of Storage Networking, “IP/Storage integration” means putting IP networking into the

interconnection fabric (i.e. into the data transmission substrate) that underlies the storage pool. For
Logistical Networking, on the other hand, IP/Storage integration means putting storage into the network

infrastructure itself , creating a shared resource fabric that exposes storage resources for general use in the

same way that the Internet now exposes transmission bandwidth for shared use. To create a resource

fabric of this kind that can also scale, we set out to define a new storage stack using a bottom-up and

layered design approach that adheres to the same end-to-end principles that have guided Internet

engineering for two decades [1]. According to this philosophy, the key to achieving flexibility and

 6

scalability lies in defining the right basic abstraction of the physical resource to be shared at the lowest

levels of the stack. For Logistical Networking the Internet Backplane Protocol (IBP) plays this role.

IBP is the lowest layer of the storage stack that is globally

accessible from the network (figure 1). To provide an ideal resource
fabric for Logistical Networking, it must supply an abstraction of

access layer resources (i.e. storage services at the local level) that

has “network transparency”[2]. This means it must satisfy the

following two requirements:

Expose underlying storage resources in order to maximize

freedom at higher levels — The abstraction should create a

mechanism that implements only the most indispensable

and common functions necessary to make the storage
usable per se, leaving it otherwise as primitive as it can be;

all stronger functions must be built on top of this primitive

layer. The goal of providing essential functionality while

keeping the semantics of this layer as weak as possible is to

expose the underlying resources to the broadest range of

purposes at higher layers, and thereby foster ubiquitous

deployment and free developers to innovate.

Enable scalable Internet-style resource sharing — The

abstraction must mask enough of the peculiarities of the

access layer resource (e.g. fixed block size, differing failure modes, and local addressing

schemes) to enable lightweight allocations of those resources to be made by any participant in the

network for their limited use and regardless of who owns them.

To implement this strategy we followed the IP paradigm and modeled the design of IBP on the design of

IP datagram delivery. IP datagram service is based on packet delivery at the link level, but with more
powerful and abstract features that allow it to scale globally. Its leading feature is the independence of IP

datagrams from the attributes of the particular link layer, which is established as follows:

§ Aggregation of link layer packets masks its limits on packet size;

§ Fault detection with a single, simple failure model (faulty datagrams are dropped) masks the

variety of different failure modes;

§ Global addressing masks the difference between local area network addressing schemes and

masks the local network's reconfiguration.

This higher level of abstraction allows a uniform IP model to be applied to network resources globally,
which is crucial to creating the most important difference between link layer packet delivery and IP

datagram service: any participant in a routed IP network can make use of any link layer connection in the

network regardless of who owns it. Routers aggregate individual link layer connections to create a global

communication service. This IP-based aggregation of locally provisioned, link layer resources for the

common purpose of universal connectivity constitutes the form of sharing that has made the Internet the

foundation for a global information infrastructure.

IBP is designed to enable the scalable, relatively unbrokered sharing of storage resources within a
community in much the same manner. Just as IP is a more abstract service based on link-layer datagram

delivery, IBP is a more abstract service based on blocks of data (on disk, tape or other media) that are

managed as "byte arrays." The independence of IBP byte arrays from the attributes of the particular

access layer (which is our term for storage service at the local level) is established as follows:

§ Aggregation of access layer blocks masks the fixed block size;

Figure 1: The network storage stack

for Logistical Networking.

 7

§ Fault detection with a very simple failure model (faulty byte arrays are discarded) masks the

variety of different failure modes;

§ Global addressing based on global IP addresses masks the difference between access layer

addressing schemes.

This higher level byte array abstraction allows a uniform IBP model to be applied to storage resources

globally, which is essential to creating the most important difference between access layer block storage

and IBP byte array service: Any participant in an IBP network can make use of any access layer storage

resource in the network regardless of who owns it. The use of IP networking to access IBP storage

resources creates a global storage service.

Whatever the strengths of this application of the IP paradigm, however, it leads directly to two problems.

First, in the case of storage, the chronic vulnerability of IP networks to Denial of Use (DoU) attacks is

greatly amplified. The free sharing of communication within a routed IP network leaves every local
network open to being overwhelmed by traffic from the wide area network, and consequently open to the

unfortunate possibility of DoU from the network. While DoU attacks in the Internet can be detected and

corrected, they cannot be effectively avoided. Yet this problem is not debilitating for two reasons: on the

one hand, each datagram sent over a link uses only a tiny portion of the capacity of that link, so that DoU

attacks require constant sending from multiple sources; on the other hand, monopolizing remote

communication resources cannot profit the attacker in any way, it can only harm the victim.

Unfortunately neither of these factors hold true for access layer storage resources. Once a data block is
written to a storage medium, it occupies that portion of the medium until it is deallocated, so no constant

sending is required. Moreover it is clear that monopolizing remote storage resources can be very

profitable for an attacker and his applications.

The second problem with sharing storage network-style is that the classic definition of a storage service is

based on processor-attached storage, so it includes strong semantics (near-perfect reliability and

availability) that are difficult to implement in the wide area network. Even with Storage Networking

technologies, which are used in "storage area" or local area networks, these strong semantics can be
difficult to implement and are a common cause of error conditions. When extended to the wide area, it has

so far proved impossible to support such strong guarantees for storage access, but then problems with

strong service semantics in the wide area are not unique to storage systems [7]. Whether or not integrated

IP and Storage Networking technologies can make progress on this front remains to be seen. Logistical

Networking takes a different approach.

We address both of these issues through special characteristics of the way IBP allocates storage:

§ Allocations of storage in IBP can be time limited. When the lease on an allocation expires, the

storage resource can be reused and all data structures associated with it can be deleted. An IBP
allocation can be refused by a storage resource in response to over-allocation, much as routers can

drop packets, and such "admission decisions" can be based on both size and duration. Forcing

time limits puts transience into storage allocation, giving it some of the fluidity of datagram

delivery.

§ The semantics of IBP storage allocation are weaker than the typical storage service. Chosen to

model storage accessed over the network, it is assumed that an IBP storage resource can be

transiently unavailable. Since the user of remote storage resources is depending on so many
uncontrolled remote variables, it may be necessary to assume that storage can be permanently

lost. Thus, IBP is a "best effort" storage service. To encourage the sharing of idle resources, IBP

even supports "volatile" storage allocation semantics, where allocated storage can be revoked at

any time. In all cases such weak semantics mean that the level of service must be characterized

statistically.

IBP storage resources are managed by “depots,” or servers, on which clients perform remote storage

operations. As shown in the Table 1 below, the IBP client calls fall into three different groups:

 8

Storage Management Data Transfer Depot Management

IBP_allocate,

IBP_manage

IBP_store, IBP_load

IBP_copy, IBP_mcopy

IBP_status

Table 1: IBP API calls

The IBP_allocate function is the most important element. IBP_allocate is used to allocate a byte

array at an IBP depot, specifying the size, duration (permanent or time limited) and other attributes. A

chief design feature is the use of capabilities (cryptographically secure passwords). A successful

IBP_allocate returns a set of three capabilities: one for reading, one for writing, and one for

management of the allocated byte array. A more detailed account of the API and its other functions is

available [8] online at (http://loci.cs.utk.edu/ibp/documents/). A description of the status of the current

software the implements the IBP client, servers, and protocol is available at

(http://loci.cs.utk.edu/ibp/software).

4.2 The exNode: A data structure for the flexible aggregation of network storage

From the point of view of the Storage Networking community, it is likely that one of the most striking

(not to say shocking) features of the Logistical Networking storage stack is the way it appears to simply
jettison the well known methods of usage for local area storage, viz. files systems, databases, and VM

mapping. These familiar abstractions can be supported in the logistical paradigm, but that support must

conform to its “exposed-resource” design principles. According to these principles implementing

abstractions with strong properties — reliability, fast access, unbounded allocation, unbounded duration,

etc.— involves creating a construct at a higher layer that aggregates more primitive IBP byte-arrays

below it, where these byte arrays are often distributed at multiple locations. For example, caching requires

that data be held in a home site, but temporary copies are made at various remote sites. Similarly,
replication requires that multiple copies of data exist in various locations for purposes of performance and

fault-tolerance. More advanced logistical applications require that data be explicitly routed through the

network, and thus may have many “homes” throughout their lifetime.

To apply the principle of aggregation to exposed storage services,

however, it is necessary to maintain state that represents such an

aggregation of storage allocations, just as sequence numbers and

timers are maintained to keep track of the state of a TCP session.
Fortunately there is a traditional, well-understood model to follow

in representing the state of aggregate storage allocations. In the

Unix file system, the data structure used to implement aggregation

of underlying disk blocks is the inode (intermediate node). Under

Unix, a file is implemented as a tree of disk blocks with data

blocks at the leaves. The intermediate nodes of this tree are the

inodes, which are themselves stored on disk. The Unix inode

implements only the aggregation of disk blocks within a single
disk volume to create large files; other strong properties are

sometimes implemented through aggregation at a lower level [3]

or through modifications to the file system or additional software

layers that make redundant allocations and maintain additional

state [9, 10].

Following the example of the inode, we have chosen to implement

a single generalized data structure, which we call an external
node, or exNode, in order to manage aggregate allocations that

can be used in implementing network storage with many different strong semantic properties [11]. Rather

Figure 2: The exNode compared to a

Unix inode.

 9

than aggregating blocks on a single disk volume, the exNode aggregates byte arrays in IBP depots to

form something like a file, with the byte arrays acting as disk blocks. We say “something like a file”

because when an exNode uses IBP storage allocations, the time-limited or volatile nature of those

allocations gives it a transient quality that files normally should not have. Two major differences between
exNodes and inodes are that the IBP buffers may be of any size, and the extents may overlap and be

replicated. But the key point about the design of the exNode is that it has allowed us to create storage

abstractions with stronger properties, such as a network file, which can be layered over IBP-based storage

in a way that is completely consistent with the exposed resource approach.

The exNode can used to implement replication for fault-tolerance, storing files in multiple locations so

that the act of downloading may succeed even if many of the copies are unavailable; by breaking the file

up into blocks and storing error correcting blocks calculated from the original blocks (based on parity as

in RAID systems [3]or on Reed-Solomon coding [12], downloads can be robust to even more complex
failure scenarios.

4.3 End-to-End Services for Storage

While the exNode defines a framework for aggregation of IBP capabilities, it also provides a framework

for the addition of metadata that describes the encoding of data in the file or byte array, enabling a variety

of end-to-end services. These services range from the low level, such as the implementation of

redundancy through error correcting codes, to higher level services such as the framing of data into TCP-

like segments and the insertion of checksums on a per-segment basis, or application of strong end-to-end
authentication and encryption of data. These higher-level services allow these end-to-end services to

inform the process of, for instance, obtaining a correct copy of the data for download. In this way, the

exNode is analogous to the state of a TCP connection, and the data stored on disk is an analogous to a

TCP stream.

In fact, the variation in the resemblance of the exNode to a file descriptor, on the one hand, or to the state

of a network connection, on the other, depends on how much control information is actually inserted into
the exNode itself as opposed to being encoded into the data stream. If control information is mostly in the

exNode itself, then the use of the exNode is most like a file descriptor, but if the exNode merely specifies

how control information is encoded in the data stream, then it is like the state of a network connection.

Our implementation of the exNode allows the flexibility for either style of use, and in fact blurs the

distinction to the point that it almost disappears.

5. Other Approaches to Scalable Network Storage

5.1 FTP mirroring, Web Caching and Content Distribution

From the earliest days of the Internet, the traffic and load caused by downloading of popular content from

FTP (and later HTTP) servers led to the widespread use of manual mirroring, which uses redundant

storage at multiple locations in the network topology to localize traffic, spread server load and accelerate

downloads. Because storage was a relatively scarce resource, policy was required to determine which
content would be mirrored at each site, how often updates would be made to ensure consistency and when

a mirror would be removed. Choice of mirror sites was a manual process, requiring an evaluation of the

competence and reliability of the server by the end user. Web caching automated this process and made

policy a simple function of content size and popularity [13]. However, when caching is implemented

without the cooperation of the server there is still a question of consistency that sometimes requires user

intervention to force a download from the origin server. Content Distribution takes the process a step

further, deploying caches that are extensions of the origin server [14]. However, all of this elaborate,
special purpose storage infrastructure is available only to specific application protocols (FTP, HTTP,

streaming media) and in the case of Content Distribution only to paying customers.

 10

5.2 Peer-to-Peer Storage

Peer-to-peer systems such as Napster [15] and Gnutella [16], and experimental approaches, such as Chord

[17] and CANs [18] use shared storage resources provisioned at end-points to implement distributed

content delivery. In such systems, allocations are made by the owner of the end-point and are maintained

and made available at their discretion. A broad community of peers who have no control over availability

or duration uses these allocations. The result is a system in which access to any one allocation is

unreliable but adequate reliability is gained through the aggregation of a large number of replicas of
popular content. The application, free recreational use of rich media content, is also one that can

withstand low reliability.

The fact that all storage allocations are made at end-points means that a large amount of data transfer

between end-points is required in these peer-to-peer architectures, causing a flood of traffic. The use of

servers or caches owned by the content distribution system is ruled out due to need for decentralized

control in peer-to-peer systems (either in an attempt to evade responsibility for redistribution of

copyrighted material or because of a desire to build scalable ad-hoc communities without central
administration). However, if storage could be shared in a sharable, ad-hoc manner within a community

and without assigning responsibility for the stored data to the operator of the storage resource, then peer-

to-peer architectures could be optimized using storage but without compromising their peer-to-peer

nature.

5.2 Multipath Connectivity

The model of storage connectivity defined by Storage Area Networking (SAN) makes assumptions about

the reliability of the network that simply do not scale to the global Internet. In order to leverage the

enormous investment made in SAN, major storage vendors are seeking to deploy SAN tunneled over IP

in networks that are overprovisioned with capacity and multiple paths between endpoints to the degree

that their strong assumptions can be maintained [19]. The result is equivalent to building a private IP
network for the purpose of connecting storage systems. While this may work in restricted cases, it

sacrifices scalability to the global Internet.

5.3 Interplanetary Networking

A fundamental assumption of networking based on datagram delivery is that data links are sufficiently

available to allow end-to-end delivery paths to be present. In cases where connectivity is intermittent, as

is often the case when satellite links are used, an end-to-end path must include storage of data at
intermediate nodes. Terrestrial examples of intermittent connectivity are often thought to be

uninteresting, as they tend to occur in situations where telecommunications infrastructure is inadequate,

and the dogma of the day says that the natural state of man is to be connected and that all of humanity will

eventually be. However, when man takes to space, and communication requires the use of satellite relays,

then even Buck Rodgers will have a problem with end-to-end delivery of datagrams. The answer to this

problem, as formulated by Vint Cerf and the IRTF Interplanetary Networking Working Group [20] is to

use storage-and-forward techniques to relay data asynchronously. End-to-end paths then consist of file

delivery in the style of e-mail. However, this group has not considered making the storage resource
available for sharing by other interplanetary applications that might require management of state [21].

6. Conclusion: Logistical Computing and Internetworking

The end-to-end argument was formulated in the context of IP network architecture, which has as its
defining service the end-to-end delivery of datagrams from sender to receiver. However, as its

 11

progenitors knew, the argument applies more generally to scalable information systems and so, as we

have demonstrated in this paper, a globally scalable service with the sharing of storage can be designed

according to end-to-end principles. The resulting architecture provides a model for extending storage

networking to the wide area and may have a profound impact on the development of that niche of storage
technology. It is our belief that it also provides a model of scalable data networking that offers many

advantages over end-to-end delivery of datagrams while still adhering to end-to-end principles.

Data cannot be communicated within an asynchronous system (one in which sender and receiver do not

share a clock) without using buffers. Thus, the delivery of datagrams, which models the networks as if

they were a single wires with no intermediate storage, inherently hides from users the fact that every

physical layer connection involves send and receive buffers. This virtualization is achieved by

implementing these buffers in fast memory, managing each one using a FIFO discipline and adhering to
fair queuing. While this simplification of the network has obviously been sufficient to provide services

adequate to drive global dominance of IP networking, it is interesting to note that Quality of Service, the

most widely proposed modification of IP datagram routing, is a modification of fair queuing that takes

greater advantage of the power of the fact that router receive buffers can be used to delay datagrams

differentially and thus implement policy.

Logistical Networking is a model of networking that exposes the fact that data is buffered and allowed
that fact to be used to implement novel communication strategies. While data flows between IBP depots

using standard IP communication that hides fast FIFO buffers, the depots themselves implement buffers

that can range from small and fast to huge and slow depending on the medium and architecture of the

depot. Far from being determined by the depot itself, the regimen for using IBP buffers is specified by

the end-user or an active management element outside of the depot. In this sense, the buffers

implemented by the IBP depot are dumber and more passive than the send and receive buffers

implemented in IP routers and end-systems.

Today, the IP network is beset by the introduction of active middleboxes that complicate and in some

cases violate the semantics of datagram delivery. Overlay networks and systems of proxies introduce

storage and buffer management policy that are balkanized with protocols specific to each application

domain, and so miss out on the commonality of services and sharing of resources that IP has made

possible in datagram delivery. In most of these cases, the designers are oblivious to end-to-end

considerations or consciously abandon them in the mistaken belief that this orthodox route to scalability

does not apply to systems that explicitly manage state.

It is our belief that the widespread deployment of storage Internetworking on the model of IBP will

fundamentally increase the power and flexibility of the network, and will affect the way that middleware

and application developers think about distributed system architecture and scalable communication.

While we are working most directly with researchers in the areas of Grid computing, distributed

visualization and multimedia content delivery, we forsee even greater potential in areas which are

currently too reliant on management of state to be spread across the network. The direction is towards a
blurring of the artificial divide between the processor bus, system local and wide area networks, between

flexible resource scheduling and scalable services. In this vision, network architecture evolves into a

radically decentralized form of computer architecture, and the world’s information systems co-manage

shared data transport, storage and computation as a unified fabric of shared resources.

References:

1. J. H. Saltzer, D. P. Reed, and D. D. Clark, "End-to-End Arguments in System Design," ACM

Transactions on Computer Systems , vol. 2, no. 4, pp. 277-288, November, 1984.

 12

2. D. P. Reed, J. H. Saltzer, and D. D. Clark, "Comment on Active Networking and End-to-End

Arguments," IEEE Network, vol. 12, no. 3, pp. 69-71, May/June, 1998.

3. P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson, "RAID: High-

performance, reliable secondary storage," ACM Computing Surveys, vol. 26 pp. 145-185,1994.

4. Personal communication: Network Applicance, 2001

5. S. Quinlan and S. Dorward, "Venti: a new approach to archival storage," presented at USENIX

File and Storage Technologies (FAST) 2002, Monterey, CA, January 23-30, 2002.

6. Personal communication: Quantum, 2001

7. J. Waldo, G. Wyant, A. Wollrath, and S. Kendall, "A note on distributed computing," Sun

Microsystems, Technical Report SMLI, TR-94-29, November, 1994.

8. J. S. Plank, A. Bassi, M. Beck, T. Moore, M. Swany, and R. Wolski, "Managing Data Storage in

the Network," IEEE Internet Computing, vol. 5, no. 5, pp. 50-58, September/October, 2001.

9. J. H. Morris, M. Satyanarayan, M. H. Conner, J. H. Howard, D. S. H. Rosenthal, and F. D. Smith,

"Andrew: A Distributed Personal Computing Environment," Communications of the ACM , vol.

29, no. 3, pp. 184-201, March, 1986.

10. R. W. Watson and R. A. Coyne, "The Parallel I/O Architecture of the High-Performance Storage

System (HPSS)," presented at IEEE Mass Storage Systems Symposium, 1995.

11. A. Bassi, M. Beck, and T. Moore, "Mobile Management of Network Files," presented at Third

Annual International Workshop on Active Middleware Services, San Franscisco, August 6, 2001.

12. J. S. Plank, "A Tutorial on Reed-Solomon Coding for Fault-Tolerance in RAID-like Systems,"

Software -- Practice and Experience, vol. 27, no. 9, pp. 995-1012, September, 1997.

13. M. Rabinovich and O. Spatscheck, Web Caching and Replication: Addison-Wesley, 2001.

14. D. C. Verma, Content Distribution Networks: An Engineering Approach: Wiley, 2001.

15. Napster, http://www.napster.com, 2001.

16. Gnutella, http://gnutella.wego.com/, 2001.

17. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. B. (MIT), "Chord: A Scalable Peer-To-Peer
Lookup Service for Internet Applications," presented at ACM SIGCOMM, 2001.

18. S. Ratnasamy, P. Francis, M. Handley, and R. Karp, "A Scalable Content-Addressable Network,"

presented at ACM SIGCOMM, 2000.

19. Personal communication: D. Black,EMC, 2002

20. V. Cerf, S. Burleigh, A. Hooke, L. Torgerson, R. Durst, K. Scott, E. Travis, and H. Weiss,

Interplanetary Internet (IPN): Architectural Definition, IETF Internet Draft,

http://www.ietf.org/internet-drafts/draft-irtf-ipnrg-arch-00.txt, 2001.

21. Personal communication: V. Cerf, 2002

