
A Comparison of Counting and Sampling Modesof Using Performane Monitoring HardwareShirley V. MooreInnovative Computing Laboratory, University of TennesseeKnoxville, TN 37996-3450 USAshirley�s.utk.eduhttp://il.s.utk.edu/Abstrat. Performane monitoring hardware is available on most mod-ern miroproessors in the form of hardware ounters and other registersthat reord data about proessor events. This hardware may be usedin ounting mode, in whih aggregate events ounts are aumulated,and/or in sampling mode, in whih time-based or event-based samplingis used to ollet pro�ling data. This paper disusses uses of these twomodes and onsiders the issues of eÆieny and auray raised by eah.Impliations for the PAPI ross-platform hardware ounter interfae arealso disussed.1 IntrodutionMost modern miroproessors provide hardware support for olleting perfor-mane data. Performane monitoring hardware usually onsists of a set of regis-ters that reord data about the proessor's funtion. These registers range fromsimple event ounters to more sophistiated hardware for reording data suh asdata and instrution addresses for an event, and pipeline or memory lateniesfor an instrution. The performane monitoring registers are usually aompa-nied by a set of ontrol registers that allow the user to on�gure and ontrolthe performane monitoring hardware. Many platforms provide hardware andoperating system support for delivering an interrupt to performane monitoringsoftware when a ounter overows a spei�ed threshold.Hardware performane monitors are used in one of two modes: 1) ountingmode to ollet aggregate ounts of event ourrenes, or 2) statistial samplingmode to ollet pro�ling data based on ounter overows. Both modes have theiruses in performane modeling, analysis, and tuning, and in feedbak-diretedompiler optimization. In some ases, one mode is required or preferred overthe other. Platforms vary in their hardware and operating system support forthe two modes. Some platforms, suh as IBM AIX Power3, primarily supportounting mode. Some, suh as the Compaq Alpha, primarily support pro�lingmode. Others, suh as the IA-64, support both modes about equally well. Eithermode may be derived from the other. For example, even on platforms that donot support hardware interrupt on ounter overow, timer interrupts an be



2 Shirley V. Mooreused to periodially hek for ounter overow and thereby implement statistialsampling in software. Or, if the platform primarily supports statistial pro�ling,event ounts an be estimated by aggregating pro�ling data. However, the degreeof platform support for a partiular mode an greatly a�et the auray of thatmode.Although aggregate event ounts are sometimes referred to as \exat ounts",and pro�ling is statistial in nature, soures of error exist for both modes. As inany physial system, the at of measuring perturbs the phenomenon being mea-sured. The ounter interfaes neessarily introdue overhead in the form of extrainstrutions, inluding system alls, and the interfaes ause ahe pollution thatan hange the ahe and memory behavior of the monitored appliation. Theost of proessing ounter overow interrupts an be a signi�ant soure of over-head in sampling-based pro�ling. Furthermore, a lak of hardware support forpreisely identifying an event's address may result in inorret attribution ofevents to instrutions on modern super-salar, out-of-order proessors, therebymaking pro�ling data inaurate.Beause of the wide range of performane monitoring hardware available ondi�erent proessors and the di�erent platform-dependent interfaes for aessingthis hardware, the PAPI projet was started with the goal of providing a stan-dard ross-platform interfae for aessing hardware performane ounters [1℄.PAPI proposes a standard set of library routines for aessing the ounters aswell as a standard set of event to be measured. The library interfae onsists ofa high-level and a low-level interfae. The high-level interfae provides a simpleset of routines for starting, reading, and stopping the ounters for a spei�ed listof events. The low-level interfae allows the user to manage events in EventSetsand provides the more sophistiated funtionality of user allbaks on ounteroverow and SVR4-ompatible statistial pro�ling. Referene implementationsof PAPI are available for a number of platforms (e.g., Cray T3E, SGI IRIX, IBMAIX Power, Sun Ultraspar Solaris, Linux/x86, and Linux/IA-64). The imple-mentation for a given platform attempts to map as many of the standard PAPIevents as possible to the available platform-spei� events. The implementationalso attempts to use available hardware and operating system support { e.g., forounter multiplexing, interrupt on ounter overow, and statistial pro�ling.The remainder of the paper is organized as follows: Setion 2 disusses usagemodels of hardware performane monitoring. Setion 3 disusses auray issues.Setion 4 explores impliations for the PAPI interfae. Setion 5 gives onlusionsand desribes plans for future work.2 Usage ModelsThere are basially two models of using performane monitoring hardware:{ the ounting model, for obtaining aggregate ounts of ourrenes of spei�events, and



Counting vs. Sampling Modes of Performane Monitoring 3{ the sampling model, for determining the frequenies of event ourrenes pro-dued by program loations at the funtion, basi blok, and/or instrutionlevels.The �rst step in performane analysis is to measure the aggregate perfor-mane harateristis of the appliation or system under study. Aggregate eventounts are determined by reading hardware event ounters before and after theworkload is run. Events of interest inlude yle and instrution ounts, aheand memory aess at di�erent levels of the memory hierarhy, branh mispre-ditions, and ahe oherene events. Event rates, suh as ompleted instrutionsper yle, ahe miss rates, and branh mispreditions rates, an be alulatedby dividing ounts by the elapsed time.The pro�ling model an be used by appliation developers, optimizing ompil-ers and linkers, and run-time systems to relate performane problems to programloations. With adequate support for symboli program information, appliationdevelopers an use pro�ling data to identify performane bottleneks in terms ofthe original soure ode. Appliation performane analysis tools an use pro�lingdata to identify performane ritial funtions and basi bloks. Compilers anuse pro�ling data in a feedbak loop to optimize instrution shedules.For example, on the SGI Origin the perfex and ssrun utilities are availablefor analyzing appliation performane [11℄. perfex an be used to run a programand report either "exat" ounts of any two seleted events for the R10000 (orR12000) hardware event ounters, or to time-multiplex all 32 ountable eventsand report extrapolated totals. This data is useful for identifying what perfor-mane problems exist (e.g., poor ahe behavior identi�ed by large number ofahe misses). ssrun an be used to run the program in sampling mode in orderto loate where in the program the performane problems are ourring.Tools suh as vprof [13℄ and HPCView [6℄ make use of pro�ling data providedby sampling mode to analyze appliation performane. vprof provides routinesto ollet statistial pro�ling information, using either time-based or ounter-based sampling (using PAPI), as well as both ommand-line and graphial toolsfor analyzing exeution pro�les on Linux/Intel mahines. HPCView uses datagathered using ssrun on SGI R10K/R12K systems, or uprofile on CompaqAlpha Tru64 Unix systems, followed by \prof -lines", and orrelates this datawith program soure ode in a browsable display.Aggregate ounts are frequently used in performane modeling to parame-terize the models. For examples, the methodology desribed in [12℄ generates{ a mahine signature whih is a haraterization of the rate at whih a ma-hine arries out fundamental operations independent of any partiular ap-pliation, and{ an appliation pro�le whih is a detailed summary of the fundamental oper-ations arried out by the appliation independent of any partiular mahine.The method applies an algebrai mapping of an appliation pro�le onto a ma-hine signature to arrive at a performane predition. A benhmark alled MAPS



4 Shirley V. Moore(Memory Aess Pattern Signature) measures the rate at whih a single proes-sor an sustain rates of loads and stores depending on the size of the problem andthe aess pattern. Hardware performane ounters are used to measure ahehit rates of routines and loops in an appliation whih are then mapped onto theMAPS urve. Similarly, the \bak-of-the-envelope" performane predition tooldesribed in [10℄ makes use of aggregate event ounts to onstrut hardware andsoftware pro�les. A given hardware and software pro�le pair are then ombinedin algebrai equations to produe performane preditions.3 Auray IssuesPrevious work has shown that hardware ounter data may not be aurate,espeially when the granularity of the measured ode is insuÆient to ensurethat the overhead introdued by ounter interfaes does not dominate the eventounts [8℄. The analysis in [8℄ made use of three mirobenhmarks to study eightMIPS R12000 events. For eah of the mirobenhmarks, predited events ountswere ompared with the measured ounts for both the perfex and libperfexinterfaes. For the loop benhmark, the ounts measured using libperfex werewithin 5 perent of the predited ounts for four events when the number of loopiterations was at least 250. However, to get the ounts generated using perfexwithin 5 perent of the predited ounts, the number of loop iterations had to beat least 100,000. To relate this work to the PAPI interfae on various platforms,we measured the overheads for starting/stopping and for reading the ountersin terms of proessor yles. These results, as well as overheads we measured forlibperfex, are shown in the table below.Linux/x86 Linux/IA-64 Cray T3E IBM Power3 MIPS R12KPAPI start/stop 356 2210 353 1428 2483(yles/all pr)PAPI read 1299 6526 915 3126 9810(yles/all)libperfex start/read 5842(yles/all pr)Sine the onlusion in [8℄ is that, given the overhead of the ounter interfaeon a platform, the auray of ounter data depends heavily on the granularityof the measured ode, we would expet the number of iterations required to getwithin 5 perent error using to be lose to the 250 required for libperfex on theSGI MIPS R12K, with the exeption of the PAPI SGI MIPS R12K interfae,whih appears to be less eÆient that libperfex.Many pro�ling tools rely on gathering samples of the program ounter value(PC) on a periodi ounter overow interrupt. Ideally, this method should pro-due a PC sample histogram where the value for eah instrution address is



Counting vs. Sampling Modes of Performane Monitoring 5proportional to the total number of events aused by that instrution. On mod-ern out-of-order proessors, however, it is often diÆult or impossible to identifythe exat instrution that aused the event.The Compaq Pro�leMe approah addresses the problem of aurately at-tributing events to instrutions by sampling instrutions rather than events[4,5℄. An instrution is hosen to be pro�led whenever the instrution ounteroverows a spei�ed random theshold. As a pro�led instrution exeutes, infor-mation is reorded inluding the instrution's PC, the number of yles spent ineah pipeline stage, whether the instrution aused I-ahe or D-ahe misses,the e�etive address of a memory operand or branh target, and whether theinstrution ompleted or if not, why it aborted. By aggregating samples from re-peated exeutions of the same instrution, various metris an be estimated foreah instrution. Information about individual instrutions an be aggregatedto summarize the behavior of larger units of ode. The Pro�leMe hardware alsosupports paired sampling, whih permits the sampling of multiple instrutionsthat may be in ight onurrently and provides information for analyzing inter-ations between instrutions.To preisely identify an event's address, the Itanium proessor provides a setof event address registers (EARs) that reord the instrution and data addressesof data ahe misses for loads, or the instrution and data addresses of data TLBmisses [7℄. To use EARs for statistial sampling, one on�gures a performaneounter to ount an event suh as data ahe misses or retired instrutions andspei�es an overow threshold. The data ahe EAR repeatedly aptures theinstrution and data address of atual data ahe load misses. When the ounteroverows, an interrupt is delivered to the monitoring software. The EAR in-diates whether or not a quali�ed event was aptured, and if so, the observedevent addresses are olleted by the software whih then rewrites the perfor-mane ounter with a new overow threshold. The detetion of data ahe loadmisses requires a load instrution to be traked during multiple lok yles frominstrution issue to ahe miss ourrene. Sine multiple loads may be in ightsimultaneously and the data ahe miss EAR an only trae a single load at atime, the mehanism will not always apture all data ahe misses. The proes-sor randomizes the hoie of whih load instrutions are traked to prevent thesame data ahe load miss in a regular sequene from always being aptured,and the auray is onsidered to be suÆient for statistial sampling.Sampling by de�nition introdues statistial error. Samples for individual in-strutions are used to estimate instrution-level event frequenies by multiplyingthe number of sampled event ourrenes by the inverse of the sampling rate.For example, assume an average sampling rate of one sample every S fethedinstrutions. Let k be the number of samples having a property P. The atualnumber of fethed instrutions with property P may be estimated as kS. Let Nbe the total number of instrutions, and let f be the fration of those havingproperty P. Then the expeted value of kS is fN, and kS will onverge to fNas the number of samples inreases. However, the rate of onvergene may varydepending on the frequeny of property P and the oeÆient of variation of



6 Shirley V. MoorekS. Infrequent events or long sampling intervals will require longer runs to getenough samples for aurate estimates.4 Impliations for PAPIThe PAPI ross-platform interfae to hardware performane ounters supportsboth ounting and sampling modes. For ounting mode, routines are providedin both the high-level and low-level interfaes for starting, stopping, and read-ing the ounters. For sampling mode, routines are provided in the low-levelinterfae for setting up an interrupt handler for ounter overow and for gen-erating SVR4-ompatible pro�ling data with sampling based on any ounterevent. Beneath the platform-independent high-level and low-level interfaes liesa platform-dependent substrate that implements platform-dependent aess tothe ounters. To port PAPI to a new platform, only the substrate needs to be re-implemented. Sine platform dependenies are isolated in the substrate, hangesin the implementation at this level do not a�et the platform-independent in-terfaes, other than making the operations more eÆient or providing platform-independent features that had not previously been available on that platform.The PAPI substrate implementations attempt to use the most eÆient andaurate failities available for native aess to the ounters. Furthermore, PAPIattempts to use hardware support for ounter overow interrupts and pro�lingwhere available. Where hardware and operating system support for ounter over-ow interrupts and pro�ling is not available, PAPI implements these features insoftware on top of hardware support for ounting mode. However, the onversehas not been attempted { i.e., on platforms suh as the Compaq Alpha Tru64that primarily supports sampling mode, PAPI does not urrently implementounting mode in software on top of sampling mode. Although suh an imple-mentation is theoretially possible, it raises questions about the auray of theresulting event ounts sine they would be estimated from instrution samplesrather than eah event being ounted by the hardware.Although the PAPI interfae supports pro�ling based on PC sampling (or,where available, on hardware support for identifying the instrution address foran event), it does not provide aess to other information that may be avail-able for the instrution that aused an event, suh as data operand addressesor lateny information. Nor does PAPI support quali�ation by opode or byinstrution or data addresses in either outing or sampling modes, although suhquali�ation is available on some platforms suh as the IA-64. For example, theItanium proessor provides a way to determine the address assoiated with aahe miss. It also provides a way to limit ahe miss ounting to misses as-soiated with a user-determined area of memory. These failities ould enablepresentation of data about ahe behavior in terms of program data struturesat the soure ode level. Work reported in [2℄ has shown that suh informationan be extremely useful in identifying performane bottleneks aused by badahe behavior. In [2℄, the data were obtained through use of a ahe simulatorwhih runs onsiderably slower than the original appliation (e.g., by a ouple of



Counting vs. Sampling Modes of Performane Monitoring 7orders of magnitude) and does not model details suh as pipelining and multipleinstrution issue. Through use of appropriate hardware support (e.g., as on theItanium), similar data ould be obtained more aurately and eÆiently.Although the PAPI library itself does not have any funtionality for estimat-ing or ompensating for errors, some utility programs have been provided withthe PAPI distribution that make some initial attempts. The ost utility mea-sures the overheads in both the number of additional instrutions and the num-ber of mahine yles to exeuting the PAPI start/PAPI stop all pair and thePAPI read all. The alibrate utility runs a benhmark for whih the numberof oating point operations is known and adjusts the output of the PAPI flopsall aordingly. Error measurement and ompensation may be most appropri-ately implemented at the tool layer rather than at the library layer. However,the PAPI library may be able to provide mehanisms to enable tools to olletthe neessary data.5 Conlusions and Future WorkIt is lear that both ounting and sampling modes of using hardware perfor-mane monitors have their uses and that both should be supported on as manyplatforms as possible. However, more work is needed to determine whih featuresare most desirable to support in a ross-platform interfae and to study aurayissues related to both models.Beause PAPI presents a portable interfae to hardware ounters, PAPI is agood vehile for exploring usability and auray issues. PAPI is a projet of theParallel Tools Consortium [9℄, whih provides a forum for disussion and stan-dardization of funtionality that may be added in the future. Beause of lakof experiene with newly available features suh as event quali�ation and dataaddress reording, it seems desirable to experiment with these features beforeattempting to standardize interfaes to them. The low-level PAPI interfae hasa routine (PAPI add pevent) for implementing programmable events by passinga pointer to a ontrol blok to the underlying PAPI substrate for that platform.The routine ould be used, for example, to set up event quali�ation on theItanium. A orresponding low-level routine (PAPI read pevent) has been addedto the developmental version of PAPI to allow arbitrary information to be ol-leted. We plan to use programmable events to experiment with new hardwareperformane monitoring features that are beoming available, with the goal oflater proposing standard interfaes to the most useful features. The PAPI profilall simply generates PC histogram data of where in the program overows ofa spei�ed hardware ounter our. We plan to implement a modi�ed versionof this routine that will take a ontrol blok as an additional input and allowreturn of arbitrary information, so as to enable olletion of additional infor-mation about the sampled instrution (e.g., data addresses, pipeline or memoryaess latenies). The goal will again be future standardization of the most usefulpro�ling features.



8 Shirley V. MooreThrough the use of mirobenhmarks as in [8℄, we plan to evaluate the au-ray of ounter values obtained by the PAPI interfae on all supported platforms.Where possible, we will provide alibration utilities that attempt to ompensatefor measurement errors. We also plan to do statistial studies of the aurayand onvergene rates of pro�ling data on di�erent platforms, and to investigatethe feasibility and auray of implementing ounting mode in software on topof hardware-supported pro�ling mode.For the PAPI software and supporting doumentation, as well as pointersto referene materials and mailing lists for disussion of issues desribed in thispaper, see the PAPI web site at http://il.s.utk.edu/papi/.Referenes1. Browne, S., Dongarra, J., Garner, N., Ho, G., Mui, P.: A Portable ProgrammingInterfae for Performane Evaluation on Modern Proessors. International Journalof High Performane Computing Appliations 14:3 (Fall 2000) 189{204.2. Buk, B., Hollingsworth, J.K.: Using Hardware Performane Monitors to IsolateMemory Bottleneks. SC'2000. Dallas, Texas. November, 2000.3. Burger, D., Austin, T. M.: The simpleSalar Tool Set, Version 2.0. University ofWisonsin-Madison Computer Sienes Department Tehnial Report 1942. June,1997. http://www.s.wis.edu/~msalar/simplesalar.html4. Dean, J., Hiks, J., Waldspurger, C. A., Weihl, W. E., Chrysos, G.: Pro�leMe:Hardware Support for Instrution-Level Pro�ling on Out-of-Order Proessors. 30thSymposium on Miroarhiteture (Miro-30). Deember, 1997.5. Dean, J., Waldspurger, C. A., Weihl, W. E.: Transparent, Low-Overhead Pro�lingon Modern Proessors. Workshop on Pro�le and Feedbak-Direted Compilation.Paris, Frane. Otober, 1998.6. HPCView: http://www.s.rie.edu/~dsystem/hpview/7. Intel IA-64 Arhiteture Software Developer's Manual, Volume 4: Itanium Proes-sor Programmer's Guide. Intel, July 2000. http://developer.intel.om/8. Korn, W., Teller, P., Castillo, G.: Just how aurate are performane ounters? 20thIEEE International Performane, Computing, and Communiations Conferene.Phoenix, Arizona. April, 2001.9. Parallel Tools Consortium: http://www.ptools.org/10. Pressel, D.: Envelope: A New Approah to Performane Predition. Departmentof Defense HPC Users Group Conferene. Biloxi, Mississippi. June, 2001.11. Origin 2000 and Onyx2 Performane Tuning and Optimization Guide. SGI Dou-ment number 007-3430-003. July, 2001. http://tehpubs.sgi.om/12. Snavely, A., Wolter, N., Carrington, L.: Modeling Appliation Performane by Con-volving Mahine Signatures with Appliation Pro�les. IEEE 4th Annual Workshopon Workload Charaterization. Austin, Texas. Deember, 2001.13. The Visual Pro�ler: http://aros.a.sandia.gov/~ljanss/perf/vprof/


