
Improving Performance in the Network Storage Stack

Scott Atchley James S. Plank Zheng Yong Ding Jin Long Zhou
Stephen Soltesz Micah Beck Terry Moore�
Logistical Computing and Internetworking Lab

Department of Computer Science, University of Tennessee
Knoxville, TN 37996

http://loci.cs.utk.edu
[atchley,plank,yong,djin,zlong,soltesz,mbeck,tmoore]@cs.utk.edu

Technical Report UT-CS-02-481
Department of Computer Science

University of Tennessee
April, 2002

Abstract

This paper addresses the issue of improving perfor-
mance when using multi-threading in network storage
applications. An abstraction of network storage called
the Network Storage Stackis detailed along with the
software layers (IBP, the L-Bone, exNode, and Logis-
tical Tools) that have been developed to implement it.
These layers have been implemented so that applica-
tions use single connections to access and utilize net-
work storage. In this paper, we explore the benefits of
adding multi-threading to to the applications at various
points. We perform experiments utilizing network stor-
age both on local-area clusters and on the wide-area. As
expected, multi-threading improves performance, but
also leads to other challenges in implementation and
performance tuning.

1 Introduction

Whether computing on local clusters or on the wide-area
grid, the ability to move and store data is critical. Grid
computing usually requires moving and storing large
amounts of data from a few gigabytes to hundreds of�This material is based upon work supported by the National
Science Foundation under grants ACI-9876895, EIA-9975015, EIA-
9972889, ANI-9980203, the Department of Energy under the Sci-
DAC/ASCR program (DE-FC02-01ER25465), and the Universityof
Tennessee Center for Information Technology Research.

terabytes. For example, a researcher using the grid may
need to pre-position data near the computation site or
his application may need to write temporary checkpoints
during the computation to improve fault-tolerance. Re-
gardless of the distributed computing environment, re-
searchers have two primary requirements for handling
the logistics of their data:� When moving data, do so as quickly as possible,

and� Wherever the data is stored, ensure the ability of
data access.

The Logistical Computing and Internetworking
(LoCI) Lab at the University of Tennessee has been
working to change the view of storage in the network to
improve its functionality, performance, scalability and
reliability. As such, the LoCI Lab has been demonstrat-
ing the power ofLogistical Networkingin cluster and
wide-area settings.

Logistical Networking takes the rather unconven-
tional view that storage can be used to augment data
transmission as part of the unified network resource
framework, rather than being used simply as a network-
attached resource. We use the term “logistical” to draw
an analogy to transportation and military logistics. In
the these environments, logistics combine the use of
long-haul transportation and warehousing for moving
raw materials and finished goods.



IBP

Logistical File System

Local Access

Physical

Logistical Tools

L-Bone exNode

Applications

Figure 1: The Network Storage Stack

Our design for the use of network storage revolves
around the concept of aNetwork Storage Stack(Fig-
ure 1). Its goal is to layer abstractions of network stor-
age to allow storage resources to be part of the wide-area
network in an efficient, flexible, sharable and scalable
manner. Its model, which achieves all these goals for
data transmission, is the IP stack. Our guiding princi-
ple has been to follow the tenets laid out by the End-
to-End arguments [SRC84, RSC98]. Two fundamen-
tal principles of this layering are that each layer should
(a) abstractthe layers beneath it in a meaningful way,
but (b)exposean appropriate amount of its resources so
that the higher layers may abstract them meaningfully
(see [BMP01] for more detail on this approach).

In this paper, we describe the currently implemented
layers of the Network Storage Stack, and how they
achieve their goals. We then focus our attention on the
performance of some of the components, and in partic-
ular, how that performance may be improved by multi-
threading connections. Our tests involve both local-area
cluster environments, and wide-area scenarios involving
storage depots scattered across the United States. As
expected, multi-threading improves performance, but to
differing degrees depending on the environment and the
aggressiveness of multi-threading. It also leads to other
challenges in implementation and performance tuning.

2 The Network Storage Stack

In this section, we describe the middle three layers of the
Network Storage Stack. These are the layers currently
implemented by our project. All code described in this
section is available via the URLhttp://loci.cs.
utk.edu. The bottom (Physical) layer of the Network
Storage Stack is simply the hardware (disk, RAM), and
the Local Access layer is the operating system. The

top two layers, while interesting, are future functionali-
ties to be built when we have more understanding about
the middle layers. In the remainder of this section, we
give motivational, descriptive and implementation de-
tails about the middle three layers of the stack.

2.1 IBP

IBP stands for theInternet Backplane Protocol. It is
lowest level of the storage stack that provides network
accessibility. IBP is composed of a server daemon and
a client library that allows storage owners to insert their
storage into the network, and to allow generic clients to
allocate and make use of this storage. The unit of stor-
age is a time-limited, append-only byte-array. With IBP,
byte-array allocation is like a networkmalloc() call –
clients request an allocation from a specific IBP stor-
age server (ordepot), and if successful, three crypto-
graphically secure text strings (calledcapabilities) are
returned, one each for reading, writing and manage-
ment. Capabilities may be used by any client in the net-
work, and may be passed freely from client to client,
much like a URL.

IBP does its job as a low-level layer in the storage
stack. It abstracts away many details of the underly-
ing physical storage layers: block sizes, storage media,
control software, etc. However, it also exposes many
details of the underlying storage, such as network loca-
tion, network transience and the ability to fail, so that
these may be abstracted more effectively by higher lay-
ers in the stack. More information on IBP may be found
athttp://loci.cs.utk.edu/ibp/, and in cita-
tions [PBE+99, PBB+01].

2.2 The L-Bone and exNode

While individual IBP allocations may be employed
directly by applications for some benefit [EPBW99,
PBB+01], they, like IP datagrams, benefit from some
higher-layer abstractions. The next layer contains theL-
Bone, for resource discovery and proximity resolution,
and theexNode, a data structure for aggregation. Each
is defined here.

The L-Bone (Logistical Backbone) is a distributed
runtime layer that allows clients to perform IBP depot
discovery. IBP depots register themselves with the L-
Bone, and clients may then query the L-Bone for depots
that have various characteristics, including storage ca-
pacity and duration requirements, and basic proximity
requirements. For example, clients may request an or-
dered list of depots that are close to a specified city, air-
port, US zipcode, or network host. Once the client has a
list of IBP depots, she may query the Network Weather



UC Santa Barabara
UCSB1
UCSB2
UCSB3

UC San Diego
UCSD1
UCSD2
UCSD3 UT Knoxville

UTK1
UTK2
UTK3

UTK4
UTK5
UTK6

Texas A&M
tamus1
tamus2

UNC

Harvard

L-Bone
(as of January 2002)

Stuttgart, Germany
Turin, Italy

UWi

UIUC

Figure 2: The L-Bone

Service (NWS) [WSH99] to provide live performance
measurements and forecasts and decide how best to use
the depots.

Thus, while IBP gives clients access to remote stor-
age resources, it has no features to aid the client in fig-
uring out which storage resources to employ. The L-
Bone’s job is to provide clients with those features. As
of January 2002, the L-Bone is composed of 21 depots
in the United States and Europe, serving roughly a ter-
abyte of storage to Logistical Networking applications
(Figure 2). The L-Bone code and current composition
may be obtained athttp://loci.cs.utk.edu/
lbone/.

The exNode is a data structure for aggregation, anal-
ogous to the Unix inode (Figure 3). Whereas the in-
ode aggregates disk blocks on a single disk volume to
compose a file, the exNode aggregates IBP byte-arrays
to compose a logical entity like a file. Two major dif-
ferences between exNodes and inodes are that the IBP
buffers may be of any size, and the extents may overlap
and be replicated. For example, Figure 4 shows three
exNodes storing a 600-byte file. The leftmost one stores
all 600 bytes on IBP depot A. The center one has two
replicas of the file, one each on depots B and C. The
rightmost exNode also has two replicas, but the first
replica is split into two segments, one on depot A and
one on depot D, and the second replica is split into three
segments, one each on depots B, C, and D.

In the present context, the key point about the de-
sign of the exNode is that it allows us to create storage
abstractions with stronger properties, such as a network
file, which can be layered over IBP-based storage in a
way that is completely consistent with the exposed re-
source approach.

Since our intent is to use the exNode file abstrac-
tion in a number of different applications, we have cho-
sen to express the exNode concretely as an encoding of

IBP Depots

exNode

Local Disk

inode

Figure 3: The exNode in comparison to the Unix inode

A DCB

200

600

500

400

0

300

100

Figure 4: Sample exNodes of a 600-byte file with dif-
ferent replication strategies.

storage resources (typically IBP capabilities) and asso-
ciated metadata in XML. Like IBP capabilities, these
serializations may be passed from client to client, al-
lowing a great degree of flexibility and sharing of net-
work storage. The use of the exNode by varying ap-
plications provides interoperability similar to being at-
tached to the same network file system. The exNode
support libraries are available athttp://loci.cs.
utk.edu/exnode/.

Logistical Tools

At the next level of the Network Storage Stack are tools
that perform the actual aggregation of network storage



resources, using the lower layers of the Network Stack.
While the lower levels offer a variety of functionalities,
this level is the first one that starts treating the compo-
sition of IBP depots as a unified logistical network re-
source fabric.

Basic functionalities of these tools are:

Upload: This takes local storage (e.g. a file, or mem-
ory), uploads it into the network and returns an
exNode. This upload may be parameterized in a
variety of ways. For example, the client may par-
tition the storage into multiple blocks (i.e. stripe
it) and these blocks may be replicated on multi-
ple IBP servers for fault-tolerance and/or proximity
reasons. Moreover, the user may specify proximity
metrics for the upload, so the blocks have a certain
network location.

Download: This takes an exNode as input, and down-
loads a specified region of the file into local stor-
age. This involves coalescing the replicated frag-
ments of the file, and must deal with the fact that
some fragments may be closer to the client than
others, and some may not be available (due to time
limits, disk failures, and standard network failures).

Download is written to check and see if the Net-
work Weather Service [WSH99] is available lo-
cally to determine the closest depots. If so, then
NWS information is employed to determine the
download strategy: The file is broken up into multi-
ple extents, defined at each segment boundary. For
example, the rightmost file in Figure 4 will be bro-
ken into four extents – (0,199), (200-299), (300-
399), and (400-599). Then the download proceeds
by retrieving each extent from the closest depot. If
the retrieval times out, then the next closest depot
is tried, and so on.

If the NWS is not available, then the download
looks for static, albeit suboptimal metrics for de-
termining the downloading strategy. If desired, the
download may operate in a streaming fashion, so
that the client only has to consume small, discrete
portions of the file at a time.

Stat: Much like the Unixstat() system call, this takes
an exNode as input and provides information about
the metadata stored therein. Such information in-
cludes the stored file’s name and size, and metadata
about each segment or fragment of the file, includ-
ing byte offset, length, IBP host ID, available band-
width as reported by the NWS, and expiration time.

Refresh: This takes an exNode as input, and extends
or reduces time limits of the IBP allocations that

compose the exNode.

Augment: This takes an exNode as input, adds more
replica(s) to it (or to parts of it), and returns an
updated exNode. Likeupload, these replicas may
have a specified network proximity.

Trim: This takes an exNode, deletes specified frag-
ments, and returns a new exNode. These fragments
may be specified individually, or they may be spec-
ified to be those that represent expired IBP allo-
cations. Additionally, the fragments may be only
deleted from the exNode, and not from IBP.

The Logistical Tools are much more powerful as
tools than raw IBP capabilities, since they allow users
to aggregate network storage for various reasons:

Capacity: Extremely large files may be made from
smaller IBP allocations. It fact, it is not hard to vi-
sualize files that are hundreds of gigabytes in size,
split up and scattered around the network.

Striping: By breaking files into small pieces, the
pieces may be downloaded simultaneously from
multiple IBP depots, which may perform much bet-
ter than downloading from a single source.

Replication for Caching: By storing files in multiple
locations, the performance of downloading may be
improved by downloading the closest copy.

Replication for Fault-Tolerance: By storing files in
multiple locations, the act of downloading may
succeed even if many of the copies are unavail-
able. Further, by breaking the file up into blocks
and storing error correcting blocks calculated from
the original blocks (based on parity as in RAID
systems [CLG+94] or on Reed-Solomon cod-
ing [Ber68, MS77, Pla97]), downloads can be ro-
bust to even more complex failure scenarios.

Routing: For the purposes of scheduling, or perhaps
changing resource conditions,augment and trim
may be combined to effect a routing of a file from
one network location to another. First it is aug-
mented so that it has replicas near the desired loca-
tion, then it is trimmed so that the old replicas are
deleted.

Therefore, the Logistical Tools enable users to store
and retrieve data as replicated and striped files in the
wide area, flexibly and efficiently. They may be ob-
tained athttp://loci.cs.utk.edu/exnode/
tools.html.



3 Performance Enhancements of
IBP and the Tools

The initial versions of the Logistical Tools have been
written to get the functionalities working. As such, very
simplistic design decisions were made. Two important
examples concern multi-threading and scheduling. The
first versions of the tools use one flow of control, and
therefore serialize the operations, even though the ex-
istence of multiple network paths from the client to in-
dividual servers, and to multiple servers, would argue
for multiple flows of control (i.e. threads) to perform
operations simultaneously. Additionally, besides using
the NWS to select servers for downloading decisions, no
other scheduling decisions are made by the tools.

In the experiments below, we assess the benefits of
multi-threading to deserialize the tools’ operations, both
in the local area and in the wide area. Additionally, we
compare two simple strategies for scheduling uploads in
the wide area. Both experiments demonstrate how de-
sign decisions of both the tools, and of IBP, impact per-
formance. The experiments should also serve to help us
understand the intricacys of programming applications
on clusters and in the wide area.

Of importance in the experiments is the method by
which IBP servers service simultaneous connections.
IBP maintains a thread pool, composed of a fixed num-
ber of threads. The number of threads is determined
by the storage owner, who may select a large number
for better server performance, or a low number to limit
server resource usage. Therefore, the degree to which
IBP may service simultaneous connections may be re-
stricted, and as seen below, these restrictions can impact
the performance of the Logistical Tools.

Previous performance experiments of the Logistical
Tools have been presented in [ASP+02]. These exper-
iments were performed using the single-threaded ver-
sions of the tools, and demonstrated the fault-tolerant
properties of replicating exNodes. The numbers in that
paper are consistent with the single-threaded numbers in
this paper.

In the tests below, all file and download sizes are
given in megabytes (MB), while all bandwidth numbers
are given in megabits per second (Mb/s). All tests are
the averages of at least ten runs for each data point. The
tests were performed at various times throughout the day
on unreserved machines and networks.

M
b

/s

1 2 4 8 16 32 64 128 256 512 1024

1 thread

8 threads
4 threads

10

0

20

30

40

50

60

70

80

12 threads
16 threads

File Size (MB)

Figure 5: Multi-threaded download bandwidth in the
LAN.

3.1 Test 1 - Multi-Threaded Downloads
From One Server

In the first set of tests, we tested the impact of multi-
threading downloads from one server to one client. The
primary purpose of this test was to assess the perfor-
mance of varying numbers of threads. The secondary
purpose was to establish a benchmark for our multi-
threaded, multi-server tests.

The tests were executed on both a local area network
(LAN), and on a wide-area testbed. For the LAN test,
the IBP server was a dual processor, Solaris machine
with 512 MB of RAM, running 40 threads. The client
was a single processor, Linux machine with 256 MB of
RAM. Both machines had 100BaseT network cards.

For the first test, we download from allocations rang-
ing from 1 MB to 1 GB using 1 to 16 threads in in-
crements of four. The work is divided evenly between
the threads and the file is stored to client memory us-
ing themmap() system call. The results are displayed
in Figure 5. In this test, a single thread performs best
from 1 to 4 MB and while four threads show the highest
bandwidth for file sizes over 4 MB. When using more
threads, it takes larger files sizes to to achieve a higher
bandwidth, due to the fact that multiple TCP connec-
tions need to be conditioned. The performance of all
tests shows a dramatic fall-off as the size of the file
reaches the size of physical memory, causing the OS to
start swapping.

For the wide area version, we used an IBP depot at
Texas A&M, running Linux with 980 MB of RAM and
32 threads. Here we employ up to 32 threads, and see
continued improvement due to multiple network paths
as more threads are utilized. We do not try more than 32
threads because of the IBP depot’s thread limit. Again,
at the 256 MB file size, we see a dramatic drop in per-



M
b

/s

0
1 2 4 8 16 32 64 128 256 512 1024

5

10

15

20

1 thread

8 threads
4 threads

12 threads
16 threads

20 threads
24 threads
28 threads
32 threads

File Size (MB)

Figure 6: Multi-threaded download bandwidth in the
WAN.

M
b

/s

1 2 4 8 16 32 64 128 256 512 1024

1 thread

8 threads
4 threads

10

0

20

30

40

50

60

70

80

12 threads
16 threads

90

File Size (MB)

Figure 7: Multi-threaded download bandwidth in the
LAN without disk I/O.

formance due to virtual memory swapping on the client
machine (Figure 6).

The amount of speedup is not linearly proportional to
the increase in threads. For example, while download-
ing the 128 MB file, although the number of threads in-
creases from 28 to 32 threads (14%), we only observe
a 6% increase in throughput. This displays diminishing
returns as more threads are added.

The bandwidth numbers presented in this figure are
significant in that they do improve upon the performance
of standard storage transfer methods. For example, the
peak measured performance of a standard FTP transfer
between the same client and server was 3.5 Mb/s.

Since we observed such large drops in performance
as the file size matched the amount of physical RAM,
we repeated both the LAN and WAN tests and did not
save the data to the disk. This time, both the LAN and
WAN results show continued performance up to the 1G
file size. In the LAN test (Figure 7), four threads again

M
b/

s

0
1 2 4 8 16 32 64 128 256 512 1024

5

10

15

20

1 thread

8 threads
4 threads

12 threads
16 threads

20 threads
24 threads
28 threads
32 threads

File Size (MB)

Figure 8: Multi-threaded download bandwidth in the
WAN without disk I/O.

outperform more threads up to the 32 MB file size, and
beyond that, all the multi-threaded runs were approx-
imately equal, limited only by the performance of the
machines’ networking hardware.

In the WAN test (Figure 8), we see continued gains
with more threads although again with diminishing re-
turns. We notice a leveling of performance as the file
size reached the size of the RAM. A question for further
study is whether performance will continue to improve
if more RAM is available at the client. A second ques-
tion is what the upper limit of simultaneous connections
between the client and server. Here the limit is set by the
IBP depot. Were that limit higher (or unbounded), it is
an interesting question to see at what number of threads
the performance ceases to improve.

3.2 Test 2 - Multi-Threaded Uploads to
One Server

Using the same testing environment as in Test 1, we
tested the performance of multi-threading uploads. We
omit the results for brevity, since they are very similar
to the download results.

3.3 Test 3 - Multi-Threaded Downloads
from Multiple Servers

For these tests, we tested the performance of download-
ing exNodes of files that have been partitioned into mul-
tiple fragments, where each fragment is replicated, and
replicas are stored on a variety of IBP depots. These
tests are therefore inherently more complex than the pre-
vious tests because scheduling decisions must be made
concerning which depots should be selected for down-
loading, and how many threads should be allocated to



1 2 4 8 16 32 64 128 256 512

1 thread

10

0

20

30

40

50

60

70

80
16 threads

90

2 threads
4 threads

8 threads

M
b/

s

File Size (MB)

Figure 9: Multi-threaded download bandwidth from
multiple servers in the LAN.

1 2 4 8 16 32 64 128 256

1 thread

16 threads

2 threads
4 threads
8 threads

24 threads
32 threads
40 threads

0

10

2

4

6

8

12

14

16

18

M
b/

s

File Size (MB)

Figure 10: Multi-threaded download bandwidth from
multiple servers in the WAN.

each fragment. These decisions are made with the help
of the Network Weather Service, which improves the de-
cision of server selection, but also has an inherent over-
head.

In each of these tests, our exNode files are parti-
tioned into four fragments, and each fragment is repli-
cated four times. After the bandwidth forecasts from the
NWS are generated, the download tool then allocates
threads so that if the forecasts are correct, and simulta-
neous connections execute at the forecasted bandwidth,
each thread’s download will complete at roughly the
same time. Therefore, slower connections receive more
threads. As in Test 1, the downloads are to a memory-
mapped file in the client.

For the LAN version of the test, we used seven IBP
depots on the UT computer science network, and the
same client as in the previous tests. We then downloaded
exNode files ranging from 1 MB to 512 MB using up to

16 threads. The results (Figure 9) are very similar to
Test 1:� The performance of one thread is worse than mul-

tiple threads.� A small number of threads gives the best overall
performance.� The performance drops off once the file size ex-
ceeds the size of the client’s memory.� The limiting factor on many downloads is the per-
formance of the networking hardware.

For WAN test, we stored all fragments and repli-
cas on three depots at the University of California, San
Diego. Each depot is a Linux machine with IBP de-
pots limited to 10 threads each. Like the native IBP
WAN tests, the multi-threaded exNode download tool
saw consistent throughput gains by adding more threads
up to a point. In these results, no more gains seem to be
made after 24 threads (Figure 10).

This lack of increase above 24 threads may be due
to the combination of our thread allocation policy and
the number of threads running on the IBP depots. When
selecting a depot from which to download a fragment,
the tool chooses the copy with the best forecasted band-
width. With this policy, even if another machine has
nearly the same available bandwidth but its available
bandwidth is 0.01 Mb/s less, the tool chooses the higher
bandwidth always. Therefore, the policy does not take
into account that the depots only had 10 threads to use,
or that performance may be better when the load is
spread evenly among depots with roughly the same per-
formance. Therefore, this policy may be improved to
show better performance.

3.4 Test 4 - Multi-Threaded Upload to
Multiple Servers

Using our multi-threaded upload tool, we tested two dif-
ferent strategies for creating a replicated exNode in the
WAN. The first strategy is to store the data directly from
the client to the remote depots. The second strategy is
to store a single copy to one of the remote depots and
then use IBP’s third-party copy to have the remote de-
pot create the replicas. The goal of this strategy is to
ease the performance bottleneck on client, and perhaps
to take advantage of faster network paths between the
IBP depots.

For each test, the goal was to create an exNode with
three replicas of the data stored in multiple fragments on
six machines in California (three at UCSD and three at
UCSB). The client was the same as in the other tests.



M
b

/s

1 2 4 8 16 32 64
0

1

2

3

4
1 thread

16 threads2 threads
4 threads

8 threads

32 threads

File Size (MB)

Figure 11: Multi-threaded upload to multiple servers on
the WAN – all uploads performed by the client.

The results are in Figures 11 and 12. Both show sim-
ilar (albeit bad) performance, but the second policy out-
performs the first in all cases. The best performance us-
ing the direct store method was just under 3 Mb/s while
the throughput for the store and copy method was 3.7
Mb/s (Figures 11 and 12).

4 Discussion

The results presented above allow us to draw the fol-
lowing conclusions about multi-threading the Logistical
Tools:� On local-area connections, a small degree of multi-

threading is most effective. A large number of si-
multaneous connections causes the performance of
smaller transfers to suffer due to the fact that mul-
tiple TCP connections must be independently con-
ditioned.� However, on the LAN, multi-threading the tools
allows them to reach the limits of the networking
hardware.� On the WAN, a large number of simultaneous
connections is desirable, due to multiple network
paths.� IBP’s decision to allow storage owners to limit the
number of threads does indeed have performance
implications on its users.

M
b

/s

1 2 4 8 16 32 64
0

1

2

3

4
1 thread
2 threads
4 threads
8 threads

32 threads
16 threads

File Size (MB)

Figure 12: Multi-threaded upload to multiple servers on
the WAN – one copy uploaded and then remotely stored
to other depots.

The two scheduling decisions addressed by this pa-
per (the thread allocation downloading from multiple
servers, and the upload/copy strategy as opposed to mul-
tiple uploads) were not explored fully enough to allow
us to draw any definitive conclusions. However, the
upload/copy strategy outperformed the multiple-upload
strategy to a small degree in our tests. Further test-
ing and experimentation will be necessary to draw more
definitive conclusions.

5 Conclusions and Future Work

In this paper, we have reviewed the design of our Net-
work Storage Stack, which provides abstractions and a
methodology for applications to make use of storage as
a network resource. Our experiments have allowed us
to draw the conclusions summarized above about multi-
threading in the Logistical Tools.

As stated above, the software for IBP, the L-Bone,
the exNode and the Logistical Tools is publicly available
and may be retrieved athttp://loci.cs.utk.
edu. The LoCI lab is especially interested in attract-
ing more L-Bone participants, with the hope that the L-
Bone can grow to over a petabyte of publicly accessible
network storage in the next five years.

While the work detailed in this paper demonstrates
the improvements in performance to the exNode tools,
it also points out the need for additional research on
scheduling strategies for uploads and downloads. We



need to prevent under-utilization of threads if the depots
are busy. We also would like to look into using far more
depots across a much wider geographic area in hopes of
improving performance even further.

To further improve fault-tolerance using the Lo-
gistical Tools, we intend to investigate the incorpo-
ration of coding blocks as supported entities in exN-
odes. For example, with parity coding blocks, we can
equip the exNodes with the ability to use RAID tech-
niques [CLG+94] to perform fault-tolerant downloads
without requiring full replication. To reduce storage
needs further, Reed-Solomon coding may be employed
as well [Ber68, MS77, Pla97]. Finally, we also intend to
add checksums as exNode metadata so that end-to-end
guarantees may be made about the integrity of the data
stored in IBP. All of these additions are future work for
the LoCI lab.

Although not a performance or fault-tolerance issue,
we will be adding more security features to the exNode
and the Logistical Tools. Currently, the data stored in
IBP depots are stored in the clear. In the future, exN-
odes will allow multiple types of encryption so that un-
encrypted data does not have to travel over the network,
or be stored by IBP servers.

6 Related Work

In a previous paper [ASP+02], we showed that one re-
sult of this design is the ability to store data in a fault-
tolerant way on the wide-area network. Preliminary
performance results from that paper match the single-
threaded performance results of this paper.

This work is different from work in distributed
file systems (e.g. Coda [SKK+90], Jade [RP93] and
Bayou [TTP+95]) in its freedom from the storage’s un-
derlying operating system (IBP works on Linux, Solaris,
AIX, Mac OS X, and Windows), and its crossing of ad-
ministrative domains. This work is also different from
WebFS [VEA96]. Although WebFS allowed reading
from the HTTP namespace which crosses administrative
domains, it constrained writes to WebFS servers that run
under one domain.

A project under development at the University of
California, Berkeley, is OceanStore [KBC+00]. It is de-
signed to be a global data storage utility. It does not rely
on centralized state or control. Every write creates a new
version of the file and all previous versions are retained.
It also uses replication and error correction to provide
fault-tolerance. This work differs from OceanStore in
its layered approach for providing storage where each
layer abstracts the layers beneath it to provide a flexible
and scalable service.

The GridFTP project developed by the Globus group
is adding extensions to traditional FTP. These extensions
include using multiple streams for higher throughput, al-
lowing third-part transfers and allowing for partial reads
(i.e. downloading portions of the file) [GLO00].

Acknowledgments

The authors are grateful to Rich Wolski and Graziano
Obertelli for granting access to the Santa Barbara ma-
chines, and Henri Casanova for granting access to the
San Diego machines, and Jeremy Millar for administer-
ing the Texas depot. Additionally, the authors acknowl-
edge Alex Bassi for authoring the exNode library along
with Yong Zheng. Finally, the authors acknowledge
Rich Wolski and Jack Dongarra for their vital partici-
pation in the Logistical Internetworking and Computing
project.

References

[ASP+02] S. Atchley, S. Soltesz, J. S. Plank, M. Beck,
and T. Moore. Fault-tolerance in the net-
work storage stack. InIEEE Workshop
on Fault-Tolerant Parallel and Distributed
Systems, Ft. Lauderdale, FL, April 2002.

[Ber68] E. R. Berlekamp.Algebraic Coding The-
ory. McGraw-Hill, New York, 1968.

[BMP01] M. Beck, T. Moore, and J. S. Plank. Ex-
posed vs. encapsulated approaches to grid
service architecture. In2nd International
Workshop on Grid Computing, Denver,
2001.

[CLG+94] P. M. Chen, E. K. Lee, G. A. Gibson,
R. H. Katz, and D. A. Patterson. RAID:
High-performance, reliable secondary stor-
age. ACM Computing Surveys, 26(2):145–
185, June 1994.

[EPBW99] W. Elwasif, J. S. Plank, M. Beck, and
R. Wolski. IBP-Mail: Controlled de-
livery of large mail files. InNetStore
’99: Network Storage Symposium. Inter-
net2,http://dsi.internet2.edu/
netstore99, October 1999.

[GLO00] Gridftp - universal data trans-
fer for the grid. Globus, http:
//www.globus.org/datagrid/
deliverables/C2WPdraft3.pdf,
September 2000.



[KBC+00] J. Kubiatowicz, D. Bindel, Y. Chen, S. Cz-
erwinski, P. Eaton, D. Geels, R. Gummadi,
S. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B. Zhao. Oceanstore: An
architecture for global-scale persistent stor-
age. InProceedings of the Ninth Interna-
tional Conference on Architectural Support
for Programming Languages and Oper-
ating Systems (ASPLOS 2002). ASPLOS
2002, http://www.csg.lcs.mit.
edu/Users/rudolph/start.html,
November 2000.

[MS77] F.J. MacWilliams and N.J.A. Sloane.The
Theory of Error-Correcting Codes, Part I.
North-Holland Publishing Company, Ams-
terdam, New York, Oxford, 1977.

[PBB+01] J. S. Plank, A. Bassi, M. Beck, T. Moore,
D. M. Swany, and R. Wolski. Manag-
ing data storage in the network.IEEE
Internet Computing, 5(5):50–58, Septem-
ber/October 2001.

[PBE+99] J. S. Plank, M. Beck, W. Elwasif, T. Moore,
M. Swany, and R. Wolski. The Internet
Backplane Protocol: Storage in the net-
work. In NetStore ’99: Network Stor-
age Symposium. Internet2,http://dsi.
internet2.edu/netstore99, Octo-
ber 1999.

[Pla97] J. S. Plank. A tutorial on Reed-Solomon
coding for fault-tolerance in RAID-like sys-
tems. Software – Practice & Experience,
27(9):995–1012, September 1997.

[RP93] H. C. Rao and L. L. Peterson. Accessing
files in an internet: The jade file system.
IEEE Transactions on Software Engineer-
ing, 19(6), June 1993.

[RSC98] D. P. Reed, J. H. Saltzer, and D. D. Clark.
Comment on active networking and end-to-
end arguments.IEEE Network, 12(3):69–
71, 1998.

[SKK+90] M. Satyanarayanan, J. J. Kistler, P. Kumar,
M. E. Okasaki, E. H. Siegel, and D. C.
Steere. Coda: A highly available file sys-
tem for a distributed workstation environ-
ment. IEEE Transactions on Computers,
39(4):447–459, April 1990.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-end arguments in system design.

ACM Transactions on Computer Systems,,
2(4):277–288, November 1984.

[TTP+95] D. B. Terry, M. M. Theimer, K. Petersen,
A. J. Demers, M. J. Spreitzer, and C. H.
Hauser. Managing update conflicts in
bayou, a weakly connected replicated stor-
age system. In15th Symposium on Oper-
ating Systems Principles, pages 172–183.
ACM, December 1995.

[VEA96] A. Vahdat, P. Eastham, and T. Anderson.
Webfs: A global cache coherent file system.
Technical report, University of California,
Berkeley, December 1996.

[WSH99] R. Wolski, N. Spring, and J. Hayes. The
Network Weather Service: A distributed re-
source performance forecasting service for
metacomputing.Future Generation Com-
puter Systems, 15(5-6):757–768, 1999.


