
Distributed Dimension Redution Algorithmsfor Widely Dispersed Data�Faisal N. Abu-Khzamy, Nagiza Samatovaz, George Ostrouhovz,Mihael A. Langstonyx, and Al GeistzAbstratIt is well known that information retrieval, lustering and visualization an often be improvedby reduing the dimensionality of high dimensional data. Classial tehniques o�er optimalitybut are muh too slow for extremely large databases. The problem beomes harder yet whendata are distributed aross geographially dispersed mahines. To address this need, an e�etivedistributed dimension redution algorithm is developed. Motivated by the suess of the serial(non-distributed) FastMap heuristi of Faloutsos and Lin, the distributed method presentedhere is intended to be fast, aurate and reliable. It runs in linear time and requires very littledata transmission. A series of experiments is onduted to gauge how the algorithm's emphasison minimal data transmission a�ets solution quality. Stress funtion measurements indiatethat the distributed algorithm is highly ompetitive with the original FastMap heuristi.Keywords: Data Mining, Distributed Databases, Information Systems, Parallel and Distributed Algorithms1 IntrodutionA set S of points in a d-dimensional spae often belong to an embedded manifold of dimensiond0 � d. Classi dimension redution tehniques [3, 8, 5℄ ompute an optimal k-dimensional rep-resentation of S for a spei�ed k � d and a given optimality riterion. Tehniques related toprinipal omponents [3℄ begin with oordinates of the points, whereas those related to multidi-mensional saling [8, 5℄ begin with a omplete set of pairwise distanes. All of these require at leastquadrati running time, making them reasonable redution andidates only as long as S is not toolarge. The fous of this paper, however, is on the ase in whih S is of some immense size N , withits elements distributed aross a modest number s of loations. This models a variety of timelyenvironments, for example, when massive data sets reside on a number of di�erent, geographiallydispersed mahines. It is usually impratial or impossible to bring suh data sets to a entralloation. Thus, our main objetive is to redue dimensionality in a way that does not requiremoving all the data, rather only some muh smaller representation of the data. A similar approahis taken in [7℄. A redution in dimensionality has been shown to help in data mining and related�Researh sponsored by the Laboratory Direted Researh and Development Program of Oak Ridge NationalLaboratory (ORNL), managed by UT-Battelle, LLC for the U. S. Department of Energy under Contrat No.DE-AC05-00OR22725.yDepartment of Computer Siene, University of Tennessee, Knoxville, TN 37996{3450.zComputer Siene and Mathematis Division, Oak Ridge National Laboratory, P.O.Box 2008, Oak Ridge, TN37831{6367.xThis author's researh is supported in part by the National Siene Foundation under grants EIA{9972889 andCCR{0075792, by the OÆe of Naval Researh under grant N00014{01{1{0608, and by the Tennessee Center forInformation Tehnology Researh under award E01{0178{081.1



appliations. For example, it an assist in e�etive data visualization and reveal the way the dataare lustered [4, 6℄.One of the major hallenges researhers fae in dealing with massive sets of data is algorithmsalability as the sets grow in size. Algorithms that sale as 
(N2) or higher quikly beomeomputationally infeasible. Moreover, in parallel and distributed algorithms, the ost of datatransmission often dominates the exeution time. For these reasons, we seek a distributed dimensionredution algorithm that not only runs in linear or almost-linear time, but also requires as littledata ommuniation as possible.Among the various alternatives available, we have hosen for exploitation the attrative FastMapheuristi [2℄. It an be interpreted as an approximation to prinipal omponents that operates onpairwise distanes rather than oordinates. FastMap is a linear-time serial algorithm. Even whendata objets (points) are spei�ed only by their d-dimensional oordinates, as they are in our ase,FastMap runs in linear time and an serve as a dimension redution algorithm [6℄. We thereforewish to study the potential feasibility of distributed versions of this handy heuristi. Of oursethe naive method of bringing all data to a entral loation and then running FastMap requiresa prohibitive amount of data transfers. We all this method Centralized FastMap, as opposedto our versions of Distributed FastMap. FastMap gained popularity in part beause of empirialdemonstrations of the quality of its solutions. For example, its quality was tested in [2℄ against thatof Multi-Dimensional Saling [8℄ by measuring the prie/performane of eah algorithm. We willsimilarly measure the quality of our versions of Distributed FastMap by omparing their results tothose of Centralized FastMap.In the next setion, we desribe FastMap in detail and disuss how it an be used as a linear-time dimension redution tehnique. In Setion 3, we devise two versions of Distributed FastMap.Experimental results are presented in Setion 4. A �nal setion provides a summary of our workand some insights on the performane of our algorithms.2 An Overview of FastMapAssuming the distane between any two elements of S is given and obeys the triangle inequality,FastMap produes a k-dimensional representation of S by projeting its points onto k arefullyseleted orthogonal lines. In seleting eah suitable line, three points are hosen: the �rst isarbitrary; the seond, Oa, is farthest from the �rst; the third, Ob, is farthest from the seond. Theaxis, analogous to a prinipal omponent axis, is then de�ned solely by the pair (Oa; Ob), whoseelements are heneforth termed \pivots."FastMap proeeds iteratively. At the ith step, 1 � i < k, it �nds pivots to form the axis(Oai; Obi), and operates on the projetion of S on a hyperplane, Hi, orthogonal to all previouslyseleted axes. Let d0(P;Q) denote the original distane between points P and Q, and let di(P;Q)denote the distane between the projetions of points P and Q on Hi. Using elementary Eulideangeometry as in [2℄, point P 's ith oordinate, Pi, is determined by using di�1 in the formulaPi = di�1(Oai; P )2 + di�1(Oai; Obi)2 � di�1(Obi; P )22di�1(Oai; Obi)and di(P;Q) is determined by using d0 and the oordinates just omputed in the formuladi(P;Q) = qd0(P;Q)2 � �i�1j=1(Pj �Qj)2:Reall that we are interested in the features problem. We must avoid omputing all pairwisedistanes between the elements of S, a task that would onsume quadrati time. To ensure a linear2



FastMap(S; k)beginlet ProjetionMatrix be a k � jSj matrixlet PivotsMatrix be a 2k � d matrixfor i = 1 to k dobegin(Oai; Obi)  ChooseObjets(S; i)store (Oai; Obi) in PivotsMatrixompute Pi for eah point P in Sstore all Pi values in the ith row of ProjetionMatrixendreturn ProjetionMatrix and PivotsMatrixend Figure 1: The FastMap HeuristiChooseObjets(S; i)beginhoose arbitrary point Oompute distane di�1(O; P ) for eah point P in Sselet point Oai for whih di�1(O; Oai) is maximumompute distane di�1(Oai; P ) for eah point P in Sselet point Obi for whih di�1(Obi; Oai) is maximumreturn Oai and Obi as the ith pivot pairend Figure 2: The ChooseObjets Subroutinerunning time, distanes are therefore omputed only as they are needed. Pseudo ode for (thefeatures version of) FastMap and its anillary routine ChooseObjets is in Figures 1 and 2.3 Distributed FastMapWe assume that S is stored as a olletion of disjoint data sets, one for eah of s distint mahines.Thus subset Si is assumed to be resident on mahineMi for i 2 [1; s℄. Eah element is stored in somed-dimensional representation. Pairwise distanes are not given, but an be omputed as previouslydisussed. The objetive is to �nd k global axes of projetion so that, in a new k-dimensionalrepresentation, the original distanes are preserved as muh as possible.The intuition behind our approah is as follows. FastMap tends to selet eah pair of pivotsso that they are widely separated and among the extreme points of a data set. If we have severaldata subsets then, by strategially hoosing a few points from eah one, the user might in generalexpet to wind up with a reasonable olletion of points from whih to selet pivot pairs for theombined data set. We present two approahes. In eah, one of the mahines, say M1, will serve asa \merger." It will obtain pivots generated loally on eah mahine (inluding the merger mahineitself) and use them to hoose global pivots.Our �rst algorithm uses all the hosen points at one time. Eah mahine �rst runs FastMap,then sends its k loal pivot pairs to the merger mahine. When all pairs are reeived, the merger3



OneTime(Sj; k)beginLoalPivots  FastMap(Sj ; k)if j 6= 1 then beginsend LoalPivots to M1reeive GlobalPivots from M1endelse beginPoints  LoalPivotsfor i = 2 to s doPoints  Points [ LoalPivots reeivedfrom MiGlobalPivots  FastMap(Points,k)for i = 2 to s dosend GlobalPivots to Miendfor i = 1 to k doompute ith global oordinate for all points inSj [ GlobalPivotsend Figure 3: The OneTime Algorithmruns FastMap on the omplete set of pivots, generates k global pairs, and broadasts them to allother mahines. It is easy to see that this strategy runs in linear time and inurs ommuniationost O(ksd). Our seond algorithm is to iterate at eah oordinate. This of ourse requires moresend/reeive yles. It also allows all mahines to work from the same projetion at eah iterationand so may provide better solutions. Pseudo ode for eah proess is in Figures 3 and 4.4 Experimental ResultsWe seek to ompare the performane of these two fast versions of Distributed FastMap with Cen-tralized FastMap, bearing in mind that our objetive is to preserve distanes as muh as possible.To aomplish this we employ, as did the work reported in [2℄, the following well-known stressfuntion stress = s�P;Q(d0(P;Q)� d0(P;Q))2�P;Qd0(P;Q)2where d0(P;Q) is the original distane between points P and Q and d0(P;Q) is the distane betweentheir images in the new k-dimensional spae. We refer the reader to [1℄ for a review of stressfuntions and their appliations.We performed a variety of experiments, using both real and syntheti data. We ran our dis-tributed algorithms on di�erent mahines by randomly splitting eah data set into s equal parts.Some data sets were ordered by lustering. Thus random splitting had the added bene�t of ensuringthat our results did not unintentionally take advantage of pre-omputed strutures.Our results were roughly the same on all inputs. We illustrate with three sets of real data fromthe UC-Irvine repository of mahine learning databases and domain theories [9℄. From the data4



Iterative(Sj; k)beginif j 6= 1 then beginfor i = 1 to k dobegin(Oai; Obi) ChooseObjets(Sj ; i)send (Oai; Obi) together with their new i� 1omponents to M1reeive new values for (Oai; Obi) from M1ompute the new ith omponent, Pi, forall P 2 Sjendendelse beginPoints  �for i = 1 to k dobegin(Oa1; Ob1) ChooseObjets(S1; i)Points  Points [ fOa1; Ob1gfor j = 2 to s dobeginreeive (Oaj ; Obj) from Mj along withtheir new i� 1 omponentsPoints  Points [ fOaj ; Objgend(Oai; Obi) ChooseObjets(Points,i)for j = 2 to s dosend (Oai; Obi) to Mjendendend Figure 4: The Iterative Algorithmavailable at this site, we show representative results on the �les Pendigits.data, Glass.data, andWine.data in Table 1.The tables reported here bear out a ommon theme. In all experiments, stress values remainedwithin about 20 perent of one another. Moreover, in a few ases, one or the other version ofDistributed FastMap even provided better results than did Centralized FastMap. For example, theIterative algorithm performed best for large values of k and s on the Pendigits data. On the otherhand, for small k and large s, the Iterative version performed worst with about 20 perent inreasein stress value.The highly ompetitive behavior of all three algorithms may be due to the following tradeo�s.Although the Iterative version works from the same projetion on eah mahine on every iteration,the number of points available at eah iteration on the merger mahine is always larger for theOneTime version (exept on the last iteration). Also, both distributed versions get several pivot5



Table 1: Comparison of algorithms on data from UC-Irvine repository.Pendigits Data, Original Dimension d = 16Redued s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.434022 0.434359 0.43434 0.503303 0.528707k = 3 0.31065 0.378843 0.365004 0.366627 0.34608k = 4 0.271444 0.261565 0.263866 0.320987 0.224068k = 5 0.199701 0.248389 0.206782 0.209538 0.153991Glass Data, Original Dimension d = 9Redued s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.482818 0.476746 0.481473 0.476746 0.482818k = 3 0.397119 0.397119 0.373308 0.397119 0.397119k = 4 0.154114 0.154114 0.185656 0.154114 0.165018Wine Data, Original Dimension d = 13Redued s = 1 s = 4 s = 8Dimension Centralized FastMap OneTime Iterative OneTime Iterativek = 2 0.0014384 0.00143578 0.00142489 0.00142489 0.00142489k = 3 0.00116799 0.00117015 0.00115875 0.00115625 0.00115625k = 4 0.00107843 0.00107104 0.00106995 0.0010678 0.0010678
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point pairs on the merger mahine at eah iteration. Choosing the best of these may outweigh thedisadvantage of not onsidering all data points at one.5 ConlusionsIn this paper we present two Distributed FastMap algorithms for mapping high dimensional objetsdistributed aross geographially dispersed mahines into points in lower dimensional spae, so thatdistanes between the objets are preserved as muh as possible. Transferring all loal data to aentral loation and running the Centralized FastMap would require O(nd) data transmission,where n is the number of objets and d is the number of features. Our Distributed FastMapalgorithms require only O(ksd) data transmission, where s is the number of data loations and kis the dimensionality of the projeted spae. Empirial results on both syntheti and real datasetsshow that our Distributed FastMap algorithms di�er by at most 20 perent in auray, sometimesgiving a loss and sometimes some gain, when ompared to the Centralized FastMap.Referenes[1℄ T. F. Cox and M. A. A. Cox. Multidimensional saling. Chapman & Hall, Boa Raton, 2001.[2℄ C. Faloutsos and K. Lin. FastMap: A fast algorithm for indexing, data-mining and visualizationof traditional and multimedia datasets. In M. J. Carey and D. A. Shneider, editors, Proeedingsof the 1995 ACM SIGMOD International Conferene on Management of Data, 1995.[3℄ H. Hotelling. Analysis of a omplex of statistial variables into prinipal omponents. J. Edu.Psyh., 24:417{441,498{520, 1933.[4℄ H. Kargupta, W. Huang, K. Sivakumar, and E. Johnson. Prinipal omponent analysis fordimension redution in massive distributed data sets. Knowledge and Information Systems,3:422{448, 2001.[5℄ J. B. Kruskal. Nonmetri multidimensional saling: a numerial method. Psyhometria,29:115{129, 1964.[6℄ J. E. Otoo, A. Shoshani, and S. W. Hwang. Clustering high dimensional massive sienti�dataset. JIIS, 17:147{168, 2001.[7℄ Y. Qu, G. Ostrouhov, N.F. Samatova, and A. Geist. Prinipal omponent analysis for di-mension redution in massive distributed data sets. In Workshop on High Performane DataMining at the Seond SIAM International Conferene on Data Mining, Washington, DC, pagein press, 2002.[8℄ W. S. Torgerson. Multidimensional saling: I. theory and method. Psyhometria., 17:401{419,1952.[9℄ University of California, Irvine. Repository of mahine learning databases and domain theories.See http://is.ui.edu/pub/mahine-learning-databases.
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