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Abstract

The challenge for the development of next generation software is the successful management of the complex
grid environment while delivering to the scientist the full power of flexible compositions of the available al-
gorithmic alternatives.Self-Adapting Numerical Software (SANS) systems are intended to meet this significant
challenge.

A SANSsystem comprises intelligent next generation numerical software that domain scientists – with disparate
levels of knowledge of algorithmic and programmatic complexities of the underlying numerical software – can
use to easily express and efficiently solve their problem. The components of aSANS system are:

• A SANS agent with:
– An intelligent component that automates method selection based on data, algorithm and system attributes.
– A system component that provides intelligent management of and access to the computational grid.
– A history database that records relevant information generated by the intelligent component and main-

tains past performance data of the interaction (e.g., algorithmic, hardware specific, etc.) betweenSANS

components.
• A simplescripting language that allows a structured multilayered implementation of theSANS while ensuring

portability and extensibility of the user interface and underlying libraries.
• An XML/CCA-basedvocabulary of metadata to describe behavioural properties of both data and algorithms.
• Prototypelibraries that automate the process of architecture-dependent tuning to optimize performance on

different platforms.

A SANS system can dramatically improve the ability of computational scientists to model complex, interdis-
ciplinary phenomena with maximum efficiency and a minimum of extra-domain expertise.SANS innovations
(and their generalizations) will provide to the scientific and engineering community a dynamic computational
environment in which the most effective library components are automatically selected based on the problem
characteristics, data attributes, and the state of the grid.

1 Introduction

As modeling, simulation, and data intensive computing become staples of scientific life across nearly every
domain and discipline, the difficulties associated with scientific computing are becoming more acute for
the broad rank and file of scientists and engineers. While access to necessary computing and information
technology has improved dramatically over the past decade, the efficient application of scientific computing
techniques still requires levels of specialized knowledge in numerical analysis, computer architectures, and
programming languages that many working researchers do not have the time, the energy, or the inclination
to acquire.
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from Rice University.
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The classic response to this situation, introduced over three decades ago, was to encode the requisite math-
ematical, algorithmic and programming expertise into libraries that could be easily reused by a broad spec-
trum of domain scientists. In recent times, however, the combination of a proliferation in libraries and the
availability of a wide variety of computing platforms, including varieties of parallel platforms, have made it
especially hard to choose the correct solution methodology for scientific problems. The advent of new grid-
based approaches to computing only exacerbates this situation. Since the difference in performance between
an optimal choice of algorithm and hardware, and a less than optimal one, can span orders of magnitude,
it is unfortunate that selecting the right solution strategy requires specialized knowledge of both numerical
analysis and of computing platform characteristics.

What is needed now, therefore, is a way of guiding the user through the maze of different libraries so that
the best software/hardware combination is picked automatically.

We propose to deal with this problem by creatingSelf-adapting Numerical Software (SANS) systems that
not only meet the challenges of scientific computing today, but are designed to smoothly track the state of
the art in scientific computing tomorrow.

In this paper we will describe the basic ideas ofSANSsystem, and we will sketch their realization in systems
for linear equation solving, eigenvalue computations, and information retrieval, although the ideas and inno-
vations they embody will generalize to a wide range of other operations. Like the best traditional libraries,
such system can operate as ”black box” software, able to be used with complete confidence by domain scien-
tists without requiring them to know the algorithmic and programmatic complexities it encapsulates. But in
order to self-adapt to maximize their effectiveness for the user,SANSmust encapsulate far more intelligence
than standard libraries have aspired to. The work described below will make it possible to produce aSANS

system that incorporates the following elements:

• An intelligent component that includes anautomated data analyzer to uncover necessary information
about logical and numerical structure of the user’s data,a data model for expressing this information
as structured metadata, and aself-adapting decision engine that can combine this problem metadata
with other information (e.g. about past performance of the system) in order to choose the best library
and algorithmic strategy for solving the current problem at hand;

• A history database that not only records all the information that the intelligent component creates or
acquires, but also all the data (e.g., algorithm, hardware, or performance related) that each interaction
with a numerical routine produces;

• A system component that provides the interface to the available computational resources (whether on
a desktop, in a cluster or on a Grid), combining the decision of the intelligent component with both
historical information and its own knowledge of available resources in order to schedule the given
problem for execution;

• A scripting language that generalizes the decision procedure that the SaNS follows and enables sci-
entific programmers to easily make use of it; and

• One or moreprototype libraries, for instance for sparse matrix computations, that accept informa-
tion about the structure of the user’s data in order to optimize for execution on different hardware
platforms.

A SANS system can dramatically improve the ability of computational scientists to solve an important range
of challenging problems with maximum efficiency and a minimum of extra-domain expertise. Moreover,
as theseSANS innovations are generalized, they will give the scientific computing community a dynamic
computational environment in which the most effective library components are automatically selected and
integrated on the basis of the particular problem posed, the data structures available, and the state (and be-
havior) of the computational environment at run-time. TheSANS metadata scheme allows us to capture this
self-adaptive process in databases that will provide an indispensable resource for future library developers.
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The fact that current numerical libraries require detailed, specialized knowledge that most potential users
are unlikely to have is a limitation on their usability that is becoming increasingly acute. WithSANS it will
become possible to endow legacy libraries with computational intelligence, and to develop next generation
libraries that make it easier for users to realize the full potential of current day computational environments.
This investigation into the potential for self-adaptation in scientific software libraries will lay the foundation
necessary to meet the incredibly challenging demands of computational science over the next decade.

2 Outline of the structure of self-adaptive software

A Self-adaptive Numerical Software system has three com-
ponents: an Agent (called theSANS Agent), a Scripting
Language, and the underlying Adaptable Libraries. The
SANS Agent is the software that accepts the data from the
user application in order to pass it to a chosen underly-
ing library. These libraries can be of a traditional type, but
more interestingly they can adapt themselves to the avail-
able hardware, setting algorithm implementation param-
eters such that performance is optimized with respect to
machine characteristics [48, 12].

The scripting language provides the interface between the
user and the intelligent agent. With this scripting language
we turn what used to be a mere call – or series of calls –
to a library into a script that can convey contextual infor-
mation to the intelligent system, which may use this in-

formation to make a more informed choice of software for solving the user’s problem. Through the use of
keywords and control structures in the scripting language we make it possible for the user to pass various
degrees of information about the problem to be solved. In the cases where the user passes little information,
the intelligent agent uses heuristics to uncover as much of this information as is possible.

The SANS agent consists of three parts. The Intelligent Component is that part of the software that uses
encoded knowledge of numerical analysis to analyze the data (section 3.1). The System Component (sec-
tion 3.4) knows about hardware, both in general terms and regarding the current state of the network and
available resources. These two components engage in a dialogue to determine the best algorithm and plat-
form for solving a given user problem. The third component is the History Database (section 3.5) where
performance data regarding problems solved is stored. This stored knowledge is then used by the intelligent
and network components to inform their decisions, and possibly tune their decision-making process.

SANS systems can various usage modes, depending for instance on the level of expertise of the application
user, and on the way the system is called from the application code.

• For a non-expert user, aSANSsystem acts like an expert system, fully taking the burden of finding the
best solver off the user’s hands. In this scenario, the user knows little or nothing about the problem
– or is perhaps unable to formulate and pass on such information – and leaves it up to the intelligent
software to analyze structural and numerical properties of the problem data.

• Users willing and able to supply information about their problem data can benefit from aSANSsystem
in two ways. Firstly, decisions that are made heuristically by the system in expert mode can now be
put on firmer ground by the system interrogating the user or the user passing on the information in the
calling script. Secondly, users themselves can search for appropriate solution methods by using the
system in ‘testbed’ mode.
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• Finally, expert users, who know by what method they want to solve their problem, can benefit from
a SANS system in that it offers a simplified and unified interface to the underlying libraries. Even
then, the system offer advantages over the straightforward use of existing libraries in that it can sup-
ply primitives that are optimized for the available hardware, and indeed, choose the best available
hardware.

Users willing to supply metadata or algorithm choices to the system will be able to do so in two ways. First,
we will develop a GUI that interrogates the user. However, if the library call appears in an inner loop of
the code, this would be inappropriate and the user can resort to passing data and options through the calling
script.

3 The SaNS Agent

3.1 The Intelligent Component

The Intelligent Component of aSANS system is the software that accepts the user data and performs a
numerical and structural analysis on it to determine what feasible algorithms and data structures for the
user problem are. We allow the users to annotate their problem data with ‘metadata’ (section 3.6), but in
the most general case the Intelligent Component will do this by means of automated analysis (section 3.2).
Moreover, any rules used in analyzing the user data and determining solution strategies are subject to tuning
(section 3.3) based on performance data gained from solving the problems. Below we present each of these
aspects of theSANS agent in turn, including detailed examples of how the components could engage with
and be used by our driver applications.

3.2 Automated analysis of problem data

Users making a request of aSANS system pass to it both data and an operation to be performed on the
data. The data can be stored in any of a number of formats, and the intended operation can be expressed
in a very global sense (‘solve this linear system’) or with more detail (‘solve this system by an iterative
method, using an additive Schwarz preconditioner’). The fewer such details the user specifies, the more the
SANS will have to determine the appropriate algorithm, computational kernels, and computing platform.
This determination can be done with user guidance, or fully automated. Thus, a major component of aSANS

is an intelligence component that performs various tests to determine the nature of the input data, and makes
choices accordingly.

Some of these tests are simple and give an unambiguous answer (‘is this matrix symmetric’), others are
simple but have an answer that involves a tuning parameter (‘is this matrix sparse’); still others are not
simple at all but may involve considerable computation (‘is this matrix positive definite’). For the tests with
an answer on a continuous scale, the appropriateness of certain algorithms as a function of the tested value
can only be preprogrammed to a limited extent. Here the self-adaptivity of the system comes into play:
the intelligence component will consult the history database of previous runs in judging the match between
algorithms and test values, and after the problem has been solved, data reflecting this run will be added to
the database. Illustrations of the kinds of analyses theSANS agent must do include the following:

3.3 Self-Tuning Rules for Software Adaptation

The Intelligent Component can be characterized as self-tuning in the following sense: The automated anal-
ysis of problem data concerns both questions that can be settled quickly and decisively, and ones that can
not be settled decisively, or only at prohibitive cost. For the latter category we will use heuristic algorithms.
Such algorithms typically involve a weighing of options, that is, parameters that need to be tuned over time
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by the experience gained from problem runs. Since we record performance data in the history database (sec-
tion 3.5) of theSANS Agent, we have a mechanism to provide feedback for the adaptation of the analysis
rules used by the Intelligent Component, thus leading to a gradual increase in its intelligence.

3.4 The System Component

The System Component of theSANS agent for the managing the different available computation resources
(hardware and software), which in today’s environment can range from a single workstation, to a cluster, to a
Computational Grid. This means that after the intelligent component has analyzed the user’s data regarding
its structural and numerical properties the system component will take the user data, the metadata generated
by the intelligent component, and the recommendations regarding algorithms it has made, and based on its
knowledge of available resources farm the problem out to a chosen computational server and a software
library implemented on that server. Eventually the results are returned to the user. Empirical data is also
extracted from the run and inserted into the database; see section 3.5.

However, this process is not a one-way street. The intelligent component and system component can actually
engage in a dialogue as they weigh preferred algorithms against, for instance, network conditions that would
make the available implementation of the preferred algorithm less computationally feasible.

One aspect of the metadata passed by the intelligent component is the analysis of the structure of the data.
Based on this, especially in the case of sparse data, the system component can choose an optimized kernel
to use. Such kernels, for instance for the matrix-vector product or an ILU solve, can often be passed as user-
supplied operations to existing libraries. In this way, the system component can adapt the execution to the
structure of the data. Conversely, the system component can decide on a variant of a certain kernel purely
based on its availability on the hardware supplied, and decide to rearrange the user data from one storage
format to another. This may then require re-analysis of the shuffled data by the intelligent component.

If sufficient resources are available, and certain chosen algorithms have a degree of unpredictability in their
behavior, such as the number of iterations of iterative methods, the system component can decide on a poly-
algorithmic approach [8], where the same problem is to be solved with very different software libraries,
and on different machines. In case on solution method was marked by the intelligent component as to be
preferred, the other solver will serve as a ‘backup’ for the main one. In some cases they may have equal
standing; as the solution becomes available from one computational server, the system component will tell
the other servers to abort the task.

Part of the System Component is scheduling operations and querying network resources. In building self-
adaptive software we will not actually engage in these aspects of systems programming; for that we will
leverage our earlier – and ongoing – work in Netsolve [16, 18, 17].

3.5 History database

Self-adaptivity of our agent-based numerical library to meet the needs of diverse users on any computational
environment requires a knowledge base of performance data to make intelligent choices for algorithms, data
structures, architectures, and programming languages. Each interaction with a numerical routine produces
valuable data ranging from iteration counts (algorithm level) to cache hits (hardware level). The middle-
ware designed to interface between the user application and the computation grid must be able to exploit
all ‘known’ data for each user request. Based on the problem posed by the user, the available data struc-
tures, and the state of the computational environment, the system would select the ‘best’ software library
component(s) for solving the current problem. Categorization of performance and problem ‘metadata’ into
relational databases should be based on the application domain as well as the state of all networks and
processors defining the Grid.
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Maintaining a dynamic (constantly updated) database of problems solved along with the state of the compu-
tational grid and library components used to obtain the solution can facilitate dynamic problem solving for
numerous applications and also provide insights into future library component designs. In many cases, not
one algorithm or approach may be viable as grid conditions change (e.g., network traffic increases during
the workday or processor failures) so that the library may dynamically create a ‘polyalgorithm’ approach.
Detecting slow convergence or a stall of any current module would be stored in both contexts: the prob-
lem being solved and the computational environment. In the course of solving the user’s problem, several
solution strategies (e.g., more than one preconditioner for an iterative solver for sparse linear systems of
equations) may be used and recorded into the database. Utilizing past and present performance metadata
facilitates dynamic (customized) solutions to large-scale problems, which cannot be generated from current
numerical software libraries.

The system needs to handle various data aspects. Original user data can be annotated with metadata, or
metadata can be uncovered, and after solving the problem, there is performance data for both the specific
problem and the characteristics of the hardware and of software kernels used. We will store all this informa-
tion in our history database to inform future decision making processes. Mostly metadata and performance
data regarding the user problems are stored, but space permitting it would even be possible to store the user
data itself. For information encoding we will use XML, and to ensure standardization and interoperability
betweenSANSagents at different sites we will rely onRepository in a Box (RIB) [13, 14], which is software
technology we have developed for creating interoperable metadata repositories that is now widely deployed
in the high performance computing community.

3.6 Metadata for Self-Adapting Numerical Libraries

The operations typically performed by traditional libraries is on data that has been abstracted from the
original problem. For instance, one may solve a linear system in order to solve a system of ODEs. However,
the fact that the linear system comes from ODEs is lost once the library receives the matrix and right hand
side. Our intelligent library will have the facility of annotating problem data with information that is typically
lost, but which may inform a decision making process. First, we will implement the facility for the user to
pass such metadata explicitly in order to guide the intelligent library. More importantly, however, we will
design heuristics for uncovering such lost data, taking the burden completely off the user.

4 The Scripting Language

The primary interaction between the application developer and the SANS agent is by means of a ‘scripting’
language. Additionally, a graphical user interface will be constructed to query the user to either interactively
expand script language statements or to exchange ‘metadata’ regarding matrix/system attributes.

The scripting language is also the layer that provides the coupling between the library interface and the
SANS agent. The role of this language limits its features to provide essential functionality that cannot be
duplicated with ease in other components. This language provides simple control mechanisms and data
types; a script in this language would be interpreted ( or alternatively compiled ) to produce a program of
calls to the underlying libraries.

In domain-specific computational science applications the notion of a scripting language has been typically
implicit. In these disparate development environments the tendency is to express applications as scripts to
invoke application-specific libraries. Our effort differs from these approaches in that our goal is the de-
velopment of an explicit, prototype scripting language. This language must be general enough to cater to
applications that require a broad class of matrix based computations. However, at the same time, we propose
to develop a simple scripting language so that interpreting scripts into underlying library function calls adds
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little overhead. The goal is to provide a lightweight flexible mechanism for translating application needs
and attributes into suitable smart library calls within the context of agent-based grid-computing. Our effort
concerns:

• Specifying syntax and semantics so that the scripting language is suitable for a wide class of applica-
tions requiring matrix computations.

• Providing ways to express attributes of the application and the manner of use; for example, the ap-
plication should be able to specify whether or not the linear solver is being used within an implicit
time-stepping process (such attributes can be used for method selection to improve performance).

• Providing a basic set of control structures so that either the application developer or the intelligent
agent can specify a ‘poly-algorithmic’ approach [8].

• Providing access to library components with a sufficient degree of detail so that the scripting language
can be used for library extension. For example, to prototype a new poly-algorithmic, smart library
method composed of existing library functions.

As mentioned earlier, our scripting language will not be a classical programming language; rather, it is one
designed to inexpensively perform a weighing of possible options to compose an adaptive solution as a
‘poly-algorithm.’ A script in this language will be interpreted by the SANS agent to which the application
connects. Additionally, the agent may use pre-defined scripts for method composition. Finally, the agent
may use scripts to dynamically compose a ‘poly-algorithm’ solution based on past solution history, changes
in the run-time environment, etc.

We anticipate providing simple primitives for if-then-else conditionals, case-based testing, and standard
loop-constructs. In addition, the scripting language will contain keywords to specify solution methods,
problem attributes, data formats, etc. In short we will provide a keyword-rich language with simple con-
trol structures that can be used by both the application developer and the SANS agent to craft a ‘custom’
solution from the optimized implementations available in the underlying library layer.

We will start with a class of ‘operation’ keywords to indicate a basic set of major matrix operations, for
example, linear-solution, LU/QR/Cholesky factorizations, and sparse matrix reorderings. Additionally, we
expect the meaning of these high-level operations to be specified in greater detail by using a class of key-
words we call ‘modifiers.’ For example, for the linear solution operation, a modifier might the type of solver,
say ‘direct’ or ‘iterative.’ The modifiers are in a sense hierarchical, if an ‘iterative’ method is chosen, the
application could further specify ‘conjugate gradients’ with ‘pc ic0,’ i.e., a level-zero incomplete Cholesky
preconditioner. These modifiers are optional; if the application does not select a type of solver (direct or
iterative), it is the responsibility of the agent to select one. In such cases, the agent may simply expand
predefined scripts for each high-level method.

To intelligently perform the kind of expansion discussed in the last paragraph the agent would need to
know some problem/matrix attributes. We anticipate providing a class of ‘assertion’ keywords that can be
used within the application to specify properties such as whether the matrix is well-conditioned, or if it
has full-rank or not, etc. In the event of automatic method selection, the agent would use these attributes,
in conjunction with the desired high-level operation, to select predefined scripts specifying suitable ‘poly-
algorithm’ solution methods. The class of ‘assertion’ keywords will also contain specific terms to describe
the type of data format for the input matrix and other assorted information.

We expect a last class of keywords to refer to the computational environment—these keywords will be used
to specify system specific details, e.g., the number of processors. We also anticipate allowing ‘directives’
which can control the action of the agent—these directives could be used to enable or disable (within script
segments) automatic ‘poly-algorithm’ expansions by the agent.

This scripting language approach allows the user to request a service from the agent at various levels of
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detail. It may well be that the experienced user will have additional knowledge about the attributes of the
problem which could be used to provide a better solution. In these instances, the SANS agent would use a
GUI to interact with the user. Such interaction would be in the form of a sequence of query/response pairs
aimed at better defining application needs and problem attributes.

We would like to reiterate that we are developing a simple scripting language primarily because it allows
a structured multilayered implementation of theSANS while ensuring portability and extensibility of the
user interface and underlying libraries. Existing scripting languages either lack adequate abstraction or are
difficult to implement and support due to their generality; for example, Perl is not object-oriented while the
Python thread module can have interactions with the module for signal handling.

5 Libraries

5.1 Exemplar libraries

We propose to exploit the automation of the process of architecture-dependent tuning of numerical ker-
nels, replacing the current hand-tuning process with a semiautomated search procedure that ourSANS agent
can use. Current limited prototypes for dense matrix-multiplication (ATLAS [48] and PHIPAC [12], both
involving researchers of the current proposal), sparse matrix-vector-multiplication (Sparsity [33, 32], also
involving some of the current authors) and FFTs (FFTW [26, 25]) show that we can frequently do as well as
or even better than hand-tuned vendor code on the kernels attempted. The importance ofautomatically doing
about as well as hand-tuned code is critical: It is not just a matter of saving some time for a few program-
mers writing the BLAS (Basic Linear Algebra Subroutines [40, 22, 21]) at a few companies, it is a matter of
making such code easily accessible. For example, The Mathworks did not include LAPACK [5] into Matlab
for many years because of the difficulty of assuring the availability of fast BLAS. Only when ATLAS made
fast BLAS generally available did the Mathworks put LAPACK into Matlab. Making licensing, installation
and tuning issues transparent for average users is even more important.

Current projects use a hand-writtensearch-directed code generator (SDCG) to produce many different C
implementations of, say, matrix-multiplication, which are all run on each architecture, and the fastest one
selected. Simple performance models are used to limit the search space of implementations to generate and
time. Since C is generated very machine specific optimizations like instruction selection can be left to the
compiler. We propose to extend this approach to a much wider range of computational kernels by using
compiler technology to automate the production of these SDCGs.

Especially of interest are sparse kernels [34, 32]. Sparse matrix algorithms tend to run much more slowly
than their dense matrix counterparts. For example, on a 250 MHz Ultrasparc II, a typical sparse matrix vector
multiply implementation applied to a document retrieval matrix runs at less than 10 MFlops/s, compared
to 100 MFlops/s for a vendor-supplied dense matrix-vector multiplication routine, and 400 MFlops/s for
matrix-matrix. Major reasons for this performance difference include indirect access to the matrix and poor
data locality in access to the source vectorx in the sparse case.

However, our current optimizations can speed sparse-matrix-vector multiplication up over five fold [34]. It
is remarkable how the type of optimization depends on the matrix structure: For a document retrieval matrix,
only by combining both cache blocking and multiplying multiple vectors simultaneously do we get a five
fold speed; cache blocking alone yields a speedup of 2.5, and multiple vectors alone yield no speedup. In
contrast, for a more structured matrix arising from face recognition, the unoptimized performance is about
40 Mflops, cache blocking yields no speedup, and using multiple vectors yields a five fold speedup to 200
Mflops. In other words, the correct choice of optimization, and the performance, depends intimately on the
matrix structure.
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We will use these techniques as well as others and incorporate them intoSANS: register blocking, where
a sparse matrix is reorganized into fixed-size blocks that may contain some zeros, andmatrix reordering,
where the order of rows and columns are changed to reduce cache misses and memory coherence traffic on
an SMP [44].

5.2 Optimization modes

We propose to build a search-directed code generator that contains two major components: a transformation
engine to generate a set of candidate versions of the algorithmic kernel, and a search engine that is used to
run and evaluate the various candidates to choose the best one for a given machine.

We give several scenarios that our system will need to support, as motivated by examples discussed ear-
lier. The standard tradeoff is that the longer one waits to attempt an optimization, the more information is
available about the problem, but the less time one has to do it.

Completely off-line optimizationThis scenario is used in PHIPAC and ATLAS, and it works well for the
the dense BLAS because the computational pattern is nearly independent of the input: matrix multiplication
does the same sequence of operations independent of the values stored in the matrices. Because optimization
can be done offline, one can in principle take an arbitrary amount of time searching over many possible
implementations for the best one on a given micro-architecture.

Hybrid off-line/run-time optimization This is the scenario in which Sparsity can work (it can be run com-
pletely off-line as well). In both cases, some kernel building blocks are assembled off-line, such as matrix-
vector or matrix-matrix multiply kernels for very small dimensions. Then at run time the actual problem
instance is used to choose an algorithm. For Sparsity, the problem instance is described by the sparsity pat-
tern of the matrixA. Any significant processing of this will also overwhelm the cost of a single matrix-vector
multiplication, so only when many are to be performed is optimization worthwhile.

Completely Run-time optimizationThis is the scenario in which just-in-time (JIT) compilers work [15, 35,
1], as well as the inspector-executor model [20] and other dynamic compilation systems [24, 6, 23]. In these
cases, one has essentially all information about a problem instance, but the least time available to optimize.
A standard example of inspector-executor is to examine the sparsity pattern of a sparse matrix on a parallel
machine at run, and automatically run a graph partitioner like Parmetis [36] to redistribute it to accelerate
subsequent matrix-vector multiplications.

Feedback Directed CompilationThis involves running the program, collecting profile and other informa-
tion [29, 19, 7, 3] and recompiling with this information. We will make use of this mode through the explicit
incorporation of a database of performance history information.

5.3 Applying SANS to Sparse Linear Algebra

In dense linear algebra, efficient use of the memory hierarchy is probably the single most important factor
in achieving high performance. Utilizing the optimal register blockings, pipeline lengths, loop unrollings
and similar floating point optimizations yield significant performance gains only after the CPU to mem-
ory bottleneck is first addressed by optimizing cache use. Dense matrices are easily stored in one or two
dimensional arrays; once the storage is fixed in this way, cache optimization can be done statically during
installation.

For sparse linear algebra, however, the data storage and structure vary widely. In order to achieve high per-
formance for sparse linear algebra operations, it is necessary to exploit the sparsity structure in the original
data.
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There are essentially two approaches to recognizing and exploiting this sparsity structure. The most tractable
solution involves presenting to the user many different specialized storage formats, and allowing the user
to choose the format that best exploits his/her sparsity structure in order to maximize cache reuse. This
approach is widely used today, as in [31, 11, 37, 45, 47, 28]. The advantage of this solution is that the input
format is fixed and assumed to be appropriate to the data structure, just as with dense BLAS. Choosing one
of the more optimizable data structures (such as one of the block compressed storage schemes), should allow
us to directly leverage the Level 2 BLAS kernels developed for dense Linear Algebra. Less dense structures
can benefit from the proposed Level 1 BLAS research in a similar manner. Intermediately sparse storages
will require development of hybrid kernels, whose development should springboard directly from the dense
work.

The second approach to exploiting input data structure involves having the software recognize sparsity
patterns without user intervention, as in [37, 2]. Recognizing contiguous pieces of data in the original user’s
operands, such as subdiagonals or rectangular blocks, allows the computational kernel to maximize the data
reuse at the highest levels of the memory hierarchy. In this way, recognizing patterns in a sparse matrix can
lead to large savings in the memory traffic, and corresponding improvements in the performance of these
kernels. To achieve this effect, the initial data structure may need to be modified in order to better utilize the
specific features of a particular architecture. Since the most optimal data structure strongly depends on the
user’s data, it is important to dynamically perform this analysis at run-time, rather than statically during the
installation process.

In order to exploit such sparsity patterns, it is necessary to explore techniques that aim at improving the
poor data locality behavior of irregular sparse matrix computations. Existing compiler optimization tech-
niques only show how to improve the data locality for regular loop structures. Striping the matrix by blocks
of columns, or even partitioning it into blocks has been shown to potentially reduce the cache miss ratio
(see [37]). Pattern matching techniques can also be used to recognize diagonals, or blocks of diagonals.
These coarse techniques can be refined to minimize the amount of fill-in in the newly created data structure.
We are interested in pursuing the development of dynamic optimization techniques based on the applica-
tion of pattern matching methods to the same blocked compressed sparse storage schemes. Existing basic
performance models [37, 46] evaluating the performance effects of dynamic changes in the storage scheme
will also be further developed and used as building blocks for the SANS approach to sparse software. Of
particular importance is the tuning of these models to specific architectures for greater accuracy. Objective
functions could thus be evaluated at run-time taking into account hardware and software constants as well
as the current data storage scheme.

As we have seen, there already exists a large body of research on the optimization of sparse linear algebra
kernels. The literature further contains examples of using compiler- like optimizations coupled with dense
code to generate sparse codes, as in [9, 10, 11, 39, 38]. This amount of research has inevitably resulted in the
production of highly usable software libraries, such as [43, 4, 42]. However, most of this current software
relies to a great extent on the user for sparsity analysis, and the compiler for floating point optimization.

ATLAS’s previous dense work makes clear that we can expect to do quite a bit better in the floating point
optimizations necessary for at least some of the storage structures. We hope that applying SANS techniques
to the sparsity analysis will not only allow less sophisticated users to enjoy this increased performance as
well, it will allow them to continue to enjoy it through successive hardware upgrades.

Sparsity analysis is particularly relevant to modern libraries such as Aztec or PETSc [43] because these
libraries tend to hide the internal storage format from the user as much as possible. In such cases, a default
storage scheme, chosen more for its generality than its performance characteristics, may be used by naive
users even when a more optimal storage scheme is available. Sparsity analysis can help identify better
performing storage options. Obviously, however, whatever sparsity analysis is performed must not become
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so burdensome that it overwhelms the actual compute time. In iterative methods, where the same operation
will be performed hundreds or thousands of times with almost the same data, the cost of this analysis step can
be amortized over all the calls, so that a relatively costly analysis can be done in the interest of optimization.
In direct methods, a more lightweight, and therefore probably less efficient, analysis should be designed and
employed.

Thus, we see two independent lines of research emerging for the application of SANS to sparse kernels for
portable high performance. The first one involves extending current ATLAS features, such as the matrix
vector multiply code generator, in order to support sparse optimizations concentrating primarily on blocked
compressed storage schemes. The second research focus is on the characterization and evaluation of dynamic
optimizations based on pattern matching techniques for those adequate storage schemes.

As with dense optimizations, there already exists a large body of research results on optimization of sparse
linear algebra kernels which feeds into our work on making high performance portable. Generic software
and documentation as in [43, 4, 42] nicely identify current practice in terms of interfaces and methods of
choice. Most of the software optimization there, however, relies on the compilers and appropriate design
decisions. The literature contains examples of using compiler-like optimizations coupled with dense code
to generate sparse codes, as in [9, 10, 11, 39, 38]. Work that will be more immediately usable involves
generating optimal kernels based on known storage sparsity patterns, as in [30, 11, 37, 45]. Finally, some
work has also been done on performing sparsity analysis, as in [37, 2]. Just as in our work on dense kernels,
we will explore these research results within the SANS framework in order to discover how to make the
performance gains they lead to portable. Historically, we have found that this involves extending many of
these areas of research. In particular, research on sparsity analysis and its concrete application needs further
development to characterize its range of applications as well as to quantify its benefits.

The proposed research on sparse kernel optimization is two fold. First, we plan to reuse the current ATLAS
static optimization knowledge with particular emphasis on block compressed storage schemes. This con-
cretely leverages the important optimization results obtained during the development of the dense Level 2
BLAS kernels within the ATLAS framework. The general blocking strategy can be adapted; and the optimal
floating point scheduling for dense general matrix-vector multiplication can be re-used in the context of
block compressed storage schemes. We expect to validate this work by analyzing experimental results on
various architectures featuring various hardware resources. The second research aspect deals with develop-
ing techniques aiming at improving the poor data locality behavior of irregular sparse matrix computations.
Existing compiler optimization techniques only show how to improve the data locality for regular loop
structures. Striping the matrix by blocks of columns, or even partitioning it into blocks has been shown to
potentially reduce the cache miss ratio (see [37]). Pattern matching techniques can also be used to recognize
diagonals, or blocks of diagonals. These coarse techniques can be refined to minimize the amount of fill-in
in the newly created data structure. We are interested in pursuing the development of dynamic optimization
techniques based on the application of pattern matching methods to the same blocked compressed sparse
storage schemes. Existing basic performance models [37, 46] evaluating the performance effects of dynamic
changes in the storage scheme will also be further developed and used as building blocks for the SANS ap-
proach to sparse software. Of particular importance is the tuning of those models to specific architectures
for greater accuracy. Objective functions could thus be evaluated at run-time with respect to hardware and
software constants as well as the current data storage scheme.

It is our belief that the combination of these two research activities with the precise empirical knowledge
of machine specific parameters — will allow for the automated generation of highly efficient basic sparse
kernels.
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5.4 Applying SANS to Communication

Up to this point the SANS research proposed has focuses on the optimization of serial computation, but an-
other potentially rich vein of inquiry deals with the optimization of parallel communication operations and
libraries. Perhaps the most obvious starting point for such an investigation is a widely used basic operation
such as broadcast. Of course there are already many well-known algorithms for optimizing different aspects
of this critical operation. For instance, on most modern interconnects, a hypercube spanning tree is the topol-
ogy of choice for small messages. As message size grows, however, preservation of optimality demands a
shift from a latency-reducing algorithm to a bandwidth-reducing algorithm. Determining with any precision
where one type algorithm becomes more efficient than another may be a nontrivial exercise, as it depends on
message and broadcast group size, as well as the usual hardware and software issues. Even within the class
of bandwidth-reducing algorithms, differing architectures may affect the choice of algorithm. With shared
Ethernet, for example, a ring-based topology may be more efficient than other alternatives due to its low
contention. Clearly such cases are natural candidates for the application of empirical methods.

This research will require development of SANS at a very fundamental level. Even the modest goal of
optimizing the broadcast will require the solution to problems involved in doing the necessary timings for
parallel computations. If SANS is successful in optimizing this simple operation, a host of parallel building
block operations can be similarly addressed. In particular, the same kind of techniques can be applied to
reductions and all-to- all communication, for instance. Further, this work should be extensible to both higher
and lower level operations.

In the higher level range, it is worth investigating algorithm-specific topologies where the flow of operations
across the processors gives more esoteric topologies preference in timings. Such a case can be found in
ScaLAPACK’s factorization routines. In these routines, each processor column contains an NB-wide panel
of matrix columns. The active processor column factorizes its column panel, and broadcasts the factored
panel to all processors. The next active processor column is the one immediately to the right of the current
active processor column. Because of this flow of broadcasts, pipelines are maintained, and thus a pipelining
broadcast such as ring is used. However, in this algorithm, the broadcast is the last time-critical thing the
active processor column does. The next active processor’s time is much more critical, and thus a modified
ring, where the current active column performs the sends of the next active column, can be more optimal
than an unmodified ring.

As an example of a lower level optimization, even such a simple operation as point to point send/receive can
be optimized for various interconnects using the SANS method. It is not uncommon for certain architectures
to employ differing interconnects for internal communication. For example, cluster-based machines con-
structed by connecting several independent building block units to make one machine, such as the IBM SP2s
combined together to create ASCI BLUE/pacific (www.llnl.gov/asci/platforms/bluepac/ ),
the SGI Power Challenges connected via HIPPI in ASCI blue mountain (www.lanl.gov/projects/asci/bluemtn/bluemtn.html ),
and finally the clusters of fully connected Myranet nodes, which are themselves connected with a Myranet
topology to form C-plant (www.cs.sandia.gov/cplant/ ) present this kind of problem.

These machines utilize different hardware and software when they communicate within a building block
than when they communicate between building blocks. In this case, differing optimization techniques are
usually required in order to maximize performance, and theoretically a SANS-aware MPI could detect these
differences and provide for truly portable message passing performance.

6 Related Work

We list here, briefly, a number of existing projects and their relations to our proposedSANS systems.
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LSA The University of Indiana’sLinear System Analyzer (LSA) (http://www.extreme.indiana.
edu/pseware/lsa/index.html ; [27]) is building a problem solving environment (PSE) for
solving large, sparse, unstructured linear systems of equations. It differs from our proposed systems in
that it mostly provides a testbed for user experimentation, instead of a system with intelligence built in.
A proposed LSA intelligent component (www.extreme.indiana.edu/pseware/lsa/LSAfuture.
html ) is more built on Artificial Intelligence techniques than numerical analysis.

ESI The Equation Solver Interface (ESI) Standards Multi-lab Working Group & Interface Design Effort
(http://z.ca.sandia.gov/esi/ ) aims to develop an integral set of standards for equation-
solver services and components. These standards are explicitly represented as an interoperable set of
interface specifications.
While the ESI standard gives a much more detailed interface to equation solver libraries than we aim
to provide in our scripting language, its existence will make it easier for us to integrate libraries that
have an ESI interface into our systems.

CCA The Common Component Architecture Forum (CCA Forum) (http://www.acl.lanl.gov/
cca/ ) has as its objective to define a minimal set of standard features that a High-Performance Com-
ponent Framework has to provide, or can expect, in order to be able to use components developed
within different frameworks.

ILU Tuning There is ongoing work at Boeing [41] in choosing the many parameters determining an ILU
decomposition to optimize a either time or space, depending on the class of matrices (aerodynamics,
structures, etc.).

Tune The TUNE project (http://www.cs.unc.edu/Research/TUNE/ ) seeks to develops a toolkit
that will aid a programmer in making programs more memory-friendly.
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