
Algorithms for High Performance, Wide-Area, Distributed File
Downloads

James S. Plank Scott Atchley Ying Ding Micah Beck

Logistical Computing and Internetworking Lab
Department of Computer Science, University of Tennessee

Knoxville, TN 37996

Technical Report UT-CS-02-485
Department of Computer Science

University of Tennessee
October 8, 2002.

http://www.cs.utk.edu/˜plank/plank/papers/CS-02-485.html

Abstract

This paper explores three algorithms for high-performance downloads of wide-area, replicated data. The storage
model is based on the Network Storage Stack, which allows for flexible sharing and utilization of writable storage as
a network resource. The algorithms assume that data is replicated in various storage depots in the wide area, and the
data must be delivered to the client either as a downloaded file or as a stream to be consumed by an application, such as
a media player. The algorithms are threaded and adaptive, attempting to get good performance from nearby replicas,
while still utilizing the faraway replicas. After defining the algorithms, we explore their performance downloading a
50 MB file replicated on six storage depots in the U.S., Europe and Asia, to two clients in different parts of the U.S.
One algorithm, called progress-driven redundancy, exhibits excellent performance characteristics for both file and
streaming downloads.

1 Introduction

Advanced, wide-area storage infrastructures are becoming increasingly in vogue [CSWH00, DKK
�

01, PBB
�

01,
RWE

�

01]. As with all wide-area network infrastructures, they must be able to deal gracefully and efficiently with tran-
sient, permanent and unpredictible failures, whose causes can range from administrative reasons to hardware/software
failures to changing network conditions. Thus, they typically provide primitives for caching and replication, and per-
haps more advanced features such as striping and erasure encoding [HO93, WK02, Pla97]. Given a variety of ways to
store information on such infrastructures, the question of how to retrieve data most effieciently becomes a challenging
one.

This paper provides an experimental exploration of the following question:

Given a piece of content (e.g. a file) that is striped and replicated in the wide-area, how can that
content best be delivered to a client?

Standard replica-management architectures (e.g. [RWE
�

01, CHM
�

02]) simply have the client select a replica man-
ager and download the entire file, or an entire stripe from that manager. However, the range of download strategies
that may be employed is extremely vast, especially when the client agressively employs multiple communication
channels. In this paper, we explore three downloading algorithms that attempt to provide simple, yet effective and
high-performance downloading methodologies in wide-area settings. The goal is to provide insight to designers of
wide-area storage infrastructures, so that they may implement download operations that perform well in the wide area.

1

However, the methodologies are applicable whenever data is distributed in the wide-area and needs to be delivered to
a client, and thus are relevant to parallel, distributed, and Grid computing.

The paper is organized as follows: In section 2 we detail the Network Storage Stack and Logistical Runtime
System, which is our infrastructure testbed. This testbed has several features which make it an interesting experimental
platform. In section 3 we describe the downloading strategies whose performance we explore experimentally in
section 4. We conclude in section 5.

The main result of this paper is a simple algorithm called progress-driven redundancy, which exhibits excellent
downloading performance and characteristics, including increased efficiency as replicas to data are added, and delay-
minimal streaming performance.

2 The Network Storage Stack and Logistical Runtime System

For our experimental infrastructure, we use the Network Storage Stack and Logisitcal Runtime System, developed at
the University of Tennessee. The goal of the Network Storage Stack (Figure 1) is to layer abstractions of network
storage that allow writable storage resources to be part of the wide-area network in an efficient, flexible, sharable and
scalable way. Its model, which achieves all these goals for data transmission, is the IP stack, and its guiding principle
has been to follow the tenets laid out by End-to-End arguments [SRC84, RSC98, BMP02]. Two fundamental principles
of this layering are that each layer should (a) abstract the layers beneath it in a meaningful way, but (b) expose an
appropriate amount of its own resources so that higher layers may abstract them meaningfully (see [BMP01, BMP02]
for more detail on this approach).

IBP

Logistical File System

Local Access

Physical

Logistical Tools

L-Bone exNode

Applications

Figure 1: The Network Storage Stack

2.1 IBP

The lowest layer of the storage stack that is globally accessible from the network is the Internet Backplane Protocol
(IBP) [PBB

�

01]. IBP is server daemon software and a client library that allows storage owners to insert their storage
into the network, and to allow generic clients to allocate and use this storage. The unit of storage is a time-limited,
append-only byte-array. With IBP, byte-array allocation is like a network malloc() call — clients may request an
allocation from a specific IBP storage server (or depot), and if successful, are returned trios of cryptographically
secure text strings (called “capabilities”) for reading, writing and management. Capabilities may be used by any client
in the network, and may be passed freely from client to client, much like a URL.

IBP does its job as a low-level layer in the storage stack. It abstracts away many details of the underlying physical
storage layers: block sizes, storage media, control software, etc. However, it also exposes many details of the underly-
ing storage, such as network location, network transience and the ability to fail, so that these may be abstracted more
effectively by higher layers in the stack.

2

2.2 The L-Bone and exNode

While individual IBP allocations may be employed directly by applications for some benefit [PBB
�

01], they, like IP
datagrams, benefit from some higher-layer abstractions. The next layer contains the L-Bone, for resource discovery
and proximity resolution, and the exNode, a data structure for aggregation. Each is defined here.

The L-Bone (Logistical Backbone) is a distributed runtime layer that allows clients to perform IBP depot discovery.
IBP depots register themselves with the L-Bone, and clients may then query the L-Bone for depots that have various
characteristics, including minimum storage capacity and duration requirements, and basic proximity requirements.
For example, clients may request an ordered list of depots that are close to a specified city, airport, US zipcode, or
network host. Once the client has a list of IBP depots, it may then request that the L-Bone use the Network Weather
Service (NWS) [WSH99] to order those depots according to bandwidth predictions using live networking data. Thus,
while IBP gives clients access to remote storage resources, it has no features to aid the client in figuring out which
storage resources to employ. The L-Bone’s job is to provide clients with those features.

The exNode is a data structure for aggregation, analogous to the Unix inode (Figure 2). Whereas the inode ag-
gregates disk blocks on a single disk volume to compose a file, the exNode aggregates IBP byte-arrays to compose a
logical entity that may be used like a file. Two major differences between exNodes and inodes are that the IBP buffers
may be of any size, and their extents may overlap and be replicated. Thus, the exNode allows users and applications to
create network files out of time-limited and failure-prone IBP allocations in such a way that much stronger properties
(e.g. fault-tolerance, longer durations) may be achieved. ExNodes are represented by XML encodings, manipulated
by an exNode library. Like IBP capabilities, they may be passed from client to client, anywhere in the network, with
no registration from a central authority.

�� ��
����

�	

�

�
Kernel

User space

The Network

exNode

inode

Disk
Blocks

IBP Depots

Local System
Capabilities

Block addresses

Figure 2: The exNode in comparison to the Unix inode

2.3 The Logistical Runtime System

The next level in the stack are tools and a client library that compose the Logistical Runtime System (LoRS). These
tools allow users to create, manipulate and use the network “files” supported by the exNode. These files reside on IBP
depots located by the L-Bone. The functionalities supported by LoRS are:

� Upload: Create a network file from a local file, input stream or memory buffer.
� Download: Get the bytes from a network file and store them locally or stream them to an application.
� Augment: Add more replicas to a network file.
� Trim: Subtract replicas from a network file.
� Refresh: Extend the time limits of the IBP allocations.

Note that both upload and augment allow the user to stripe and replicate the file in a very flexible manner. More-
over, augment and trim allow the user to route the file from one network location to another.

3

2.4 Status

IBP, the L-Bone, the exNode and the Logistical Runtime System are all software supported by the Logisical Computing
and Internetworking (LoCI) Laboratory (http://loci.cs.utk.edu). The power of this suite of software has
been demonstrated with several applications:

� IBP-Mail is an application that allows users to mail large files to other users by uploading them into the network,
and then mailing the exNode to the recipient.

� IBP-ster is an media player that plays audio and video files stored in IBP allocations on the network. The files
may be arbitrarily striped and replicated, and the player performs a streaming download to play them.

� IBPvo is an application which users may schedule to record television programs into IBP allocations. The user
is sent an exNode, which he or she may use to re-play the program from the network storage buffers.

LoCI supports a main L-Bone (http://loci.cs.utk.edu/lbone/cgi-bin/lbone_list_view.cgi)
that currently is composed of 35 depots at 17 locations in the United States, Europe and Singapore, serving over two
terabytes of network storage. The software has been designed to run without an L-Bone, or for users to configure their
own, private L-Bone.

3 The Challenge of Downloading

Given that context, let us now focus upon download. Suppose a user has an exNode file, whose contents are striped
and replicated in IBP buffers spread throughout the world, and the user wants to download the entire file to local
disk storage or to a streaming application as quickly as possible. What strategy should the LoRS download tool
use? This is a problem that is easy to state, but hard to solve. There are a wide variety of factors that make this
problem difficult, including changing network conditions, transient failures, heterogeneity in operating systems and
working environments, differing buffer sizes, differing administrative decisions, etc. Add to this the Pandora’s Box
(see Section 3.1) of multiple TCP connections between a pair of hosts, and the complexity of implementing a download
functionality that delivers optimal performance is overwhelming. However, after discussing the issue of multiple TCP
streams, we present some simple downloading strategies that should deliver effective performance in a variety of
settings.

3.1 The Pandora’s Box of Multiple TCP Connections Between A Pair of Hosts

It is an unfortunate fact that when sending a large amount of data between a client and a server, doing so with some
number of simulataneous TCP connections can vastly outperform using one connection. As a consequence, some file
transfer tools, such as GridFTP [ABB

�

02] and bbftp [Fer02] allow the clients and servers to perform downloads with
multiple simultaneous TCP streams. As an example of the possible gains, in October, 2001, Cottrell reported achieving
over 100 Mbps throughput for a Trans-Atlantic file transfer using 40 simultaneous TCP streams and a window size of
64kB. With only 10 streams, the bandwidth was under 30 Mbps [Cot01].

Setting up clients and servers to use multiple streams is a simple task. IBP allows server owners to specify the
maximum number of allowable simultaneous connections, and the LoRS tools allow users to specify a total number
of threads to perform the download. As in Cottrell’s experiments, at iGrid 2002 (September, 2002 in Amsterdam), the
LoRS tools were able to demonstrate over 100 Mbps on a Trans-Atlantic download using untuned TCP implementa-
tions (typically 8kB windows) and over 200 threads.

The problem with multiple streams is well-documented – they circumnavigate TCP’s congestion-control mecha-
nisms, and therefore do not act well in underprovisioned or transiently congested environments [Tou95, ADG

�

00,
EHT00, Flo00]. As a result, some institutions treat TCP-unfriendly activities, such as multiple streams, as akin to
a denial-of-service attack, and may disable service to the offending client. In two separate IETF RFC’s, the recom-
mended number of multiple streams that a client should initiate to a single server is two [Flo00] and one [ADG

�

00]
respectively. The suggestion is that single-stream TCP performance should improve in the near future, perhaps with
self-modifying window sizes [DMT02].

4

Therefore, we have the Pandora’s box: On one hand, we may achieve excellent performance with a minimum of
effort by employing multiple streams, and on over-provisioned networks there are no adverse effects. However, the
activity is TCP-unfriendly, and in the commodity Internet may lead to dire consequences.

As a result, in this paper we will present download algorithms that employ either one stream per client-server pair,
or two. The intent is to present numbers that do not circumvent the congestion-control methodologies of TCP, but
that hint toward the better performance that may currently be achieved from multiple streams. Until the networking
community devises a better solution than the current one, we will have to accept the Pandora’s Box as a given.

3.2 Download Algorithms

We restrict our attention to a file of size
�

. This file is stored in its entirety at each of � IBP servers, denoted�����������	�
�	�
. From these IBP allocations, we create � exNodes, labeled � ��������	� � � , such that ��� contains all replicas

from
� �

through
� � . We assume that

��� � . While larger values of � would appear to be beneficial, care must be
taken in how the replicas are utilized. Indeed, more replicas means more potentially parallel paths to data, however
they also may increase the probability that a slow server is selected from which to download. How the algorithms
handle this issue is fundamental to their performance.

3.2.1 Basic Downloading Algorithm

Our basic download algorithm is a straightforward, adaptive algorithm. Suppose that exNode � � is being downloaded.
The file is broken into blocks of size � , and ��� threads are created such that each IBP server will be serviced by �
TCP streams (again, in this paper, � will be either one or two). Each thread selects a different block to download,
and all threads start downloading. When a thread is finished with its block, it selects a new block that is not being
downloaded by any other thread, and works on that block. If a download fails, then the failed block becomes free so
that another thread servicing a different IBP server may attempt to download it, thereby giving the download a degree
of fault-tolerance.

This algorithm is adaptive, because IBP servers with high bandwidth to the client should download many more
blocks than those with low bandwidth. Moreover, as long as there are many blocks to be downloaded, the algorithm
may adapt to fluctuating network conditions. The selection of the blocksize is of concern. Blocks that are too small
may suffer too much from the effects of latency and overhead in their downloads, while blocks that are too large
may hinder the degree of adaptive load-balancing that the algorithm may achieve. It will be a matter of experimental
exploration to determine an optimal block size, and to see if that block size applies over a range of servers and clients.

3.2.2 Streaming Considerations

LoRS downloads can be to local files, local memory buffers, or directly to streaming applications, such as an audio
or video player. Such players have quantifiable needs in terms of sustained bandwidth. For example, uncompressed
audio is typically consumed at 1.38 Mbps, while a typical MP3 file requires only 0.125 Mbps. Video files are encoded
up to 300 Kbps for online streaming and up to 15 Mbps for DVD quality files. Raw consumer digital video cameras
output video at approximately 50 Mbps.

Like most streaming media players, the LoRS streaming download tool employs a lookahead buffer to tolerate
variable network latencies. First, some user-specified portion of the buffer is filled, and at that point the player starts to
consume the buffer. As long as the download proceeds with enough aggregate bandwidth and as long as the variability
in individual downloads is low enough, the player may play the file with no problems. However, if the bandwidth
wanes, or a portion of the download exhibits very bad performance, then the player typically pauses until the slow data
arrives. If several pauses occur in rapid succession, the player will appear to stutter. No frames are dropped since the
download uses a reliable TCP connection.

Thus, our experiments will reflect streaming considerations, focusing on the delay that is induced by variability in
the performance of individual block downloads.

3.2.3 Aggressive Redundancy

An obvious problem with the basic algorithm is that one or more slow downloads can significantly hurt performance,
especially when the download is streaming to an application. A straightforward, yet rather heavy-handed algorithm to

5

solve this problem is to download each block simultaneously from more than one depot. We introduce a redundancy
factor � , which is the number of threads that will simultaneously download each block. We anticipate that this will
lower the variability of download times for each block downloaded, at the expense of the overall download bandwidth
(since approximately ���

�
� of the downloads will not contribute to the useful work of the download).

3.2.4 Less Aggressive Redundancy

Perhaps a better idea than replicating downloads is instead to monitor the progress of each thread’s download, and to
retry a download when it is deemed to be progressing too slowly. The challenge is the define exactly what “too slowly”
means. The following is a simple algorithm called Progress-Driven Redundancy:

With progress-driven redundancy, a progress number � is selected along with a redundancy factor � , prior to the
download. The blocks are numbered consecutively, starting at zero, and each block is assigned an initial download
number of zero. Whenever a thread attempts to download a block, it increments the block’s download number. When
a thread finishes a block download, its next task is to select a new block to download. If there is a block � with a
download number less than � that has not completed its download, and there are more than � blocks with numbers
greater than � whose downloads have completed, then the thread selects block � to download. If there are no such
blocks, then the thread works on the next block whose download number is zero. When all blocks have download
numbers greater than zero, then when a thread has completed a download, it searches for the smallest block � with a
download number less than � , and works on it.

Note that all three algorithms are really variants of progress-driven redundancy. The basic algorithm may be viewed
as progress-driven redundancy with ���	� and �
��� . Similarly, aggressive redundancy may be viewed as progress-
driven redundancy with ���� .

4 Experimental Results

To test the various download algorithms, we replicated a 50 MB data file on the following IBP servers:

Server # Server� �
Texas A&M (College Station, TX)

���
Singapore���

University of California at Santa Barbara
���

University of Tennesse (Knoxville, TN)���
Harvard University (Cambridge, MA)

���
Surfnet (Amsterdam, NL)

We combined the replicas into six exNodes, � � ����� � � , where each � � has exactly � replicas, from servers 1
����� � .

We then attempted to download the exNodes from two separate clients: one at the University of Tennessee and one at
the University of California at Santa Barbara. Each result below is the average of many runs executed at various times
throughout the day.

4.1 Download Bandwidth

The download bandwidth of the three algorithms for various block sizes is plotted in Figures 3 and 4. Note, the legend
in Figure 3 applies to that and all following figures. The performance is clearly dependent on the location of the
clients, each of which has one nearby server among the collection: Server

� �
is on the same local area network as

the Tennessee client, and Server
� �

is on the same local area network as the Santa Barbara client. Accordingly, the
graphs in Figure 3 show drastic performance improvements at exNode � � (Tennessee), and the graphs in Figure 4
show drastic improvements at exNode � � (Santa Barbara).

As shown by the leftmost graphs in both figures, the basic algorithm’s performance peaks when the replica with the
nearby depot is reached. Unfortunately, however, as more replicas are added, its performance drops drastically. The
reason is is that the slow download of a single block can penalize the overall performance drastically. For example, in
one randomly selected test, when the client at UT downloads exNode � � with one thread per depot and a block size
of 2MB, Server

���
(at Tennessee) is responsible for 17 of the 25 downloads. After it completes its last download, the

client must wait 1.7, 2.5, 4.0, 7.3 and 103.7 seconds for the downloads from servers
� �

,
���

,
���

,
���

and
���

respectively.
The aggressive redundancy results (middle graphs) show roughly the same peak performance as the basic algorithm,

but the performance drop-off occurs with less frequency. For example, with a block size of 128 KB, the performance

6

1 Thread/depot. Blocksize: 128 KB
1 Thread/depot. Blocksize: 256 KB
1 Thread/depot. Blocksize: 512 KB
1 Thread/depot. Blocksize: 1 MB
1 Thread/depot. Blocksize: 2 MB

2 Threads/depot. Blocksize: 128 KB
2 Threads/depot. Blocksize: 256 KB
2 Threads/depot. Blocksize: 512 KB
2 Threads/depot. Blocksize: 1 MB
2 Threads/depot. Blocksize: 2 MB

Client: Tennessee

Basic Aggresive Redundancy Progress-Driven Redundancy
Algorithm (�	���) (�	��� � ����)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80
1 - T

exas A
&

M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

Figure 3: Download performance to Tennessee of the three algorithms on a replicated 50 MB file.

from the Santa Barbara client stays constant at roughly 50 Mbps for exNodes � � through � � . As the block sizes
increase, however, the probability that two slow depots will be responsible for a large block increases. For example,
when downloading � � from Santa Barbara with 1 thread per depot and a block size of 2 MB, the overall performance
of the download is penalized when the Harvard and Singapore depots are responsible for block #1, which arrives from
Singapore over 7 seconds later than all the other blocks (at that point, the Harvard download had not even completed).

The progress-driven results (rightmost graphs) have the most desirable properties. The absolute performance num-
bers in all cases are slightly better than the other two algorithms, and more importantly, the performance does not drop
as more replicas are added. The reason that this is important is that to optimize the other two algorithms, some notion
of proximity will be required, be it online monitoring and forecasting, or use of an external monitoring entity such as
the Network Weather Service [WSH99]. With progress-driven redundancy, the self-adapting nature of the algorithm
allows the client to simply try downloading from all replicas, in order to gain the benefits of finding the one that closest
without being penalized by downloading from too many servers.

The effect of the block size on the download is variable. When the performance of all servers is roughly equal
(as in � � through � � from Tennessee), the improvements from downloading large blocks is the significant factor in
improving performance. However, when the variability of download times is heightened, as occurs when a high-
performance or low-performance server is added (such as � � and � � respectively from Tennessee), then in the first
two algorithms, large block sizes become a problem, and the smaller block sizes perform better. With progress-driven
redundancy, when there is a high-performance server, it is unlikely that multiple low-performance servers will be
responsible for a single block’s download. For that reason, the large block sizes perform well even when there is a
great disparity in server download speeds.

Although we did not test block sizes greater than 2 MB, we anticipate that they will perform better with progress-
driven redundancy.

4.1.1 Changing � and �
To assess the effects of changing � on the aggressive download algorithm, we measured � ��� and � in the Santa
Barbara downloads. The results are in Figure 5. As would be expected, this reduces the drop-off as more replicas

7

Client: Santa Barbara

Basic Aggresive Redundancy Progress-Driven Redundancy
Algorithm (�	���) (�	��� � ����)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

Figure 4: Download performance to Santa Barbara of the three algorithms on a replicated 50 MB file.

� ��� � ���

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

Replicas in the exNode

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

Figure 5: The effect of altering � on the Santa Barbara downloads

are downloaded, due to the fact that the variability in individual block downloads is decreased. An unforseen effect is
that the overall peak bandwidth appears to stay roughly the same. The reason is that due to the small number of TCP
streams, the available bandwidth to the client has not been saturated. Were we to employ more parallel TCP streams,
we anticipate that the overall bandwidth would lessen.

Figure 6 displays the effect of setting � to 3, 6 and 9 in the Tennessee downloads. The change is minimal as �
is increased, except the download bandwidth goes up slightly as � increases. For example, the maximum bandwidth
with �
��� is 71.9 Mbps, while for �
��� , it increases 10% to 79.3 Mbps.

4.2 Streaming Performance

We also tested the streaming performance of these downloads. While average bandwidth is indeed a valid measure of
performance, there are times, for example showing multimedia, when the download needs to maintain a certain base
performance. For each test displayed above, we also calculated the delay that the download would induce were it to
be consumed at a specified rate. These calculations are in Figures 7, 8 and 9. In these graphs, � ��� and �
� � .

For each download, we assumed that the application allowed five seconds for buffering before consuming the

8

�
��� �
��� �� �

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0

20

40

60

80
D

ow
nl

oa
d

B
an

dw
id

th
 (

M
bp

s)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0

20

40

60

80

D
ow

nl
oa

d
B

an
dw

id
th

 (
M

bp
s)

Figure 6: The effect of altering � on the Tennessee downloads

Basic Aggressive Progress-Driven

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6
0.1

1

10

100

St
re

am
in

g
D

el
ay

(S

ec
on

ds
 +

 0
.1

)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

Figure 7: Streaming download performance to Tennessee at 1.3 Mpbs (5 second prebuffering)

bytes. Then the bytes have to be present at the client at the specified rate. For example, at 1.3 Mbps and a block size
of 128 KB, the second block must be completely downloaded at

� ���������� � �	� �	
 � ��� ���� seconds after the prebuffering phase.
Otherwise a delay will be induced.

Figures 7, 8 and 9 plot the average delay per run calculated in this manner, plus 0.1 second (so that a log scale may
be used to plot the results). Thus a value of 0.1 in the figures corresponds to the case where there is no delay.

Figure 7 displays the performance when the file is to be consumed at 1.3 Mbps, the speed of an audio player playing
uncompressed audio. As would be expected from the previous graphs, the basic algorithm induces large delays when
playing replicated files. This is because very slow downloads of blocks may occur with no redundancy. This effect is
more pronounced with larger block sizes. aggressive redundancy is able to counteract this effect in almost all cases,
and progress-driven redundancy keeps up with the required rate of the download in all cases.

Figure 8 shows a rate of 15 Mbps, the speed of high-quality compressed video. Now the basic algorithm can only
maintain the rate with no delay in one or two cases, while aggressive redundancy keeps up with either large blocks
and little replication, or small blocks and a lot of replication. Progress-driven redundancy (with a 2 MB block size and
two threads per depot) can deliver the required performance with no delay in all levels of replication.

Finally, Figure 9 shows a rate of 50 Mbps, which is the uncompressed speed of some video cameras. At this rate, the
basic algorithm is unusable, inducing very high delays. aggressive redundancy is only successful when the Tennessee
IBP server is part of the download. Progress-driven redundancy, on the other hand, can sustain 50 Mbps with 2 MB
block sizes, two threads per depot, and three non-local replicas. This is significant, because the overall bandwidth
of the download (Figure 3) is only 39.5 Mbps. Given the prebuffering of roughly half the file, the slower download
proceeds at an even enough pace that 50 Mbps is sustained.

9

Basic Aggressive Progress-Driven

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100
St

re
am

in
g

D
el

ay

(S
ec

on
ds

 +
 0

.1
)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

Figure 8: Streaming download performance to Tennessee at 15 Mpbs (5 second prebuffering)

Basic Aggressive Progress-Driven

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6
0.1

1

10

100

St
re

am
in

g
D

el
ay

(S

ec
on

ds
 +

 0
.1

)

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

1 - T
exas A

&
M

2 - U
C

SB

3 - H
arvard

4 - Singapore

5 - T
ennessee

6 - A
m

sterdam

1 2 3 4 5 6

0.1

1

10

100

Figure 9: Streaming download performance to Tennessee at 50 Mpbs (5 second prebuffering)

5 Conclusions

We have detailed an architecture that allows data to be stored in time-limited storage depots in the wide area. One novel
feature of this architecture is the ability to replicate data and download it to multiple clients in a variety of ways. This
paper explores three algorithms for downloading replicated files, and tests their performance in a wide-area (global, in
fact) setting.

As displayed by the results, an adaptive algorithm that uses a simple metric to retry slow downloads exhibited
excellent performance and desirable performance characteristics downloading to clients in Tennesse and in Santa
Barbara. These characteristics include:

� Increasing download bandwidth as more replicas are added to the data, regardless of the speed of the replicas’
servers.

� Good sustained download rates for streaming, which allow media players to stream content in real time from
wide-area servers.

The progress-driven algorithm is currently implemented in the LoRS tools, which are exported as open-source tools to
the community, not only for their use “out of the box,” but as vehicles for research on issues such as those addressed
by this paper (see http://loci.cs.utk.edu for details on the tools).

We will continue to explore algorithms and methodologies for managing data with high performance on the wide
area. We anticipate that the performance of downloads can benefit from two further principles. First, we have ignored

10

the ability to perform monitoring and forecasting of communication data. One lesson learned from this paper is that
when retrying a download, it is best to retry it from a fast server. This is because the fact that a download needs retrying
means that its progress is slow. A fast server is required to “catch it up.” By employing a forecasting methodology
such as the Network Weather Service, we can likely improve performance more by characterizing servers as “fast” and
“slow” and thereby only perform retries from fast servers. If the forecasts are reliable enough, we may also be able to
schedule downloads from slow servers that will be likley not to need retrying.

A second way to improve performance may be to employ error-correcting coding, as in Digital Fountain [BLMR98].
Instead of downloading blocks and retrying slow blocks, the download tool may download � data blocks and � coding
(e.g. parity) blocks. Then instead of retrying slow blocks, the tool may instead calculate them from the already-
downloaded data and coding blocks. The selection of � and � will be parameters for experimental study.

Downloading is the first tool whose performance we have explored. Uploading and augmenting are the next tools
deserving of attention. Adding to the complexity of these tools are the fact that data placement strategies, as well as
actually moving the bytes, will be important.

6 Acknowledgements

This material is based upon work supported by the National Science Foundation under grants ANI-0222945, ANI-
9980203, EIA-9972889, EIA-9975015 and EIA-0204007, the Department of Energy under grant DE-FC02-01ER25465,
and the University of Tennessee Center for Information Technology Research. The authors greatly acknowledge
Stephen Soltesz and Yong Zheng who provided their time and intimate knowledge of the LoRS tools, Jeremy Millar
who provided the same with the exNode tools, and Rich Wolski for numerous invaluable discussions. The authors also
acknowledge Wolski, Graziano Obertelli, Norman Ramsey and Hunter Hagewood for depot access, and Terry Moore
for his valuable insights.

References
[ABB

�
02] B. Allcock, J. Bester, J. Bresnahan, A. L. Chervenak, I. Foster, C. Kesselman, S. Meder, V. Nefedova, D. Quesnal, and S. Tuecke. Data management and

transfer in high performance computational grid environments. Parallel Computing Journal,, 28(5):749–771, May 2002.

[ADG
�

00] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Heidemann, J. Touch, H. Druse, S. Ostermann, K. Scott, and J. Semke. Ongoing
TCP research related to satellites. IETF RFC 2760 (http://www.ietf.org/rfc/rfc2760.txt), February 2000.

[BLMR98] J. Byers, M. Luby, M. Mitzenmacher, and A. Rege. A digital fountain approach to reliable distribution of bulk data. In ACM SIGCOMM ’98, pages 56–67,
Vancouver, August 1998.

[BMP01] M. Beck, T. Moore, and J. S. Plank. Exposed vs. encapsulated approaches to grid service architecture. In 2nd International Workshop on Grid Computing,
Denver, November 2001. http://www.gridcomputing.org/grid2001.

[BMP02] M. Beck, T. Moore, and J. S. Plank. An end-to-end approach to globally scalable network storage. In ACM SIGCOMM ’02, Pittsburgh, August 2002.

[CHM
�

02] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley. Protecting free expression online with Freenet. IEEE Internet Computing, 6(1):40–49,
2002.

[Cot01] L. Cottrell. Achieving high performance throughput in production networks. Presentation at the ESnet Site Coordinating Committee Meeting, Argonne
National Labs, http://www.slac.stanford.edu/grp/scs/net/talk/thru-escc-oct01.html, October 2001.

[CSWH00] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong. Freenet: A distributed anonymous information storage and retrieval system. In International Workshop
on Design Issues in Anonymity and Unobservability, LNCS 2002, Berkeley, CA, July 2000. Springer.

[DKK
�

01] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Wide-area cooperative storage with CFS. In 18th ACM Symposium on Operating Systems
Principles (SOSP ’01), Banff, Canada, October 2001.

[DMT02] T. Dunigan, M. Mathis, and B. Tierney. A TCP tuning daemon. In SC02: High Performance Networking and Computing Conference, Baltimore, 2002.

[EHT00] L. Eggert, J. Heidemann, and J. Touch. Effects of Ensemble-TCP. ACM Computer Communiation Review, 30(1):15–19, January 2000.

[Fer02] G. Ferrache. bbftp: On-line documentation for release 2.2.1. http://doc.in2p3.fr/bbftp/doc.2.2.1.html, Documentation from the IN2P3
Computing Center, Lyon, France, August 2002.

[Flo00] S. Floyd. Congestion control principles. IETF RFC 2914 (http://www.ietf.org/rfc/rfc2914.txt), September 2000.

[HO93] J. H. Hartman and J. K. Ousterhout. The zebra striped network file system. Operating Systems Review – 14th ACM Symposium on Operating System
Principles, 27(5):29–43, December 1993.

[PBB
�

01] J. S. Plank, A. Bassi, M. Beck, T. Moore, D. M. Swany, and R. Wolski. Managing data storage in the network. IEEE Internet Computing, 5(5):50–58,
September/October 2001.

11

[Pla97] J. S. Plank. A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like systems. Software – Practice & Experience, 27(9):995–1012, September
1997.

[RSC98] D. P. Reed, J. H. Saltzer, and D. D. Clark. Comment on active networking and end-to-end arguments. IEEE Network, 12(3):69–71, 1998.

[RWE
�

01] S. Rhea, C. Wells, P. Eaton, D. Geels, B. Zhao, H. Weatherspoon, and J. Kubiatowicz. Maintenance-free global data storage. IEEE Internet Computing,
5(5):40–49, 2001.

[SRC84] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system design. ACM Transactions on Computer Systems,, 2(4):277–288, November
1984.

[Tou95] J. Touch. Protocol parallelization. In G. Neufeld and M. Ito, editors, Protocols for High Speed Networks IV, pages 349–360. Chapman and Hall, London,
1995.

[WK02] H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative comparison. In First International Workshop on Peer-to-Peer Systems
(IPTPS), March 2002.

[WSH99] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A distributed resource performance forecasting service for metacomputing. Future
Generation Computer Systems, 15(5-6):757–768, 1999.

12

