
An Explanation-Based, Visual Debugger for
Spreadsheet-like Constraints

ABSTRACT
This paper describes a domain-specific debugger for one-way
constraint solvers. The debugger makes use of several new
techniques. First, the debugger displays only a portion of
the dataflow graph, called a constraint slice, that is directly
related to an incorrect variable. This technique helps the de-
bugger scale to a system containing thousands of constraints.
Second, the debugger presents a visual representation of the
solver’s data structures and uses color encodings to highlight
changes to the data structures. Finally, the debugger allows
the user to point to a variable that has an unexpected value
and ask the debugger to suggest reasons for the unexpected
value. The debugger makes use of information gathered dur-
ing the constraint satisfaction process to generate plausible
suggestions. Informal testing has shown that the explana-
tory capability and the color coding of the constraint solver’s
data structures are particularly useful in locating bugs in con-
straint code. Although the debugger is implemented as part
of a graphical user interface toolkit, we believe that the tech-
niques can be applied equally well to the debugging of com-
mercial spreadsheets.

Keywords: Visual debugging, one-way constraints, constraint
satisfaction, software visualization, data structures

Introduction
One-way, dataflow constraints (also called spreadsheet-like
constraints) are widely recognized as a potent programming
methodology. They have found uses in a variety of appli-
cations including spreadsheets, graphical interfaces [12, 13,
3, 5, 6, 7], attribute grammars [9], programming environ-
ments [14], and circuits [1]. If one considers the number of
spreadsheet users, one-way constraints are probably the most
widely used programming technique in use today. However,
there is considerable evidence that one-way constraints are
difficult to debug and that this difficulty can pose both pro-
ductivity and reliability concerns:

1. A survey of graphical interface programmers who have
used constraints has shown that programmers find con-
straints difficult to debug [17]. In particular, they complain

that constraints can seem like spaghetti code and that the
manifestation of a bug often occurs far from the source of
the problem.

2. A study in which experienced users created spreadsheets
found that 44 percent of the spreadsheets contained bugs
of one kind or another [2].

3. In our own research and instructional activities with stu-
dents, debugging constraints has been a persistent, recur-
rent headache.

Despite such difficulties, one-way constraints have a num-
ber of qualities that should make them easier to debug than
normal programs:

1. The constraint solving algorithm can be easily understood.
We have found that the most commonly used constraint
algorithm, a strategy called mark-sweep, can be explained
to and understood by users in a matter of minutes.

2. The constraint solving algorithm can be easily visualized.
The fundamental data structure used by one-way constraint
solvers is a dataflow graph. This graph is easy to visualize
and we have found that most users can understand it after
given only a brief explanation.

3. It is easy to remember significant events during the con-
straint solving process. For example, it is possible to re-
member when constraints change their inputs or outputs.
Recording such events should allow the debugger to pro-
vide helpful information to the programmer during the de-
bugging process.

Unfortunately, existing debuggers do not exploit these ca-
pabilities of constraint solvers. Although they typically do
provide a view of the dataflow graph, they do not take advan-
tage of their knowledge of the constraint solver’s actions nor
do they scale up well to large constraint systems involving
thousands of constraints.

In this paper we describe the design and implementation of
a domain-specific debugger for one-way dataflow constraints
that provides the following capabilities:

1. It uses color tagging to highlight important information in
the dataflow graph.

2. It records significant events during the constraint solving
process and then analyzes these events to help a program-
mer pinpoint the source of an error. The programmer uti-
lizes this analysis feature by asking a general “What’s wrong”
type question and the constraint solver responds with a set
of plausible reasons.

3. It uses a technique called “constraint slicing” to limit the
portion of a dataflow graph which a programmer views at
any given time.

Although we applied the techniques in this paper to a graph-
ical user interface toolkit, they can be applied equally well
to commercial spreadsheets. Additionally, the technique of
exploiting domain-specific knowledge to aid the debugging
process seems like a promising idea that can be applied to
other applications as well.

Background
One-way constraints are often informally written as an equa-
tion. For example, the equation ���������
	 �����������������	��������������
��� constrains the top of rect2 to be 10 pixels below the
bottom of rect1. More formally, a one-way constraint is
written as

���� ��"!# $	�	$	� %�#&'�'(*)+,�- ./!� 021� �	$	$	� .4365

where (is an arbitrary function, each 87 is a parameter (also
called an input) to (, and each ��7 is an output variable. The
constraint is said to be a one-way constraint because if the
value of any of the �
97;: are modified by the user or the pro-
gram, the changed variable does not influence any of the <7 ’s.

A one-way constraint solver typically maintains a directed,
bi-partite graph to keep track of the relationships among vari-
ables and constraints. The vertices of the graph represent
variables and constraints and the edges represent the flow of
data among variables and constraints. A variable has a di-
rected edge to a constraint if the variable is used as an input
(i.e., parameter) to that constraint. A constraint has a directed
edge to a variable if it assigns its result to that variable. An
example of a dataflow graph is shown in Figure 1.

When an application or user changes the value of a vari-
able, the constraint solver performs a depth-first search of
the dataflow graph to find and mark all the variables and con-
straints that are potentially affected by the change. The con-
straint solver can then either re-evaluate all the affected con-
straints immediately or it can re-evaluate a constraint only
when its value is needed. In the former case the constraint
solver is called an eager evaluator and in the latter case it is
called a lazy evaluator. Our experience with the visual de-
bugger described in this paper is based on an eager evaluator.

Previous Work
As noted in the introduction, much of the previous research
on debugging one-way constraints has focused on providing

some type of visualization of the dataflow graph. The C32
spreadsheet tool associated with the Garnet user interface
toolkit draws arrows from a constraint’s inputs to to the con-
straint’s outputs [11]. Amulet has an inspector tool that al-
lows the user to textually view the inputs to a constraint and,
if the inputs are themselves constrained, the inputs to those
“second-level” constraints [13]. Both C32 and Amulet’s in-
spector show only a limited portion of the dataflow graph in
the immediate vicinity of the constraint.

The CNV debugger displays a dataflow graph for a multi-
way constraint system as a user creates the graphical inter-
face [15]. The CNV debugger is like our debugger in that
it makes use of domain-specific information to help the user
analyze the constraint system. However, it is more focused
toward the planning stage of a constraint solver (helping the
user to determine why the constraint solver chose to solve an
equation for one variable rather than another variable) than
toward the execution stage.

Spreadsheets also provide a number of debugging techniques.
For example, Microsoft Excel uses arrows to display either
the parameters or dependents of a cell [10]. Each press of a
button reveals one more level of predecessors or dependents.
Excel also provides a number of error types which are dis-
played if the user inputs an incorrect value or a constraint
computes an incorrect value. By selecting a “trace error”
tool, the user can use these error values to incrementally find
the path in the dataflow graph that led to the error.

These techniques work well with small spreadsheets but they
break down with large spreadsheets. For example, because
the cells are in fixed positions, arrows can start to criss-cross
like sphaghetti. As another example, dependent cells may be
in widely separated areas of the spreadsheet, which forces
users to skip around in the spreadsheet, potentially losing
context as they do so. Our techniques address these short-
comings by 1) using a dataflow graph which naturally con-
gregates related cells in the same vicinity, and 2) only show-
ing the portion of the dataflow graph containing a cell and
the variables and constraints that determine that cell. This
elision of cells reduces the visual clutter and also allows the
dataflow graph to be drawn more compactly.

Finally, Igarashi and his colleagues use colors and anima-
tion to represent constraint relationships in a spreadsheet [8]
Like C32, only one relationship can be visualized at a time.
The dependent cells are shown in one color and the destina-
tion cell is shown in another color. Animation may be used
to move from one relationship to another to create the ef-
fect of flowing through the relationships. This research was
based only on spreadsheets that can fit on one screen. It is
not clear how these techniques will scale up to larger spread-
sheets. The animation is aimed at avoiding problems caused
by criss-crossing arrows but we believe that the ability to re-
arrange cells plus the ability to elide irrelevant parts of the
dataflow graph can alleviate this problem equally well.

Figure 1: The dataflow graph shows the variables and constraints that determine the left property for the boldfaced “Brad”
label. The circles denote properties and the rectangles denote constraints. constraint8 directly determines “Brad’s”
left. It compares the values of two labels, “David” and “Paul”, and aligns “Brad” to the right of the rectangle associated
with the wider label, in this case, “David’s” rectangle. “Brad’s” left indirectly depends on constraint1, which places
“David’s” rectangle to the right of “David’s” label. This dataflow graph is called a constraint slice because it shows only
the slice of the dataflow graph that determines “Brad’s” left rather than the dataflow graph for the entire graphical user
interface.

Data Visualization Techniques
As noted in the introduction, our debugger uses constraint
slicing to control the size of the dataflow graph, color tagging
to aid the programmer in seeing how the inputs and outputs
of constraints have changed, and an explanatory capability to
assist programmers in determining the causes of bugs.

Slicing
In working with programmers, we have discovered that they
typically start the debugging process by looking at a vari-
able that has an incorrect value. They then work backwards
from this variable, trying to pinpoint the original source of
the problem. This type of debugging does not require that
they view the entire dataflow graph. Instead, it only requires
that they view the portion that extends backwards from the
target variable. We call this portion of the dataflow graph a
“constraint slice”, since it resembles the slicing techniques
used in the programming language literature, in which a pro-
gram is “projected” on a certain set of statements so that only
the parts of the program that have an effect on those state-
ments is shown to the programmer [20, 19]. Figure 1 shows
an example of a constraint slice. Constraint slices allow sig-
nificant parts of the dataflow graph to be elided. They also
allow the graph layout algorithm to rearrange vertices in the
constraint slice to obtain a more compact representation that
increases the amount of relevant information that can be dis-
played on the screen.

We have found that using constraint slices eliminates the need
for panning and zooming because constraint slices tend to
be narrow and short. This result is not surprising because

a previous study has shown that dataflow networks tend to
be modular (i.e., many disconnected networks), narrow (i.e.,
not too much branching out from constraints), and shallow
(i.e., the longest path through a dataflow graph is typically
less than 6 constraints or, equivalently, 12 vertices) [18].

Color Tagging
When debugging constraints, we have found programmers
typically want an answer to one of the following three ques-
tions:

1. Why did the constraint not evaluate to the value I expect?

2. Why was this constraint not re-evaluated?

3. Why was this constraint evaluated (I did not expect it to
be)?

Being able to view a generic dataflow graph is sometimes
helpful but often it does not tell the programmer where to
start looking for the bug. However, we have found that the
answers programmers seek can frequently be found if the
constraint solver stores information about its previous solv-
ing cycle (called prior history). There are two types of his-
tory information in particular that we have found to be useful
to a programmer:

1. Changes to the dataflow graph: The addition or deletion of
constraints, the execution of conditionals or a change in a
value of a pointer variable can all cause edges to be added

to or deleted from the dataflow graph. By noting which
edges are added to the graph and which edges are deleted,
the constraint solver can later display these changes to the
programmer. Such changes can be useful in helping a pro-
grammer to quickly identify how a cycle developed in the
dataflow graph (because an edge was added) or why a con-
straint that the programmer expected to be evaluated was
not evaluated (because a critical edge was deleted). In our
debugger, newly added edges are shown in blue and newly
deleted edges are shown in red. The edges remain col-
ored until the next time the constraint’s inputs or outputs
change.

2. Edited values: Most dataflow constraint solvers allow an
application to make multiple edits to variables before the
constraint solver is invoked. The constraint solver can save
these variables so that a programmer can later see what
variables actually changed. We have found that sometimes
a constraint is unexpectedly evaluated because a variable
that the programmer did not expect to change was changed.
Being able to see the set of changed variables can help to
quickly identify this type of problem (a constraint slice
quickly exposes the guilty variable by displaying a path
back to that variable). The debugger highlights in green
those variables that are changed by the application or the
user, as opposed to changed by the re-evaluation of a con-
straint.

Explanation-Based Debugging
An initial version of the debugger allowed the programmer
to utilize the above information by posing specific queries
about changes to the dataflow graph, such as “show me all
changed/deleted edges in the dataflow graph.” However, we
have found that the debugger can use this information to ex-
plain errors so effectively that specific queries are not needed
(although they are still provided). The reason is that almost
all logic-based constraint errors can be traced to the follow-
ing factors:

1. There is not a path between the edited variables and the
incorrect variable although a path used to exist. Typically
this path disappeared in the last round of constraint solving
because an edge was removed from the graph. However,
sometimes the path never existed. In the former case the
debugger tells the user that there used to be a path from
an edited variable to the incorrect variable and highlights
that path (the path includes a deleted edge). In the latter
case the debugger the debugger tells the user that there is
no relationship between the property in question and the
edited property. This latter explanation is often useful be-
cause the programmer thought that a property depended on
a variable that was being edited and was surprised when the
property did not change at all.

2. There is an unexpected path between the edited variables
and the incorrect variable. Typically this path appeared in

the latest round of constraint solving because an edge was
added to the graph. However, sometimes the path has been
there for some time and the user just noticed it. In the
former case the debugger tells the user that there is a new
path from an edited variable to the incorrect variable and
highlights that path (the path includes an added edge). In
the latter case the debugger tells the programmer that the
property in question depends on an edited property through
a pre-existing path. This reason can arise when the value of
an edited variable moves past a threshold, thus triggering a
conditional that causes a constraint to depend on a different
set of inputs. It can also arise when a pointer variable is
changed, in which case a constraint will also often depend
on a different set of inputs.

3. There is a cycle between the edited variables and the in-
correct variable. Typically this cycle appeared in the latest
round of constraint solving because an edge was added to
the graph. In both cases the debugger simply indicates that
there is a cycle between the edited varible and the incorrect
variable and highlights the cycle in yellow.

4. The changes to the edited variables quiesced before reach-
ing the incorrect variable. The debugger does not currently
check for this case. We plan to add this reason in the future.

Figures 2-6 show a sample interaction between the program-
mer and the explanation-based portion of the debugger. The
initial state of the interface is shown in Figure 2.a. In Fig-
ure 2.b, the string labeled “Brad” has inexplicably jumped to
a new position when the user started editing the string labeled
“Paul”.

(a) (b)

Figure 2: The initial state of the graphical interface is
shown in (a). In Figure (b) the boldfaced label “Brad”
has inexplicably jumped to a new position during the
editing of Paul’s text string.

The programmer pops up a property inspector for “Brad”
and notices that there is a constraint on the left property (the
purple highlighting of “left” indicates that a constraint de-
termines its value). The programmer now asks to see the
dataflow graph that determines the left property and the de-
bugger pops up a graph showing the appropriate constraint
slice (Figure 3). The programmer can immediately see that
the constraint that computes the left property has changed its

Figure 3: The constraint slice for “Brad’s” label after “Paul’s” text string has been edited. The blue edges denote new inputs
to constraints, the red edges denote deleted inputs to constraints, and the green circle denotes a recently edited property.
The property sheet at right displays the values of the properties for “Brad’s” text object. The properties highlighted in
purple are determined by constraints. The object highlighted in blue denotes a link that can be clicked on to bring up a
property sheet for that object. In this case the highlighted object is the window containing “Brad”.

set of inputs. However, there are a large number of added and
deleted edges so the question now is what caused this large
number of additions and deletions?

To explore further, the programmer selects the property and
selects a menu option entitled “Something’s Wrong. Please
Suggest A Reason.” The debugger pops up a dialog box that
suggests two plausible reaons (Figure 4). The first reason
is that the left property previously depended on the changed
text property and the second reason is that the left property
just started depending on the changed text property in a new
way.

To get a more detailed explanation of the second reason, the
programmer presses the “Show Path(s)” button. The debug-
ger provides a more detailed explanation in two ways. First,
in the explanation window it draws the specific path from the
edited variable to the selected variable. Second, in the orig-
inal dataflow graph window, it highlights in green the path
from the edited variable to the selected variable (Figure 5).
In the current example, the programmer can follow the green
path and see that there are new edges between the edited text
property and “Brad’s” left property.

Finally, to see how a new path might have been established
between “Brad’s” left and “Paul’s” text field, the user asks
to see the source code for constraint 8, which determines
“Brad’s” left (Figure 6). We have found that the ability to
view a constraint’s source code interactively is very useful
since the constraint name is frequently not descriptive. The
programmer is allowed to assign names to constraints but

typically does not do so. Therefore the constraint solver has
to assign names to constraints, such as “constraint8”, that are
not meaningful.

The source code shows a conditional statement that is the
cause of the problem. The conditional aligns “Brad’s” left
with one of two rectangles, depending on the widths of two
respective textboxes. One can reasonably infer that “Paul’s”
textbox is one of the two textboxes being compared in the
conditional and that this conditional is the source of the prob-
lem.

Implementation
The debugger is implemented in Java on top of the Silhouette
interface development toolkit, which is also implemented in
Java and is a toolkit we have been developing to help us ex-
plore constraint debugging. Originally, the debugger was im-
plemented in the same process as a Silhouette application but
we found that this bundling made the code awkward and also
slowed down the application. As a result the Silhouette ap-
plication now forks a separate process for the debugger and
the two processes communicate via pipes. The debugger now
does much of its work during a user’s think time instead of
during a user’s interaction with the application.

Collecting Information

The debugger keeps track of added or deleted edges in the
dataflow graph by taking a snapshot of a constraint’s inputs
and outputs each time the debugger is notified that the con-
straint is modifying its inputs or outputs list. Before the
change is made, the constraint notifies the debugger and the

Figure 4: A dialog box that provides two reasons for why “Brad’s” label may have jumped to a new position.

Figure 5: The programmer has requested a more detailed explanation of the second reason by selecting the second item’s
“Show Path” button. The debugger isolates the path from the edited property to the incorrect property in the explanation
window and highlights the path in green in the dataflow window.

debugger saves the constraint’s current set of inputs and out-
puts. When the user requests to see a portion of the dataflow
graph that includes the changed constraint, the debugger com-
pares the constraint’s current input/output lists with the snap-
shotted input/output lists and computes the differences. The
debugger does not throw away the snapshot until the next
time the constraint changes its inputs or outputs. This “mem-
ory” feature is helpful because a bug frequently occurs as
the user is moving or editing an object and hence several
keystrokes or mouse events are processed before the user is
able to stop and examine the problem. These events typi-
cally cause the affected constraints to be re-evaluated several
times. However, their inputs and outputs typically do not
change further and hence the relevant information is retained
for the user.

Generating Explanations

When the user selects a variable and asks for reasons why
something might be wrong, the debugger uses a reverse depth-

first search of the dataflow graph to try to find paths from
the selected variable back to each of the variables in the cur-
rent set of edited variables. It tries finding paths through old
edges, new edges, and deleted edges. If it finds a path, it gen-
erates a reason based on whether the path has a new edge, a
deleted edge, or consists only of old edges. If it does not
find a path, then it generates a reason stating that the selected
property does not depend on this edited variable. The de-
bugger also performs a strong connectivity test to determine
whether there is a cycle between each edited varible and the
selected property and, if so, generates a cycle explanation.

In searching for plausible reasons, the debugger does not list
newly added or newly deleted paths between non-edited vari-
ables and the property in question. For example, in Figure 3
there are many paths involving new and deleted edges that
do not go through the edited variable. Our rationale for not
including such paths among the listed reasons is twofold.
First, it would often lead to a large number of reasons that

Figure 6: The source code for the constraint that determines “Brad’s” left. The highlighted portion of the code shows
that “Brad’s” left depends on a conditional that compares the width of two textboxes. Based on the outcome of this test,
“Brad’s” label is aligned to the right of one of two rectangles.

a user would have to choose amongst. Second, the problem
is caused by editing a variable so the explanation should be
related to one of these edited variables.

Graph Drawing
For graph drawing we use a modified version of the Graph-
place drawing package [16]. The modifications essentially
involved translating the source code from C to Java and strip-
ping out many of the unnecessary features related to postscript
printing. The primary advantage of the Graphplace package
is that it lays out a graph quickly and typically in a pleasing
fashion. It does not guarantee that it will prevent edge cross-
ings, even if edge crossings are preventable. In general, since
dataflow graphs are narrow and shallow, edge crossings are
not problematic.

Source Code Viewing
We use the JODE optimization and decompiler package to
dynamically decompile a constraint object when the user asks
to view the constraint’s source code [4]. We modified the
code in the package so that it only prints the source code
for the function that computes the constraint, rather than all
of the methods in the constraint object (the constraint object
also has methods for evaluating constraints and marking con-
straints invalid).

Experience
An initial version of the visual debugger that displayed con-
straint slices and visually tagged the dataflow graph was used
in a graphical interface class in Fall 2001. We observed that
students frequently used the debugger to both examine the
values of properties and to examine a dataflow graph. Stu-
dents later reported that being able to view a dataflow graph
decreased the amount of print statements that they felt they
would have had to otherwise place in their code. Students
also criticized the slowness of applications while the debug-
ger was executing. Since that class, the debugger has been
significantly speeded up by placing it into a separate pro-
cess. Additionally the explanation-based facility and source
code viewing of constraints has been added. While these
new features have not been tested on programmers outside
the Silhouette project, we have used the debugger to locate

problems in the constraint solver. The color tagging and ex-
planations have allowed us to identify problems much more
efficiently than before the debugger was operational and we
could rely only on print statements.

Future Work
Currently the visual debugger can be used to view the dataflow
graph after a constraint crashes but it does not pinpoint the
constraint that crashed. It would be quite helpful if a con-
straint crash would transfer control to the debugger which
would then pop up a dataflow graph showing the constraint
slice that originates at the crashed constraint. We also plan
to add a breakpointing facility to the visual debugger so that
the user can stop execution at selected constraints. Finally
we plan to add an event recording feature so that a user can
re-run an application up to a desired event and then start con-
straint debugging. Event recording would allow elusive bugs
that appear only intermittently to be “captured” and then an-
alyzed in detail.

Conclusions
In this paper we have described the design and implementa-
tion of a visual, explanation-based debugger for spreadsheet-
like constraints. By restricting the domain of the debugger,
we have been able to provide a pictorial visualization of the
solver’s state which is easy for a programmer to understand.
We have also been able to make use of our knowledge about
how constraint solvers typically manipulate their data struc-
tures in order to save state information that can be used to
augment the visualizations with useful information about the
recent behavior of the constraint solver. Further, by observ-
ing the types of bugs that frequently arise in constraints, we
have successfully built an analysis component into the de-
bugger that allows it to provide a range of plausible explana-
tions for why a variable has an incorrect value. This feature
has proven very helpful in quickly locating the source of a
bug without having to resort to slow step-by-step, breakpoint
execution of the constraint solver. Finally, by borrowing the
technique of slicing from the programming languages liter-
ature, we have evolved a technique that allows our visual-
ization techniques to scale up to very large scale constraint
systems. The techniques described in this paper, while de-

signed for programming environments, can easily be adapted
to commercial spreadsheets and hence can potentially pro-
vide a powerful new set of techniques for debugging spread-
sheets.

Acknowledgements
This research was supported by NSF grant CCR-9970958.

REFERENCES
1. ALPERN, B., HOOVER, R., ROSEN, B. K.,

SWEENEY, P. F., AND ZADECK, F. K. Incremen-
tal evaluation of computational circuits. In ACM
SIGACT-SIAM’89 Conference on Discrete Algorithms
(Jan. 1990), pp. 32–42.

2. BROWN, P. S., AND GOULD, J. D. An experimental
study of people creating spreadsheets. ACM Transac-
tions on Office Information Systems 5, 3 (1987), 258–
272.

3. HILL, R. D., BRINCK, T., ROHALL, S. L., PATTER-
SON, J. F., AND WILNER, W. The rendezvous archi-
tecture and language for constructing multiuser appli-
cations. ACM Transactions on Computer Human Inter-
action 1 (June 1994), 81–125.

4. HOENICKE, J., FARRELL, B., NASH, J., AND

RADEMACHER, T. Jode: Java optimize and decompile
environment.

5. HUDSON, S. E. A system for efficient and flexible one-
way constraint evaluation in C++. Tech. Rep. 93-15,
Graphics Visualizaton and Usability Center, College
of Computing, Georgia Institute of Technology, April
1993.

6. HUDSON, S. E. User interface specification using
an enhanced spreadsheet model. ACM Transaction on
Graphics 13, 3 (July 1994), 209–239.

7. HUDSON, S. E., AND SMITH, I. Ultra-lightweight
constraints. In ACM SIGGRAPH Symposium on User
Interface Software and Technology (Seattle, WA, Nov
1996), Proceedings UIST’96, pp. 147–155.

8. IGARASHI, T., MACKINLAY, J. D., CHANG, B.-W.,
AND ZELLWEGER, P. T. Fluid visualization of spread-
sheet structures. In 1998 IEEE Symposium on Visual
Languages (Halifax, Nova Scotia, Canada, Sept 1998),
IEEE Computer Society, pp. 118–125.

9. KNUTH, D. Semantics of context-free languages.
Mathematical Systems Theory 2 (June 1968), 127–145.

10. MICROSOFT CORPORATION. Microsoft Excel. 1998.

11. MYERS, B. A. Graphical techniques in a spreadsheet
for specifying user interfaces. In Human Factors in
Computing Systems (New Orleans, LA, Apr 1991), Pro-
ceedings SIGCHI’91, pp. 243–249.

12. MYERS, B. A., GIUSE, D. A., DANNENBERG, R. B.,
VANDER ZANDEN, B., KOSBIE, D. S., PERVIN, E.,
MICKISH, A., AND MARCHAL, P. Garnet: Compre-
hensive support for graphical, highly-interactive user
interfaces. IEEE Computer 23, 11 (Nov. 1990), 71–85.

13. MYERS, B. A., MCDANIEL, R., MILLER, R., FER-
RENCY, A., FAULRING, A., KYLE, B., MICKISH, A.,
KLIMOVITSKI, A., AND DOANE, P. The Amulet envi-
ronment: New models for effective user interface soft-
ware development. IEEE Transactions on Software En-
gineering 23, 6 (June 1997).

14. REPS, T., TEITELBAUM, T., AND DEMERS, A. Incre-
mental context-dependent analysis for language-based
editors. ACM TOPLAS 5, 3 (July 1983), 449–477.

15. SANNELLA, M., AND BORNING, A. Multi-garnet: In-
tegrating multi-way constraints with garnet. Tech. Rep.
92-07-01, Department of Computer Science and Engi-
neering, University of Washington, Sept 1992.

16. VAN EIJNDHOVEN, J. Graphplace. 1994.

17. VANDER ZANDEN, B., MYERS, B. A., SZEKELY, P.,
GIUSE, D., MCDANIEL, R., MILLER, R., KOSBIE,
D., AND HALTERMAN, R. Lessons learned about
one-way, dataflow constraints in the garnet and amulet
graphical toolkits. ACM Transactions on Programming
Languages and Systems 23, 6 (Nov 2001), 776–796.

18. VANDER ZANDEN, B., AND VENCKUS, S. An em-
pirical study of constraint usage in graphical applica-
tions. In ACM SIGGRAPH Symposium on User In-
terface Software and Technology (Seattle, WA, Nov.
1996), Proceedings UIST’96, pp. 137–146.

19. VENKATESH, G. The semantic approach to program
slicing. sigplan 26, 6 (June 1991), 107–119.

20. WEISER, M. Program slicing. IEEE Transactions on
Software Engineering SE-10, 4 (July 1984), 352–357.

