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Summary

Spreadsheet-like constraints have been incorporated in many graphical user interface toolkits because
they are simple to learn, easy to write, and can express many types of useful graphical relationships. The
existing papers on spreadsheet constraints have focused on their design and implementation. In contrast, this
paper is an evaluative paper that examines users’ experience with two of these toolkits, Garnet and Amulet,
over a 10 year time span. The lessons gained from this examination can help guide the design of future
constraint systems. The most important lessons are that:

1. constraints should be allowed to contain arbitrary code that is a) written in the underlying toolkit
language, and b) does not require any annotations, such as parameter declarations,

2. constraints are difficult to debug and better debugging tools are needed, and

3. programmers will readily use constraints to specify the graphical layout of an application but must be
carefully and time consumingly trained to use them for other purposes.

keywords: One-way Constraints, Constraint Experience, Constraint Usage, Graphical Interfaces, In-
terface Toolkits.

Introduction

The popularity of spreadsheets and their ease of use has encouraged many researchers to include spreadsheet-

like constraints in toolkits for constructing graphical user interfaces [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In turn

these implementations have spawned many articles describing algorithms for solving these constraints or

evaluating the trade-offs among these algorithms [5, 11, 12, 13, 14, 15, 16, 17].

A pair of “retrospective” papers have also been published recently that report on longer-term experiences

with constraints. A companion paper to this one provides an empirical comparison of the performance and

design trade-offs of various constraint satisfaction algorithms based on our experiences with the toolkits

described in this paper [18]. A second paper mentions briefly two of the observations described in this

paper: 1) the fact that programmers have found constraints useful for graphical layout and 2) the fact that

many programmers find constraints somewhat difficult to master in other settings due to their declarative,

rather than imperative, nature [19]. However, it provides no documentary evidence for these observations,

does not explore them in any detail, and does not report the other findings reported in this paper.

Despite this wealth of papers on spreadsheet-style constraints, none of them has provided an in-depth

account of programers’ experiences with these constraints after the toolkits have been released and in use

for several years. This paper remedies that gap in the literature. It describes: 1) what programmers like

and dislike about constraints, 2) how programmers use constraints in applications, and 3) how we learned

to make constraints easier for programmers to use. The results are based on 10 years of experience gained
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from working with users of the Garnet and Amulet toolkits [3, 4] and from surveys of these users. Gar-

net is a Lisp-based toolkit for developing interactive graphical applications that was first released in 1989

and Amulet is a C++-based successor to Garnet that was released in 1994. Garnet can be downloaded

from www.cs.cmu.edu/˜garnet and Amulet can be downloaded from either www.cs.cmu.edu/˜amulet

or www.openip.org. Both toolkits incorporate spreadsheet-like constraints and have been used by over

1,000 programmers. Garnet runs on the Unix and Macintosh platforms, and Amulet runs on the Unix, PC,

and Macintosh platforms.

Overall programmers’ experience with constraints have been quite positive. They consistently indicate

that constraints are useful in constructing their applications. Their biggest praise of constraints is that they

are helpful for specifying graphical layout. Their biggest complaints about constraints is that they are

difficult to debug and can be evaluated in an unpredictable fashion (this latter complaint is discussed in our

previous paper on constraint performance [18] and is not discussed further in this paper). The rest of this

paper first presents some terminology and then describes these and other findings in greater detail.

Background

Terminology

A spreadsheet constraint is an equation in which the value of the variable on the left side is determined by

the value of the expression on the right side. For example, the constraint label.left = frame.left +

10 causes label’s left to be offset 10 pixels from the left side of frame. More formally, a spreadsheet

constraint is an equation of the form

v � F
�
p0 � p1 � p2 ��������� pn �

where F is a function and the pi’s are its parameters. In a conventional spreadsheet, F would denote the

formula and the pi’s would denote the cells referenced by the formula. If the program or the user modifies

any of the pi’s, the constraint solver automatically re-evaluates F and assigns the updated value to v. In

some cases, v can be modified by the program or the user and in this case the constraint is left temporarily

unsatisfied.

Garnet and Amulet Overview

Amulet and Garnet are both toolkits that provide a highly integrated collection of features designed to

make it significantly easier to create interactive, graphical applications. These features include a prototype-
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instance model, structured graphics, a composite object mechanism, spreadsheet-like constraints, and a

high-level event-handling mechanism. Understanding how the constraints are used requires understanding

these other features as well.

Prototype-Instance Model

Garnet and Amulet support a prototype-instance system, in which any object can serve as a prototype for

another object [20, 21, 22, 3]. Each object consists of a set of properties, such as left, top, width, height,

and color. A property is stored in a named variable called a slot (a slot would be called an instance variable

in a class-instance model). If a slot is not explicitly assigned a value in an object, then that slot’s value is

inherited from the object’s prototype.

A constraint is created by assigning a formula object to a slot (both Garnet and Amulet have macros

that allow a programmer to declare a function as being a formula and that create a formula object which

contains a pointer to the function). Slots inherit constraints from a prototype unless the programmer provides

alternative values for the slots. For example, if the width slot of the prototype contains a constraint, then

the width slot of an instance will contain a clone of that constraint unless the programmer provides an

alternative value.

If the programmer wants to display a shape on the screen, the programmer creates an instance of the

desired shape and adds the newly created object to the appropriate window. A display manager then auto-

matically redraws those objects whenever any of the objects is modified (e.g., an object’s position is changed

or its color is modified). Objects are allowed to overlap and the display manager ensures that the objects

get redrawn in the appropriate order. This arrangement in which each graphic element on the screen is rep-

resented by an object in memory is often called a structured graphics model (it is sometimes also called a

“retained object model” or “display list”).

Event-handling is also implemented using objects. Both Garnet and Amulet provide a set of objects

(called interactor objects) that implement a few fundamental behaviors, such as creating new objects, mov-

ing/resizing objects, choosing one or more objects from a collection of objects, or editing a text string [23].

Each interactor object contains a parameterized set of properties that allows the programmer to customize

the behavior in numerous ways. For example, the programmer can specify the events that should start and

stop the behavior, the types of feedback that should appear when the behavior is being performed, and the

actions that should occur when the behavior starts, is running, and stops. The programmer creates an inter-

active behavior by creating an instance of the appropriate interactor prototype, providing an appropriate set
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Figure 1: A graph node (a) and its structural components (b).

of property values, and attaching the object to a target set of graphical objects or to a window.

Composite Objects

A composite object is an object composed of other objects [24]. These other objects may either be primitive

objects or themselves be composite objects. Composite objects are sometimes called “groups” or “aggre-

gates.” Figure 1 illustrates a simple composite object, a graph node consisting of a text object enclosed

within a circle.

The graph node has named pointers to its children (frame and label) and the children have named

pointers to their parent (parent) (See Figure 1b.). These pointers allow the graph node to access slots in its

parts and the parts to access slots in their parent and in their siblings. The names of the pointers are derived

from the names that programmers assign to the parts.

Both Garnet and Amulet support structural inheritance, whereby when an instance of a composite object

is created, instances of all its parts are created as well. In addition, the children and parent pointers are

automatically initialized for each of the parts.

Constraints simplify the creation of composite objects since constraints can be used to pass information

around a composite object and to express relationships among the parts of a composite object. For example,

the position and size of the graph node can be passed down to its label so that the label can center itself

within the graph node.

Spreadsheet-like Constraints

Constraints provide a way for the programmer to specify relationships among the properties of graphical and

behavior objects. For example, a programmer can center a text label in a rectangle by writing the constraint:
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label.left = rectangle.left + rectangle.width/2 - label.width / 2

Garent and Amulet provide a number of features for spreadsheet constraints, including:

1. Full language support: A constraint is written in the underlying toolkit language and can make un-

restricted use of any of the features of that language, such as pointer variables, loops, conditionals,

function calls and recursion [3, 4]. Hence a Garnet constraint can contain arbitrary Lisp code and an

Amulet constraint can contain arbitrary C++ code.

2. Side effects: In Amulet, a constraint may commit side effects, including creating/deleting objects or

setting slots other than the slot to which the constraint is attached.

3. Transparency: The programmer is unaware of whether or not the slot’s value is computed by a con-

straint. Garnet and Amulet both provide a Get method for reading the value of a property. This

method takes the name of a property as an argument and returns the property’s value. For example, in

Amulet, the expression label.Get(Am LEFT) + label.Get(Am WIDTH) will compute the right side

of a label object. The Get method is responsible for determining whether a property is computed by a

constraint, and if so, ensuring that the constraint is up-to-date before returning the property’s value.

4. Automatic Input Detection: The constraint solver automatically detects and records a constraint’s in-

puts as the constraint is executed, so the programmer does not have to explicitly declare a constraint’s

inputs [12].

5. Cycle Support: Constraints are allowed to form cycles. For example, a programmer can write the

constraints a = b and b = a. A constraint is evaluated at most once if it is in a cycle. If the constraint

is asked to evaluate itself a second time, it simply returns its original value.

6. Path Expressions: A path expression lets formulas navigate their way through a tree of objects

by specifying a series of pointers. For example, a formula that determines the left slot of the

label object in Figure 1b could retrieve the left slot of the frame object by following the path

self.parent.frame.left, where self is a pointer to the object containing the formula. Path ex-

pressions were first introduced in the late 1970s in two multi-way constraint systems, ThingLab [25]

and Constraints [26]. Garnet and Amulet extended path expressions by allowing the tree of objects to

be dynamically modified.

These features make Garnet and Amulet’s constraint systems the most expressive and flexible systems

available to graphical interface developers. Other systems have been more restrictive, because 1) they offer
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only predefined constraints, such as the layout mechanisms in the InterViews [27] toolkit, the ultra light

constraints described by Hudson [11], and the layout constraints in the Java Swing toolkit, 2) they use their

own special constraint language that has restricted functionality, such as Higgens [7] or Penguims [10], or 3)

they use the underlying toolkit language but do not provide full support for features such as loops, function

calls, conditionals, pointer variables, or recursion [5, 8, 28].

Overall User Experience

During the 10 years that Garnet and Amulet have been in use, we have received considerable feedback from

a number of sources about users’ experiences with these two toolkits:

1. from hundreds of students in courses that we have taught who have used the toolkits to create various

applications.

2. from email sent directly to the Garnet/Amulet developers or to the various Garnet and Amulet news-

groups by users of the toolkits.

3. from members of the Garnet and Amulet projects who themselves have written tens of thousands of

lines of code using these toolkits.

4. from electronic survey forms for the Garnet and Amulet constraint systems that we posted on the

Garnet and Amulet user newsgroups. These survey forms asked for users’ experiences with the con-

straint systems and asked them to comment, if they desired to do so, about various features of these

constraint systems. We received responses from 5 Garnet programmers and 12 Amulet programmers.

5. from analyzing 22 actual applications written using Amulet that were provided to us by a number of

different types of users, including non-Amulet affiliated programmers, students, and Amulet project

members (we have seen many more such programs but these 22 applications were formally analyzed

for this paper to gather statistics about constraint usage).

The information that we have accumulated from these sources over the past decade are reported in the

next two sections. This section summarizes general feedback that we have received regarding constraints

while the next section summarizes how constraints are typically used in applications.

The general feedback we have received about constraints can be summarized as follows. Most program-

mers reported that they found constraints helpful for creating their interactive applications. Programmers
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were most impressed with the flexibility they provided for defining custom graphical layouts, for computing

graphical properties, and for the modularity they promoted. Programmers were most concerned with how

difficult constraints could be to debug.

Graphical Layout

Programmers reported that they primarily used constraints to specify graphical layout and to a lesser extent,

to specify graphical properties. In our Garnet and Amulet surveys, we asked programmers to compare using

constraints for layout versus pre-defined layout managers of the type provided by Java or other toolkits

such as Tcl/Tk. The responses we received indicated that for simple layouts, programmers preferred a pre-

defined layout manager, such as those provided in the other toolkits. Neither Garnet nor Amulet provided

such layout managers, which, given the responses, would appear to have been a useful feature (Amulet does

have an extensive library of pre-defined layout constraints that partially but not fully meets these needs).

However, programmers were very positive about the flexibility afforded by constraints in defining their own

custom layouts and in laying out objects created dynamically. Programmers reported layouts that they were

able to achieve with constraints that they felt they could not have achieved with a pre-defined layout manager

included:

1. Connecting objects using arrows,

2. Tiling algebraic expressions,

3. Graph layouts,

4. Tree layouts,

5. Ring layouts, and

6. “Ribbon-chart” displays of schedules.

Pictures of several of these types of layouts are shown in Figure 2.

In general, it appears that widgets can often be laid out using pre-defined layout managers but that

programmer-defined objects often require custom layouts that are best defined via constraints.

Modularity

A number of programmers reported that they liked the fact that constraints made their applications more

modular. What the programmers meant by modularity is that from an application programmer’s point of
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Figure 2: Some of the layouts created by Amulet programmers, including (a) connecting objects using
arrows, (b) tiling algebraic expressions, (c) creating tree layouts, and (d) creating ring layouts.
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view, the only object that knows about a constraint is the object to which the constraint is attached. In

languages and toolkits that do not support constraints, both the object that wishes to observe a property

(the observer) and the object whose property is being observed (the observee) need to know about one

another’s existence. The observer must notify the observee of the observer’s interest in one of the observee’s

properties. The observee must then explicitly notify the observer when the property of interest changes. In

addition, if either the observer or observee is deleted, they must notify the other object of their deletion.

These interconnections between objects break down the modularity of the assignment and delete operations.

The programmer must maintain data structures to keep track of the interconnections and must perform

additional notification or bookkeeping work whenever an assignment or delete operation is executed.

In contrast, with constraints the programmer simply sets a property or deletes an object and the constraint

solver automatically handles any side effects of the operation, such as re-evaluating constraints or deleting

dependencies. Hence, from an application programmer’s viewpoint, a constraint is local to an object and is

not known outside the object. This means that the programmer can delete the object without worrying about

notifying other objects that might depend on this object, or notifying other objects on which this object

depends. Consequently, constraints improve the modularity of objects and reduce the complexity of various

operations by allowing the programmer to worry only about the local effects of an operation.

Debugging

Programmers were almost unanimous in agreeing that debugging represented the greatest drawback of con-

straints. Some of the problems that were reported with debugging constraints included: 1) constraint cycles

were easy to create but hard to find, 2) bugs often manifested themselves far from the point where they

first occurred, 3) constraints started to look like spaghetti code as the number of constraints increased, 4)

constraints that accessed the wrong slots could be hard to detect, and 5) constraints would not be evaluated

when the programmer expected them to be evaluated (see [18] for a more detailed discussion of ways to

handle this problem).

The most frequent debugging tools used were print statements and Amulet’s inspector. Amulet’s in-

spector pops up a property sheet showing the slot/value pairs associated with an object. It also allows a

programmer to select a constraint and print a list of the constraint’s dependencies.

What most programmers wanted, however, was a visual editor that would pictorially display the con-

straint network. One user suggested that it would also be helpful to tag the constraints with information

about what values they have computed and when they were computed. Several programmers said that cy-

10



cles would be far easier to detect using such a visual editor.

Interestingly, a previous study of spreadsheets found that spreadsheets contained substantial numbers of

errors [29]. Those findings, combined with our findings, suggest that the creation of effective debugging

tools should be a top priority for constraint researchers.

How Constraints are Used

To determine how programmers use constraints in actual applications, we examined the source code of 22

Amulet applications. Three of the applications were written by non-Amulet members, ten of the applications

were distributed as samples with the Amulet source code, and nine of the applications were written by stu-

dents in a graduate course at the University of Tennessee. We also examined the source code that comprises

the Amulet run-time system (every Amulet application runs on top of the Amulet run-time system). The

application programs contained a total of 65,000 lines of code. The Amulet run-time environment contains

38,000 lines of code.

Since Amulet users create constraints by writing formulas and then attaching these formulas to slots,

our examination focused on counting the number of formulas that were defined and the number of places

in the source code where these formulas were attached to slots. Based on this examination, we divided the

purpose of a formula into four categories:

1. Graphical Layout: These formulas compute an object’s size and position.

2. Visibility: These formulas compute an object’s visibility. They return true if the object should be

visible and false if the object should be invisible.

3. Graphical Properties: These formulas compute the graphical attributes of an object, such as its color,

line style, fill style, and text and font if the object is a text object. For example, a formula that computes

a menu item’s color based on the item’s enabled status would be placed in this category.

4. Non-graphical: These formulas compute values that are used by the application to perform some non-

graphical task. The values computed may be used as parameters to the event handling routines, as

parameters to application callback procedures, or as error-checking values.

In a few cases a formula could logically fit in more than one category. In these cases, the formula

was placed in the category with which it had the strongest connection. Formulas that simply copied values
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around were categorized according to the slot to which they were attached. For example, a formula that

copied the parent’s width to a child would be categorized as a graphical layout formula.

Note that many of the formulas in the last three categories are not numeric and so could not be handled

by many powerful, but domain-specific, numerical solvers. Hence, even if more powerful solvers were pro-

vided for graphical layout constraints, dataflow constraints would still have an important niche in graphical

applications.

In studying formula usage, we also found it useful to perform two different types of counts:

1. The number of formulas written by programmers. This number refers to the number of formula

functions that are defined in the source code.

2. The number of places in the source code where these formulas are used. Since a formula is declared

separately from its use in Amulet, it can be used in multiple places. For example, Amulet provides a

library of pre-defined formulas, such as “same width as” or “align left sides”, that are declared once

but used in many different places in users’ code. Similarly, a programmer might define a formula

that centers one object with respect to another object. This formula could be assigned to the left slot

of a text object, thus centering the text object within another object, or to the left slot of a bitmap,

thus centering the bitmap within another object. Hence this formula has two uses. In order to clearly

differentiate a formula use from a formula definition, we will say that each time that the source code

assigns a formula to a slot (i.e., each place in the source code where the formula is used) it creates a

constraint equation.

Types of Formulas Defined

Table 1 shows the number of formula functions that were defined in the source code of the application

programs and the Amulet run-time system, and the categories into which these formulas fell. Graphical

layout formulas were the primary type of formula defined by both the programs and the run-time system.

The predominance of graphical layout formulas can be traced to three factors:

1. They represent the most obvious use of constraints in a graphical interface.

2. Each graphical object has four layout properties, left, top, width, and height, that would typically

be constrained, whereas it would have only one visibility property and two graphical properties, line

style and fill style, that would typically be constrained.
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3. Our experience in teaching constraints to students shows that students immediately grasp how con-

straints can be used to compute graphical layout while they must be more carefully instructed on how

constraints can be used for other purposes. We have repeatedly observed student programs where the

student could have computed the value of a slot using a simple formula, but instead used a procedural

action in several different parts of the code to set the slot. When shown how to do accomplish the

same result formulaically, students will agree that the formula is the best way to accomplish the task.

However, the next time their code is reviewed, they are again using procedural actions rather than

formulas. Over time most students begin to define and use more non-graphical constraints, but the

supervision required to obtain this result is fairly significant.

The effect that experience and training has in using constraints can best be seen in the discrepancy

between the percentage of non-graphical formulas that are defined by Amulet developers, who are

well-versed in constraints, and application developers. Percentagewise, the Amulet developers defined

three times as many of these types of formulas as application developers. For example, the Amulet

developers defined a large number of formulas that compute many of the properties of the interactor

objects.

Unfortunately, given the considerable amount of time required to train students to use constraints in a

non-graphical manner, it does not seem reasonable to expect that constraints will ever be widely used

for purposes other than graphical layout. In retrospect this result should not have been surprising.

Business people readily use constraints in spreadsheets because constraints match their mental model

of the world. Similarly, we have found that students readily use constraints for graphical layout since

constraints match their mental model of the world, both because they use constraints, such as left align

or center, to align objects in drawing editors, and because they use constraints to specify the layout of

objects in precision paper sketches, such as blueprints. However, in their everyday lives, students are

much more accustomed to accomplishing tasks using an imperative set of actions rather than using a

declarative set of actions. Hence they tend to think about most tasks procedurally, not functionally.

Since constraints are simply functional programming dressed up with syntactic sugar, it should not

be surprising that 1) programmers do not think of using constraints for most programming tasks and,

2) programmers require extensive training to overcome their procedural instincts so that they will use

constraints.

In addition to analyzing the types of formulas that were defined, we also examined the types of properties

that formulas used as inputs. The most interesting thing we found was that formulas typically depended
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Category Formulas Defined in Formulas Defined in
Application Programs the Amulet Run-Time

Environment
Graphical Layout 419 67% 111 49%
Visibility 42 7% 4 2%
Graphical Properties 87 14% 31 14%
Non-graphical 79 12% 78 35%
Total 627 224

Table 1: The distribution of formula functions defined in the source code of application programs and the
Amulet run-time system. For example, there are 224 unique formulas in the Amulet run-time source code.

on the syntactic properties of an application rather than on the semantic properties. Syntactic properties

define an object’s appearance in the user interface whereas semantic properties define the object’s “intrinsic”

meaning in the application. Examples of syntactic properties include position, size, visibility, color, and

selection status (i.e., whether or not an object is currently selected by the user). Examples of semantic

properties include the age of a tree in a landscaping application, the hull integrity of a ship in a ship-to-ship

combat game, or the value of a variable in a visual language application.

One of the explanations for the greater frequency of syntactic properties as inputs to constraints is that

Amulet formulas cannot be used to connect the instance variables of standard C++ class-instance objects

with the slots of Amulet’s prototype-instance objects. The reason is that the slots contain special methods

and storage that allow constraints to establish dependencies from the slots to the constraints. Instance

variables in standard C++ code do not have these methods or storage. Users have indicated that they would

have liked to write constraints that connected application objects written in standard C++ code to Amulet

objects but were unable to do so because of this restriction.

A second explanation, observed over years of experience, is that programmers just seem more comfort-

able with explicitly setting graphical properties that depend on application semantics. One possible reason

for this behavior is that syntactic properties tend to be automatically set by the system while semantic prop-

erties tend to be set explicitly by the programmer in callback procedures. So constraints may seem like a

natural way to monitor the values of these syntactic properties, since they seem to be “beyond” the control

of the programmer. On the other hand, since the semantic properties are set by the programmers, the pro-

grammers may feel more comfortable with also setting the graphical properties that display these semantic

properties.
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Category Formulas Used in Application Programs
Custom Library Total Used

Graphical Layout 754 31% 939 38% 1693 69%
Visibility 95 3.5% 12 0.5% 107 1%
Graphical Properties 211 9% 147 6% 358 15%
Non-graphical 166 7% 122 5% 288 12%
Total 1226 50% 1220 50% 2446 100%

(a)

Category Formulas Used in the
Amulet Run-Time Environment

Custom Library Total Used
Graphical Layout 125 30% 50 12% 175 42%
Visibility 4 1% 3 1% 7 2%
Graphical Properties 55 13% 43 10% 98 23%
Non-graphical 122 29% 18 4% 140 33%
Total 306 73% 114 27% 420 100%

(b)

Table 2: The number of times formulas were actually used in the source code of (a) application programs
and (b) the Amulet run-time system. Custom formulas are formulas written by programmers and library
formulas are formulas that are pre-defined in an Amulet library. Each percentage represents the proportion
of formulas belonging to that category. For example, 69% of the formulas in the source code of application
programs were graphical layout formulas.

Usage of Formulas

Once a formula is defined in Amulet, it can be used in multiple places in the source code to create constraint

equations. Table 2 shows the number of uses of formulas in the source code of Amulet applications and the

Amulet run-time system. The table also shows the number of uses of pre-defined formulas (called library

formulas in the table) in the source code. These pre-defined formulas are counted in the Amulet run-time

system in Table 1. Amulet provides 14 pre-defined formulas for 1) aligning the lefts, tops, centers, bottoms,

and rights of objects, 2) computing the width or height of a composite object, 3) laying out the parts of a

list, and 4) for retrieving a slot from a part, a parent, or a sibling.

The table shows that formulas are used in roughly the same proportion as they are defined. For example,

67% of the custom formulas defined by application programmers are graphical layout formulas and these

graphical layout formulas comprise 62% of the custom formulas used in the source code1. The results show

1The 62% figure is derived by dividing the 31% in the custom column of Table 2 by the 50% total line in this column.
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custom formulas are used just as frequently as library formulas, and are favored by a 3-1 ratio in the Amulet

toolkit itself. However, the fact that a collection of 14 formulas could account for 50% of the formula

usage for application programs is still indicative that if pre-defined formulas are chosen carefully, they can

significantly aid an application programmer.

Figure 3 presents another way of looking at formula usage. It shows the frequency with which individual

formulas were used to create constraint equations for both application programs and the Amulet runtime

system. For example, it shows that 391 of the formulas defined in the application programs were used only

once in the source code, 85 of the formulas were used twice, and so on. The figure shows that there was

a moderate amount of re-use of formulas. The pre-defined formulas accounted for 13 of the 26 formulas

that were reused 10 times or more in the application programs and accounted for the only formula that was

reused 10 times or more in the Amulet runtime system.

The most commonly re-used formulas were the pre-defined formulas that retrieved a slot from another

object. The pre-defined formula that retrieved slots from an owner was the most commonly used formula

in both application programs and the Amulet runtime system. The most commonly used of the remaining

pre-defined formulas are the ones that 1) center an object with respect to another object, 2) lay out the parts

of a list, and 3) compute the width or height of an object as the width or height of the bounding box of its

parts.

An analysis of the formulas that were written by programmers revealed only one type of formula that

was re-used consistently across multiple applications. This type of formula copied a slot from an object that

was not a part of the formula’s composite object. For example, an arrow object might use the formula x2 =

self.to obj.left to attach itself to the left side of an object2 Consequently, it would have been helpful

to have had a pre-defined formula that allowed a programmer to specify either 1) an object and a slot to be

copied from that object, or 2) a slot that points to an object and a slot to be copied from the object. Overall,

the lack of other candidates for pre-defined formulas is not too surprising given that the set of pre-defined

formulas was based on initial usage information gathered at the beginning of the Amulet project.

Design Guidelines for Constraint Systems

The previous two sections discussed what programmers liked and did not like about constraints and de-

scribed how programmers used constraints in their applications. This section describes some of the lessons

2In this constraint and all remaining constraints in the paper, a variable prefixed with “self” belongs to the same object as the
variable on the left side of the constraint.
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Figure 3: The frequency with which individual formulas were used to create constraint equations in the
source code for both (a) application programs and (b) the Amulet runtime system. For example, graph (a)
shows that 391 of the formulas defined in the application programs were used only once in the source code,
85 of the formulas were used twice, and so on.
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we learned about making constraints easier to use. These lessons should prove useful to future toolkit

developers and can be summarized as follows:

1. Use the underlying language: A constraint should be written in the toolkit’s underlying implementa-

tion language and should be able to use any of the language constructs supported by this language.

2. Avoid annotations if possible: Forcing a programmer to annotate code in ways that provide informa-

tion to the constraint solver does not work well. Programmers find it burdensome to do so. If it is

optional, they will avoid doing it and so optimizations based on these annotations cannot be made. If it

is mandatory, they will provide the annotations but they will often make errors that lead to confusion.

3. Syntax matters: Programmers should be able to define a constraint at the point where it is assigned to

a variable. Additionally, the programmer should not have to specify a great deal of excess verbiage

when defining a constraint. Ideally formula creation should be as simple as specifying a keyword like

Formula and the code that defines the constraint.

4. Path expressions are a two-edged sword: Path expressions are a powerful feature that help facilitate

structural inheritance but users often write them incorrectly.

Use the Underlying Language

Prior to Garnet, constraint systems defined their own special constraint language. Such languages have two

drawbacks–they force a programmer to learn a new language and they often have restricted functionality

(e.g., lack of certain control structures, such as loops and procedures, and lack of many operators beyond

simple arithmetic and boolean operators).

As noted earlier, Garnet and Amulet allow a constraint’s formula to use any of the features in the un-

derlying toolkit implementation language. Hence a constraint can contain arbitrary loops, conditionals,

functions, and pointers to other objects. Amulet additionally supports side effects. Allowing programmers

to write arbitrary code and to commit side-effects permits them to define very powerful constraints that

perform more than simple graphical layout operations. For example, Garnet and Amulet programmers have

used constraints to do the following, which would be impossible in most other constraint systems:

� Define complicated layout constraints. In both Amulet and Garnet a single constraint is used to lay

out the items in a list based on such parameters as the orientation of the list (vertical or horizontal),

the spacing between items, the length of a row or column (expressed either in pixels or as a maximum
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number of items), and the amount of space to be consumed by each item (fixed or variable width).

Garnet also has complete graph and tree layout algorithms implemented as constraints. A simple

example of a list layout constraint might be the following:

layout = begin

spacing = self.horizontal spacing

next left = self.left

for each child in self.items do

if child.visible = true then

child.left = next left

next left = next left + child.width + spacing

end

� Control the visibility of an object, such as a feedback object, based on whether or not other objects are

selected. For example, the visibility of selection handles could be controlled by whether its obj over

slot points to an object:

visible = if self.obj over then true else false

� Define an object’s visual properties based on the values of application data. For example, to make the

color of a graphical object depend on the temperature of an application object, the programmer might

write the constraint:

color = if self.temperature object.temperature � 32 then blue

else if self.temperature object.temperature � 212 then white

else red

� Compute the parameters that control the processing of an event, such as computing what type of

feedback object to draw based on what object the mouse is currently over. For example:

feedback object = switch TypeOf(mouse.obj over)

case RECTANGLE:

case TEXT:
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case ICON: self.rectangle feedback; break;

case CIRCLE: self.circle feedback; break;

case LINE: self.line feedback

The slots rectangle feedback, circle feedback, and line feedback point to appropriate feed-

back objects for rectangle-like objects, circles, and lines respectively.

� Create the set of items that should be displayed in a browser by reading a directory name from the

appropriate widget, passing the name to the appropriate system command, and creating and then

returning a list of graphical text objects that can display the result. For example:

items = begin

directory name = widget.value

filename list = system(“list files(directory name)”)

graphical items list = /0

for each filename � filename list do

text item = new TEXT /* create a new graphical text object */

text item.text = filename

graphical items list.append(text item)

return graphical items list

end

Lessons Learned

The lessons we learned about using the underlying toolkit language as the constraint language can be divided

into the lessons we learned about arbitrary code, about pointer variables, and about side effects.

Arbitrary Code. The ability to use loops and conditionals is a crucial element in many of the constraints

written in Garnet and Amulet. Loops complicate constraint satisfaction because they allow a constraint to

reference a dynamic, rather than a fixed, number of inputs. However, loops also considerably enhance the

expressiveness of constraints because they make it possible to write constraints that handle dynamically

changing sets of objects, such as the neighbors of a node in a graph or the set of parts in a composite object.

Loops therefore present a tradeoff but it is better to design for the user of the constraint system than the

developer of the constraint system, and our experience shows that allowing a user to use all aspects of a

language, including loops, greatly enhances the richness of the constraints that are written.
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The one drawback of arbitrary code is that it restricts some performance optimizations that might be

otherwise possible since arbitrary code is hard to analyze. However, we found that constraint evaluation

represents such a small portion of an application’s overall execution time that performance optimization is

not a crucial issue [18].

Pointers. The ramifications of pointer variables for constraints were twofold: 1) they allowed con-

straints to be used with data structures that are typically implemented using pointers, such as lists, trees,

and graphs, and 2) they combined with loops to allow constraints to reference a variable number of objects.

Consequently, the unrestricted use of pointer variables was another crucial element that allowed users to

write very expressive constraints.

The problem of dangling pointers was the one potential problem associated with pointers. However,

Garnet and Amulet were able to easily detect dangling pointers because both systems use garbage collection

(Amulet used a reference counting scheme to garbage collect its objects). When an object is destroyed by

the application, it is only deleted if there are no references remaining to it. If there are still references, the

object is marked as deleted but its memory is not actually released. Every slot access in both Garnet and

Amulet checks to see whether the object is marked deleted before returning a value. If the object is marked

deleted, an error message about the offending constraint and the object and slot it tried to access is printed

and an error interrupt is raised.

Side Effects. As noted earlier, Garnet does not have a mechanism for handling side effects in constraints

whereas Amulet does3. The side-effect mechanism was added to Amulet because Garnet users often found

that they wanted to commit side effects from within constraints. There were two types of side effects that

they wanted:

1. The ability to set multiple slots with one constraint. Laying out the objects in a list and computing an

object’s bounding box (thus setting the left, top, width, and height slots) are two examples of where a

constraint needs to set multiple slots.

Multiple-output constraints elegantly handle this situation but they have the disadvantage that the

programmer must somehow annotate the constraint to declare which slots the constraint will set. In

the case of a constraint that lays out the slots of a list, the programmer must be given a way to specify

not just the slots but also the objects that will be set by the constraint. Unfortunately, as discussed

in the section on annotations, we have found that programmers tend to resist annotations and often

3A Garnet constraint can be programmed to commit side effects but since Garnet does not have a mechanism for handling
constraint side effects, the side effects frequently are not executed when the programmer expects them to be executed.
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get them wrong. Consequently, a decision was made not to require Amulet programmers to declare

which slots they were setting in a constraint.

2. The ability to create and delete objects. Taking a list of labels and allocating a list of objects to display

these labels is an example of a constraint that needs to create objects. Amulet allows a constraint to

create and delete arbitrary numbers of objects.

The implementation of Amulet’s side-effect mechanism has been described elsewhere [4]. The imple-

mentation can potentially lead to both non-deterministic results and to infinite cycles. So from a theoretical

standpoint the algorithm is not elegant. However, from a practical standpoint, the algorithm works. Users

have not reported difficulties with non-determinism or infinite loops. Similar positive experiences with side

effects implemented using unsound algorithms have been reported in the Rendezvous system [5] and an

experimental version of Garnet that was extended to include multi-output constraints and side effects [30].

An examination of some of the side-effect producing constraints written by our students helps explain

why there have not been problems with such constraints. The constraints were used for precisely the reasons

stated above, either to set multiple slots or to create or delete a set of items. The multiple slot constraints

typically set the same slots on each evaluation, so the constraints’ outputs were as predictable as single-

output constraints. The more unpredictable case would seem to be the dynamic creation or deletion of

objects by constraints. However, because it was not possible to predict in advance which objects would be

created, constraints did not depend directly on the created or deleted objects. Instead, they would access

the objects through a slot that kept track of the objects (e.g., an items slot). For example, a constraint that

computed the width of a list of items would iterate through the items slot for that list and request the width

of each object on that list. Invariably, it was these tracking slots that contained the object creating/deleting

constraints. Thus, before a constraint could access the objects, it would first have to access the tracking slot.

The tracking slot would re-evaluate its constraint, if necessary, thus making all subsequent accesses to the

objects on its list safe.

In sum, the introduction of side effects into constraints has had the desired effect of allowing users to

write the type of side-effect producing constraints that they would have liked to have written in Garnet, and

they have done so. Further, users have used side-effect inducing constraints in common sense ways that do

not cause unpredictable behavior.
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Avoid Annotations If Possible

Annotations are statements written by a programmer that provide information about a program to a com-

piler or run-time environment. This information is typically difficult to obtain by other means and is either

essential to the functioning of the system or allows the system to optimize the program’s performance. An

example of annotations in programming languages is declaring variables to have a certain type. In spread-

sheet constraint systems, annotations are frequently used to specify the inputs used by a constraint. Garnet

and Amulet made use of annotations in two ways. First, early versions of both Garnet and Amulet required

the programmer to specify which slots were used as inputs to a constraint. Second, Garnet allowed the pro-

grammer to use annotations to specify which slots were constant so that constant propagation could be used

to eliminate constraints. In both cases we found that programmers were confused by the annotations and

often made incorrect specifications, and so annotations were eventually completely eliminated in Amulet.

Annotating Inputs

In order for a constraint solver to know when it needs to re-evaluate a constraint, it needs to know on

which variables the constraint depends (i.e., it needs to know the inputs, or equivalently, the right-hand side

variables).

Most constraint systems require that a user either declare the inputs that will be used by a constraint or

else annotate the inputs in some fashion. For example, in Eval/vite the programmer annotates an input by

prefixing the variable name with an at-sign (@) [8].

Early in Garnet’s design we decided that declaring the inputs was unworkable because constraints could

have tricky control code (e.g., loops, conditionals, and function calls) that would have to be duplicated in the

declaration code. We judged that such duplication was certain to cause programming errors. As an example

of the difficulties involved with declaring inputs, reconsider the constraint presented earlier for laying out

the children in a list:

layout = begin

spacing = self.horizontal spacing

next left = self.left

for each child � self.items do

if child.visible = true then

child.left = next left

next left = next left + child.width + spacing
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end

In order to declare the inputs for this constraint, we would have to write code that would look something

like:

inputs =
�
self.horizontal spacing, self.items �

for each child � self.items do

inputs = inputs � �
child.visible �

if child.visible = true then

inputs = inputs � �
child.left, child.width �

It is easy to write this code incorrectly and it is also easy to forget to update this code if the constraint is

rewritten. If either event happens, the constraint solver may not operate correctly. As a result we abandoned

the idea of making the programmer declare a constraint’s inputs.

The annotation idea did seem workable and so both the original versions of Garnet and Amulet imple-

mented the annotation approach. In particular, a programmer would use a Get method to retrieve a slot’s

value when the slot was being accessed outside a formula (i.e., in normal, procedural code) and a GV method

to retrieve a slot’s value when the slot was being accessed as an input to a formula.

Unfortunately, we found that users were constantly getting confused by the two different forms of the

get method and would often use the wrong get method. As a result, slots that the programmers thought were

inputs to a formula were not getting annotated as inputs. The programmers would then be baffled when the

constraints in their programs did not get re-evaluated properly. In both Garnet and Amulet, this problem was

remedied by effectively eliminating one of the get methods and using an automatic input detection scheme

that is able to determine whether or not a slot is being accessed from within a formula [12].

Annotating Constant Slots

In Garnet we observed that many of the constraints were evaluated exactly once because they depended

entirely on slots that were constants. These formulas could be effectively thrown away, thus allowing a

savings in storage. To take advantage of this opportunity, we allowed a Garnet programmer to declare that

a slot was constant. If all the slots referenced by a constraint were constants, then the slot computed by

the constraint was marked as a constant, the value computed by the constraint was assigned to the slot, and

the constraint was eliminated. As a result of marking the slot constant, other constraints might also become

eliminable because their inputs were all constants.
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Unfortunately this scheme did not work well in practice for a number of reasons:

1. Constraints were not eliminated as expected. Many of the constraints that programmers wanted to

eliminate via constant propagation were Garnet-provided constraints. For example, the width of a text

object was computed by a constraint that took the text object’s string and font as inputs. Programmers

would declare the text string to be constant and expect the constraint to be eliminated. Often they did

not realize that the constraint also used the font as an input. So the constraint was not eliminated as

expected and programmers grew frustrated.

2. Changes to a program made the annotations obsolete. Even after an application is released, the code

is not static and changes to the code often made the annotations obsolete. For example, the code

might start changing a slot that was previously declared constant. In this case, constraints did not get

updated as the programmer expected. In other cases, additional slots were added and constraints were

modified to include these additional slots. Programmers would forget to declare that these new slots

were constant, with the result that previously eliminated constraints started mysteriously reappearing.

Both of these factors frustrated the few programmers who tried to use the constant propagation mecha-

nism and as a result it proved to be ineffective. Ultimately, the effort required to annotate the code and to

understand how to annotate it effectively proved to be too burdensome.

Pay Attention to Syntax

Garnet was implemented in Lisp whereas Amulet was implemented in C++. Although C++ is the more

popular language, we found that constraints felt clumsier in C++ because of the way C++ is designed.

Syntax Issues

Users found it easier to write constraints in Garnet than in Amulet because Garnet allowed users to write

a constraint’s formula at the location where the constraint is assigned to a variable. In contrast, Amulet

requires that the user define the constraint’s formula and a name for the formula in a separate part of the pro-

gram and then assign the formula’s name to the variable. The following example code shows the contrasting

styles in Garnet and Amulet:
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Garnet Amulet

Formula Compute Right
�

return (self.left + self.width);

�
�����

A.right = Formula(self.left + self.width) A.right = Compute Right

In both Garnet and Amulet, Formula is a macro that expands into a function which contains the formula

code. Amulet users complained about having to separate the definition of the formula from the use of the

formula. The extra code is inconvenient to write, increases the probability of syntax errors, and makes the

code less readable because someone trying to understand or maintain the code must constantly shift back

and forth between two points in the program: the location where formulas are defined and the location where

they are used.

The reason for the separation is that the formula code has to be wrapped inside a function. C++ does not

allow a function to be defined inside another function, so the formula definitions have to be moved outside

the scope of all functions (i.e., they must be global definitions). Being a research project, we did not want

to spend a lot of time writing a pre-processor that would allow the formulas to be written “in-line” and

then lifted outside the function. However, it is clear that syntax does matter and that commercial toolkit

developers would be well-advised to expend the time and effort required to write such a pre-processor.

Global Variables

Amulet programmers often wanted to use constraints to connect the slots of top-level objects in a graphical

editor or in a dialog box. Because the constraints’ formulas are global functions, the only way to reference

these objects in the formulas was to declare the objects globally as well. Hence one of the ramifications

of defining formulas as global functions was a proliferation of global variables, about which a number of

programmers complained.

Garnet does not suffer from this problem because the formulas used by Garnet’s constraints are bound

to the environment of the function in which they are defined. In particular, Lisp has two operators, function

and lambda, that when used in concert, allow the inline creation of anonymous functions, and that save the

bindings of the enclosing function [31]. When the enclosing function exits, the anonymous function will
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still have access to the bindings in its enclosing function. For example, one can write4.

procedure CreateDialogBox()

Button Ok;

Button Cancel;

Cancel.left = Formula(Ok.left + Ok.width + 10)

����� Other code to add the Ok and Cancel buttons to the dialog box window �����
end procedure

Even after the CreateDialogBox function has exited, the formula that is attached to Cancel.left can access

the left and width properties of the Ok button. C++ does not permit this type of binding and hence the Ok

and Cancel buttons would have to be declared as global variables.

Path Expressions: Boon and Curse

In both Garnet and Amulet, programmers can string together combinations of parent and children pointers

in order to traverse their way through a composite object. For example, in the label part of the graph node

in Figure 1, a constraint’s formula might use the pathname self.parent.frame.left to retrieve the frame

part’s left slot. The path follows the parent pointer to the label’s parent, then the frame pointer in the parent

to the frame object, and finally retrieves the left slot.

Paths are an important construct that enable the inheritance of constraints since they allow instances

of a constraint to refer to the appropriate properties and parts in its instance object rather than some fixed

object. For example, in every instance of a labeled box, the above path will properly return the left slot in

the instance’s frame rather than the left slot in the prototype’s frame.

Unfortunately, two common problems arose with path expressions: 1) users found it easy to write path

expressions incorrectly, and 2) path expressions break when objects are moved around the composite object

hierarchy or renamed. As the following two subsections make clear, we were never able to completely

overcome either problem.

4It has been our experience that many programmers and researchers are not familiar with or are uncomfortable with LISP
syntax. Consequently, we have chosen to use C-like code to illustrate what an in-line formula referencing local variables would
look like. For those readers who are interested, the Formula macro would expand into the Lisp expression:

(function (lambda () (+ (gv Ok :left) (gv Ok :width) 10)))
where gv stands for get-value.
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Incorrect Path Expressions

While users did not have much problem writing path expressions involving children and parents, they en-

countered more problems writing path expressions that went beyond either a parent or a child. For exam-

ple, writing self.parent.left typically was not problematic but writing self.parent.frame.left was

somewhat problematic. In general, the farther one has to traverse the composite object hierarchy to find an

object, the harder it is to write the path expression correctly.

A limited solution that worked reasonably well in Amulet was the introduction of path macros such

as Get Sibling, Get Parent, and Get Child. For example, Get Sibling(frame, left) would expand

into self.parent.frame.left and return the frame part’s left slot. An analysis of Amulet code shows

that most path expressions do not extend beyond the grandparent or grandchild level (i.e., no more than 2

levels up or down in the hierarchy), so it is possible that a reasonably complete solution could be achieved

by providing grandparent, grandchild, and nephew macros.

Another solution that several Amulet users developed was to split a path into multiple parts and put

constraints that computed the multiple parts at different parts of the composite object. For example, rather

than writing the constraint:

left = self.parent.parent.frame.left + 10

the programmer might write the three constraints:

in the grandparent:

frame left = self.frame.left

in the parent:

frame left = self.parent.frame left

in the part:

left = self.parent.frame left

It would have been interesting to see if a more complete set of macros could have alleviated the need to

do this kind of splitting.

Broken Path Expressions

A second problem that arises with path expressions is that they break when objects are moved around

the composite object hierarchy or objects are renamed. For example, in Figure 1, the path expression
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self.parent.frame.left will break if either 1) a new object is interposed between Graph Node and

label so that label’s new parent is the new object, or 2) frame is renamed border. Allowing the pro-

grammer to directly name an object would solve the problem of moving objects around in the composite

object hierarchy. However, it would not solve the problem of renaming objects. Here again we never arrived

at a satisfactory solution.

Conclusions and Future Work

A great deal of research activity in the user interface community has centered on constraints over the past

decade. The Garnet and Amulet toolkits represent two of the products of these efforts. Because of their

widespread distribution and use, they have provided valuable insights into both the successes and shortcom-

ings of constraints. These insights should help the future developers of toolkits to find the best niches for

constraints in their toolkits.

Overall, programmers’ experience with constraints in the Amulet and Garnet projects has been quite

positive. Programmers generally agree that they simplify the task of creating user interfaces and that they are

a valuable and useful programming tool. However, constraints are not a panacea for writing user interfaces.

Programmers primarily use them for specifying the graphical layout of objects. Our experiences suggests

that most programmers will resist using constraints for specifying non-graphical behavior in an interface,

because they think of these behaviors imperatively, rather than functionally.

Given the current state of debugging technology, it seems that this moderate use of constraints in inter-

faces is actually beneficial since it leads to more elegant, robust code, whereas the heavy usage of constraints

seems to lead to spaghetti-like code that creates debugging problems.

In addition to these general findings, our experience shows that developers wishing to include constraints

as part of their toolkits would be well-advised to keep the following lessons in mind:

1. Allowing programmers to write constraints using arbitrary code and using all the capabilities of the

underlying language reduces the learning curve and increases the power of the constraint system. Even

allowing side effects is something that a developer may wish to consider since programmers naturally

do it and our experience has shown that it does not increase the difficulty of debugging constraints.

2. The programmer should not be required to provide annotations if at all possible. Our experience

is that programmers often provide incorrect or incomplete annotations, which leads to errors in the

initial development. Maintenance problems later arise because programmers often fail to update the
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annotations when they update the code.

3. Allowing constraints to be defined at the point of use makes the relationship between the variable and

the constraint much clearer to both the programmer and the maintainer.

4. Adding more complicated mechanisms, such as path mechanisms for traversing object hierarchies,

should be carefully weighed. They may be necessary, as was the path mechanism in Garnet and

Amulet, but they can significantly increase the learning curve of the constraint system and introduce

debugging and maintainability problems. In general, these mechanisms should be added only if they

are absolutely essential to the success of the constraint system, not if they marginally increase the

power of the constraint system.

Finally our experiences shows that constraints still pose a number of challenging problems for re-

searchers, including:

1. the need to develop better debugging tools that reduces the spaghetti-like feel of constraints, and

2. the need to develop theoretically sound constraint satisfaction algorithms that can tolerate side effects.

A theoretically sound constraint satisfaction algorithm is one that does not enter an infinite loop or

produce non-deterministic results. The development of such algorithms would help us understand

what side effects are “safe” side effects and what side effects are “unsafe” side effects. Our experience

with algorithms involving side effects suggests that theoretically sound algorithms may require some

annotations from a programmer (e.g., which variables will be affected by the constraint). If this proves

to be the case, an implementor may have to decide between an unsound algorithm that does not use

annotations and a sound algorithm that uses annotations. Our positive experience with Amulet’s

unsound algorithm and our negative experience with annotations suggest that an implementor should

not rush to use a sound algorithm if the annotation burden is too great.
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