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Abstract
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alences of all combinators in use by this project. It will be updated as new combinators,
equivalences, etc. are used.
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Introduction

1. Most of the combinator definitions and equivalences (beyond those peculiar to molec-
ular computation, such asR, D, andV) are from Curry and Feys [CFC58].

2. We follow the usual convention in combinatory logic of omitting parentheses that as-
sociate to the left. For example,XY Z means((XY )Z), andB(BW(BC))(BB(BB))
means((B((BW)(BC)))((BB)(BB))).

3. In the definitions of the operators, variables are marked with primes (e.g.,X 0) and
parenthesized superscripts (e.g.,X(4)) to indicate shared complexes. See the descrip-
tion of theV (Sharing) Primitive (Section 17).

4. Notice that the following are distinct and have differentmeanings:Xn (powers of
combinators),Xn (polyadic combinators),X(n) (sharing),X(n) (deferred combina-
tors),X [n℄ (left reduction),X[n℄ (polyadic extension); seeOther Notation (p. 14).Xn
is also used in the usual way to denote an element in a seriesX1; X2; X3, . . . . When
subscripts and superscripts of any kind are combined, the subscripts take precedence;
thus�mn means(�n)m.

5. The sizejXj of a nonprimitive combinatorX is expressed in terms of the number
of S, K, andA nodes that it contains. Since nonprimitive combinator definitions are
binary trees, if they contain no other nodes besidesS, K, andA, then the counts
satisfyA = S +K � 1, and the total nodes areT = 2A+ 1 = 2(S +K)� 1.

6. A combinator is calledregular if it does not affect its first argument, thus,FXY1 � � �Yn =) XZ1 � � �Zm:
Most combinators (e.g.,B, B0, C, I, K, S,W, Y, �, �n, 	) are regular.
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Definitions of Combinators

1 A Primitive (Application Complex)

The application (A) complex represents the application of a combinator to its argument.
The application ofF toX, writtenFX, is represented by a molecular complexUAFX, in
which the “operator” binding site ofA is linked toF , the “operand” binding site is linked
toX, and the “result” site is linked toU , the complex into which the result ofFX will be
linked.

All (or most) of the non-terminal (interior) nodes of a combinator tree areA nodes; the
terminals (leaves) are primitive combinators (e.g.,S andK). If the network is not a tree, but
has shared nodes or cycles, then (most of) the non-terminal nodes areA andV (sharing)
nodes. (We say “most” because later we may want to define additional interior node types.)

2 B Combinator (Elementary Compositor)

Definition: BXY Z =) X(Y Z) (1)

Reduction toSK: B = S(KS)K (2)

Size:2S+ 2K+ 3A = 7 total.
Equivalences: B = CB0 (3)B = C(JIC)(JI) (4)BnFGX1 � � �Xn =) F (GX1 � � �Xn) (5)

Notes: If F is regular (p. 2),FXY1 � � �Yn =) XZ1 � � �Zm, thenBFGXY1 � � �Yn =) GXZ1 � � �Zm:
That is,G is applied to the result of applyingF to the argumentsXY1 � � �Yn.
3 B0 Combinator (Permuting Compositor)

Definition: B0XY Z =) X(ZY ) (6)

Equivalences: B0 = CB (7)

Size:7S+ 6K+ 12A = 25 total.
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4 C Combinator (Elementary Permutator)

Definition: CXY Z =) XZY (8)

Equivalences: C = B(BS) (9)C = S(BBS)(KK) (10)C = JC�(JC�)(JC�) (11)

Size:5S+ 4K+ 8A = 17 total (Def. 9).

5 C� Combinator (Pure Permutator)

Definition: C�XY =) Y X (12)

Equivalences: C� = CI (13)C� = JII (14)

Size:6S+ 6K+ 11A = 23 total (Def. 13).

6 D Primitive (Elementary Deleter)

Reaction: Dp+ PQ �! Pp+ DQ (15)DAXY + DQ+ PQ �! DX + DY + PAQ2 (16)DURX + 2PQ �! UX + P2RQ+ DQ (17)DUVX + PQ �! PUVX + DQ (18)

Notes: In Eq. 15,p represents any primitive combinator (e.g.,S or K). Notice that in
Eq. 17, a deletion cancels a replication in progress. However, in Eq. 18, a deletion does not
affect a shared complex, except to cap the deleted sharing link.

Reaction Specification:

d: D, a: A, x, y, d’: D, p: P, q: Q, q’: Q.
d a, a_1 x, a_2 y, d’ q’, p q
=> (DeleteApplication)

d x, d y, p a, a_1 q, a_2 q’.
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d: D, u, r: R, x, p: P, p’: P, q: Q, q’: Q.
d r_1, u r_2, r x, p q, p’ q’
=> (DeleteReplicator1)

u x, p r_1, p’ r_2, r q, d q’.

d: D, u, r: R, x, p: P, p’: P, q: Q, q’: Q.
d r_2, u r_1, r x, p q, p’ q’
=> (DeleteReplicator2)

u x, p r_1, p’ r_2, r q, d q’.

d: D, u, v: V, x, p: P, q: Q.
d v_1, u v_2, v x, p q
=> (DeleteSharing1)

p v_1, u v_2, v x, d q.

d: D, u, v: V, x, p: P, q: Q.
d v_2, u v_1, v x, p q
=> (DeleteSharing2)

p v_2, u v_1, v x, d q.

d: D, pc: Prim, p: P, q: Q.
d pc, p q
=> (DeletePrimitive)

p pc, d q.

Notes: In the last (DeletePrimitive ) rule, ‘Prim ’ stands for any primitive com-
binator. Therefore, at least at the present time, that rule must be repeated with ‘Prim ’
replaced by each primitive combinator species in use (e.g.,‘K’, ‘ S’).

7 I Combinator (Elementary Identificator)

Definition: IX =) X (19)

Reduction toSK: I = SKX (20)

Size:1S+ 2K+ 2A = 5 total (takingI = SKK).
Equivalences: I = CKX (21)I = WK (22)
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8 J Combinator

Definition: JUXY Z =) UX(UZY ) (23)

9 K Combinator (Elementary Cancellator)

Definition: KXY =) X (24)

Reaction: UA2KXY + DQ �! UX + DA2KQY (25)

Equivalences: KnXY1 � � �Yn =) X (26)

Reaction Specification:

a: A, b: A, k: K, d: D, q: Q, u, x, y.
u a, a_1 b, b_1 k, b_2 x, a_2 y, d q
=> (Kreaction)

u x, d a, a_1 b, b_1 k, b_2 q, a_2 y.

10 N Combinator (Inert Complex)

TheN (inert) combinator is used when we want to prevent reduction, generally when we
are intending to produce a static structure. For example, ifthe structureFX1 � � �Xn is
generated, then there is a risk that the reduction rules forF will destroy the structure. This
is avoided by using the inert combinator, e.g.NX1 � � �Xn. Since it is inert, there are no
reduction or reaction rules for it. Of course, in practice, there need not be just one inert
combinator, and any molecular species that does enter into the computational reactions
could be used.

11 P Primitive (Result Cap)

The result cap is inert; it is a place-holder for the “result”binding-site of any group.

12 Q Primitive (Argument Cap)

The argument cap is inert; it is a place-holder for the “argument” binding-site of any group
(in particular, for the “operator” and “operand” sites of anA complex).
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13 R Primitive (Elementary Replicator)

Reaction: UV Rp+ Pp+ PQ �! Up + V p+ P2RQ (27)UV RAXY + PAQ2 + P2RQ �! (UA)(V A)(RX)(RY ) + 3PQ (28)

Notes: In Eq. 27,p represents any primitive combinator (e.g.,S orK).
Reaction Specification:

r: R, a: A, u, v, x, y, r’: R, a’: A,
p: P, p’: P, p’’: P, q: Q, q’: Q, q’’: Q.

u r_1, v r_2, r a, a_1 x, a_2 y,
p r’_1, p’ r’_2, r’ q, p’’ a’, a’_1 q’, a’_2 q’’

=> (ReplicateApplication)
u a, v a’,
a_1 r_1, a’_1 r_2,
a_2 r’_1, a’_2 r’_2,
r x, r’ y,
p q, p’ q’, p’’ q’’.

r: R, pc: Prim, u, v, pc’: Prim, p: P, p’: P, q: Q.
u r_1, v r_2, r pc, p q, p’ pc’
=> (ReplicatePrimitive)

u pc, v pc’,
p r_1, p’ r_2, r q.

Notes: In the last (ReplicatePrimitive ) rule, ‘Prim ’ stands for any primitive
combinator. Therefore, at least at the present time, that rule must be repeated with ‘Prim ’
replaced by each primitive combinator species in use (e.g.,‘K’, ‘ S’).

14 S Combinator (Elementary Formalizer, Replicating)

Definition: SXY Z =) XZ(Y Z) (29)

Reaction: UA3SXY Z + P2RQ �! UA(AX)(AY )RZ + PS + PQ (30)

Reaction Specification:

a: A, a’: A, a’’: A, s: S, r: R, p: P, p’: P, q: Q,
u, x, y, z.
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u a, a_1 a’, a’_1 a’’, a’’_1 s, a’’_2 x, a’_2 y, a_2 z,
p r_1, p’ r_2, r q

=> (Sreaction)
u a, a_1 a’, a’_1 x, a’_2 r_1,

a_2 a’’, a’’_1 y, a’’_2 r_2,
r z,

p s, p’ q.

Equivalences: S = B(B(BW)C)(BB) (31)

15 �S Combinator (Elementary Formalizer, Sharing)

Definition: �SXY Z =) XZ 0(Y Z) (32)

Reaction: UA3�SXY Z + P2VQ �! UA(AX)(AY )VZ + PS + PQ (33)

Reaction Specification:

a: A, a’: A, a’’: A, s: Ssh, v: V, p: P, p’: P, q: Q,
u, x, y, z.

u a, a_1 a’, a’_1 a’’, a’’_1 s, a’’_2 x, a’_2 y, a_2 z,
p v_1, p’ v_2, v q

=> (SharingSreaction)
u a, a_1 a’, a’_1 x, a’_2 v_1,

a_2 a’’, a’’_1 y, a’’_2 v_2,
v z,

p s, p’ q.

Equivalences: �S = B(B(B �W)C)(BB) (34)

Notes: See Sec. 19 for a discussion of this definition.

16 Sn Combinator (Polyadic Elementary Formalizer)

Definition: SnXY1 � � �YnX =) XZ(Y1Z) � � � (YnZ) (35)
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Reduction toSK: S1 = S (36)Sn+1 = BSn Æ S (37)

Size:(5n� 4)S+ 4(n� 1)K+ 9(n� 1)A = 18(n� 1) + 1 total forSn.
Notes: Sn can be replicating or sharing depending on whetherS or �S is used in its

recursive definition. If it is sharing, it produces the following structure:�SnXY1 � � �YnZ =) XZ(n)(Y1Z(n�1)) � � � (Yn�1Z 0)(YnZ) (38)

Equivalences: Sn = �n+1I (39)

17 V Primitive (Sharing Complex)

The sharing primitive (V) is used for constructing non-tree structures, including cyclic
structures. It is produced by sharing combinators such as�S, �W, and �Y. Note that aV
complex between a combinator and its arguments will block reduction of the combinator,
soV complexes appear primarily in structured that are being treated as data.

Primes and parenthesized superscripts on variables are used to indicate informally the
sharing of structures. Thus, if there is a single sharing complex aboveX, then the two links
to it will be calledX andX 0. Notice that both will be “covered” by a sharing complex; if it
is necessary to make this explicit, the two links will be writtenX(0) andX 0. If one of these
links is replaced by another sharing complex, then the original link and the two new ones
will be calledX, X 0, X 00, and so forth. Obviously such a notation cannot capture all the
possible structures of sharing complexes, but it allows theconvenient expression of chains
of V complexes, which is the most common case. To go beyond this, diagrams should be
used.

18 W Combinator (Elementary Duplicator, Replicating)

Definition: WXY =) XY Y (40)

Equivalences: W = CSI (41)W = S(CI) (42)W = SS(KI) (43)

Size:7S+ 6K+ 12A = 25 total (Def. 41 or 42).
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19 �W Combinator (Elementary Duplicator, Sharing)

Definition: �WXY =) XY 0Y (44)

Reduction toSK: �W12 = C�SI (45)�W21 = �S(CI) (46)�W12 = S�S(KI) (47)

Notes: �W12 and �W21 are two variants, functionally equivalent to�W, but producing dif-
ferently ordered links to the sharing (V) complex (see Equivalences below). In the absence
of subscripts, we will take�W to be �W12, since it is a little more convenient to use. Defini-
tion 47 is not very useful, because it needlessly begins replication of the first argument of�W12.

Notice that either�W or �Smay be taken as a primitive sharing operation, since either can
be defined in terms of the other. At this time, it looks as though �S will be the best choice as
a primitive, so�W will be defined by Eq. 45 or 46.

Reaction: UA2 �WXY + P2VQ �! UA2XVY + P �W + PQ (48)

Reaction Specification:

w: Wsh, a: A, a’: A, u, x, y, v: V, p: P, p’: P, q: Q.
u a, a_1 a’, a’_1 w, a’_2 x, a_2 y, p v_1, p’ v_2, v q
=> (SharingWreaction)

u a, a_1 a’, a’_1 x, a’_2 v_1, a_2 v_2, v y, p’ w, p q.

Equivalences: �W12XY =) XY 0Y (49)�W21XY =) XY Y 0 (50)�Wn12XY =) X Y (n) � � �Y 00Y 0Y| {z }n+1 (51)

Notes: The primes and superscripts onY in Eq. 51 represent successive sharings ofY
(see Sec. 17).

20 W� Combinator (Pure Duplicator)

Definition: W�X =) XX (52)
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Equivalences: W� = WI (53)

Size:8S+ 8K+ 15A = 31 total.

21 Y Combinator (Elementary Fixed-point, Replicating)

Definition: YF =) X(YX) (54)

Reduction toSK: Y = SSK(S(K(SS(S(SSK))))K) (55)

Size:8S+ 4K+ 11A = 23 total.
Equivalences: Y = WS(BWB) (56)Y = SSI(SB(K(SII))) (57)Y = ZZ whereZ =W(B(SI)) (58)Y = WI ÆW Æ B (59)

Notes: Definition 55 by John Tromp [LV97] may be the shortest definition in terms ofSK (12 combinators). Definitions by Curry and Turing are longer(18 and 20, respectively).

22 �Y Combinator (Elementary Fixed-point, Sharing)

Definition: �YX =) y wherey = Fy0 (60)

Reaction: UA�YX + P2VQ �! UVAX + P�Y + PQ (61)

Reaction Specification:

y: Ysh, a: A, v: V, x, p: P, p’: P, q: Q.
u a, a_1 y, a_2 x, p v_1, p’ v_2, v q
=> (SharingYreaction)

u v_1, v a, a_1 x, a_2 v_2, p’ y, p q.
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Notes: The following illustrates the self-sharing cycle created by �YF :�YF = y= Fy0= F (Fy0)0= F (F 0y00)= F (F 0(Fy0)00)= F (F 0(F 00y000))
...= F (F 0(F 00(F 000(F (4)(F (5) � � �)))))

Of course, it is theA complex that is shared, notF , as the notation suggests.

23 Z Combinators (Iterators or Church Numerals)

Definition: Z0 = KI (62)Zn+1 = SBZn (63)

Size:(3n+ 1)S+ (2n+ 3)K+ (5n+ 3)A = 10n+ 7 total forZn.
Equivalences: ZnX = Xn (64)Zm+n = �BZmZn (65)Zmn = Zm Æ Zn (66)Znm = ZmZn (67)

24 � Combinator (Dyadic Compositor)

Definition: �XY ZU =) X(Y U)(ZU) (68)

Equivalences: � = B(BS)B (69)�nFGHX1 � � �Xn =) F (GX1 � � �Xn)(HX1 � � �Xn) (70)

Size:7S+ 6K+ 12A = 25 total (Def. 69).
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25 �n Combinator (Polyadic Compositor)

Definition: �nXY1 � � �YnZ =) X(Y1Z) � � � (YnZ) (71)

Reduction toSK: �n = Sn Æ K (72)

Size:(5n� 2)S+ (4n� 1)K+ (9n� 4)A = 18n� 7 total for�n.
Notes:�n can be replicating or sharing (��n), depending on whetherSn or �Sn is used in

definition 72. If it is sharing, then the following structureis generated:��nXY1 � � �YnZ =) X(Y1Z(n�1)) � � � (Yn�1Z 0)(YnZ) (73)

Equivalences: �n+1 = BSn Æ B (74)�mnXY1 � � �YnZ1 � � �Zm =) X(Y1Z1 � � �Zm) � � � (YnZ1 � � �Zm) (75)�mn+1IXY1 � � �YnZ1 � � �Zm =) XZ1 � � �Zm(Y1Z1 � � �Zm) � � � (YnZ1 � � �Zm) (76)

26 	 Combinator (	 Formalizer)

Definition: 	XY UV =) X(Y U)(Y V ) (77)

Reduction toSK: 	 = B(BW(BC))(BB(BB)) (78)

Size:26S+ 24K+ 49A = 99 total.
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Other Notation

27 Composition

Definition: X Æ Y = BXY (79)

Size:2S+ 2K+ 5A = 9 total, plusjXj+ jY j.
Equivalences: X Æ I = I ÆX = X (80)X Æ (Y Æ Z) = (X Æ Y ) Æ Z (81)B(X Æ Y ) = BX Æ BY (82)

28 Powers

Definition: X0 = I (83)X1 = X (84)Xn+1 = X ÆXn (85)

(86)

Size:2(n� 1)S+ 2(n� 1)K+ 5(n� 1)A = 9(n� 1) total, plusnjXj, forXn, n � 1.
Equivalences: Xm ÆXn = Xm+n (87)(Xm)n = Xmn (88)(BX)m = B(Xm) (89)

29 Deferred Combinators

Definition: X(0) = X (90)X(n+1) = BX(n) (91)

(92)

Size:2nS+ 2nK+ 4nA = 8n total, plusjXj, for X(n).
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Equivalences: F(n)X0X1 � � �Xn =) F (X0X1 � � �Xn) (93)X(m+n) = BmX(n) (94)

Notes: If F is regular (p. 2),FXY1 � � �Yn =) XZ1 � � �Zm, thenF(k)GX1 � � �XkY1 � � �Yn =) GX1 � � �XkZ1 � � �Zm:
That is,F(k) defers the action ofF by k steps. SinceB, C, I, K, andW are regular:B(n)FX1 � � �XnGY =) FX1 � � �Xn(GY ) (95)C(n)FX1 � � �XnY Z =) FX1 � � �XnZY (96)I(n)X0 � � �Xn =) X0 � � �Xn (97)K(n)X0 � � �XnY =) X0 � � �Xn (98)W(n)FX1 � � �XnY =) FX1 � � �XnY Y (99)

30 Left Reduction

Definition: X[0℄ = I (100)X[1℄ = X (101)X[n+1℄ = BX[n℄ ÆX (102)

Size:4(n� 1)S+ 4(n� 1)K+ 9(n� 1)A = 17(n� 1) total, plusnjXj, for X[n℄.
Equivalences:F[n℄X0X1 � � �Xn =) F (F � � � (F (FX0X1)X2) � � �Xn�1)Xn (103)F[n+1℄X0X1 � � �Xn =) F[n℄(FX0X1)X2 � � �Xn (104)X[n+1℄ = BnX Æ Bn�1X Æ � � � Æ B2X Æ BX ÆX (105)X[n+1℄ = X(n) ÆX(n�1) Æ � � � ÆX(2) ÆX(1) ÆX(0) (106)X[n+1℄ = (CB2X)nX (107)X[m+n℄ = BmX[n℄ ÆX[m℄ (108)C[n℄FX1 � � �XnXn+1 =) FXn+1X1 � � �Xn (109)S[n℄ = Sn (110)

Notes:F[n℄ can be called aleft reduction [Mac90]. To see this, writeF in infix form,Fxy = x � y and assume� associates to the left (sox � y � z = (x � y) � z). Then:F[n℄x0x1 � � �xn = x0 � x1 � � � � � xn:
ForF regular, F[n℄ = (CB2F )I (111)
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31 Polyadic Extension

Definition: X [0℄ = I (112)X [1℄ = X (113)X [n+1℄ = X Æ BX [n℄ (114)

Size:4(n� 1)S+ 4(n� 1)K+ 9(n� 1)A = 17(n� 1) total, plusnjXj, for X [n℄.
Equivalences: X [n+1℄ = (B2XB)nX (115)C[n℄FX1X2 � � �Xn+1 =) FX2 � � �Xn+1X1 (116)

Notes: If F is regular, F [n℄ = (B2XB)nI (117)F [n+1℄ = F Æ BF Æ � � � Æ BnF (118)F [n+1℄ = F(0) Æ F(1) Æ � � � Æ F(n) (119)F [m+n℄ = F [m℄ Æ BmF [n℄ (120)
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