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Abstract
At iGrid 2002, members of the Logistical Computing and Internetworking Lab (LoCI) had two

goals. The first was to present an application, Video IBPster, built using the tools of the Network Storage
Stack that delivers DVD-quality video without dropping frames, without losing data and without special-
ized multi-media streaming servers. The Video IBPster demo easily played MPEG-2 video files encoded
at bit-rates up to 15 Megabits/second (Mbs). The second goal was to determine performance limits when
using multiple, untuned TCP streams to retrieve a striped and replicated file across a long network. Since
tools built using the Network Storage Stack allow striped downloads from multiple servers in parallel and
since the client machines were all connected to Gigabit Ethernet (GigE), we hoped that we would observe
a linear scale up of throughput when downloading from multiple servers. Although we did see increased
throughput, it was not linear.

1 Introduction
In September 2002, members from the Logistical Computing and Internetworking Lab (LoCI) at
the University of Tennessee participated in iGrid2002 in Amsterdam. We had two goals: the first
was to demonstrate Video IBPster, which is a multi-media streaming application built using
components from the Network Storage Stack. The second goal was to push the limits of parallel,
untuned TCP streams. Since our tools use servers around the globe, most of which are not under
our administrative control, we cannot rely on custom TCP tuning techniques that typically re-
quire root access or modifying the kernel. Therefore, we use many parallel untuned TCP streams
to achieve high performance.

The paper is organized as follows: In section 2 we provide a brief overview of the Network Stor-
age Stack and Logistical Runtime System, which is our infrastructure testbed. This testbed has
several features that make it an interesting experimental platform. In section 3 we describe in
detail the downloading tool used in the iGrid demo and used to test untuned TCP parallel down-
loads. We review the components of the IBPster demo in section 4. In section 5, we push the use
of parallel streams in pursuit of higher download throughput. We conclude in section 6.

2 The Network Storage Stack
The tools that we used for the demo and for testing are based on the Network Storage Stack, de-
veloped at the University of Tennessee [ASP+02]. The goal of the Network Storage Stack (Fig-



ure 1) is to layer abstractions of network storage that allow writable storage resources to be part
of the wide-area network in an efficient, flexible, sharable and scalable way. Its model, which
achieves all these goals for data transmission, is the IP stack, and its guiding principle has been
to follow the tenets laid out by End-to-End arguments [SRC84, RSC98, BMP02]. Two funda-
mental principles of this layering are that each layer should (a) abstract the layers beneath it in a
meaningful way, but (b) expose an appropriate amount of its own resources so that higher layers
may abstract them meaningfully (see [BMP01, BMP02] for more detail on this approach).

Figure 1: The Network Storage Stack

2.1 IBP

The lowest layer of the storage stack that is globally accessible from the network is the Internet
Backplane Protocol (IBP) [PBB!+01]. IBP is server daemon software and a client library that al-
lows storage owners to insert their storage into the network, and to allow generic clients to allo-
cate and use this storage. The unit of storage is a time-limited, append-only byte-array. With
IBP, byte-array allocation is like a network malloc() call — clients may request an allocation
from a specific IBP storage server (or depot), and if successful, are returned trios of crypto-
graphically secure text strings (called “capabilities”) for reading, writing and management. Ca-
pabilities may be used by any client in the network, and may be passed freely from client to cli-
ent, much like a URL.

IBP does its job as a low-level layer in the storage stack. It abstracts away many details of
the underlying physical storage layers: block sizes, storage media, control software, etc. How-
ever, it also exposes many details of the underlying storage, such as network location, network
transience and the ability to fail, so that higher layers in the stack may abstract these more effec-
tively.

2.2 L-Bone and exNode

While individual IBP allocations may be employed directly by applications for some benefit
[PBB+01], they, like IP datagrams, benefit from some higher-layer abstractions. The next layer
contains the L-Bone, for resource discovery and proximity resolution, and the exNode, a data
structure for aggregation. Each is defined here.

The L-Bone (Logistical Backbone) is a distributed runtime layer that allows clients to
perform IBP depot discovery. IBP depots register themselves with the L-Bone, and clients may



then query the L-Bone for depots that have various characteristics, including minimum storage
capacity and duration requirements, and basic proximity requirements. For example, clients may
request an ordered list of depots that are close to a specified city, airport, US zipcode, or network
host. Once the client has a list of IBP depots, it may then request that the L-Bone use the Net-
work Weather Service (NWS) [WSH99] to order those depots according to bandwidth predic-
tions using live networking data. Thus, while IBP gives clients access to remote storage re-
sources, it has no features to aid the client in figuring out which storage resources to employ. The
L-Bone’s job is to provide clients with those features.

The exNode is a data structure for aggregation, analogous to the Unix inode (Figure 2).
Whereas the inode aggregates disk blocks on a single disk volume to compose a file, the exNode
aggregates IBP byte-arrays to compose a logical entity that may be used like a file. Two major
differences between exNodes and inodes are that the IBP buffers may be of any size, and their
extents may overlap and be replicated. Thus, the exNode allows users and applications to create
network files out of time-limited and failure-prone IBP allocations in such a way that much
stronger properties (e.g. fault-tolerance, longer durations) may be achieved. ExNodes are repre-
sented by XML encodings, manipulated by an exNode library. Like IBP capabilities, they may
be passed from client to client, anywhere in the network, with no registration from a central
authority.

Figure 2: The exNode in comparison to the Unix inode

2.3 Logistical Runtime System

The next level in the stack contains tools and a client library that compose the Logistical Run-
time System (LoRS). These tools allow users to create, manipulate and use the network “files”
supported by the exNode. These files reside on IBP depots located by the L-Bone. The function-
alities supported by LoRS are:

Upload: Create a network file from a local file, input stream or memory buffer.
Download: Get the bytes from a network file and store them locally or stream them to an

application.
Augment: Add more replicas to a network file.
Trim: Subtract replicas from a network file.



Refresh: Extend the time limits of the IBP allocations.

Note that both upload and augment allow the user to stripe and replicate the file in a
very flexible manner. Moreover, augment and trim allow the user to route the file from one
network location to another.

3 Striped Downloads from Multiple Servers
Because the network is inherently unreliable, the exNode allows multiple replicas to improve
fault-tolerance [ASP+02]. The exNode library places no restrictions on the number of replicas,
nor do replicas need to be complete copies of the data. There are many algorithms available
when retrieving replicated data. The simplest choice is selecting a single replica and download-
ing it completely from one source (e.g. [RWE+01, CHM+02]). The downside to this approach is
determining which replica to use.

Another option is an adaptive algorithm [PAD+02]. In this case, the data is divided into
small blocks. Next, t threads are assigned to each of the sources. The threads alternate while se-
lecting the next available block from the queue. When a thread finishes it, it selects the next
block in the queue. If a download fails, a thread from another source will try to download the
block. This provides improved fault-tolerance. Also, work is under way to add forward error-cor-
rection using erasure codings to exNodes for additional fault-tolerance [Pla97, WK02, Riz97].

This algorithm is adaptive, because IBP servers with high bandwidth to the client should
download many more blocks than those with low bandwidth. Moreover, as long as there are
many blocks to be downloaded, the algorithm may adapt to fluctuating network conditions. The
selection of the block size is of concern. Blocks that are too small may suffer too much from the
effects of latency and overhead during their downloads, while blocks that are too large may hin-
der the degree of adaptive load-balancing that the algorithm may achieve. This was the algorithm
used at iGrid for the demo and for the tests in section 5.

A more recent algorithm developed by the LoCI Lab is the progress-driven redundancy
[PAD+02], which performs much better than the adaptive algorithm. Because there was such an
improvement in performance, we have modified the download tools to use this algorithm.

The LoRS download tool provides a high degree of flexibility for the user. The user can
control the number of threads used, the transfer block size, how much memory is used to buffer
downloaded blocks that are not ready to be released, and how much data to pre-buffer before re-
leasing to a streaming application. The tools also allow downloading of a sub-extent of the data.

The number of threads determines how many simultaneous TCP connections the down-
load tool can make. If the user specifies too few connections, the throughput will suffer. If the
user specifies too many connections, the tool may experience too much context-switch overhead,
the IBP depots holding the data may be overwhelmed by connection requests, the link can be-
come congested or zealous sysadmins may think that their network is being used in a denial of
service (DOS) attack. Also, using many TCP streams is considered unfair, because during con-
gestion or packet loss, only a single stream may back off instead of the entire flow. We have pre-
viously discussed the difficulty of balancing higher performance through multiple TCP streams
with good network citizenship [PAD+02].

As mentioned above, choosing the “right” block size can dramatically affect the perform-
ance of the download. To take advantage of the basic download algorithm, we typically use a
block size of 512 KB, although we have seen good results with blocks up to 2 MB.



When downloading, each thread has a buffer equal in size to a single block. Since the
threads are not guaranteed to finish their transfer in order, the thread must hold its data until all
threads downloading previous data finish. Then it can release its block. Since this will lead to
idle threads and lost work, the user can specify the size of a waiting queue that will hold com-
pleted blocks and free the thread to begin downloading a new block. Once all the previous blocks
are downloaded, a block in the waiting queue will be released. Ideally, the waiting queue will
hold the entire data file. In reality, the user will specify as much memory as possible that is less
than the physical size of the system’s memory. If the user specifies a queue that is larger than the
physical memory, then performance will suffer dramatically due to thrashing.

Typically, once blocks are downloaded, the tool releases them immediately. When
streaming to a multi-media player, however, the user may want the download tool to hold a
number of the first blocks and release them all together. The download tool allows the user to
specify how many blocks to pre-buffer. This does not use additional memory; it merely has the
output thread wait before releasing any data.

4 Video IBPster
The Video IBPster demo combines the LoRS command line tools and open-source audio and
video players. For the demo, the user runs two TCL/TK graphic user interfaces (GUI). One pro-
vides control of the command line LoRS tools and the other is a map, which represents the L-
Bone with locations of IBP depots (Figure 3).

Figure 3: L-Bone map with IBP depots

First, the user uploads a file and creates an exNode (Figure 4). In this example, the file is
being stored to IBP depots at UTK. This copy has 10 pieces stored over 8 machines. All pieces
are uploaded in parallel. The outlined blocks represent IBP allocations that are receiving data.
When the block transfer is complete, the block is filled in with the color of the IBP depot that
receives it.

After the upload completes, the user typically adds more replicas to the exNode. In this
example, a replica has already been added at UNC and another is being added at UCSB (Figure
5). Note that all ten pieces are being copied simultaneously. Currently, the tool does not try to
determine which replica would provide the best performance as the source of the copy. That is
part of our ongoing research.



Figure 4: Upload in progress

Figure 5: Augment adding replica in UCSB



Lastly, the user can download the file to disk or to a multi-media player capable of reading data
on stdin (e.g. mplayer, mpg123, VideoLan Client, etc). In this case, the stored file is 126 MB
(Figure 6). The download tool is downloading eight 2 MB blocks in parallel from multiple de-
pots at UTK. As a block is being downloaded, it is represented by a hollow rectangle in the lower
right. When the data is downloaded, the block is filled in. The white column on the lower, far
right represents data blocks that have been downloaded and released to the disk or player.

Figure 6: Downloading 2 MB blocks in parallel

During iGrid, we successfully streamed 15 Megabit/second (Mbps) video from the US.
Since the LoRS tools are designed to move data files, not just multi-media, they use TCP for
transfers. Because of this, IBPster does not drop frames. If the download tool does not supply
data to the player fast enough, the audio or video will pause until it receives more data. If this
happens several times in a row, the player will appear to stutter. We found that 10-15 threads
downloading 512 KB blocks from 8-10 IBP depots would stream data to the player fast enough
for 15 Mbps video.

5 Testing the Limits of Trans-Atlantic Untuned TCP
In order to achieve high throughput using TCP, users have three options: tuning the TCP stack
[DMT02, TGL+01], modifying the kernel [FF01, SMM98], or using parallel streams [KT01,
SBG00, Fer02, HAN02, TJ+94]. The first two options require administrative control of the ma-
chine, while the third does not.

All of the software that composes the Network Storage Stack is available online
(http://loci.cs.utk.edu) and participation is open to everyone. Since, we do not have administra-
tive control over many of the machines registered with the L-Bone, we cannot rely on either
custom TCP tuning techniques or modifying the kernel. To achieve high performance, we can



either use many parallel, untuned TCP streams or we can use some form of UDP transfer. Cur-
rently, the LoRS tools use TCP by default and we are working on incorporating UDP transfer as
an option when augmenting. While we had access to the iGrid network, we wanted to test the
limits of throughput using parallel, untuned TCP streams.

To test performance, we stored a 276 MB file into three exNodes. The first exNode had
three replicas in the US (IN, NC and MO), the second had three replicas in Europe (UK, IT, SE)
and the third had a single replica on one of two Linux clusters at Sara (University of Amster-
dam), which is on the same LAN as the client. All the IBP depots had 64 threads available for
data transfers. The client machine was the other Sara Linux 4-way cluster.

In the US, we have consistently achieved 70-80 Mbps between one server and one client,
both of which have 100 Mbps network interface cards (NICs). At iGrid with the GigE LAN, the
trans-Atlantic 25 GB/s network and a GigE equipped client, we hoped that we would be able to
see some linear scaling of throughput when drawing from multiple IBP depots. Although we did
see higher throughput, it was nowhere near linear. In fact, it peaked at 103 Mbps when down-
loading from the first exNode that had three depots in the US (Figure 7). Although the three IBP
depots had a combined total of 196 threads available, the client reached the peak performance
with 150 threads. The US depots averaged 188 ms round-trip time from the client when pinged.

Figure 7: Throughput when downloading from US

For comparison, we repeated the test using the second exNode with three European IBP
depots. We tested downloads from a single IBP depot (UK) to establish the throughput for a one-
to-one transfer. The peak throughput average 89 Mbps when using 25 threads. Next, we down-
loaded from all three depots. This time the throughput was higher, but still well short of a linear
speedup (Figure 8). Using 275 threads, throughput averaged 184 Mbps. The European clients
round-trip times averaged between 14 and 45 ms when pinged.



Figure 8: Throughput when downloading from Europe
Concerned that the LoRS tools may be the limiting factor, we downloaded across the

Sara LAN. In this test, the IBP depot was running 96 threads, but it only needed 15 to reach its
peak performance of 749 Mbps (Figure 9). The tools did not seem to be the limiting factor.

Figure 9: Throughput when downloading across Sara LAN



6 Conclusion
By participating in the iGrid conference, the LoCI Lab was able to demo an application easily
built using components of the Network Storage Stack. Video IBPster was able to stream DVD-
quality video using parallel, untuned TCP streams. This demo does not require proprietary or
specialized servers. Instead, it shows the flexibility and the power of the design of the Network
Storage Stack.

Participation at iGrid also allowed us to test the limits of untuned TCP. In many applica-
tions, the users will not have control of the machines in order to perform TCP tuning or kernel
modifications. In these cases, they will resort to using untuned TCP for reliable transfer or aban-
don TCP altogether. While acknowledging the concerns regarding using multiple TCP streams,
this approach can produce improved performance. When moving to GigE capable networks and
machines, using multiple streams will improve performance, but it will not scale linearly.
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