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Abstract

SImSET is Monte Carlo simulation software for emission tomography. This paper describes a simple
but effective scheme for parallel execution of SIMSET using NetSolve, a client-server system for dis-
tributed computation. NetSolve (version 1.4.1) is “grid middleware” which enables a user (the client) to
run specific computations remotely and simultaneously on a grid of networked computers (the servers).
Since the servers do not have to be identical machines, computation may take place in a hetergeneous
environment. To take advantage of diversity in machines and their workloads, a client-side scheduler
was implemented for the Monte Carlo simulation. The scheduler partitions the total decay events by
taking into account the inherent compute-speeds and recent average workloads, i.e., the scheduler as-
signs more decay events to processors expected to give faster service and fewer decay events to those
expected to give slower service. When compute-speeds and sustained workloads are taken into account,
the speed-up is essentially linear in the number of equivalent “maximum-service” processors. One mod-
ification in the SIMSET code (version 2.6.2.3) was made to ensure that the total number of decay events
specified by the user is maintained in the distributed simulation. No other modifications in the stan-
dard SImSET code were made. Each processor runs complete SimSET code for its assignment of decay
events, independently of others running simultaneously. Empirical results are reported for simulation of
a clinical-quality lung perfusion study.

Keywords: distributed computing, emission tomography, grid middleware, Monte Carlo simulation, parallel
computing



1 Introduction

Monte Carlo simulation of aspects of emission tomography is well-established (cf [1, 2, 3, 4, 5]). SImSET
[6], a simulation system for emission tomography, is a public domain package of routines written in C.
SIMSET is summarized at its web site [7] as follows:

The SimSET package uses Monte Carlo techniques to simulate the physical processes and in-
strumentation in emission imaging...

The Photon History Generator ... performs Monte Carlo simulations of photon creation and
transport through heterogeneous attenuators for both SPECT and PET, i.e., it generates photons
and transports them through the “object” to the face of the collimator or detector.

The Collimator Module receives... and tracks photons through the collimator being modelled.

The Detector Module... tracks photons through the specified detector, recording the interactions
within the detector for each photon. The interactions are used to compute a detected location
and total energy deposited.

The Binning Module is used to process photon and detection records... Histograms and images,
together with photon history files, make up the final output from a simulation....

A realistic simulation may require millions of emission decay events. This may result in an extremely long
execution time when a simulation is run as conventional sequential computation on a single processor. But
the individual decay events are stochastically independent; therefore, if multiple processors are available, the
heavy computational load can be partitioned into subcomputations that run in parallel on different processors
[8, 9], the outputs of which are combined upon completion.

One way to access multiple processors is to use a parallel computer [10, 11]. Another way is to imple-
ment distributed computation on a network of computers—a mode of computation in which the individual
machines do not have to be identical [12]. We implemented distributed computation of SImSET by using
NetSolve [13, 14], a public domain package of routines in C (plus some environment-specific interfaces)
which enables a user to run application-specific code remotely on networked computers. An introduction to
NetSolve at its web site [15] states:

...NetSolve... provides remote access to computational resources, both hardware and software.

The NetSolve system is comprised of a set of loosely connected machines. By loosely con-
nected, we mean that these machines are on the same local, wide, or global area network, and
may be administered by different institutions and organizations. Moreover, the NetSolve system
is able to support these interactions in a heterogeneous environment, i.e., machines of different
architectures, operating systems, and internal data representations can participate in the system
at the same time...

NetSolve and systems like it are often referred to as Grid Middleware...

No root/supervisor privileges are needed to install or use any component of the NetSolve sys-
tem....

In the context of this paper, the phrase “grid middleware” refers to the fact that a user who wants a particular
computation to be executed remotely goes through NetSolve for service on a grid of networked machines.

This paper is organized as follows. Section 2 describes NetSolve with emphasis on characteristics rel-
evant to our implementation of distributed computation of SImSET. Section 3.1 describes the Unix process
for SImSET that runs on servers, and section 3.2 describes the way in which simultaneous runs of SImSET
are automatically scheduled on different servers. Section 4 reports experimental results for simulation of
100 million decay events in a clinical-quality lung perfusion study.
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Figure 1: NetSolve client contact with agent for multiple, heterogeneous servers

2 NetSolve Organization

NetSolve [13, 14, 15] is organized as a client-server system in which a client obtains information from
an agent before sending requests-for-computation to servers. The NetSolve client library is linked with
the user’s application code; thereafter, the client-user can transmit requests for specific computations to
occur remotely on servers. The client’s request goes first to a NetSolve agent—an information service that
maintains a database about the capabilities and status of a set of (possibly heterogeneous) servers. Upon
receipt of a request from its client, the agent responds with data about servers and indicates its choice of a
server for the job.

Figure 1 represents the client’s contact with its agent, after which the client sends its request along to
a server. The compute-engines in a NetSolve system are its servers. These are the networked computers
running the server daemon that enables them to receive and process requests from clients and to send status
reports to agents. Figure 1 shows a heterogeneous system in which two servers are conventional workstations
but the third is a machine consisting of multiple, identical processors.

Each server has code for a set of specific computations. These computations are the NetSolve problems
that the server can run locally on request. The client’s request must specify one of these problems and
supply the inputs that an instance of the problem needs. Each problem is documented in a NetSolve problem
description file (a PDF) which contains such information as the name by which the problem is known in
the NetSolve system, the lists of 1/O-parameters passed between client and server, and the calling sequence
that a client must use. To expand the suite of problems already computable on various servers, a user or
system administrator must create a PDF for the new problem and install the code on one or more servers.
We created a PDF to run SimSET on Unix! servers as the process described in section 3.1.

NetSolve uses TCP/IP and a customized application layer protocol for communication among its com-
ponents. If more than one NetSolve server is available for the client’s problem and the client makes a
server-nonspecific request, the request goes to the server selected by the agent; however, the client can
designate a particular server by using the server-host machine’s IP address.

An instance of a NetSolve problem can be requested in blocking mode (the application sending the re-
quest is idle while waiting for the server to finish and return values) or in non-blocking mode (the application

LUnix means Unix-like, including Solaris and Linux.
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Figure 2: NetSolve client requesting multiple instances of SImSET on diverse servers

can continue with other computations and periodically test a flag that indicates whether the server has fin-
ished). In order to have computations running in parallel, the client sends a series of non-blocking requests,
one after another, for instances to run simultaneously on NetSolve servers. Figure 2 represents the client
requesting four instances of SImSET to run simultaneously. Two servers are single-processor workstations
and the third is a multiprocessor machine. The requests are for simultaneous runs on each workstation’s
processor and two processors in the third server.

An aspect of distributed computation is that processors on different servers may provide computational
service to the client at different relative rates. From the perspective of the client-user, this service is a
function of the time to move data to/from the server, the time taken by the processor for actual computation
on its instance of the problem, and some additional NetSolve overhead. Neither the additional overhead
(measured consistently as less than a few hundred milliseconds in similar applications [14]) nor the data-
transfer times have a major impact on service in our SIMSET implementation. However, the relative service
of a processor when running SImSET depends both on the raw compute-speed of the server-host machine
(a constant) and on its current workload (a variable). In networks of computers, it is common to have
some processors that are inherently slower than others and some with significantly larger workloads than
others at the time the application needs them. As an integral part of distributed computation of SimSET,
we implemented a client-side scheduler which can partition a large simulation into multiple instances, each
instance being an independent run of SIMSET on a different processor for a fraction of the total number
of decay events. The fractions do not have to be equal because the scheduler can assign larger fractions to
processors with higher expected service rates.

In this sense, the distributed computation of the SIMSET application is statically self-scheduled using
server-status data obtained from the NetSolve agent each time the application is run. The scheduler partitions
the total decay events so that each instance of the problem is expected to take about the same wall-clock
time, given the information about servers available to the scheduler at the time it determines the partition.
The client-side scheduler is discussed further in section 3.2.

We installed SIimSET version 2.6.2.3 (with one modification described in section 4) as a NetSolve prob-
lem on a system running NetSolve version 1.4.1. The application creates multiple, non-blocking requests for
the simultaneous runs scheduled automatically by the client-side scheduler. Technical details and empirical
results for this system are given in section 4.



3 SIMSET asa NetSolve Problem

3.1 Processon Unix Servers

SImSET for computation on Unix servers is a NetSolve problem with a user-defined PDF. The complete
SImMSET code runs locally on a processor as a Unix process. All 1/O is data from/to the application (the
simulation 1/O is not germane to NetSolve itself). 1/O is redirected standard input, output, and error, plus
any additional files opened by the program.

A processor on a Unix server with SImSET code executes as follows for an instance of the problem:

(1) A Unix process is started to read in a file sent by the client-user with the information needed
by the server for instances of SIMSET. This file includes the parameters for the SImMSET run
and the complete paths for relevant files.

(2) Using the fork() system command, the process forks into a parent process and a child pro-
cess.

e The child process opens and redirects standard input, output, and error, and opens any
other files. It then runs the instance of SImSET according to the information read in.

e The parent process uses the wait() system command to wait for the child process to signal
the end of SImSET execution. Upon completion, the Unix process for the instance of
SIMSET terminates.

3.2 Client-Side Scheduling

In distributed computation in heterogeneous environments, “machines of different architectures, operating
systems, and internal data representations can participate in the system at the same time....” [15]. A con-
sequence is that some machines may be inherently faster than others on identical code, and the random
differences in run-time workloads may further spread the relative service rates at the time the client needs
resources. Client-side scheduling can react to this diversity by imposing an uneven partition of decay events.

The client-side scheduler for SImSET is C code included in the user’s application. Its function is to par-
tition a simulation into smaller instances of the problem and distribute those instances to different processors
for simultaneous execution. Each time the application is run, the client-side scheduler:

(1) contacts the agent and obtains, for each potential server, the latest information about status
and workload that the agent provides;

(2) partitions the simulation into smaller instances, not necessarily equal in the number of decay
events, for assignment to the processors to have the same expected wall-clock time of comple-
tion for all instances.

The scheduler determines the partition by estimating the service each processor will provide, relative to the
maximum service, in the following way. Let IV be the number of processors available for an application that
requires D decay events in total. Suppose first that all N processors have no other jobs (have a workload
of 0) when the user wants to run SImSET. Let C; denote the speed-factor of processor i relative to the
fastest processor when running one SImSET process and no additional jobs; i.e., C; for0 < C; < lis a
relative measure of the service of processor ¢ when unloaded—a benchmark constant for a machine with
a workload of 0. Thus, a processor j with C'; = 1 and workload 0 is a “maximum-service” processor.
A slower processor & for which C, = 0.8 (for example) can provide service equivalent to 80% of the



maximum at best. If all N processors always had workload 0, the scheduler could simply compute S =
C1 + Cy + - -+ + Cy and partition the simulation into N instances such that the instance for processor i is
simulation of D; = DC;/S decay events.

But the scheduler also takes recent information about server workloads into account. The NetSolve
agent provides to the client the recent system load average for each server. Let L; denote this average for
server 4. In NetSolve, a new value of L; is sent by server ¢ to notify the agent of a noteworthy increase or
decrease in its workload [14]; specifically, server i sends a new L; whenever the percentage change in value
exceeds a fixed reference. The agent retains the most recent value of L; and provides that value to the client.
L; for the multi-processor servers discussed in section 4 is the machine-average workload and applies to
each processor in the server.

In an environment of varying workloads, L; is the latest information available to the scheduler at the
time it must create the partition. Assuming that the average L; is representative of near-term loading, the
fractional usage of processor i which the scheduler expects for its SIMSET process is f; = 1/(1 + L;),
0 < f; < 1. To account for this expected fraction as well as the speed-factor C;, the scheduler computes
S =Cif1 +---+ Cnfn and partitions the simulation into NV instances of SImSET such that processor i is
instructed to simulate D; = DC;f;/S decay events.

Various options (such as the number of decay events to simulate), paths, and file names for a simulation
are input to the SIMSET code in the Parameter File [7]. Having determined the partition, the scheduler
creates a Parameter File for each instance and fills in these Files appropriately for servers selected. The
client-user then sends the requests to the servers, one request immediately after another. The scheduler does
not dynamically adjust the partition or migrate work from one server to another while the instances are
running. The total time taken by the scheduler after receiving data from the NetSolve agent is negligible in
comparison with other computations.

4 Empirical Results

The computational resources used for the results in this paper consist of three NetSolve servers: two Sun
V880 symmetrical multiprocessor machines and a Sun Blade 2000 workstation. All three use the Solaris
operating system. Both V880s are equipped with eight 750MHz UltraSPARC 111 CPUs and 32 Gbytes of
primary memory. The Blade 2000 has a 900MHz UltraSPACR 11l CPU and 2 Gbytes of primary memory.
This means that up to 17 processors can be used for SImSET. The servers and the Unix client machine are
interconnected via Gigabit Ethernet.

Our method of distributed computation requires one change to the SimSET code. The change is made to
ensure that partitioning of the SIMSET computation as described above will not result in simulating fewer
decay events in total than the user specifies in an application. The number of decay events to be simulated by
an instance of SIMSET is one of the simulation options in its Parameter File. Let D denote that number, and
let V' denote the number of source activity voxels. To apportion an integer-number of decay events among
an integer-number of voxels, the original code truncates D to the nearest value D for D < D such that
D = kV where k is an integer. We replaced the truncation operation with a randomized rounding scheme
specifically to ensure that each source activity voxel is assigned & decay events corresponding to f)/V. In
addition, we use the fraction D/V — k to randomly decide on a voxel-by-voxel basis whether to assign an
extra decay event to a voxel. This approach agrees with the method SImSET already uses when the number
of decay events D is less than the number of source activity voxels V. The important implication of the
change is that partitioning the SimSET computation still results in an integer-count of decay events very
close the number specified in the application. The random number generation implemented in SImSET [7]
was not changed, namely, a first-level random number generator creates an array of seeds for a second-level
generator. The client-side scheduler ensures a different initial seed for the first-level generator for each
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Figure 3. One slice of the input image data used for the experiments: (a) original x-ray CT image of a human
chest; (b) and (c) the corresponding SImSET attenuation and source activity maps.

instance of the SIMSET problem. (Parallel random number generation itself is an active topic of research
[16].)

The two main data inputs to SImSET are a set of attenuation maps and a set of source activity maps.
We use clinical quality x-ray computed tomography (CT) chest images for the former and simulate the
latter as described below. The x-ray CT data set consists of 116 image slices, each 512x512 with an axial
(between-slices) resolution of 3mm and a transaxial (within-slice) resolution of approximately 1mm. To
obtain SimSET-compatible attenuation maps, each gray level value is mapped into the closest corresponding
type of tissue supplied with SIMSET. See Figure 3(a) and (b) for illustrations.

The source activity maps represent a clinical nuclear medicine lung perfusion study in which a patient is
given a dose of Tc-99m macroaggregated albumin (MAA) intraveneously. In a normal patient, the MAA will
be distributed relatively uniformly through out the lung fields. To generate corresponding source images,
we segment each x-ray CT image to obtain a binary image that represents uniform MAA activity in the lung
parenchyma. All x-ray CT images are segmented using the same threshold parameters. See Figure 3(c) for
an illustration.

Planar lung perfusion studies are based on obtaining eight views of the patient using a gamma camera
with an acquisition window of 140 + 14 keV. Typically, five to six million photons are detected for the
entire study which translates into approximately 100 million decay events. Figure 4 shows the eight planar
projection images produced by one run of SImSET for the attenuation and source activity maps described
above. Each image is 128x128 with a spatial resolution of approximately 3mm. The images are similar in
quality to those in clinical nuclear medicine practice.

We conducted two experiments to measure time-of-computation on the networked servers. In experi-
ment I, we ran the SImSET lung perfusion simulation for 100 million decay events, first using a single V8380
processor, then using two, three, ..., up to all eight on one server. The V880 was not running any other jobs
(its non-SimSET workload L; was 0). We measured start-up times associated with NetSolve and found them
to be neglible. More importantly, we measured the runtimes associated with SimSET. Figure 5 plots these
numbers normalized relative to the time of a single processor. The plot shows speed-up very close to linear.
A caveat, of course, is that if too few decay events are being simulated, the SImSET start-up overhead will
constitute a relatively large portion of the overall runtime—and notably less than linear speed-up will result.

In experiment 11, we used all 17 processors to simulate the D = 100M decay events. We first determined
the benchmark speed-factor C for each kind of processor by initial runs of 10 million decay events using
one (unloaded) processor on each machine. These empirical numbers are within 1% of the corresponding
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Figure 4: Simulated planar projection images produced by SimSET.

CPU clock-rate ratios, i.e., C = 1 for the 900MHz CPU and C' = 0.833 for the 750MHz CPUs. Thus, the
reference for maximum service is the workstation processor running one SImSET process and no other jobs.
One V880 processor can provide service equivalent to 83.3% of that maximum if it also has workload 0.

To demonstrate the impact of diverse workloads on scheduling, we then created sustained (non-SimSET)
workloads of L; = 1.5 for one V880, L; = 0.5 for the second V880, and L, = 1 for the workstation. The
corresponding fractions used by the scheduler are f; = 0.4, f; = 0.67, and f; = 0.5. Multiplying these
fractions by the benchmarks C; = C; = 0.833 and C}, = 1 respectively, the scheduler obtains

C; f; = 0.333 for each processor on one V880,
C;f; = 0.556 for each processor on the other V880, and
Ci. fr = 0.5 for the workstation processor.

This is equivalent to approximately 7.6 maximum-service processors for the simulation.

Figure 6(a) shows the scheduler’s assignment of decay events to the 17 processors. Processors 1-
8 are the more heavily loaded V880 (C;f; = 0.333), processors 9-16 are the less heavily loaded V880
(C;f; = 0.556), and processor 17 is the Blade 2000 workstation (C'y fr = 0.5). Processor 17 is assigned
proportionally fewer decay events to simulate than processors on the V880 with smaller average workload,
but proportionally more decay events than processors on the V880 with larger average workload. Figure 6(b)
shows the overall wall-clock times for all 17 processors. The minimum and maximum are 2,523 and 2,560
seconds respectively, with the mean and standard deviation being 2,545 and 12.5 seconds. That the mini-
mum, maximum, and mean are so close to one another indicates successful client-side scheduling under the
conditions described.

To place the wall-clock times for the distributed SimSET code in context, simulating 100 million decay
events on one unloaded V880 processor in experiment | took 6 hours and 8 minutes. Under the sustained
workloads in experiment |1, the 17 processors are equivalent to about 7.6 maximum-service processors, and
the distributed computation on them averages about 43 minutes. If all 17 machines are unloaded, we have
the equivalent of 14.33 maximum-service processors, in which case the simulation of 100 million decay
events takes approximately 22 minutes.



1.0005

0.500 8

Relative wall-clock time

0.333 8
0.250 . . . y

0.167 y

0.125 I I I I I
1 2 3 4 5 6 7 8

Number of processors (N)

Figure 5: Relative SImSET wall-clock time as a function of number of unloaded V880 processors used.

8 3000

2500 B

2000 - q

1500 [ 4

1000 [ q

Decay events [millions]
S
T
.
Wallclock time |seconds)|

500 - q

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Processor Processor

(@) (b)
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5 Summary

The thrust of this paper is not validation of SImSET per se; rather, the focus is on distributing the com-
putation across a grid of heterogeneous machines to achieve significantly faster computation. By making
the complete simulation a NetSolve problem, the user avoids having to make configuration-specific changes
within the SImSET code.

We implemented SimSET version 2.6.2.3 in a distributed-computing environment using NetSolve ver-
sion 1.4.1. One modification was made in the way SImSET apportions decay events to voxels to preserve
the total number of decay events specified by the user.

In general, it is not the case that all servers in a network provide the same relative rate of computational
service on a problem. The service in the work reported here is determined essentially by the inherent
compute-speed of a processor and its current workload (other factors being negligible in comparison). A
client-side scheduler was implemented to make the SImSET application statically self-scheduling, in the
sense that the scheduler partitions the total number of decay events and assigns a portion to each available
processor. The fraction assigned to an individual processor is proportional to the processor’s benchmark
speed-factor and its recent average workload. When the speed-factors and sustained workloads are taken
into account, the speed-up achieved is essentially linear in equivalent maximum-service processors.

An objective of grid middleware projects like NetSolve is to provide substantial computing resources to
a user’s application on a temporary, as-needed basis with transparency and ease-of-access. Rapid develop-
ments not only in hardware, but also in organizational concepts and distributed-resource management, make
distributed computation increasingly viable and attractive for biomedical computing.
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