

Block Tridiagonalization of “Effectively” Sparse Symmetric

Matrices

Yihua Bai*§, Wilfried N. Gansterer*§ and Robert C. Ward*§

Technical Report UT-CS-02-4921

University of Tennessee

March 2003

 Abstract: A block tridiagonalization algorithm is proposed for transforming a sparse (or
“effectively” sparse) symmetric matrix into a related block tridiagonal matrix, such that the eigenvalue
error remains bounded by some prescribed accuracy tolerance. It is based on a heuristic for imposing a
block tridiagonal structure on matrices with a large percentage of zero or “effectively zero” (with respect
to the given accuracy tolerance) elements. In the light of a recently developed block tridiagonal divide-and-
conquer eigensolver [6], for which block tridiagonalization is needed as a preprocessing step, the algorithm
also provides an option for attempting to produce at least a few very small diagonal blocks in the block
tridiagonal matrix. This leads to low time complexity of the last merging operation in the block divide-and-
conquer method. Numerical experiments are presented and various potential block tridiagonalization
strategies are compared.

 1. Introduction. There are a number of efficient algorithms for solving real
symmetric eigenvalue problems [12]. Depending on the nature of the matrices and
desired spectral information, some require tridiagonalization of the original matrix as a
preprocessing step while others directly exploit the matrix’s sparsity. For a tridiagonal
matrix, the divide-and-conquer method [2,10] is an extremely efficient method for
computing eigenpairs. However, transformation to tridiagonal form can be expensive
with unfavorable data access patterns and data locality problems for modern deep
hierarchical memory computers [4]. The block tridiagonal divide-and-conquer (BD&C)
method developed by Gansterer and Ward et al. [5,6] can be applied to block tridiagonal
matrices, greatly eliminating problems with data access and locality. In addition, their
algorithm can be used to very effectively approximate eigenpairs of a block tridiagonal
matrix up to a prescribed accuracy tolerance. The rank of the off-diagonal block in the
final merging operation (see Section 2) is a major factor in the efficiency of this
algorithm. Consequently, it is important to find a “good” block tridiagonal approximation
(i.e., one which contains some low-rank off-diagonal blocks) of the matrix whose
eigenpairs are to be approximated.

 *Department of Computer Science, University of Tennessee, 203 Claxton Complex, 1122 Volunteer
Blvd., Knoxville, TN 37996-3450.
 §This work was partially supported by the Academic Strategic Alliances Program of the Accelerated
Strategic Computing Initiative (ASCI/ASAP) under subcontract number B341492 of DOE contract W-
7505-ENG-48.
 1Available from: http://www.cs.utk.edu/~library/TechReports.html

 1

http://www.cs.utk.edu/~library/TechReports.html

1.1 Objectives. The primary objective of our work described in this paper is as
follows:

Given an accuracy toleranceτ (0.1τ ≤) and a (dense or sparse) symmetric matrix
A, find a closely related block tridiagonal matrix B with the following properties:
1. Eigenvalues of B differ from those of A by less than the normalized accuracy

tolerance Aτ ,
2. B has small bandwidth b relative to the size of the matrix, and
3. At least a few individual off-diagonal blocks of B have either very low

dimension or are sufficiently close to a low-rank matrix.
 The algorithm we describe in this paper is particularly suited for matrices that we call
“effectively sparse”, i.e., dense matrices with the property that a large portion of their
nonzero entries may be changed to zero without influencing the eigenvalues by more than

Aτ . We call matrix entries that may be set to zero without changing the eigenvalues

more than Aτ ”effectively zero”.

1.2 Applications. Many mathematical models used in quantum mechanical electronic
structure computations (e.g., for material design, the computation of optical absorption
and emission spectra, x-ray emission and diffraction, vibrational mode and rotational
mode in molecules, tribology at electronic level), are built around the time-independent
Schroedinger equation. A very popular method for solving this equation involves a basis
expansion of the unknown solution. There are various methods for choosing this basis
expansion and for truncating it. They all have in common that they lead to a nonlinear
finite-dimensional matrix eigenvalue problem (one example being the Hartree-Fock
equations). This nonlinear eigenvalue problem is typically solved via a fixed-point
iteration approach (called the Self-Consistent Field (SCF) procedure in quantum
chemistry), which requires the solution of a linear eigenvalue problem in every iteration
[20]. The matrices generated during these iterations are typically real, symmetric and
dense and in many important situations they have large elements close to the diagonal
and small elements away from the diagonal.
 In this paper, we motivate our concepts and illustrate the efficiency of our algorithm
with problems from quantum chemistry. Fig. 1 shows a Fock matrix arising when
applying the CNDO method [13,14,15,16,17] to a linear C322H646 alkane molecule with
the absolute value of its elements plotted on a logarithmic scale. The scale bar on the
right shows the exponent of the absolute values of the matrix elements.
 Because of the inner-outer iterative structure of the SCF procedure for our model
problem, it tends to be advantageous to require lower accuracy in the initial iterations and
to increase the accuracy as the process converges, especially if there is significant
savings in time for lower accuracy requirements. The BD&C algorithm allows the user
to specify the desired accuracy of the eigensolution. The block tridiagonalization
algorithm described in this paper also has an accuracy tolerance as an input parameter,
which is used in an effort to determine the “best” block tridiagonal approximation subject
to the constraint that the eigenvalues of B differ less than the specified tolerance from
those of A. Therefore, the block tridiagonalization algorithm is a very important
preprocessing step for the BD&C eigensolver. Combined, they form an efficient

 2

algorithm for the SCF procedure and for symmetric eigenproblems with effectively
sparse matrices.

 Fig. 1 log10 of absolute value of A (Fock matrix for C322H646)

1.3 Approach. The block tridiagonal structure of a matrix is completely specified by
the number p of diagonal blocks and by the sequence of their sizes. Note that the block
tridiagonalization of a given sparse symmetric matrix is not unique, though, since smaller
blocks can be combined into larger ones to produce a different blocking.
 Trivially, every symmetric matrix has block tridiagonal structure with . In
general, though, we cannot expect to find a block tridiagonal structure with that
has the desired properties 1 – 3 stated in Section 1.1. However, based on the class of
matrices considered in this paper, we can typically find block tridiagonal matrices whose
spectrum is sufficiently close to the original spectrum given

2=p
>p 2

τ . Using the techniques
discussed in Section 3 allows us to find a block tridiagonal structure with more than two
blocks in most cases as illustrated below.

 A =

11 12 13 14 1 11 13

21 22 23 24 2 22 23 24

31 32 33 34 3 31 32 33 3

41 42 43 44 4 42 44

1 2 3 4 3

0 0
0 0

0
0 0

0 0 0

n

n

n n

n

n n n n nn n nn

a a a a a a a
a a a a a a a a
a a a a a a a a a
a a a a a a a

a a a a a a a

  
  
  
  

⇒  
  
  
  
    

L L

L L

L L

L L

M M M M O M M M M M O M

L L

0

0











 original symmetric matrix sparse symmetric matrix

 3

1 1

1 2 2

2 3

1

1

T

T

T
p

p p

B C
C B C

C B
C

C B
−

−

 
 
 
 ⇒
 
 
 
 

O

O O

 = B

 block tridiagonal matrix

 1.4 Synopsis. In this paper we develop a method for finding a block tridiagonal
structure using a reasonable heuristic approach. We also provide an option for modifying
the block structure in a way that makes it particularly suitable for the BD&C algorithm.
In order to motivate this option, the BD&C algorithm is summarized briefly in Section 2.
The actual block tridiagonalization algorithm is discussed in Section 3. Section 4
presents numerical results; conclusions and future work are presented in Section 5.

2. The Block Tridiagonal Divide-and-Conquer Algorithm. In this section, we
first briefly describe the BD&C algorithm, and then illustrate how the block tridiagonal
structure affects the time complexity of the algorithm.
 Given a block tridiagonal matrix M, the BD&C algorithm computes eigenpairs of M to
a prescribed accuracy:

 M , (1)























=

−

−

pp

T
p

T

T

BC
C

BC
CBC

CB

1

1

32

221

11

OO

O TVVΛ≈

where p is the number of diagonal blocks, V contains approximations to the eigenvectors
of M, and Λ is a diagonal matrix containing approximations to the eigenvalues of M.
 There are three major steps in this algorithm [6].

 Step 1: Subdivision

 The off-diagonal blocks C are approximated by lower rank matrices using their
singular value decompositions:

i

 C , (2) T
iii

Ti
j

i
j

r

j

i
ji VUvu

i

Σ=≈ ∑
=1

σ

where ri is the chosen approximate rank of Ci , and 1,,2,1 −= pLi .
 With the corresponding corrections of the diagonal blocks, the block tridiagonal
matrix M can now be represented as:

 M , (3) T
i

p

i
iWWM ∑

−

=

+=
1

1

~

 4

where { }pBBBdiagM ~,,~,~~
21 L= ,

1 1 1 1 1

1 1 1

1 1 1

,

, for 1

,

T

T T
i i i i i i i i

T
p p p p p

B B V V

B B U U V V i p

B B U U
− − −

− − −

= − Σ

= − Σ − Σ 2 ≤ ≤ −

= − Σ

%

%

%

,

 , W for

1/ 2
1 1

1/ 2
1 1

1 0
0

V
U

W

 Σ
 

Σ =  
  
 

1/ 2

1/ 2

0

0

i i
i

i i

V
U

 
 Σ =
 Σ
  
 

2 2i p≤ ≤ − , and W . 1/ 21
1 1

1/ 2
1 1

0
0

p
p p

p p

V
U

−
− −

− −

 
 
 =  Σ
  Σ 

 Step 2. Solve Subproblems

 Each diagonal block iB~ is factorized:

 ,~ T
iiii QDQB = for i p,,2,1 L= , (4)

from which we obtain
 M TQDQ=~ , (5)
where
 }Q is a block diagonal orthogonal matrix, and ,,,{ 21 pQQQdiag L=

 is a diagonal matrix. 1 2{ , , , }nD diag D D D= L

 Step 3. Synthesis

 From (3) and (5) we have:

 , (6) TT
i

p

i
i QYYDQM)(

1

1
∑

−

=

+=

where Y . i
T

i WQ=

 Denoting S and r in the synthesis step, S is represented as a

sequence of r rank-one modifications of D. For each rank-one modification, the modified
matrix is first decomposed, and the eigenvector matrix from this decomposition is then
multiplied onto the accumulated block diagonal eigenvector matrix Q. The r

T
i

p

i
iYYD ∑

−

=

+=
1

1
∑

−

=

=
1

1

p

i
ir

i rank-one
modifications corresponding to an off-diagonal block C are called one merging
operation; thus, the algorithm performs a total of p-1 such merging operations. The
accumulation of an intermediate eigenvector matrix for each rank-one modification
involves a matrix-matrix multiplication. As the synthesis phase proceeds, the matrices to
be multiplied become larger and larger.

i

 The last merging operation involves the largest matrices (see Fig. 2), and its time
complexity T is a function of r),,(frcn f and c, where rf is the rank of the off-diagonal
block in the final merging operation, and c and n-c are the block sizes of the two sub-
problems to be merged.

 5

cn

c

−
  × × K × 























×××

×××

×××

×××

×××

×××





















××××××
××××××
××××××
××××××
××××××
××××××

K




















××××××
××××××
××××××
××××××
××××××
××××××

 Q Q
1 frQ

 Fig. 2 Eigenvector matrix accumulation for the last merging operation

 T)2)(1(4)14(2),,(23223 nnrnccnnrcn ff −−+++−=

 = (7)

nccrnnr ff
223 4)4(2 ++−

 Based on the fact that the time complexity for the most unbalanced merging operation
is less than that for the most balanced one but with higher rank [6], a block tridiagonal
structure is preferred that allows for low rank modifications in the final merging
operation. If there are several off-diagonal blocks with the same low rank, the BD&C
algorithm chooses the one corresponding to the most balanced merging operation among
these [6], i.e., the one closest to the matrix center. Optionally, the block tridiagonalization
algorithm described in this paper tries to produce a few small block sizes. Note that the
smaller of the dimensions of the two corresponding diagonal blocks is the best (and
only) estimate available for the rank of the off-diagonal block.

 3. Block Tridiagonalization. The strategy for determining the desired block
tridiagonal structure utilizes several algorithmic “tools”, which are described in Section
3.1. Our block tridiagonalization algorithm that uses these tools as building blocks is
described in Section 3.2.

 3.1 Algorithmic Tools. We use five basic algorithmic tools to construct a block
tridiagonal matrix with properties 1-3 stated in Section 1.1: (1) global thresholding, (2)
target thresholding, (3) sensitivity thresholding, (4) reordering, and (5) covering.
 Given a matrix, the underlying goals are to
� reduce the number of nonzeros (tools 1, 2 & 3);
� reduce the bandwidth and concentrate the large nonzeros around the main

diagonal (tool 4);
� impose a block tridiagonal structure that contains all the nonzero elements while

being as “narrow” as possible (tool 5);
� reduce the size of some of the diagonal blocks (tool 3).

We discuss these tools in Sections 3.1.1 – 3.1.5.

 3.1.1 Global Thresholding. A natural approach to decrease the number of nonzero
entries in a given matrix M is to apply a threshold to all the matrix elements, i.e., setting

 6

to zero every entry for which ijm α<ijm with a given tolerance α . We call the

resulting matrix M ′ . It has the property that α≥'
ijm for all nonzero m . '

ij

M =

iλ

2
E E≤

α

M

λ M
)(λ

 The following error analysis shows that the resulting absolute eigenvalue error is
bounded by αn (independently of the positions i, j):

Due to thresholding with tolerance α
 EM +′ , with ije α< , for i nj ,,2,1, K= .
According to Weyl’s theorem (see, for example, [3]), the absolute difference between
the eigenvalues of M and the eigenvalues iλ′ of M ′ can be bounded by

2
Eii ≤′− λλ .

Since E is symmetric, its 2-norm equals the maximum of the absolute values of its
eigenvalues, which is smaller than any matrix norm induced by a vector norm. In
particular,

1
 and αnE ≤

1
. Therefore,

 αλλ nii ≤′− .

 3.1.2 Target Thresholding. Ultimately, we are interested in setting all the elements
far away from the main diagonal in a given matrix M to zero. As soon as an element mij
is found that can not be safely set to zero, we are less interested in eliminating elements
closer to the diagonal since those elements will typically be included in any block
tridiagonalization of M. Thus, thresholding with a given tolerance is applied to M to
produce M ′ such that for 0ijm′ = ji j k− >

jk n
 for some integer kj , which may be different

for each column j and hopefully << for all j, and

 M E′= + , with
1

n

ij
i

e α
=

<∑ for 1, 2,...,j n= .

 Using Weyl’s theorem as above, we can now show that the absolute difference
between the eigenvalues iλ of M and the eigenvalues iλ′ of M ′ can be bounded by

1i i Eλ λ α′− ≤ ≤ .

 3.1.3 Sensitivity thresholding. With some additional knowledge, it may be possible
to eliminate some of the matrix elements whose absolute value is even larger than Aτ ,
the specified normalized accuracy tolerance for the eigenvalues, without causing the
accumulative error in the eigenvalues to exceed this error. Wilkinson [21] has given a
sensitivity analysis that expresses the eigenvalues of a perturbed matrix in terms of the
eigenvalues and eigenvectors of the original matrix and of the perturbation:
 , (8) ())()()(2εελε OExxME T ++=+
where x denotes the eigenvector corresponding to the eigenvalue M of M.
 Based on (8), we can estimate the first order eigenvalue error that results from
dropping matrix elements at specific locations (note that the position of an element to be
dropped enters into the matrix E).
 () () ()ExxMEM Tελελλ ≈−+=:∆ (9)

 7

 Eliminating a Single Matrix Element. For estimating the eigenvalue error resulting
from dropping the element mij (and, symmetrically,), jim E is a matrix with entries 1−
at the positions and (, zero entries at all other positions, and),(ji), ij ijmε = in Eqn.
(9). This yields the estimate
 =∆λ)(2 2

ijjiij mOxxm + (10)
for the effect of dropping matrix element on the eigenvalueijm λ (, are the i-th and
j-th entries, respectively, of the eigenvector x corresponding to

ix jx
λ).

j j

Eliminating Several Matrix Elements. An important situation arising frequently in
our algorithm is to estimate the accumulative error on the eigenvalues from eliminating a
row or a column from an off-diagonal block in a block tridiagonal matrix M. For
estimating this error, we need to accumulate the error estimates contributed by all matrix
elements eliminated for each eigenvalue and then take the maximum over all the
eigenvalues. If this maximum error estimate exceeds the accuracy tolerance, then the row
or column considered cannot be eliminated.

_

_

2 ()
col end

i i
j col start

x m xλ
=

∆ = ∑ Error on eigenvalue
from eliminating row i:

_

_

2()
row end

i ij j
i row start

x m xλ
=

∆ = ∑
Error on eigenvalue
from eliminating column j:

Note that the cumulative errors do not always grow with each element eliminated since
the summation may involve opposite signs.
 To illustrate how sensitivity thresholding can help to reduce the size of diagonal
blocks, assume that elements in the shaded area of Fig. 3(a) and its symmetric lower part
can be dropped. This reduces the size of the third diagonal block as shown in Fig. 3(b).

 Further split a block. The reduction of a block size implies the expansion of a
neighboring block. An expanded block may be further divided into two sub-blocks if the
corresponding sub-divided off-diagonal blocks are able to cover all the nonzero elements
of the original off-diagonal block, as illustrated in Fig. 3(c).

 8

 Fig. 3(a) Original block tridiagonal Fig. 3(b) Block structure after
 structure elimination of shaded elements

 Fig. 3(c) Block structure after sub-division
 of expanded block

 3.1.4 Reordering for Bandwidth Reduction. In order to “compress” a matrix
M toward its diagonal, we can reorder M , trying to reduce its bandwidth. Several
matrix reordering algorithms are available, for example, Cuthill-McKee [7], reverse
Cuthill-McKee [7], Gibbs-Poole-Stockmeyer (GPS) [1,9,11], Gibbs-King [8,11] and
Sloan [18,19]. All of them are based on level-set orderings to reduce the profile or
bandwidth of a symmetric sparse matrix.
 From the definitions of the bandwidth b and the profile f [7] of a matrix
 }0|,max{| ≠−= ijmjib , nji ≤≤ ,1 , (11)
and

 , (12) ∑
=

−=
n

i

igif
1

)(

where }0min{)(≠= ijmjig , ni ≤≤1 , one notices subtle differences between the
two. Although a reduction in profile usually leads to a reduction in bandwidth, it is
possible that a near minimum profile corresponds to a large bandwidth (for example, if in

 9

a single row the last nonzero element is far away from the diagonal). Since our ultimate
goal is to generate blocks of small sizes, we focus on reducing bandwidth.
 Among the reordering algorithms mentioned above, the GPS algorithm specifically
targets bandwidth reduction and, therefore, is our method of choice. The effects of
applying this reordering technique to our test matrices are illustrated in Section 3.2.

 3.1.5 “Covering” Problem. Given a sparse symmetric matrix M , we want to find a
block tridiagonal structure that contains all the nonzero elements of M. We determine
initial block sizes k1, k2, …, kp using a straightforward strategy:
 • Size of diagonal block 1: inspect the first row of M and determine the diagonal
block size from the column index of the last non-zero element in the first row. 1k
 • Size of diagonal block i for 2 i p 1≤ ≤ − : assume diagonal block i-1 starts at row j
and ends at row k. Then diagonal block i starts at row k+1. The column index of the last
non-zero element in row k+1 determines the end of diagonal block i and therefore the
diagonal block size . ik
 • Size of diagonal block p: include all the rows after diagonal block p-1.

Sometimes a diagonal block needs to be expanded to ensure that the corresponding
off-diagonal blocks cover all the existing non-zero elements or may be reduced and still
cover all the necessary non-zeros. An example of this process is shown in Figs. 4(a) –
(d). Since we always consider symmetric matrices, we focus on the upper triangular part
in the following figures.

B1 B1

B2

 Fig. 4(a) First diagonal block B1 Fig. 4(b) Second diagonal block B2

 10

B1 B1

B3

B2

B3

B2

B4

 Fig. 4(c) Reduction of B2 Fig. 4(d) Expansion of B3

 3.2 Block Tridiagonalization Algorithm. Our algorithm utilizes the algorithmic
tools 3.1.1 to 3.1.5 in a specific order and is heuristic in nature. Given a symmetric
matrix A and an accuracy tolerance 0.1τ < , it proceeds in six steps and produces a block
tridiagonal matrix with the properties described in Section 1.1. In steps 4 and 6, the
accuracy tolerance τ is partitioned as 21 τττ += , allowing a portion of the acceptable
error to be used for target thresholding and sensitivity thresholding, respectively.

Step 1. Global Threshold A with Aτ

 We start with a threshold τ τ′ = , larger than permitted by the accuracy requirement
and obtain matrix by eliminating all elements in A less than A′ Aτ . Thus, for many
matrices arising from applications with strong locality properties, most of the elements
will be eliminated. The resultant matrix A′ will contain only the largest elements of A
and (hopefully) be sparse.

Step 2. Reorder A′

 The GPS algorithm (see Section 3.1.4) is used to reorder A′ and reduce its
bandwidth. Thus, the larger matrix elements of are moved toward the diagonal. A
resultant permutation matrix P is obtained and will be used in Step 3.

A

Step 3. Reorder original with the permutation matrix A P from Step 2.

 The matrix A may have some of its larger elements far from the diagonal, which
would yield rather big blocks for the block tridiagonalization. In an effort to move its
largest elements toward the diagonal, the permutation matrix computed in Step 2 is
applied, resulting in matrix APPA T=′′ .

 Based upon the characteristics of and the accuracy tolerance A τ , the effectiveness
of the above steps varies. We investigate two types of matrices:

 1) The Fock matrix for the linear C322H646 alkane molecule (Fig. 1) already has most
of its largest elements close to the diagonal, and therefore A′ is already a banded matrix.

 11

In this case, the bandwidths of A′ before and after the reordering are about the same.
Tests on other Fock matrices with similar properties produce, as expected, matrices from
Steps 1-2 with equal or nearly equal bandwidths. Application of steps 1-3 to a linear
C322H646 alkane molecule is demonstrated in Figs. 5(a) – (c).

 Fig. 5(a) (, b=24) Fig. 5(b) Reordered (b=24) A′ 310−=′τ A′

 Fig. 5(c) A ′′ (Permuted) A

 2) Figure 6(a) shows an example of a matrix whose largest elements are not all
close to the diagonal. The matrix was generated by randomly permuting a matrix with
large elements close to the diagonal. In this case, the bandwidth of

A

A′ after reordering as
compared to before reordering is greatly reduced. Matrices A′ , the reordered , and A′ A ′′
are shown in Figs. 6(b) – (d).

 12

 Fig. 6(a) log10 of absolute value of A Fig. 6(b) A′ (, b=2000) 310−=′τ
 (random matrix)

 Fig. 6(c) Reordered (b=53) Fig. 6(d) A′ A ′′ (Permuted A)

Step 4. Target Threshold with A ′′ 1 Aτ
 The goal is to form a matrix A ′′′ by eliminating all elements far away from the
diagonal in the permuted full matrix A ′′ whose influence on the error of any eigenvalue
is negligible compared to A1τ . Since the eigenvalue errors are bounded by the 1-norm
of the error matrix (see Section 3.1.2), we monitor the accumulative errors by columns as
we eliminate elements.
 Because our matrix is symmetric, we process the lower triangular part of the matrix.
In order to preserve symmetry, dropping an element a in the lower triangular part of
column j implies that its symmetric upper triangular counterpart must also be dropped
in column i, as illustrated in Fig. 7. Therefore, an element can be dropped only when the
accumulative error it incurs is less than

ij

jia

A1τ in both columns j and i.

 13

  
 

0
0
0 0

ji

ij

a

a

× 
 × × 
 × × ×
 
× × × ×
× × × × ×

 
× × × × × 

 × × × × ×
  × × × × × × 

 nn × symmetric matrix

 column j column i
 Fig. 7 Eliminate an element and its symmetric counterpart from A ′′

 There are several methods one can use to systematically eliminate contiguous small
elements of beginning at the (n,1) position. In the following, we present three such
algorithms in this paper.

A′′

 Target Column Thresholding. This is a straightforward algorithm based on the
algorithmic tool described in Section 3.1.2. For each consecutive column of
beginning with the first, eliminate elements of the column from the bottom toward the
diagonal until the accumulative sum of the absolute value of the eliminated elements
exceeds

A ′′

1 Aτ . The eigenvalue errors are then bounded by 1 Aτ (see Section 3.1.2).
 A potential problem with this algorithm is that, for column j, dropping a relatively
large element a (ij ji) adds error to column i and thus may prevent further elimination
of elements in column i. Two typical resultant anomalous cases are: 1) the banded matrix
after thresholding flares out at the bottom, as shown in Fig. 8(a); and 2) the matrix after
thresholding has long spikes as shown in Fig. 8(b), which produces a block
tridiagonalization with very large - usually sparse - blocks.

>

 In order to avoid this, it is possible to set a separate, more conservative error bound for
the upper triangular part of the matrix when dropping an element. In other words, can

be dropped only when the sum of the dropped elements for column j is less than
ija

A1τ ,

and less than niA /)1(1 −τ for column i. Figures. 8(c) – (d) show the improved matrix
structures. However, this approach is not as competitive as the other target thresholding
algorithms described below.

 14

Fig. 8(a) with flare (, b=124) Fig. 8(b) A ′′′ 6

1 10−=τ A ′′′ with spikes (, b=964) 6
1 10−=τ

 Fig. 8(c) from Fig. 8(a) with Fig. 8(d) A ′′′ A ′′′ from Fig. 8(b) with
 conservative error bound conservative error bound
 (, b=90) (, b=147) 6

1 10−=τ 6
1 10−=τ

 Target Diagonal Thresholding (TDT). As illustrated in Fig. 9(a), this algorithm
traverses the matrix elements along the off-diagonals from the end toward the center, and
drops elements as long as none of the column-wise sums of absolute values of the
dropped elements exceeds A1τ . Figure 9(b) shows the matrix from Fig. 1 after
thresholding with TDT.

 15

 

























××××××
×××××

××××
×××

××
×

 Fig. 9(a) Traverse elements along
 matrix off-diagonals

 Fig. 9(b) A ′′′ (, b=104) 6

1 10−=τ
 with TDT

 Target Block Thresholding (TBT). As another variation, one could traverse the
matrix elements row-wise and column-wise alternately, as illustrated in Fig. 10(a). The
column nonzero pattern produced by this approach tends to be small in the middle and
large at both ends. Thus, the block tridiagonal structure typically has fewer blocks with
small blocks near the center and fairly large blocks at the ends. The motivation for such
a structure is to produce a blocking with a few small blocks (therefore, low ranks in the
off-diagonal blocks). Figure 10(b) shows the matrix from Fig. 1 after thresholding with
TBT.

 

























××××××
×××××

××××
×××

××
×

 Fig. 10(a) Traverse elements row- and
 column-wise alternately

 Fig. 10(b) A ′′′ (, b=932) 6

1 10−=τ
 with TBT

Step 5. “Cover” A′′′ (i.e., determine a block tridiagonal structure for) A′′′

 Through a row-wise procedure as described in Section 3.1.5, the diagonal block sizes
are determined such that the resulting block tridiagonal matrix contains all the matrix
elements that are “effectively nonzero” (i.e., nonzeros in A ′′′). These are the matrix
elements whose effect on the accuracy of the eigenpair approximation may be non-
negligible.

 16

 The algorithm composed only of Steps 1-5 will be called the basic algorithm and used
for comparison in later numerical tests.

 It can be very beneficial for the BD&C algorithm to have a few very small diagonal
blocks (see Section 2). Thus, a Step 6 as described below is added to the basic algorithm
to form the Target Block Reduction algorithm (TBR) (note that eigenvector
approximations will be required for this step). For other eigensolvers, one may use just
the basic algorithm or replace Step 6 in the TBR algorithm with a step appropriate for the
different eigensolver. For example, if a band eigensolver will be used, one would try to
remove the outer-most corners of the largest diagonal blocks by a similar method to the
one described below, yielding a matrix with a smaller bandwidth.

Step 6. Reduce block sizes using A2τ if possible

 In this last step, remaining elements whose removal may reduce the size of the smaller
interior blocks (see the next paragraph for a discussion on why elements in the first and
the last off-diagonal blocks are not to be eliminated) are checked individually for
elimination.

 Apply sensitivity threshold. If the block tridiagonalization is used as a preprocessing
step for the BD&C eigensolver, we obviously do not know the eigenvector x needed for
the sensitivity thresholding as described in Section 3.1.3 a priori, since it is one of the
quantities we want to compute. However, we can use an approximative eigenvector
instead if we have some information about the approximation quality.
 In the context of an iterative method for solving a nonlinear eigenvalue problem (like
the SCF method), we have another option: after the first iteration, use the eigenvector
from the previous iteration as an approximation of x in the error estimate (9). In this
situation, even if we do not have precise information about the accuracy of this
eigenvector approximation, underestimating the eigenvalue error and therefore wrongly
dropping some elements is typically corrected as the iterative method proceeds.
 Starting with a block tridiagonal matrix (take Fig. 3(a) as an example), first select the
smallest diagonal block and apply sensitivity thresholding to the corresponding off-
diagonal block. If there are several diagonal blocks with the same size, then select the
one closest to the middle.
 An exception to this rule is that neither the first nor the last block should be a
candidate for sensitivity thresholding. Observe that a block at either end of a matrix (i.e.,
the first or last block) can be arbitrarily reduced until its size reaches zero, which means
that its neighboring block is expanded. The result is that the block at the end is combined
with its neighbor to form a bigger block, which is contradictory to our goal of generating
some small blocks. Therefore, sensitivity thresholding is not applied to the first or last
block.
 Since each block has two neighbors, to obtain a more balanced block tridiagonal
structure, we reduce the side of the block that expands the smaller of the two neighbors
first, then the other side. After a block has been reduced, it should not be expanded in
later steps. Otherwise, a block could be reduced first and expanded later repeatedly in an
oscillating pattern. We repeat the sensitivity thresholding procedure for the next smallest

 17

block until all eligible blocks are processed. Fig. 3(b) shows an example of the resultant
block tridiagonal structure.
 Check for split blocks. All the blocks that have been expanded during the sensitivity
thresholding process are checked for the possibility of splitting into multiple blocks. If a
block can be sub-divided into two smaller blocks as illustrated earlier by Fig. 3(c), and
the smaller diagonal and off-diagonal blocks still cover all the corresponding nonzero
elements, then the splitting is implemented by changing the block sizes and increasing
the number of blocks by 1. Figures 11(a) – 11(c) with block sizes shown along the x-axes
illustrate the split of a block using a matrix generated from modeling an C502H1006 alkane
molecule.

See Figs. 11(b) –
(c) for details

 Fig. 11(a) Split a block

 Fig. 11(b) Local block tridiagonal Fig. 11(c) Local block tridiagonal
 structure before splitting structure after splitting

 Combine blocks. Since the first and last blocks are never candidates for sensitivity
thresholding, they would only be expanded but never reduced. Computational time
complexity of the BD&C could increase in the following scenario. The first (or last)
block is the smallest block before sensitivity thresholding. After sensitivity thresholding,
it is still the smallest one, but its size increases and the same could be true for the rank of
the corresponding off-diagonal block. The block is expanded because its neighbor has
been reduced. Consequently, the time complexity of the last merging operation becomes
higher.

 18

 Under certain restrictions, combination of blocks would not increase the total time
complexity of all merging operations, although as a general rule one should always try to
produce smaller blocks. If the smallest block is at the ends of a matrix, analysis based
upon the leading term of the time complexity of a single merging operation [6] shows
that, if the following condition

 1
11

3
min

1 −







 −−

≤−

n
k

r
r f

f , (13)

holds, where is the size of the smallest block, n is the size of the symmetric matrix,
is the rank in the last merging operation, and is the rank in the second last merging

operation, then the total time complexity of all merging operations decreases through the
combination of the first (or last) block with its neighboring block.

mink

fr 1−fr

 Because ranks of the off-diagonal blocks are not available during the block
tridiagonalization process, we use the size of the smaller diagonal block as an estimate of
the rank of the corresponding off-diagonal block. Thus, if either the first block or the last
one is the smallest block after sensitivity thresholding and inequality (13) holds with
ranks replaced by block sizes, then we combine it with its neighboring block to form a
larger block. By doing this, the total number of blocks p is decremented by 1, and the last
merging operation is eliminated.

 Final block tridiagonal structure. After block sizes are determined, the diagonal
blocks and off-diagonal blocks of the block tridiagonal structure are obtained by filling in
blocks with elements from the original matrix A. Data defining the permutation matrix P
computed in Step 2 is also returned by the block tridiagonalization routine to enable
proper back-transformation of the eigenvectors computed by the BD&C algorithm. Fig.
12 shows the block tridiagonal matrix resulting from applying the TDT and TBR
algorithms to the matrix shown in Fig. 1, with and 610−=τ τττ 5.021 == . The figure
shows log10 of the absolute value of the matrix entries, and the sizes of the diagonal
blocks are shown along x-axis.

 19

 Fig. 12 log10 of block tridiagonal matrix from
 C322H646 alkane with ττττ 5.0,10 21

6 === −

 4. Numerical Tests. The runtimes of the block tridiagonal divide-and-conquer
eigensolver on the block tridiagonal structure determined by various potential block
tridiagonalization algorithms described in Section 3.2 are compared to illustrate the
characteristics of each.

 4.1 Effectiveness of sensitivity thresholding. First, we test the effectiveness of Step 6
for the BD&C eigensolver. We compare the BD&C execution time on the block
structure determined by the basic algorithm with the time on the structure determined by
the TBR algorithm. In addition, the times required for our block tridiagonalization
algorithms are measured to evaluate their overhead and to compare with the eigensolver
time. With an accuracy tolerance τ , τ5.0 is assigned to 1τ and 2τ for target thresholding
and sensitivity thresholding, respectively, for the TBR algorithm.

 Test matrices originate from solving the Hartree-Fock equation for the modeling of
alkane molecules C162H326 (both ordered and disordered) and C322H646 in quantum
chemistry. The matrix sizes are 974, 974 and 1934 respectively. A random matrix of size
2000 as shown in Section 3.2 (Fig. 6(a)) is also tested. The experiments were performed
on a 450 MHz UltraSparc-II with 4 MB off-chip cache and 512 MB main memory.

 Because solving the Hartree-Fock equation is an iterative process and the eigenvector
approximations from the previous iteration are used for sensitivity thresholding,
performance is evaluated from iteration 2 to the iteration of convergence (in these test
cases, iteration 6). The average execution time of the 5 iterations is provided for different
computational accuracies as shown.

 20

 Table 1 summarizes this average time for solving eigenproblems with the basic block
tridiagonalization algorithm and the TBR algorithm, while Table 2 summarizes the
average time for block tridiagonalization. Tolerances τ are set to 10 and 10 . 6− 9−

 In Table 1, with the TBR algorithm, the average execution time for solving the
eigenproblem is less than the basic algorithm in most cases. With TBT, the improvement
in performance with TBR is more obvious than with TDT. Two cases of significant
degradation in performance are observed in individual iterations for C322H646 using a
combination of TBR and TDT for and (see Figs. 13(a) and 13(c)), and
we will discuss them in more detail later. Table 2 illustrates that the average time for
block tridiagonalization is less than 7% of the average time for the eigensolver.

610−=τ 910−=τ

Table 1.
Average Execution Time of BD&C (in seconds)

TDT TBT
Basic

algorithm
TBR

algorithm
Basic

algorithm
TBR

algorithm
C322H646

402.24 398.23 551.98 381.43

C162H326

61.99 68.69 56.75 47.54

C162H326
disordered

109.57 104.16 98.93 91.85

610−=τ

Random

558.99 503.97 580.63 493.48

C322H646

606.51 819.81 1272.08 609.54

C162H326

84.06 88.18 145.18 70.75

C162H326
disordered

198.85 191.19 189.16 175.77

910−=τ

Random

1826.98 1644.12 1809.05 1585.93

 21

Table 2.
Average Execution Time of Block Tridiagonalization (in seconds)

TDT TBT
Basic

algorithm
TBR

algorithm
Basic

algorithm
TBR

algorithm
C322H646

4.74 12.22 10.56 18.37

C162H326

1.26 2.09 1.89 3.13

C162H326
disordered

1.29 2.86 2.03 2.82

610−=τ

Random

9.09 14.39 8.78 13.95

C322H646

3.13 5.82 6.97 16.08

C162H326

 0.98 1.36 1.78 2.37

C162H326
disordered

1.12 2.15 1.92 2.96

910−=τ

Random

12.26 15.73 12.70 17.97

 To further compare individual iterations, the ratio of the execution time of the BD&C
eigensolver using the basic algorithm to the time using the TBR algorithm is plotted in
Figs. 13(a) – 13(d). From these figures we can see that performance is increased in most
cases, frequently by more than a factor of two.

 Fig. 13(a) Ratio of execution times with Fig. 13(b) Ratio of execution times with
 and TDT and TBT 610−=τ 610−=τ

 22

 Fig. 13(c) Ratio of execution times with Fig. 13(d) Ratio of execution times with
 and TDT and TBT 910−=τ 910−=τ

 There are two cases of significantly degraded performance. The first case is iteration 3
of C322H646 alkane with in Fig. 13(a). In this case, the performance of the TBR
algorithm is worse than that of the basic algorithm, although the rank of the off-diagonal
block for the final merging operation remains the same. This phenomenon can be
explained by the difference in deflation encountered by the algorithms.

610−=τ

 In the BD&C algorithm[6], a merging operation is equivalent to steps of
decomposition and accumulation of the rank-one modifications , where the y

ir
D y+ T

i iy i
are the vectors that determine the Y in Eqn. 6. Deflation happens when there is either a
zero (or small) component in y

i

i or two equal (or close) entries in D. When deflation
occurs, we know that the corresponding eigenvector is a unit vector, and therefore no
computation is required to compute and accumulate it. Deflation reduces the amount of
work in the matrix multiplications for accumulating eigenvectors in the last merging
operation.
 Without deflation, merging of the off-diagonal block with lower rank will always have
lower time complexity. However, with deflation, an off-diagonal block with higher rank
might require less work to accumulate eigenvectors than an off-diagonal block with
lower rank if the former has more deflation. In the case of iteration 3 of C322H646 in
discussion, with the basic algorithm, the amount of deflation is 63%, while with SBT,
it’s only 41%, although both off-diagonal blocks have the same rank.

 The second case is iteration 4 of C322H646 alkane with in Fig. 13(c). It turns
out that the TBR algorithm produces a block tridiagonal structure in which the first off-
diagonal block has the lowest rank, although neither of the corresponding diagonal
blocks is the smallest one. The smallest diagonal block is found at the opposite end of the
diagonal - the next to last block. Thus, the TBR algorithm, targeting the diagonal blocks
for reduction in priority order by size, was non-optimal for the BD&C algorithm.

910−=τ

 In addition and more importantly, the basic algorithm produces a block tridiagonal
structure with the off-diagonal block of minimum rank located near the center of the
matrix. Given a block tridiagonal structure, the BD&C algorithm always determines the
optimal merging order by selecting the off-diagonal block with minimum rank for the

 23

final merging operation. Thus, the final merging operation resulting from the TBR
algorithm is extremely unbalanced, whereas the final merging operation resulting from
the basic algorithm is nearly optimally balanced, which explains the longer runtime for
the structure resulting from the TBR algorithm.

 Since we cannot predict the amount of deflation and the ranks of off-diagonal blocks
beforehand, there is no effective method to correct those problems. Fortunately, such
cases do not happen frequently.

 4.2 Comparison of Thresholding Algorithms. For TDT and TBT described in
Section 3.2, numerical tests show that TDT produces a smaller bandwidth while TBT
generally yields quicker execution by the BD&C eigensolver as will be shown below.
 Figures 14(a) and (b) plot the ratio of the execution time of the BD&C eigensolver
using TBT to that using TDT. Here the TBR algorithm is used for block
tridiagonalization. In most cases, TBT outperforms TDT, although performances vary in
individual cases.

 Fig. 14(a) ratio of execution times using Fig. 14(b) ratio of execution times using
 TBR with TBR with 610−=τ 910−=τ

 In Table 3, we list the average memory requirements of iterations 2 – 6 for storing the
diagonal and sub-diagonal blocks generated by TDT and TBT. Recall in Section 3.2,
matrix produced by TBT tends to flare out toward both ends, that is, produce small
blocks in the middle and large blocks at the ends. Since storage requirements for a dense
matrix increase quadratically with its dimension, large matrices require proportionally
more storage space than small matrices. Consequently, TBT is expected to require more
space to store the blocks than TDT. Table 3 shows that the storage space needed on
average by the block tridiagonal matrix produced by TBT in our test cases is always
more than that needed by TDT. In the worst case, TBT requires almost twice as much
space as TDT.

A ′′′

 24

Table 3.
Average Storage Space Required to Store Diagonal and Off-diagonal Blocks (in MB)

 TDT TBT
C322H646

7.49 14.65

C162H326

2.25 3.42

610−=τ

C162H326
disordered

2.90 3.63

C322H646

8.37 13.73

C162H326

3.04 3.65

910−=τ

C162H326
disordered

3.42 4.01

 If storage space is not an issue, the TBT algorithm combined with the TBR algorithm
is generally more suitable for the BD&C eigensolver because of its better performance.
Otherwise, TDT is recommended because it typically produces a block tridiagonalization
with fewer variations in block sizes and smaller blocks and requires considerably less
memory.

 5. Conclusion. A heuristic block tridiagonalization method has been developed for
determining a symmetric block tridiagonal matrix that is closely related to a given
symmetric matrix in the sense that the eigenvalues of the block tridiagonal matrix differ
at most by a prescribed normalized accuracy tolerance Aτ from the eigenvalues of the
given matrix.
 Block tridiagonalization is an important preprocessing step for the block tridiagonal
divide-and-conquer eigensolver introduced in [5,6]. In this context, it is desirable to have
low rank off-diagonal blocks. In general, this may be hard or impossible to achieve
(given the accuracy tolerance). However, the block tridiagonalization method described
in this paper attempts to make at least one off-diagonal block for the last merging
operation as small as possible, assuming that a smaller block tends to have lower rank
than a larger block (although this is not always the case). Decreasing the size of a
diagonal block, thus hopefully the rank of the related off-diagonal block, has priority
over the location of the small block, based on the analysis of time complexity [6].
Numerical experiments show that:

(1) The overhead of block tridiagonalization is negligible compared to the time for
solving the eigenproblem.

(2) The non-unique block tridiagonal structure can have a significant influence upon
the run time of the BD&C algorithm.

(3) The algorithm with the BD&C algorithm combine to perform very well on
problems requiring low accuracy solutions, which appear in important
applications, for example, in quantum chemistry problems.

 25

References.

 [1] H. L. Crane Jr., N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer, Matrix
Bandwidth and Profile Reduction, ACM Trans. Math. Softw., 2 (1976), pp. 375-
377.

 [2] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal
eigenproblem, Numer. Math., 36 (1981), pp. 177-195.

 [3] J. W. Demmel, Applied Numerical Linear Algebra, SIAM Press, Philadelphia, PA,
1997.

 [4] W. N. Gansterer, D. F. Kvasnicka, and C. W. Ueberhuber, Multi-sweep algorithms
for the symmetric eigenproblem, in VECPAR’98 – Third International Conference
for Vector and Parallel Processing, J. M. L. M. Palma, J. J. Dongarra, and V.
Hernandez, eds., Lecture Notes in Computer Science, Vol 1573, Springer-Verlag,
New York, 1998, pp. 20-28.

 [5] W. N. Gansterer, R. C. Ward, and R. P. Muller, An Extension of the Divide-and-
Conquer Method for a Class of Symmetric Block-Tridiagonal Eigenproblems, ACM
Trans. Math. Softw. 28 (2002), pp. 45-58.

 [6] W. N. Gansterer, R. C. Ward, R. P. Muller, and W. A. Goddard, III, Computing
Approximate Eigenpairs of Symmetric Block Tridiagonal Matrices, SIAM J. Sci.
Comput., to appear.

 [7] A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite
System, Prentice-Hall, Inc., 1981.

 [8] N. E. Gibbs, A Hybrid Profile Reduction Algorithm, ACM Trans. Math. Softw., 2
(1986), pp. 378 – 387.

 [9] N. E. Gibbs, W. G. Poole Jr., and P. K. Stockmeyer, An Algorithm for Reducing the
Bandwidth and Profile of a Sparse Matrix, SIAM J. Numer. Anal, 13 (1976), pp.
236-250.

[10] M. Gu and S. C. Eisenstat, A Divide-and-Conquer Algorithm for the Symmetric
Tridiagonal Eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172-191.

[11] J. G. Lewis, The Gibbs-Poole-Stockmeyer and Gibbs-King Algorithms for
Reordering Sparse Matrices, ACM Trans. Math. Softw., 8 (1982), pp. 190-194.

[12] B. N. Parlett, The Symmetric Eigenvalue Problem, SIAM Press, Philadelphia, PA,
1998.

[13] J. A. Pople and D. L. Beveridge, Approximate Molecular Orbital Theory, 1st ed.,
McGraw-Hill, New York, 1970.

[14] J. A. Pople, D. L. Beveridge, and P. A. Dobosh, Approximate Self-consistent
Molecular Orbital Theory. V. Intermediate Neglect of Differential Overlap., J.
Chem. Physics, 47 (1967), p 2026.

[15] J. A. Pople, D. P. Santry, and G. A. Segal, Approximate Self-consistent Molecular
Orbital Theory. I. Invariant Procedures., J. Chem. Physics, 43 (1965), p. S129.

[16] J. A. Pople and G. A. Segal, Approximate Self-consistent Molecular Orbital Theory.
II. Calculations with Complete Neglect of Differential Overlap., J. Chem. Physics,
43 (1965), p. S136.

[17] J. A. Pople and G. A. Segal, Approximate Self-consistent Molecular Orbital Theory.
III. CNDO Results for AB2 and AB3 Systems., J. Chem. Physics, 44 (1966), p. 3829.

 26

 27

[18] S. W. Sloan, An Algorithm for Profile and Wavefront Reduction of Sparse Matrices,
International Journal for Numerical Methods in Engineering, 23 (1986), pp. 239-
251.

[19] S. W. Sloan, A FORTRAN Program for Profile and Wavefront Reduction,
International Journal for Numerical Methods in Engineering, 28 (1989), pp. 2651-
2679.

[20] A. Szabo and N. S. Ostlund, Modern Quantum Chemistry, Dover Publications,
Mineola, NY, 1996.

[21] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford University Press,
Oxford, 1965.

	Block Tridiagonalization of “Effectively” Sparse
	Step 2. Solve Subproblems
	Step 3. Synthesis

	Fig. 2 Eigenvector matrix accumulation for the last merging operation
	Fig. 4(a) First diagonal block B1 Fig. 4(b) Second diagonal block B2
	Fig. 4(c) Reduction of B2 Fig. 4(d) Expansion of B3
	
	
	Step 2. Reorder
	The GPS algorithm (see Section 3.1.4) is used to reorder � and reduce its bandwidth. Thus, the larger matrix elements of � are moved toward the diagonal. A resultant permutation matrix P is obtained and will be used in Step 3.

