
Replication, Sharing, Deletion, Lists, and Numerals:
Progress on Universally Programmable Intelligent Matter

UPIM Report 3

Technical Report UT-CS-02-493

Bruce J. MacLennan�
Department of Computer Science

University of Tennessee, Knoxville
www.cs.utk.edu/˜mclennan

November 22, 2002

Abstract

This report addresses and resolves several issues in the useof combinators for
molecular computation. The issues include assumptions about binding sites and link-
ing groups, “capping” of unused sites, replication and sharing of structures in a molec-
ular context, creation of cyclic structures, disassembly of unneeded structures, repre-
sentation of Boolean values and conditionals, representation of LISP-style lists, and
representation of numerals.

1 Introduction

This report is not intended to provide an introductory or systematic presentation of com-
binatory logic; necessary background information is in a previous report, the “Molecular
Combinator Reference Manual” [Mac02a], which (1) defines general terminology and no-
tation; (2) defines the combinators and states important properties of them; and (3) de-
fines related notations (mostly involving subscripts and superscripts) with their properties.
Sections and equations from that report will be cited, for example, “Sec. 2 [Mac02a]” or
“Eq. 50 [Mac02a].”�This research is supported by Nanoscale Exploratory Research grant CCR-0210094 from the National
Science Foundation. It has been facilitated by a grant from the University of Tennessee, Knoxville, Center
for Information Technology Research. This report may be used for any non-profit purpose provided that the
source is credited.

1

D

Q

A

X

Y
A

U

K

Figure 1: Diagram of reactants forK substitution. Arrows represent linking groups; small
rounded triangular shape isA (application) complex; circular shapes are primitive com-
binators; large triangular shapes (labeledU , X, andY) represent arbitrary combinator
networks.

2 Links

A molecular combinator network comprises variousnodes(primitive molecular complexes)
connected bylinks(linking groups). In order for computation to proceed correctly, the links
must bedirectedor oriented, and so we usually show them with arrowheads in diagrams
such as Fig. 1 (which shows the reactants for aK-substitution, see Sec. 9 [Mac02a]). In
accord with computer science convention, the arrow points from the parent node to its
offspring, that is, downward in trees. (As is common in expression trees, the dataflow is
upward, and therefore against the arrows.) In molecular terms, the link is a molecular group
with distinct binding sites at its ends, which we may call theheadandtail.

Nodes may be classified asleavesor interior nodes. Most leaves are molecular groups
with a single binding site, to which the head of a link can bind. In computational terms,
they deliver a result but have no inputs. The most common leaves are primitive combinators
such asS andK. A few leaf types (D, P), which will be discussed later, bind the tail of a
link.

So far, all interior nodes have three binding sites. The mostcommon is theapplication
or A primitive, which represents the application of a function to its parameter. Therefore,
anA node has two “inputs,” representing the function and its parameter, to which the tails
of links can bind, and it has one “output,” representing the result of applying the function
to its parameter, to which the head of a link can bind (see Fig.1 for examples). Some other
primitives (e.g.,R, V, discussed later) have one “input” and two “outputs.”

Because of their interpretation in expression trees, we define aresult site to be a site
to which a link head can bind, and anargumentsite to be one to which a link tail binds.
Therefore we can say:S andK each have one result site;D andP each have one argument

2

site;A has two argument sites and one result site;R andV have two result sites and one
argument.

3 Result and Argument Caps

In doing molecular combinatory programming, we deal with complexes only when they
are in well-defined, stable states; in particular, we deal with them only when all the binding
sites are filled, not during transient stages when binding sites may be unfilled or shared
between two groups. Therefore, when complexes have unused binding sites (e.g., when
they are available as reactants or generated as reaction waste products), they must be filled
by some place-holders. For this purpose we have postulated two otherwise inert groups,P andQ. The result capP can fill or “cap” a result site on any complex; likewise the
argument capQ can fill an argument site. When both are required as reactants, they may
come bound as a pairPQ (e.g., Figs. 6, 10–13, pp. 6–12).

As a consequence of the foregoing rules, molecular combinatory reactions permute the
sites to which the affected links are bound, but do not createor destroy any links or other
molecular groups.

4 Replication and Sharing

4.1 The Problem

Combinatory logic is aterm-rewriting system[HO82, Ros73] orabstract calculus[Mac90].
Therefore, a rule such asS-substitution,SXY Z =) XZ(Y Z);
can be thought of as an operation on parenthesized linear expressions,(((SX)Y)Z) =) ((XZ)(Y Z)); (1)

or as an operation on trees, as shown in Fig. 2. The latter interpretation is, of course,
what suggests combinatory logic as a basis for universal molecular computation. However,
as discussed in a previous report [Mac02b], there are differences between term-rewriting
systems and molecular processes. In the context of term-rewriting systems, the copying of
a term, such asZ in Fig. 2 or Eq. 1, is assumed to be an atomic (constant-time) operation.
This is certainly a poor assumption for molecular computation, in which the replication of
a large structure could take considerable time.

Constant-time copying is also a poor assumption in conventional computation, and
so implementations of term-rewriting systems typically share a single copy of a structure
rather than making multiple copies; this is shown in Fig. 3. This strategy works because
the term-rewriting systems of greatest interest (including combinatory logic) satisfy the

3

Z

AA

Z

U

A

Y

X

A

S

A

Z

U

A

X Y

Figure 2:S-substitution with copying.U , X, Y , andZ are any combinator trees. In this
implementation of theS operation, the treeZ is copied.

Z

A

U

A

Y

X

A

S

A

Z

U

A

A

X Y

Figure 3:S-substitution with sharing.U , X, Y , andZ are any combinator trees. In this
implementation of theS operation, an additional pointer is created to the treeZ.

4

R

Z

R

P

YX

A

A

U

S

Q

P

Z

A

S

A

P

Q

X

Y

A

U
P

A

Figure 4:S-substitution reaction with replication. The reaction introduces anR (replicator)
complex, which begins the replication ofZ, which can proceed in parallel with other sub-
stitutions. This diagram shows both the reactants needed for the substitution as well as the
reaction products. Notice that the twoA complexes on the right-hand side are oriented in
opposite directions.

Church-Rosser Property [CR36, Ros73], which implies that such sharing will not affect
the results of computation (interpreted as linear parenthesized expressions; it may produce
different graph structures). Unfortunately, this does notseem to be a good approach for
molecular computation, since it may result in an unlimited number of pointers to a struc-
ture. In molecular terms, this would correspond to an unlimited number of links to a binding
site, which is impossible.

Various ways around this problem, such as having binary “fan-in” nodes to the shared
structure, do not seem feasible, since these intermediate nodes would block the application
of the computational reactions. Therefore we have opted fora different solution, described
in the following section.

4.2 Replication

Our approach is something of a hybrid between the copying andsharing implementations;
it might be called “lazy replication.” The two uses begin by linking to a single copy of a
tree, which is gradually split into two replicates (see Fig.4). Thanks to the Church-Rosser
Property, as soon as the roots of the replicates are separated, they can begin to be used
separately, although some processes might have to wait until the replication has sufficiently
progressed.

The most important reaction is illustrated in Fig. 5: when replication encounters anA
5

Q

A

P

Q

Q

P P

Q

YX

R

A

Q

P
A

R

VU

R

A

YX

R

VU
P

Q

P

Figure 5: Replication of an application (A primitive), which triggers replication of its two
daughter nodes, which can proceed in parallel. Notice that the twoA primitives on the
right-hand side are oriented in opposite directions.

PP

Q

R

pcpc

VUVU

R

pc

P

Q

P

pc

Figure 6: Replication of a primitive combinator complexp (such asS, K, or �Y).

(application) primitive linked to subtreesX andY , a newA is allocated and the twoAs are
linked to corresponding replicates ofX andY , thus triggering recursive replication of the
subtrees. The molecular reaction is described:UV RAXY + PAQ2 + P2RQ �! UV A2R2XY + 3PQ:
The reactants include “capped”A andR groups; the reaction releases threePQ pairs as
waste.

Eventually replication will reach a leaf of the tree, that is, a primitive combinator (e.g.,S, K, or �Y); replication terminates with the allocation of a new instance of the primitive
(Fig. 6). The reaction is simply:UV Rp+ Pp + PQ �! Up + V p+ P2RQ;
wherep is any primitive combinator. TheR complex, appropriately “capped,” is released
as a reaction waste product.

Complete reaction specifications for replication can be found in Sec. 13 [Mac02a].
Replication also interacts with deletion, which will be discussed in Sec. 6 of this report.

6

Z

YX

V

Figure 7: TheV primitive allows sharing of a network. NetworksX andY both connect to
networkZ viaV (sharing) primitive.

5 Sharing

5.1 The V Primitive

As remarked, the copying and sharing implementations (Figs. 2 and 3) are equivalent for
term-rewriting systems satisfying the Church-Rosser Property, such as combinatory logic,
but they result in different network structures. Since one goal of universally programmable
intelligent matter is the assembly of specific nanostructures, we must be able to control the
networks that are constructed. Therefore, although lazy replication is a good solution for
implementing combinatory reductions, there will be circumstances in which we will want
to create specific shared structures; one obvious example isthe creation of cyclic structures
(Sec. 5.3).

To accomplish sharing we postulate asharing primitive, denotedV (to suggest its
shape), which allows two links to point at one binding site; thereforeV has two result
sites and one argument site (Fig. 7). Situations in which more than two links are intended
to point to the same destination are accomplished by using multiple V groups. Thus, aV
primitive occurs in the same configuration as aR primitive, but it does not trigger replica-
tion. Conceptually, and perhaps physically, it acts like aninert replication operator.

Notice that theV primitive introduces an extra level of indirection betweenthe shared
structure and the references to it (Fig. 7). This is a fundamental difference betweensym-
bolic linking, such as we have on conventional computers, in which any number of cells
may hold the address of the shared structure, andphysical linking, such as we have in
molecular computation. As a consequence, shared structures cannot be used computation-
ally with full generality, since theV groups will often disrupt the patterns that trigger the
computational reactions. There are various ways of workingaround these limitations, but
they seem unduly complicated. For now it seems better to restrict the use ofV to the
construction of noncomputational nanostructures.

7

V

Z

S
V

V

S

V

A

P
U

A

Y

X

Q

P

A

A

Z

P

Q

U

A

A

X Y

P

Figure 8: �S-substitution, which introduces aV (sharing) primitive. TheV complex will
block most other substitutions; therefore its primary purpose is the creation of static shared
structures. Notice that the twoA complexes on the right-hand side are oriented in opposite
directions.

5.2 The �S Combinator

It is not enough to have a sharing primitive; we must also havesome general means of
introducing it into molecular structures. The simplest approach is suggested by the parallel
between replication and sharing: modify aR-producing operator to produce aV instead.
Two of the simplest combinators that replicate their arguments areS andW:SXY Z =) XZ(Y Z); (2)WXY =) XY Y: (3)

A sharing version ofS, which we denote�S, is shown in Fig. 8; its reaction is:UA3�SXY Z + P2VQ �! UA3XY VZ + P�S + PQ: (4)

To notate the fact that a structure is shared, we often use parenthesized superscripts, and so
we may write: �SXY Z =) XZ(1)(Y Z(0)); (5)

or, less precisely, we use primes,�SXY Z =) XZ 0(Y Z). (See also Sec. 17 [Mac02a] on
the notation for sharing.)

SinceW is simpler thanS, a corresponding sharing operation�W might seem a better
choice. It would be defined �WXY =) XY (1)Y (0); (6)

8

with a corresponding reaction:UA2 �WXY + P2VQ �! UA2XVY + P �W + PQ: (7)

Nevertheless, we have decided tentatively to take�S as the primitive. There are several
reasons:

1. The reaction for�S (Fig. 8) is very similar to that forS (Fig. 4); the former hasV
where the latter hasR. Therefore one reaction might be modified to yield the other.

2. �S can be defined in terms of�W and vice versa. However, the definition of�W in terms
of �S (Eq. 45 [Mac02a]),�W = C�SI, is much simpler than that of�S in terms of �W
(Eq. 34 [Mac02a]),�S = B(B(B �W)C)(BB).

Nevertheless we will often find that�W is more convenient in programming; in particular
we can exponentiate it (Sec. 28 [Mac02a]) to createsharing chains,�WnXY =) XY (n)Y (n�1) � � �Y (1)Y (0); (8)

which can be used to link together large structures.

5.3 The �Y Combinator

The so-calledparadoxicalor fixed-pointcombinatorY is defined so thatYF =) F (YF): (9)

It’s easy to see that this leads to a nonterminating process:YF =) F (YF) =) F (F (YF)) =) F (F (F (YF))) =) � � � (10)

Nevertheless this operation is useful in conventional functional programming for defining
recursive functions [Bur75, Mac90]. Whether it will be similarly useful in molecular com-
binatory programming is less obvious, but if it is needed, itcan be defined in terms ofS
andK (Sec. 21 [Mac02a]), so it does not need to be supported by a primitive reaction.

However, as we have seen (Sec. 4.1), sharing and copying are closely related, and cyclic
structures are abstractly equivalent to infinite structures. Similarly, the infinite expansion ofYF can be interpreted as a cyclic structure,YF =) y, wherey = Fy. This suggests that
an appropriate (sharing) version ofY might be used to construct cyclic structures. (Indeed,
in many functional programming language implementations on conventional computers,Y
creates a self-referential structure; hence its use to implement recursion.)

Figure 9 shows a reaction implementing�Y, a sharing version of the fixed-point combi-
nator. The reaction is described:UA�YF + P2VQ �! UVAF + P�Y + PQ: (11)

9

(0)y

y (1)

V

U

F

Y
V

P

Q

P

F

V

Y

A

U

Q

PP

V

A

y

Figure 9:�Y-substitution, which introduces a cycle by means of aV (sharing) primitive. The
indicated sharing structure may be described�YF =) y(1) wherey � Fy(0). NormallyF is
a combinatory program complex, which will lead to further substitutions that will expand
the cycle into a more useful structure.

Using our convention (Sec. 5.2) for notating sharing, the creation of the cyclic structure can
be written as a substitution rule:�YF =) y(1) wherey � Fy(0): (12)

Herey is defined as a name for the result of theA node in Fig. 9, andy(1) andy(0) are the
two links to theV primitive.

The creation of the very tight cycle between theA andV nodes, shown in Fig. 9, might
not seem very useful, but it is, as can be seen when we realize thatF can be any combina-
tory complex, and thereforeFy(0) can result in very complex computations involving the
link y(0). Examples will be presented in later reports.

6 Deletion

Combinator computation proceeds by permuting, replicating, and deleting network struc-
tures [CFC58, Sec. 5H]. In a molecular context, this means that the computational process
will generate many waste structures. These could, of course, be abandoned, but it seems
better to arrange for their disassembly, so that their component groups can be recycled as re-
action resources. Indeed, without such recycling the reaction space could become cluttered
with waste products, and residual but useless computation in discarded complexes could
consume valuable reaction resources. Therefore, at this time at least, it appear preferable
to arrange for the disassembly and recycling of deleted structures. To accomplish this, we
postulate a primitiveD (deletion) operator, which may be linked to a network to disassem-
ble it recursively.

10

D D

Q

P P

Qpcpc

Figure 10: Deletion of a primitive combinator complexp (such asS, K, or �Y).

A

YX

D DD

Q

P

Q

Q

D

A
X Y

P

Q

Figure 11: Deletion of an application (A) primitive. This triggers deletion of its two daugh-
ters, which may proceed in parallel.

Figure 10 shows the base of the recursive process; deletion of a primitive combinator
causes it to be “capped” and released for reuse. The reactionis:Dp+ PQ �! Pp+ DQ; (13)

wherep represents any primitive combinator (e.g.,S or K). Deletion of an application (A)
primitive triggers the deletion of its daughters (Fig. 11);the reaction is:DAXY + DQ + PQ �! DX + DY + PAQ2: (14)

Q

P

Q

Q

P

Q

DU

X

P

P

X

D U

RR

Figure 12: Deletion of a replication in progress. If a deletion catches up with a replication
(R primitive), then both the deletion and replication are terminated.

11

VV

UD

X

P

P

Q

X

U

Q

D

Figure 13: Deletion of one path to a sharing node (V primitive). The deleted path is
“capped” with aP primitive (result cap), but the other path is left intact.

The foregoing reactions are sufficient, but there are advantages to considering the in-
teraction of deletion withR andV primitives. If a deletion catches up with a replication in
progress, then it should surely cancel the replication (Fig. 12):DURX + 2PQ �! UX + P2RQ+ DQ: (15)

It would surely be wasteful to wait for the duplication to complete, and then have to begin
the process of disassembling the new copy! Another argumentin favor of this reaction
comes from observations of functional programs translatedinto SK combinator trees. The
standard translation algorithms generate many instances of the I combinator, which is de-
fined I = SKK. This means that an identity operation is implemented by replicating and
then deleting a copy of the argument:IX =) SKKX =) KX(KX) =) X:
Although some of these pointless replications can be avoided by cleverer translation algo-
rithms, a certain amount of it is an avoidable characteristic of combinatory computation.
Therefore we will be better off if these useless replications are terminated before they com-
plete.

Finally, we must consider the effect of deleting a link to a sharing (V) primitive. We
could leave it unspecified, in which case it would be reasonable to suppose that the deletion
stops when it reaches theV primitive. Alternately, and more neatly, we could specify theD
results in the deleted path being “capped” (Fig. 13):DUVX + PQ �! PUVX + DQ: (16)

(Indeed, the two approaches may not be so different, forD might be usable in place of the
result capP.) On the other hand, when both links to aV complex have been destroyed, it
seems reasonable to trigger the deletion of the (previously) shared structure:DPVX + PQ �! DX + P2VQ: (17)

(This reaction is not included in the specification of deletion in Sec. 6 [Mac02a].)

12

X

D

P

Q

P

Q

P

P

X

D

V V

Figure 14: Deletion of only remaining path to a sharing node (V primitive). The shared
complex is recursively deleted, and the “capped”V primitive is released as a waste product.

7 Boolean Values, Conditionals, etc.

The fundamental meaning oftrue andfalse is the ability to select between two alternatives.
Since in combinatory logic, we take data to be (potentially active) functions, we can definetrue to select the first of two alternatives, andfalse to select the second:trueXY =) X; (18)falseXY =) Y: (19)

These are the usual definitions in the lambda calculus and combinatory logic [Bar84, Bur75,
Mac84, Mac90, e.g.] They are defined in combinatory logic as follows:true = K; (20)false = SK: (21)

The logical operations are easy to define. SincenotX = X false true, we can definenot = C[2℄I false true (see Secs. 4, 30 [Mac02a]). Thus we have (see also Sec. 31 [Mac02a]):not = C[2℄I false true; (22)and = C[2℄I false; (23)or = CI true: (24)

If C is a Boolean-valued expression (one reducing totrue or false), then the conditional
“if C thenX elseY ” can be represented by the expressionCXY . For greater clarity, we
can write it using ALGOL68 notation,(C ! X j Y).(C ! X j Y) =) CXY: (25)

This is not quite the same as a conditional in a programming language, since reduction
could proceed inX andY in parallel, even though one of them will be discarded. This
could be a problem if one of the computations in nonterminating, since that computation

13

could consume all the reaction resources, even though it won’t be selected. This is es-
pecially a problem with recursive function definitions, since typically one branch of the
conditional will lead to recursive expansion of the function.

One common method of avoiding this problem is to “delay” execution of the arms
of the conditional until one of them is chosen, at which pointits execution is “released”
[Bur75, Mac90]. Execution of an expression is delayed by “abstracting” [Abd76, CFC58]
a dummy formal parameter from it. Then it cannot be reduced until a corresponding dummy
actual is provided. These operations are defined:hhEii =) �x(E); (26)foreF =) FA; (27)if C then X else Y =) fore(C ! hhXii j hhY ii): (28)hhEii means�x(E), wherex is any variable that does not occur inE; this delays execution
of E by converting it to a single-parameter function. Executionis allowed by providing an
actual parameterA, which represents any combinator (the inertN would be a good choice).
Thus,forehhEii =) E. The ‘if then else ’ is then defined to delay execution of its arms
until one of them is chosen.

8 L ISP-style Lists

8.1 Representation Based on Triples

There are a number of ways to define LISP-style lists in combinatory logic. One way
[Mac84] is to define a “cell” with three fields,ellNFR. If N is true, thenF andR are the
“first” (car, head) and “rest” (cdr, tail) of the list. IfN is false, thenellNFR represents a
null list, and the valuesF andR are irrelevant. This can be accomplished by definingell
so thatellNFR returns a function that, when applied to a “selector”s, returns the selected
component of the cell. Therefore, to begin we define three selectors with the properties:1of3xyz =) x; (29)2of3xyz =) y; (30)3of3xyz =) z: (31)

These are easily defined in combinatory logic (see Secs. 24, 30 [Mac02a]):1of3 = C[0℄K2 = K2; (32)2of3 = C[1℄K2 = CK2; (33)3of3 = C[2℄K2: (34)ellNFR then is defined to be a function that applies a provided selector s toNFR:ellNFR =) (�s:sNFR): (35)

14

Thus, ell should satisfyellNFRS =) SNFR, and a suitable definition is (Sec. 30
[Mac02a]): ell = C[3℄I: (36)

A definition of list-processing operations is then straight-forward:nilM = ell false??; (37)onsM = ell true; (38)nonnullM = �x:(x1of3) = CI 1of3; (39)�rstM = �x:(x2of3) = CI 2of3; (40)restM = �x:(x3of3) = CI 3of3; (41)nullM = not Æ nonnullM: (42)

(The subscripts are to distinguish these definitions from the alternatives considered in
Sec. 8.2.? is any combinator;N would be a good choice.)

Let’s explore the actual combinatory representation of such a list. The “cons cell”
resulting fromonsMFR looks like this:onsMFR =) ell trueFR =) ell KFR =) C[3℄IKFR: (43)

Therefore, let LM = C[3℄IK: (44)

The representation of ann-element list is:hX1; X2; : : : ; Xni =) onsMX1(onsMX2(� � � (onsMXnnilM) � � �)); (45)=) LMX1(LMX2(� � � (LMXnnilM) � � �)); (46)

wherenilM = C[3℄I(SK)NN. Thus, a list structure is a network as in Fig. 15. We can see
that each list element requires twoA nodes and an instance ofLM, which has size:jLMj = 24S+ 23K+ 46A = 93 total primitives: (47)

(On the measurement of network sizes, seeIntroduction in [Mac02a].) In addition, the list
is terminated by a representation ofnil, but we can use any complex such thatnonnull nil =) nil 1of3 =) false =) SK:
Thus we can use nil = K(SK); (48)jnilj = 1S+ 2K+ 2A = 5 total: (49)

Hence the size of this list representation isjhX1; : : : ; Xnij = (24n+ 1)S+ (23n+ 2)K+ (48n+ 2)A = 95n+ 5 total; (50)

exclusive of the sizes of theXk.
15

X3 XnX 1
XXX

LL LLLL

−1−22 n n

nil

Figure 15: LISP-style list as a combinator complex. The diagram shows the molecular
representation of the listhX1; : : : ; Xni. Interior nodes are application (A) primitives.

8.2 Representations Based on Pairs

A second approach defines a “cons cell” as an ordered pair [Bar84, LV97]. Here are typical
definitions: onsT = �xys:sxy = C[2℄I; (51)nilT = K true; (52)? = K(K false); (53)nullT =) CI?; (54)�rstT =) CI true; (55)restT =) CI false: (56)

The latter two definitions usetrue andfalse to select the components of a pair. It’s easy to
show that �rstT(onsTXY) =) X;nullT(onsTXY) =) (onsTXY)? =) false;nullTnil =) true;
etc. The representation of a list looks the same as in Fig. 15,except thatLT = C[2℄I; (57)jLTj = 15S+ 14K+ 28A = 57 total; (58)nilT = K true = KK; (59)jnilTj = 0S+ 2K + 1A = 3 total: (60)

16

Hence, jhX1; : : : ; Xnij = 15nS+ (14n+ 2)K+ (30n+ 1)A = 59n+ 3 total (61)

(exclusive of thejXkj), which is smaller than the representation in triples. However, it is
difficult to say whether it matters in molecular terms.

Curry and Feys [CFC58] used a variant of this approach to define pairs:onsC = �xys:[s(Ky)x℄ = C(B(C[2℄I)K); (62)nilC = K true = KK; (63)�rstC = CIZ0; (64)restC = CIZn+1; for anyn � 0: (65)

(See Sec. 9.3 below on the “Church numerals”Zk.) With this representation it is easy to
show that a list has sizejhX1; : : : ; Xnij = (15n+ 1)S+ (15n+ 2)K+ (31n+ 1)A = 61n+ 3 total; (66)

exclusive of thejXkj.
8.3 Sequences (n-tuples)

Rather than building up lists by pairs, it is possible to represent them directly; that is,
instead of using triples or couples, we usen-tuples [Bar84, p. 134]. Define ann-tuple to be
a function that takes a selector and returns the selected element:hX1; : : : ; Xni = �s(sX1 � � �Xn): (67)

This is satisfied by the following combinatorial expression:hX1; : : : ; Xni =) C[n℄IX1 � � �Xn: (68)

Theith element of a list is selected by applying it to a selector functionselni , which selects
thei element of ann-element sequence. By Eq. 26 [Mac02a],Ki�1FX1 � � �Xi�1 =) F: (69)

Also, by Eq. 26 [Mac02a], Kn�iXi � � �Xn =) Xi: (70)

Therefore, substitutingKn�i for F in Eq. 69, we haveKi�1Kn�iX1 � � �Xi�1Xi � � �Xn =) Kn�iXi � � �Xn =) Xi:
Therefore, selni = Ki�1Kn�i: (71)

17

 n[]C I

XXX XX Xn−1−2321 n n

Figure 16: SequencehX1; : : : ; Xni represented as combinator structure. Interior nodes
represent application (A) primitives.

In contrast to the preceding definitions, the overhead of sequences is very small (Fig. 16):jhX1; : : : ; Xnij = jC[n℄Ij+ nA; (72)

exclusive of thejXkj. However,jC[n℄j 2 O(n), since from Sec. 30 [Mac02a] we can
calculate jC[n℄j = (9n� 4)S+ (8n� 4)K + (17n� 9)A = 34n� 17 total:
Hence,jhX1; : : : ; Xnij = (9n� 3)S+ (8n� 2)K+ (18n� 6)A = 35n� 11 total; (73)

exclusive of thejXkj.
8.4 Comparison

The most efficient representation in terms of space is the sequence (n-tuple) representa-
tion, but it has the disadvantage that one must know the length n of the sequence. This
precludes LISP-style list processing (that is, having a function recur until the end of the
list is reached). Also, the elements are indexed with the selector functionsselni , although
it would be possible to define them as functions ofi, thus allowing computation of sub-
scripts. Therefore, although sequences may be useful for particular purposes, it seems that
the common list representation should be based on pairs (cons cells).

9 Numerals

9.1 Unary Numeral System

As in ordinary computation, in programmable intelligent matter we often want to represent
nonnegative integers. For example, we might define a complexG such thatGMN pro-
duces anM � N grid, given suitable representations of the integersM , N . In electronic

18

computers, integers are represented in binary notation, and of course it is possible to define
combinatory programs that use binary numerals, but this does not seem to be the best ap-
proach. Rather, the simplest approach is to represent numbers asunary numerals; that is,
the numberN is represented by some structure (e.g., a chain) of sizeN . The savings in
size by using binary numerals (sizedlog2Ne) instead of unary numerals is not so great, in
molecular terms, and the decoding complexity is significantly greater.

9.2 List Representation

The simplest unary representation ofn is as a list of lengthn; this is in effect what Peano
used in his axiomatization of natural numbers. With such a representation it is simple to
compute the successor of a number (ons a new element onto it), compute its predecessor
(take therest of the list), or ask if it’s 0 (test if it’snull). One problem with this approach is
its relative inefficiency. Based on our preceding analysis of list representations, the numbern will require a network of at least59n+ 3 primitives.

9.3 Church Numerals

Of course,n may be represented by any structure of sizen, and so it may be better to pick
a structure that does something useful. This fits better withthe blurring of the distinction
between program and data in combinatory logic, in which datais often active.

To move toward a more function-oriented view, start by thinking of the numbern as a
list of lengthn, hX1; X2; : : : ; Xni. From this, we are led to consider an argument list of
lengthn, such as(FX1X2 � � �Xn). This is turn suggests ann-fold functional composition
as a representation ofn, such asF1(F2(� � � (FnX) � � �)), or, more simply,F nX (see Sec. 28
[Mac02a] for this notation). This immediate leads us to theiteratorsor Church numeralsZn (Sec. 23 [Mac02a]), which are defined so thatZnF =) F n:
According to Sec. 23 [Mac02a],Zn is 10n + 7 in size, which is considerably better than

the list representation (see also Fig. 17); more importantly, the Church numerals are im-
mediately useful, without the need of a program to interpretthem. Sec. 23 [Mac02a] also
shows that it is possible to add, multiply, and exponentiateChurch numerals. Predecessor,
subtraction, and zero test are not needed often, but when they are, they can be accomplished
by converting to the list representation, doing the operation, and converting back to Church
numerals, as shown by Barendregt [Bar84, pp. 140–1].

9.4 Representation of Large Numbers

The reader may be worried about the use of unary numerals in the cases where we need
to represent large numbers, sincejZnj 2 O(n). In these cases we can simple compute
the numbers we need by exponentiation. By Eq. 67 [Mac02a],Znm = ZmZn, so we can
representnm by ZmZn, which has sizeO(m+ n), specifically10(m+ n) + 15.

19

S BBSS BBSS B

K

I

Figure 17: Iterator or Church Numeral represented as combinator structure. The iteratorZn is represented by a chain ofn SB complexes with a terminalKI complex. Interior nodes
represent application (A) primitives.

References

[Abd76] S. K. Abdali. An abstraction algorithm for combinatory logic. Journal of Sym-
bolic Logic, 41(1):222–224, March 1976.

[Bar84] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantics. North-
Holland, Amsterdam, revised edition, 1984.

[Bur75] William H. Burge.Recursive Programming Techniques. Addison-Wesley, Read-
ing, 1975.

[CFC58] H. B. Curry, R. Feys, and W. Craig.Combinatory Logic, Volume I. North-
Holland, Amsterdam, 1958.

[CR36] A. Church and J. Barkley Rosser. Some properties of conversion.Trans. Amer-
ican Math. Soc., 39:472–482, 1936.

[HO82] C. Hoffman and M. J. O’Donnell. Pattern matching in trees. Journal of the
ACM, 29(1):68–95, January 1982.

[LV97] M. Li and P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, New York, second edition, 1997.

[Mac84] Bruce J. MacLennan. Computable real analysis. Technical Report NPS52-84-
024, Dept. of Computer Science, Naval Postgraduate School,1984.

20

[Mac90] Bruce J. MacLennan.Functional Programming: Practice and Theory. Addison-
Wesley, Reading, 1990.

[Mac02a] Bruce J. MacLennan. Molecular combinator reference manual — UPIM
report 2. Technical Report CS-02-489, Dept. of Computer Science, Uni-
versity of Tennessee, Knoxville, 2002. Available at http://www.cs.utk.edu/
˜ library/TechReports/ 2002/ut-cs-02-489.ps.

[Mac02b] Bruce J. MacLennan. Universally programmable intelligent matter (exploratory
research proposal) — UPIM report 1. Technical Report CS-02-486, Dept. of
Computer Science, University of Tennessee, Knoxville, 2002. Available at
http://www.cs.utk.edu/̃ library/TechReports/ 2002/ut-cs-02-486.ps.

[Ros73] Barry K. Rosen. Tree manipulation systems and Church-Rosser theorems.Jour-
nal of the ACM, 20(1):160–187, January 1973.

21

