Replication, Sharing, Deletion, Lists, and Numerals:
Progress on Universally Programmable Intelligent Matter

UPIM Report 3
Technical Report UT-CS-02-493

Bruce J. MacLenndan

Department of Computer Science
University of Tennessee, Knoxville
www.cs.utk.edu/"mclennan

November 22, 2002

Abstract

This report addresses and resolves several issues in thef gsenbinators for
molecular computation. The issues include assumptionstdiioding sites and link-
ing groups, “capping” of unused sites, replication andisiganf structures in a molec-
ular context, creation of cyclic structures, disassemiblyrmeeded structures, repre-
sentation of Boolean values and conditionals, repregentaf Lisp-style lists, and
representation of numerals.

1 Introduction

This report is not intended to provide an introductory orteysatic presentation of com-
binatory logic; necessary background information is in @/us report, the “Molecular
Combinator Reference Manual’ [Mac02a], which (1) definesegal terminology and no-
tation; (2) defines the combinators and states importargepties of them; and (3) de-
fines related notations (mostly involving subscripts angkesscripts) with their properties.
Sections and equations from that report will be cited, faregle, “Sec. 2 [Mac02a]” or
“Eq. 50 [Mac02a].”

*This research is supported by Nanoscale Exploratory Relsegant CCR-0210094 from the National
Science Foundation. It has been facilitated by a grant fiwanniversity of Tennessee, Knoxuville, Center
for Information Technology Research. This report may bealdseany non-profit purpose provided that the
source is credited.

/o

M e
S
Figure 1: Diagram of reactants fé&r substitution. Arrows represent linking groups; small
rounded triangular shape s (application) complex; circular shapes are primitive com-

binators; large triangular shapes (labeléd X, andY’) represent arbitrary combinator
networks.

2 Links

A molecular combinator network comprises variowsiegprimitive molecular complexes)
connected byinks (linking groups). In order for computation to proceed cotie the links
must bedirectedor oriented and so we usually show them with arrowheads in diagrams
such as Fig. 1 (which shows the reactants fét-substitution, see Sec. 9 [Mac02a]). In
accord with computer science convention, the arrow poirds)fthe parent node to its
offspring, that is, downward in trees. (As is common in esgien trees, the dataflow is
upward, and therefore against the arrows.) In moleculargethe link is a molecular group
with distinct binding sites at its ends, which we may call tlieadandtail.

Nodes may be classified Bsavesor interior nodes Most leaves are molecular groups
with a single binding site, to which the head of a link can biha computational terms,
they deliver a result but have no inputs. The most commorekeake primitive combinators
such ass andK. A few leaf types D, P), which will be discussed later, bind the tail of a
link.

So far, all interior nodes have three binding sites. The roostmon is thepplication
or A primitive, which represents the application of a functionts parameter. Therefore,
anA node has two “inputs,” representing the function and itepeater, to which the tails
of links can bind, and it has one “output,” representing gmuft of applying the function
to its parameter, to which the head of a link can bind (seelFigr examples). Some other
primitives (e.g.R, V, discussed later) have one “input” and two “outputs.”

Because of their interpretation in expression trees, waneefresult site to be a site
to which a link head can bind, and angumentsite to be one to which a link tail binds.
Therefore we can say andK each have one result site;andP each have one argument

site; A has two argument sites and one result Ske&ndV have two result sites and one
argument.

3 Result and Argument Caps

In doing molecular combinatory programming, we deal witimptexes only when they
are in well-defined, stable states; in particular, we de#l thiem only when all the binding
sites are filled, not during transient stages when binditessnay be unfilled or shared
between two groups. Therefore, when complexes have unusdohd sites (e.g., when
they are available as reactants or generated as reactioe praglucts), they must be filled
by some place-holders. For this purpose we have postulatedtherwise inert groups,
P andQ. Theresult capP can fill or “cap” a result site on any complex; likewise the
argument caf can fill an argument site. When both are required as reactiels may
come bound as a patQ (e.g., Figs. 6, 10-13, pp. 6-12).

As a consequence of the foregoing rules, molecular condmypatactions permute the
sites to which the affected links are bound, but do not creatéestroy any links or other
molecular groups.

4 Replication and Sharing

4.1 TheProblem

Combinatory logic is &erm-rewriting systerfHO82, Ros73] oabstract calculugMac90].
Therefore, a rule such &ssubstitution,

SXYZ = XZ(YZ),
can be thought of as an operation on parenthesized lineegssipns,
(SX)Y)Z) = (X2)(Y Z)), 1)

or as an operation on trees, as shown in Fig. 2. The latterpieiation is, of course,
what suggests combinatory logic as a basis for universatcatdr computation. However,
as discussed in a previous report [Mac02b], there are diffas between term-rewriting
systems and molecular processes. In the context of termtireywsystems, the copying of
aterm, such ag in Fig. 2 or EqQ. 1, is assumed to be an atomic (constant-tirpejation.
This is certainly a poor assumption for molecular compatatin which the replication of
a large structure could take considerable time.

Constant-time copying is also a poor assumption in congeaticomputation, and
so implementations of term-rewriting systems typicallprgha single copy of a structure
rather than making multiple copies; this is shown in Fig. BisTstrategy works because
the term-rewriting systems of greatest interest (inclgdiombinatory logic) satisfy the

/o /o

o o

oaa
B0
R

Figure 2:S-substitution with copyinglU, X, Y, andZ are any combinator trees. In this
implementation of th& operation, the tre¢ is copied.

/o fo

o o

Q- A
N AN
RO

Figure 3:S-substitution with sharingU, X, Y, andZ are any combinator trees. In this
implementation of th& operation, an additional pointer is created to the #ee

ONO. A A ® @
BN T @

AL AN AN
@ A

Figure 4:S-substitution reaction with replication. The reactiomraatuces arR (replicator)
complex, which begins the replication 8f which can proceed in parallel with other sub-
stitutions. This diagram shows both the reactants needdtddesubstitution as well as the
reaction products. Notice that the twdocomplexes on the right-hand side are oriented in
opposite directions.

Church-Rosser Property [CR36, Ros73], which implies tlihssharing will not affect
the results of computation (interpreted as linear paresiebd expressions; it may produce
different graph structures). Unfortunately, this does sed#m to be a good approach for
molecular computation, since it may result in an unlimitedber of pointers to a struc-
ture. In molecular terms, this would correspond to an urtéchhnumber of links to a binding
site, which is impossible.

Various ways around this problem, such as having binary-ifidmodes to the shared
structure, do not seem feasible, since these intermediatesrwould block the application
of the computational reactions. Therefore we have opted thiferent solution, described
in the following section.

4.2 Replication

Our approach is something of a hybrid between the copyingshadng implementations;
it might be called “lazy replication.” The two uses begin Inking to a single copy of a
tree, which is gradually split into two replicates (see Hig.Thanks to the Church-Rosser
Property, as soon as the roots of the replicates are sepathey can begin to be used
separately, although some processes might have to wdithunteplication has sufficiently
progressed.

The most important reaction is illustrated in Fig. 5: whepliegation encounters aA

Eﬁ%{@ém

Figure 5: Replication of an applicatioA primitive), which triggers replication of its two
daughter nodes, which can proceed in parallel. Notice thatwo A primitives on the
right-hand side are oriented in opposite directions.

NEIREL D

Figure 6: Replication of a primitive combinator complex(such ass, K, orY).

(application) primitive linked to subtrees andY’, a newA is allocated and the twAs are
linked to corresponding replicates &f andY’, thus triggering recursive replication of the
subtrees. The molecular reaction is described:

UVRAXY + PAQ; + P;RQ — UV A,R, XY + 3PQ.

The reactants include “capped’andR groups; the reaction releases thig@ pairs as
waste.

Eventually replication will reach a leaf of the tree, thatagrimitive combinator (e.qg.,
S, K, orY); replication terminates with the allocation of a new ims@ of the primitive
(Fig. 6). The reaction is simply:

UVRp+Pp+PQ — Up+ Vp+ P3RQ,

wherep is any primitive combinator. Th& complex, appropriately “capped,” is released
as a reaction waste product.

Complete reaction specifications for replication can benébin Sec. 13 [Mac02a].
Replication also interacts with deletion, which will bedissed in Sec. 6 of this report.

AN

N

/\

Figure 7: TheV primitive allows sharing of a network. Network§ andY” both connect to
networkZ viaV (sharing) primitive.

5 Sharing

51 TheV Primitive

As remarked, the copying and sharing implementations (R2gsd 3) are equivalent for
term-rewriting systems satisfying the Church-Rosser éntgpsuch as combinatory logic,
but they result in different network structures. Since ooal @f universally programmable
intelligent matter is the assembly of specific nanostr@stinwe must be able to control the
networks that are constructed. Therefore, although lagljcagion is a good solution for
implementing combinatory reductions, there will be ciratamces in which we will want
to create specific shared structures; one obvious examghle geation of cyclic structures
(Sec. 5.3).

To accomplish sharing we postulatesharing primitive denotedV (to suggest its
shape), which allows two links to point at one binding siteereforeV has two result
sites and one argument site (Fig. 7). Situations in whichentioan two links are intended
to point to the same destination are accomplished by usifdgpieuV groups. Thus, &
primitive occurs in the same configuration aR grimitive, but it does not trigger replica-
tion. Conceptually, and perhaps physically, it acts likergmt replication operator.

Notice that thev primitive introduces an extra level of indirection betweba shared
structure and the references to it (Fig. 7). This is a funddaaialifference betweesym-
bolic linking, such as we have on conventional computers, in which any auwoftcells
may hold the address of the shared structure, @mngical linking such as we have in
molecular computation. As a consequence, shared strgatarsot be used computation-
ally with full generality, since th& groups will often disrupt the patterns that trigger the
computational reactions. There are various ways of workirogind these limitations, but
they seem unduly complicated. For now it seems better toiceste use ofV to the
construction of noncomputational nanostructures.

& A A &
NP S
NN N

§ A

Figure 8: S-substitution, which introduces \& (sharing) primitive. TheV complex will
block most other substitutions; therefore its primary j@sepis the creation of static shared
structures. Notice that the twbcomplexes on the right-hand side are oriented in opposite
directions.

5.2 TheS Combinator

It is not enough to have a sharing primitive; we must also tsoae general means of
introducing it into molecular structures. The simplestragh is suggested by the parallel
between replication and sharing: modifyRgoroducing operator to produce\ainstead.
Two of the simplest combinators that replicate their argotmiareS andW:

SXYZ = XZ(YZ),)
WXY = XYY. 3)

A sharing version 0§, which we denot&, is shown in Fig. 8; its reaction is:
UAsSXY Z 4+ P,VQ — UA;XYVZ +PS + PQ. (4)

To notate the fact that a structure is shared, we often usattesized superscripts, and so
we may write:
SXYZ = XzW(yzO), (5)

or, less precisely, we use primésYY Z — X Z'(Y Z). (See also Sec. 17 [Mac02a] on
the notation for sharing.)
SinceW is simpler tharf, a corresponding sharing operatidhmight seem a better
choice. It would be defined
WXY = XYWy, (6)

with a corresponding reaction:
UAWXY + P,VQ — UA,XVY + PW + PQ. (7)

Nevertheless, we have decided tentatively to takas the primitive. There are several
reasons:

1. The reaction fos (Fig. 8) is very similar to that fo6 (Fig. 4); the former ha¥
where the latter haR. Therefore one reaction might be modified to yield the other.

2.§ can be defined in termg 01 anq vice versa. However, the defiqition\ﬁﬁin terrsz
of S (Eq. 45 [Mac02a])W = CSI, is much simpler than that & in terms of W
(Eq. 34 [Mac02a])s = B(B(BW)C)(BB).

Nevertheless we will often find tha¥ is more convenient in programming; in particular
we can exponentiate it (Sec. 28 [Mac02a]) to cresdu@ring chains

WrXY — XYy ®y®-1 .. yOy©O) (8)

which can be used to link together large structures.

5.3 TheY Combinator

The so-callegaradoxicalor fixed-pointcombinatorY is defined so that
YF = F(YF). (9)
It's easy to see that this leads to a nonterminating process:
YF = F(YF)= F(F(YF))= F(F(F(YF))) = --- (10)

Nevertheless this operation is useful in conventional fienal programming for defining
recursive functions [Bur75, Mac90]. Whether it will be slarly useful in molecular com-
binatory programming is less obvious, but if it is neededan be defined in terms &f
andK (Sec. 21 [Mac02a]), so it does not need to be supported byvatjme reaction.

However, as we have seen (Sec. 4.1), sharing and copyintpasdycrelated, and cyclic
structures are abstractly equivalent to infinite strucu&milarly, the infinite expansion of
Y F' can be interpreted as a cyclic structurd;, —> y, wherey = F'y. This suggests that
an appropriate (sharing) versionimight be used to construct cyclic structures. (Indeed,
in many functional programming language implementatiansanventional computer¥,
creates a self-referential structure; hence its use toameht recursion.)

Figure 9 shows a reaction implementi¥iga sharing version of the fixed-point combi-
nator. The reaction is described:

UAYF + P,VQ — UVAF + PY + PQ. (11)

Moo e
® ¢
° v i y y(©
& » © @
AN
Figure 9:Y-substitution, which introduces a cycle by means ¥f(gharing) primitive. The
indicated sharing structure may be descrivdgd—> y(!) wherey = Fy®. Normally F is

a combinatory program complex, which will lead to furthebstitutions that will expand
the cycle into a more useful structure.

Using our convention (Sec. 5.2) for notating sharing, tleaton of the cyclic structure can
be written as a substitution rule:

YF = yV wherey = Fy©. (12)

Herey is defined as a name for the result of th@ode in Fig. 9, and® andy(® are the
two links to theV primitive.

The creation of the very tight cycle between thandV nodes, shown in Fig. 9, might
not seem very useful, but it is, as can be seen when we rebazé&’tcan be any combina-
tory complex, and thereforg'y(®) can result in very complex computations involving the
link ». Examples will be presented in later reports.

6 Dedetion

Combinator computation proceeds by permuting, repligatamd deleting network struc-
tures [CFC58, Sec. 5H]. In a molecular context, this meaatthie computational process
will generate many waste structures. These could, of cobes@abandoned, but it seems
better to arrange for their disassembly, so that their caraptgroups can be recycled as re-
action resources. Indeed, without such recycling the i@aspace could become cluttered
with waste products, and residual but useless computatiaiiscarded complexes could
consume valuable reaction resources. Therefore, at thesdi least, it appear preferable
to arrange for the disassembly and recycling of deletedires. To accomplish this, we
postulate a primitiv® (deletion) operator, which may be linked to a network to sksm-
ble it recursively.

10

Segy

Figure 10: Deletion of a primitive combinator complex(such asS, K, orY).

Fn-11]

Figure 11: Deletion of an applicatioA) primitive. This triggers deletion of its two daugh-
ters, which may proceed in parallel.

Figure 10 shows the base of the recursive process; deletiapomitive combinator
causes it to be “capped” and released for reuse. The reastion

Dp + PQ — Pp+DQ, (13)

wherep represents any primitive combinator (e §or K). Deletion of an applicationX)
primitive triggers the deletion of its daughters (Fig. lthg reaction is:

DAXY +DQ +PQ — DX + DY + PAQ.. (14)

Y11~

Figure 12: Deletion of a replication in progress. If a deletcatches up with a replication
(R primitive), then both the deletion and replication are tieated.

11

Figure 13: Deletion of one path to a sharing noifepfimitive). The deleted path is
“capped” with aP primitive (result cap), but the other path is left intact.

The foregoing reactions are sufficient, but there are adggstto considering the in-
teraction of deletion witlR andV primitives. If a deletion catches up with a replication in
progress, then it should surely cancel the replication. (E2):

DURX + 2PQ —» UX + P,RQ + DQ. (15)

It would surely be wasteful to wait for the duplication to colete, and then have to begin
the process of disassembling the new copy! Another arguimefat/or of this reaction
comes from observations of functional programs translatedSK combinator trees. The
standard translation algorithms generate many instarfdée dcombinator, which is de-
finedl = SKK. This means that an identity operation is implemented bliaaging and
then deleting a copy of the argument:

X = SKKX — KX (KX) = X.

Although some of these pointless replications can be addigecleverer translation algo-
rithms, a certain amount of it is an avoidable characteristicombinatory computation.
Therefore we will be better off if these useless replicatiare terminated before they com-
plete.

Finally, we must consider the effect of deleting a link to arétg (/) primitive. We
could leave it unspecified, in which case it would be reaslen@xsuppose that the deletion
stops when it reaches theprimitive. Alternately, and more neatly, we could spectig D
results in the deleted path being “capped” (Fig. 13):

DUVX + PQ —s PUVX + DQ. (16)

(Indeed, the two approaches may not be so differentDforight be usable in place of the
result capP.) On the other hand, when both links t&/acomplex have been destroyed, it
seems reasonable to trigger the deletion of the (previpsbired structure:

DPVX + PQ — DX + P,VQ. (17)

(This reaction is not included in the specification of deletin Sec. 6 [Mac02a].)

12

© @ ® @
(®
()
v/ — v/
© /i
I ©
Figure 14: Deletion of only remaining path to a sharing node(imitive). The shared
complex is recursively deleted, and the “capp€drimitive is released as a waste product.

7 Boolean Values, Conditionals, etc.

The fundamental meaning ofue andfalse is the ability to select between two alternatives.
Since in combinatory logic, we take data to be (potentiativa) functions, we can define
true to select the first of two alternatives, afatke to select the second:

true XY — X, (18)
falseXY — Y. (29

These are the usual definitions in the lambda calculus andicatory logic [Bar84, Bur75,
Mac84, Mac90, e.g.] They are defined in combinatory logicodews:

true = K, (20)
false = SK. (21)

The logical operations are easy to define. SineeX = X false true, we can define
not = Cpyl false true (see Secs. 4, 30 [Mac02a]). Thus we have (see also Sec. 30Pslc

not = Cpylfalse true, (22)
and = CPfalse, (23)
or = Cltrue. (24)

If C'is a Boolean-valued expression (one reducingde or false), then the conditional
“if C thenX elseY” can be represented by the expressioN Y. For greater clarity, we
can write it using AGOL68 notation(C — X | Y).

(C = X |Y) = CXY. (25)

This is not quite the same as a conditional in a programminguage, since reduction
could proceed inX andY in parallel, even though one of them will be discarded. This
could be a problem if one of the computations in nontermingatsince that computation

13

could consume all the reaction resources, even though ittwenselected. This is es-
pecially a problem with recursive function definitions, ntypically one branch of the
conditional will lead to recursive expansion of the funatio

One common method of avoiding this problem is to “delay” ex&m of the arms
of the conditional until one of them is chosen, at which pdisitexecution is “released”
[Bur75, Mac90]. Execution of an expression is delayed bystedzting” [Abd76, CFC58]
a dummy formal parameter from it. Then it cannot be reducédiaicorresponding dummy
actual is provided. These operations are defined:

(E) = Xa(E), (26)
forceF' — FA, 27)
if C'then X else Y = force(C' — (X)) | {(Y)). (28)

(£) means\z(FE), wherex is any variable that does not occurin this delays execution
of E by converting it to a single-parameter function. Executgallowed by providing an
actual parameted, which represents any combinator (the inésould be a good choice).
Thus,force((E)) = E. The if then else’ is then defined to delay execution of its arms
until one of them is chosen.

8 Lisp-styleLists

8.1 Representation Based on Triples

There are a number of ways to definesk-style lists in combinatory logic. One way
[Mac84] is to define a “cell” with three fieldsell N FR. If N istrue, thenF andR are the
“first” (car, head) and “rest” (cdr, tail) of the list. WV is false, thencell N F' R represents a
null list, and the value$” and R are irrelevant. This can be accomplished by defiriit
so thatcell N F'R returns a function that, when applied to a “selectgreturns the selected
component of the cell. Therefore, to begin we define threscsais with the properties:

lof3zyz — «x, (29)
20f3zyz = v, (30)
3of3zyz — =z. (32)

These are easily defined in combinatory logic (see Secs. (M &c02al):

lof3 = CpK*=K? (32)
20f3 = C[H K2 = CKZ, (33)
30f3 = C[2} K2 . (34)

cell N F'R then is defined to be a function that applies a provided s#ledb N F'R:
cell NFR = (\s.sNFR). (35)

14

Thus, cell should satisfycell VFFRS —> SNFR, and a suitable definition is (Sec. 30
[Mac02a)):

cell = Cpyl. (36)
A definition of list-processing operations is then straifgrtvard:
nilyy = cellfalsel |, (37)
consyy = celltrue, (38)
nonnully, = Az.(zlof3) = Cl 1of3, (39)
firstyy = Az.(220f3) = Cl 20f3, (40)
resty = Ax.(x30f3) = Cl 30f3, (41)
nullyy = not o nonnully;. (42

(The subscripts are to distinguish these definitions from dhliernatives considered in
Sec. 8.2.1 is any combinator would be a good choice.)

Let’s explore the actual combinatory representation ohsadist. The “cons cell”
resulting fromcons,; F'R looks like this:

consy(F'R = celltrue 'R = cel| KFR = Cp3IKF R. 43)

Therefore, let
Ly = CglK. (44)

The representation of anrelement list is:

(X1, Xo,...,Xy,) = consy X (consyXo(-- - (consy Xp,nily) - -+)), (45)
= Ly X1(LyuXo(- - - (LuXgnily) - -)), (46)

wherenily; = Cr31l(SK)NN. Thus, a list structure is a network as in Fig. 15. We can see
that each list element requires tkanodes and an instance bf;, which has size:

|Lyi| = 24S + 23K + 46A = 93 total primitives 47

(On the measurement of network sizes, lsgeoduction in [Mac02a].) In addition, the list
is terminated by a representationnif but we can use any complex such that

nonnull nil = nil 1of3 = false = SK.
Thus we can use

nil = K(SK), (48)
Inil] = 1S+ 2K + 2A = 5 total (49)

Hence the size of this list representation is
(X1, ., Xo)| = (24n +1)S + (23n + 2)K + (48n + 2)A = 95n + 5 total, (50)

exclusive of the sizes of th&,.

15

: @é@/l : @@@@

Figure 15: Lsp-style list as a combinator complex. The diagram shows thiecotar
representation of the ligtX;, ..., X,,). Interior nodes are applicatioA) primitives.

8.2 Representations Based on Pairs

A second approach defines a “cons cell” as an ordered pai8fBa¥v97]. Here are typical
definitions:

const = Azys.sxy = Cpyl, (51)
nilp = Ktrue, (52)

7 = K(Kfalse), (53)
nullpy = CI?, (54)
firsty = Cl true, (55)
resty = Cl false. (56)

The latter two definitions useue andfalse to select the components of a pair. It's easy to
show that

firstp(consp XY) = X,
nullp(consy XY) = (consp XY)? = false,

nullpnil = true,

etc. The representation of a list looks the same as in Figexidept that

Ly = Cpyl, (57)
ILy| = 155+ 14K + 28A = 57 total (58)
nilp = Ktrue = KK, (59)

Inily| = 0S4+ 2K+ 1A = 3 total (60)

16

Hence,
(X1,..., Xp)| = 15nS + (14n + 2)K + (30n + 1)A = 59n + 3 total (61)

(exclusive of the Xy |), which is smaller than the representation in triples. Heveit is
difficult to say whether it matters in molecular terms.
Curry and Feys [CFC58] used a variant of this approach to e @iirs:

consc = Azys.[s(Ky)z] = C(B(Cpyl)K), (62)

nile = Ktrue = KK, (63)
firstc = ClZy, (64)
restc = ClZ,.q, foranyn > 0. (65)

(See Sec. 9.3 below on the “Church numeralg) With this representation it is easy to
show that a list has size

(X1, ..., X)) = (1504 1)S + (15n + 2)K + (31n + 1)A = 61n + 3total, (66)

exclusive of thg Xy|.

8.3 Sequences (n-tuples)

Rather than building up lists by pairs, it is possible to esgnt them directly; that is,
instead of using triples or couples, we ustuples [Bar84, p. 134]. Define antuple to be
a function that takes a selector and returns the selectatkate

(X1, .0, Xp) = As(s Xy - Xp). (67)
This is satisfied by the following combinatorial expression

The:th element of a list is selected by applying it to a selectacfionsel?, which selects
the: element of am-element sequence. By Eg. 26 [Mac02a],

KT'FX, - X,_, = F. (69)

Also, by Eq. 26 [Mac02a], .

Therefore, substituting™~* for £ in Eq. 69, we have
KK X X X Xy = KX X, = X

Therefore, . .
sel? = K" 1K™, (71)

17

Figure 16: SequencéXy,..., X,,) represented as combinator structure. Interior nodes
represent applicatiom\] prlmltlves

In contrast to the preceding definitions, the overhead aiaeces is very small (Fig. 16):
(X, ..., Xo)| = |Cpyl] + 1A, (72)

exclusive of the|X,|. However,|C")| € O(n), since from Sec. 30 [Mac02a] we can
calculate

Ci| = (9 — 4)S + (8n — 4)K + (17n — 9)A = 34n — 17 total
Hence,
(X1, ..., X)) = (9n — 3)S + (8n — 2)K + (18n — 6)A = 35n — 11 total, (73)

exclusive of thg.X,|.

8.4 Comparison

The most efficient representation in terms of space is theeseg {-tuple) representa-
tion, but it has the disadvantage that one must know the hemgtf the sequence. This
precludes Lsp-style list processing (that is, having a function recuriluhe end of the
list is reached). Also, the elements are indexed with thecsat functionsel;’, although

it would be possible to define them as functions ,ofthus allowing computation of sub-
scripts. Therefore, although sequences may be useful focplar purposes, it seems that
the common list representation should be based on pairs (zils).

9 Numerals

9.1 Unary Numeral System

As in ordinary computation, in programmable intelligenttteawe often want to represent
nonnegative integers. For example, we might define a com@lexch thatG M N pro-
duces anM/ x N grid, given suitable representations of the integdrs/N. In electronic

18

computers, integers are represented in binary notati@hobeourse it is possible to define
combinatory programs that use binary numerals, but this doé seem to be the best ap-
proach. Rather, the simplest approach is to represent nsrabenary numeralsthat is,
the numberV is represented by some structure (e.g., a chain) of Siz& he savings in
size by using binary numerals (sizlg, V) instead of unary numerals is not so great, in
molecular terms, and the decoding complexity is signifigagreater.

9.2 List Representation

The simplest unary representationofs as a list of length; this is in effect what Peano
used in his axiomatization of natural numbers. With suchpaesentation it is simple to
compute the successor of a numhemé a new element onto it), compute its predecessor
(take therest of the list), or ask if it's O (test if it'shull). One problem with this approach is
its relative inefficiency. Based on our preceding analyblsbrepresentations, the number
n will require a network of at least9n + 3 primitives.

9.3 Church Numerals

Of coursen may be represented by any structure of sizand so it may be better to pick
a structure that does something useful. This fits better thighblurring of the distinction
between program and data in combinatory logic, in which tatdten active.

To move toward a more function-oriented view, start by timgkof the number. as a
list of lengthn, (X, Xs,..., X,,). From this, we are led to consider an argument list of
lengthn, such agF X, X, --- X,,). This s turn suggests anfold functional composition
as a representation of such ag", (Fy(-- - (F,,X) - - -)), or, more simply/" X (see Sec. 28
[Mac02a] for this notation). This immediate leads us toiteeators or Church numerals
Z, (Sec. 23 [Mac02a]), which are defined so that

Z,F — F".

According to Sec. 23 [Mac02aZ,, is 10n + 7 in size, which is considerably better than
the list representation (see also Fig. 17); more imporgatite Church numerals are im-

mediately useful, without the need of a program to intergivet. Sec. 23 [Mac02a] also

shows that it is possible to add, multiply, and exponentitarch numerals. Predecessor,
subtraction, and zero test are not needed often, but whgmatbethey can be accomplished
by converting to the list representation, doing the operatand converting back to Church

numerals, as shown by Barendregt [Bar84, pp. 140-1].

9.4 Representation of Large Numbers

The reader may be worried about the use of unary numeralsinabes where we need
to represent large numbers, sin@g| € O(n). In these cases we can simple compute
the numbers we need by exponentiation. By Eq. 67 [MacQ2a],= Z,,Z,,, SO we can
represent™ by Z,,,Z,,, which has sizeo(m + n), specificallyl0(m + n) + 15.

19

0

\ .
R

A

Figure 17: Iterator or Church Numeral represented as coamdmirstructure. The iterator
Z, is represented by a chain @SB complexes with a terminddl complex. Interior nodes
represent applicatior\j primitives.

References

[Abd76] S. K. Abdali. An abstraction algorithm for combioay logic. Journal of Sym-
bolic Logig 41(1):222—224, March 1976.

[Bar84] H. P. Barendregt.The Lambda Calculus: Its Syntax and Semantibkorth-
Holland, Amsterdam, revised edition, 1984.

[Bur75] William H. Burge.Recursive Programming Techniquésldison-Wesley, Read-
ing, 1975.

[CFC58] H. B. Curry, R. Feys, and W. CraigCombinatory Logic, Volume | North-
Holland, Amsterdam, 1958.

[CR36] A. Church and J. Barkley Rosser. Some properties mi@sion.Trans. Amer-
ican Math. S0¢.39:472—-482, 1936.

[HO82] C. Hoffman and M. J. O’Donnell. Pattern matching ieds. Journal of the
ACM, 29(1):68-95, January 1982.

[LV97] M. Liand P. M. B. Vitanyi. An Introduction to Kolmogorov Complexity and its
Applications Springer-Verlag, New York, second edition, 1997.

[Mac84] Bruce J. MacLennan. Computable real analysis. fieahReport NPS52-84-
024, Dept. of Computer Science, Naval Postgraduate Scheé4l.

20

[Mac90] Bruce J. MacLennaffrunctional Programming: Practice and Theo#ddison-
Wesley, Reading, 1990.

[Mac02a] Bruce J. MacLennan. Molecular combinator refeeemanual — UPIM
report 2. Technical Report CS-02-489, Dept. of Computeer8m, Uni-
versity of Tennessee, Knoxville, 2002. Available at httpww.cs.utk.edu/
" library/TechReports/ 2002/ut-cs-02-489.ps.

[Mac02b] Bruce J. MacLennan. Universally programmablelligent matter (exploratory
research proposal) — UPIM report 1. Technical Report C3H@- Dept. of
Computer Science, University of Tennessee, Knoxville,220®vailable at
http://www.cs.utk.edu library/TechReports/ 2002/ut-cs-02-486.ps.

[Ros73] Barry K. Rosen. Tree manipulation systems and GhRasser theoremgour-
nal of the ACM 20(1):160-187, January 1973.

21

