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Abstract. The relationship between graph coloring and the immersion

order is considered. Vertex connectivity, edge connectivity and related is-

sues are explored. These lead to the conjecture that, if G requires at least

t colors, then G must have immersed within it Kt, the complete graph

on t vertices. Evidence in support of such a proposition is presented. For

each fixed value of t, there can be only a finite number of minimal coun-

terexamples. These counterexamples are characterized based on Kempe

chains, connectivity, cutsets and degree bounds. It is proved that mini-

mal counterexamples must, if any exist, be both 4-vertex-connected and

t-edge-connected.

1 Introduction

The applications of graph coloring are legion. The usual goal, and the one we
consider here, is to assign colors to vertices so that no two adjacent vertices are
given the same color. Graph coloring has a long and storied history. The study of
four-coloring planar graphs alone has generated interest for over 150 years [21].
Despite all this effort, graph coloring in general remains a notoriously difficult
combinatorial problem.

The chromatic number of G, denoted by χ(G), is the minimum number of
colors required by G in any proper coloring of its vertices. Of course it is well
known that determining χ(G) is NP-hard. It is tempting to try to associate
χ(G) with some sort of clique contained within G. After all, if G contains Kt as
a subgraph, then it is easy to show that G can be colored with no fewer than t
colors. To see that the presence of a Kt subgraph is not necessary, however, one
needs only to observe that C5, the cycle of order five, requires three colors yet
does not contain K3 as a subgraph.

Nevertheless, perhaps some weaker form of Kt is present. One possibility is
topological containment, in which taking subgraphs is augmented with removing
subdivisions. An edge is subdivided when it is replaced by a path formed from
two edges and an internal vertex of degree two; subdivision removal reverses this
operation. For example, C5 contains K3 topologically. Sometime in the 1940s
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Hajós conjectured that if χ(G) ≥ t, then G must contain a topological Kt [11].
The conjecture is trivially true for t ≤ 3. In 1952 Dirac proved it true for t = 4
[4]. It was not until Catlin’s work in 1979 that Hajós’ conjecture was finally
settled, and negatively, with a family of counterexamples for t ≥ 7 [3]. Ironically,
one such counterexample is the 15-vertex graph defined by the crossproduct of
C5 and K3. It requires eight colors but contains no topological K8. Subsequently,
Erdős and Fajtlowicz were able to prove the rather surprising result that almost
all graphs are counterexamples [6]. Thus Hajós’ conjecture remains open only
for t ∈ {5, 6}.

Another possibility is the minor order, for which the allowable operations are
taking subgraphs and contracting edges. The minor order is a generalization of
the topological order, because subdivision removal is just a special case of edge
contraction. Hadwiger conjectured in 1943 that, if χ(G) ≥ t, then G must contain
a Kt minor [10]. This conjecture equates to Hajós’ conjecture for t ≤ 4. Wagner
proved in 1964 that, for t = 5, it is equivalent to the four color theorem [26]. In
1993 Robertson, Seymour and Thomas proved it true for t = 6 [20]. Whether
Hadwiger’s conjecture holds true in general, however, has thus far not been
decided. This is in spite of decades of research, hordes of supporting evidence
and a multitude of results on many of its variants and restrictions [1, 5, 14, 23, 25,
27]. Even the celebrated Graph Minor Theorem [19] appears to shed no particular
light on this question. As of this writing, a resolution of Hadwiger’s conjecture
seems distant.

In this paper we focus instead on the immersion order. A pair of adjacent
edges uv and vw, with u 6= v 6= w, is lifted by deleting the edges uv and vw,
and adding the edge uw. A graph H is said to be immersed in a graph G if and
only if a graph isomorphic to H can be obtained from G by lifting pairs of edges
and taking a subgraph. Previous investigations into the immersion order have
generally been conducted from a purely algorithmic standpoint. We refer the
reader to [2, 7–9, 17] for examples and applications. In contrast, here we mainly
consider structural issues. We establish compelling connections between graph
coloring and the immersion order, and conjecture that Kt is immersed in any
graph requiring t or more colors.

2 Preliminaries

We restrict our attention to finite, simple undirected graphs (multiple edges
and loops that may arise from lifting are irrelevant to coloring). G is said to
be t-vertex-connected if at least t vertex-disjoint paths connect every pair of its
vertices. A vertex cutset is a set of vertices whose removal breaks G into two
or more nonempty connected components. The cardinality of a smallest vertex
cutset in G is equal to the largest t for which G is t-vertex-connected (unless G
is a complete graph, which can have no vertex cutset). G is said to be t-edge-
connected if at least t edge-disjoint paths connect every pair of its vertices. An
edge cutset is a set of edges whose removal breaks G into two or more nonempty



connected components. The cardinality of a smallest edge cutset in G is equal
to the largest t for which G is t-edge-connected.

If χ(G) ≤ t, then G is said to be t-colorable. If χ(G) = t, then G is said to
be t-chromatic. If χ(G) = t and χ(H) < t for every proper subgraph H of G,
then G is said to be t-color-critical . A t-coloring of G is realized by a map c
from the vertices of G to the set {1, 2, .., t} so that, if G contains the edge uv,
then c(u) 6= c(v). Given such a map, cij is used to denote the subgraph induced
by the vertex set {u : c(u) ∈ {i, j}}. A path contained within cij is termed a
Kempe chain [28], so-named in honor of the foundational work done on them by
Kempe in [15]. (Ironically, the main result in [15] was a purported proof of the
Four Color Theorem that, like so many others, turned out to be fatally flawed.)
Of course cij need not be connected, and so for any u ∈ cij we employ cij(u) to
denote the set {v : v resides in the same connected component of cij as does u}.
Such sets have useful properties.

Observation 1. If {i, j} 6= {k, l}, then cij and ckl are edge disjoint.

Although the immersion order is traditionally defined in terms of taking
subgraphs and lifting pairs of edges, Kempe chains and Observation 1 make it
helpful for us to utilize as well the following alternate characterization: H is
immersed in G if and only if there exists an injection from the vertices of H to
the vertices of G for which the images of adjacent elements of H are connected
in G by edge-disjoint paths. Under such an injection, an image vertex is called a
corner of H in G; all image vertices and their associated paths are collectively
called a model of H in G.

We use δ(G) to denote the smallest degree found among the vertices of G.
We use N(u) to denote the neighborhood of u. Suppose u has degree t − 2 or
less in a t-chromatic graph G. Then G− u must also be t-chromatic. Otherwise
G− u could be colored with t− 1 colors, and u assigned one of the t− 1 colors
unused within N(u).

Observation 2. If G is t-color-critical, then δ(G) ≥ t− 1.

It is sometimes advantageous to select, restrict or manipulate colorings. For
example, if G is t-chromatic but G−u is only (t−1)-chromatic, then it is possible
to consider only colorings in which u is assigned a unique color.

Observation 3. If G is t-color-critical, then for any vertex u there exists a

coloring c in which c(u) = 1 and c(v) 6= 1 for every vertex v ∈ G− u.

Given the various connections between graph coloring, degrees and connectiv-
ity, and in turn the connections between connectivity and the immersion order,
we seek to determine just how χ(G) is related to immersion containment. Our ef-
forts to date prompt us to set the stage for this with the following conjecture. (A
superficially similar conjecture has been made by Lescure and Meyniel [22]. Al-
though sometimes called “the immersion conjecture,” the notion of containment
used there is not the immersion order.)



Conjecture If χ(G) ≥ t, then Kt is immersed in G.

This speculation motivates our work in the sequel. There we shall present
what we believe is compelling preliminary evidence in its support. Our conjec-
ture, like Hadwiger’s, is trivially true for t ≤ 4. This is because the immersion
order generalizes the topological order, for which Hajós’ conjecture is long known
to hold when t ≤ 4.

Before proceeding, we introduce a notion of immersion-criticality and show
how it relates to the possible existence of counterexamples.

Definition G is t-immersion-critical if χ(G) = t and χ(H) < t whenever H is

properly immersed in G.

Because χ(Kt) = t, any counterexample must either be t-immersion-critical
or have properly immersed within it another t-immersion-critical counterexam-
ple. Similarly, any t-immersion-critical graph distinct from Kt must be a coun-
terexample. Thus our conjecture is equivalent to the statement that Kt is the
only t-immersion-critical graph for every t. Although we have thus far fallen short
of establishing this one way or the other, we can show that there are at most
a finite number of them. To do this, we rely on properties of well-quasi-orders
and immersion order obstruction sets. We refer the reader unfamiliar with these
concepts to [7, 8, 16].

Theorem 1. For each t, there are finitely many t-immersion-critical graphs.

Proof. Consider the family of graphs F = {G : χ(G) < t and χ(H) < t
for every H ≤i G}. Then, by definition, F is closed in the immersion order.
Because graphs are well-quasi-ordered by the immersion relation, it follows that
F ’s obstruction set is finite. This set contains precisely the t-immersion-critical
graphs. 2

3 Main Results

Graph connectivity has long been a central feature of attempts to settle Had-
wiger’s conjecture. G is said to be t-minor-critical if χ(G) = t and χ(H) < t
whenever H is a proper minor of G. Kt is of course both (t−1)-vertex-connected
and (t−1)-edge-connected. Thus, if any t-minor-critical graph is not as strongly
connected, then Hadwiger’s conjecture is false for all t′ ≥ t. So suppose G de-
notes a t-minor-critical graph other than Kt (in which case the conjecture fails).
Some 35 years ago [18], Mader showed that G must be at least 7-vertex-connected
whenever t ≥ 7. This provides evidence in support of the conjecture for t ∈ {7, 8}.
A few years later [23], Toft proved that G must also be t-edge-connected. This
provides additional supporting evidence for all t. Very recently, Kawarabayashi
has shown that G must be at least d t

3
e-vertex-connected as well [13]. Following

this approach, we study both the vertex and edge connectivity of t-immersion-
critical graphs. We assume t ≥ 5 unless stated otherwise. Kempe chains play a
pivotal role in our investigation.



3.1 Vertex Connectivity

Because they are t-color-critical, it is easy to see that t-immersion-critical graphs
are 2-vertex-connected [1]. We now establish that they must in fact be at least
4-vertex-connected. Our work linking coloring to the immersion order begins in
earnest with Lemma 4. First, however, we present something of an introduction
with three easy but useful lemmas about cutsets, paths and coloring. Lemmas 1
and 2 are probably well known, although they may not be formulated anywhere
else in precisely the same way we state them in this treatment. Lemma 2, which
we dub The Patching Lemma, is especially helpful. Lemma 3 is certainly well
known, and mentioned in a variety of sources (see, for example, [12, 25, 27]).

Lemma 1. Let S denote a minimum-cardinality vertex cutset in a 2-vertex-

connected graph G, and let C denote a connected component of G\S. Then any

two elements of S must be connected by a path whose interior vertices lie com-

pletely within C.

Two colorings are said to be equivalent if the partitions induced by their
respective color classes are identical.

Lemma 2. (The Patching Lemma) Let S denote a vertex cutset of G, and let G1

and G2 denote a pair of induced subgraphs for which G1∪G2 = G and G1∩G2 =
S. If G1 and G2 admit t-colorings whose restrictions to S are equivalent, then

G is t-colorable.

The Patching Lemma can be used to establish the following well-known fact.

Lemma 3. No vertex cutset of a t-color-critical graph can be a clique.

The preceding lemmas tell us a good deal about the make-up of vertex cut-
sets, and how they relate to coloring. Armed with this information, we are now
able to argue more directly about vertex connectivity and the immersion order.
To simplify matters, we shall adopt the following conventions for the remainder
of this subsection:

- t is at least five,

- G denotes a t-immersion-critical graph,

- S denotes a minimum-cardinality vertex cutset in G,

- C denotes a connected component of G\S,

- G1 denotes the subgraph induced by C ∪ S, and

- G2 denotes G\C.

Lemma 4. Every t-immersion-critical graph is 3-vertex-connected.

Proof. Suppose otherwise, as witnessed by some G with S = {a, b}. We know
from Lemma 3 that the edge ab is not present in G. Let i ∈ {1, 2}. By Lemma 1,
there must be a path, Pi, with endpoints a and b, whose vertices lie completely
within Gi. Lifting the edges of P3−i to form the single edge ab, and then taking



the subgraph induced by the vertices of Gi, produces a graph Hi properly im-
mersed in G. It follows that Hi is (t− 1)-colorable. Because ab is present in Hi,
any such coloring of Hi assigns different colors to a and b. But Gi is a subgraph
of Hi. Thus, there are (t− 1)-colorings of G1 and G2 that each assign different
colors to a and b. By the Patching Lemma, this ensures a (t− 1)-coloring of G,
a contradiction. 2

Lemma 4 applies to t-topological-critical graphs as well. To see this, note
that the two paths defined in the proof are vertex-disjoint. An analog of Lemma
4 does not hold, however, if the graph is only known to be t-color-critical. Such
graphs are guaranteed only to be 2-vertex-connected. A t-color-critical graph
that is not 3-vertex-connected can be constructed as follows. Begin with a pair
of non-adjacent vertices, u and v, a copy of Kt−1 and a copy of Kt−2. Connect u
to every vertex but one in the copy of Kt−1. Connect v to the remaining vertex
in the copy of Kt−1. Now connect both u and v to every vertex in the copy of
Kt−2. Note that these graphs are not t-immersion-critical.

Lemma 5. If |S| = 3, then G1 and G2 admit (t− 1)-colorings that assign more

than one color to the elements of S.

Proof. Let S = {u, v, w}, and consider the case for G1. By Lemma 1, there is a
path between u and v in G2. Lifting this path and taking the subgraph induced
by the vertices of G1 produces a graph H properly immersed in G. Because G
is t-immersion-critical, and because H contains the edge uv, H must admit a
(t− 1)-coloring that assigns different colors to u and v. As a subgraph of H , G1

can likewise be colored. A symmetrical argument handles the case for G2. 2

What we have really just shown is that if G is only 3-vertex-connected, then
G1 admits a (t − 1)-coloring that assigns different colors to any fixed pair of
elements of S. This raises the possibility that a single coloring of G1 may suffice,
simultaneously assigning different colors to all three elements of S. We now show
that this cannot happen. It follows that the same must then be true for G2.

Let a and b denote vertices of G, and let c denote a coloring of G in which
c(a) = i 6= j = c(b). If a and b belong to the same connected component of cij ,
then they are connected by some Kempe chain Pij contained within cij . In this
event, we say that a and b are c-chained .

Lemma 6. If |S| = 3, then neither G1 nor G2 admits a (t − 1)-coloring that

assigns three different colors to the elements of S.

Proof Sketch. Suppose otherwise, as witnessed by a (t− 1)-coloring c of G1.
Let S = {u, v, w} and assume, without loss of generality, that c(u) = 1, c(v) = 2
and c(w) = 3. Let d denote some (t − 1)-coloring of G2. By Lemma 5 and the
Patching Lemma, it must be that d assigns exactly two colors to the elements
of S. So assume, again without loss of generality, that d(u) = d(v). If u and v
are not c-chained, then we can exchange colors 1 and 2 in c12(v) to produce a
(t−1)-coloring c′ of G1 that assigns color 1 to both u and v and leaves the color



of w set to 3. This means that the restrictions of c′ and d to S are equivalent.
But now, by the Patching Lemma, G is (t − 1)-colorable, which is impossible.
Thus it must be that u and v are c-chained by some P12 in G1. The proof
proceeds by identifying P13 and P23 in a similar fashion. These chains are lifted
simultaneously, along with one more application of the Patching Lemma. 2

Bolstered by the preceding Lemmas, we are now ready to prove that minimum-
cardinality vertex cutsets of t-immersion-critical graphs have at least four ele-
ments. The use of Kempe chains in Lemma 6 has been especially effective, so
much so that we need only paths not chains in what follows.

Theorem 2. Every t-immersion-critical graph is 4-vertex-connected.

Proof. Suppose otherwise, as witnessed by some G with S = {u, v, w}. Let c
and d denote (t − 1)-colorings of G1 and G2, respectively. By Lemmas 5 and
6, we restrict our attention to the case in which both c and d assign exactly
two colors to elements of S. Without loss of generality, assume c(u) = c(v) and
d(u) = d(w). By Lemma 1, there is a path P1 in G1 whose endpoints are u and
w. Similarly, there is a path P2 in G2 whose endpoints are u and v. Lifting Pi

and taking the graph induced by the vertices of G3−i produces a graph H3−i

properly immersed in G. H1 contains uv, and so must admit a (t−1)-coloring c′

that assigns different colors to u and v. G1 is likewise colored by c′. By Lemma
6, c′ cannot assign a third color to w. Lest the restrictions of c′ and d to S be
equivalent, it must be that c′(w) = c′(v). H2 contains uw, and so must admit a
(t− 1)-coloring d′ that assigns different colors to u and w. G2 is likewise colored
by d′. By Lemma 6, d′ cannot assign a third color to v. But if d′(v) = d′(u),
then the restrictions of c and d′ to S are equivalent. And if d′(v) = d′(w),
then the restrictions of c′ and d′ to S are equivalent. Thus, under some pair of
colorings of G1 and G2, the Patching Lemma ensures that G is (t−1)-colorable,
a contradiction. 2

3.2 Edge Connectivity

Because the immersion order includes the taking of subgraphs, we know that t-
immersion-critical graphs are also t-color-critical. From the work of [24] it follows
that they are (t−1)-edge-connected. We now show that any t-immersion-critical
graph other than Kt is in fact t-edge-connected. We begin a pair of well-known
observations (see, for example, [27]).

Observation 4. A minimum-cardinality edge cutset separates a graph into ex-

actly two connected components.

Observation 5. If H is obtained by deleting the edge uv from a t-color-critical
graph, then H is (t − 1)-colorable and, under any (t − 1)-coloring, u and v are

assigned the same color.



The significance of Observation 5 rests with the next lemma, which plays an
essential role in our edge-connectivity arguments. This lemma is probably also
well known, although it may not be formulated elsewhere in exactly the same
way we state it here.

Lemma 7. Let H be obtained by deleting the edge uv from a t-color-critical
graph. Let c denote a (t − 1)-coloring of H with c(u) = c(v) = 1. Then v ∈
c1i(u)∀i ∈ {2, 3, . . . , t− 1}.

Proof. Let H and c be defined as stated. Suppose the lemma is false, as wit-
nessed by some i with v /∈ c1i(u). Exchanging colors 1 and i in c1i(u) produces
c′, another (t− 1)-coloring of H . But then u and v are assigned different colors
under c′, which is impossible. 2

Aided by this information about color-criticality, we are now able to argue
more directly about edge connectivity and the immersion order. We shall adopt
the following conventions for the remainder of this subsection:

- t is at least 5,

- G denotes a t-immersion-critical graph,

- S denotes a minimum-cardinality edge cutset in G,

- C1 and C2 denote the two connected components of G\S,

- S1 and S2 denote the endpoints of S contained in C1 and C2, respectively,

- uv denotes an element of S, with u ∈ S1 and v ∈ S2, and

- H denotes G\{uv}.

Lemma 8. If G is not t-edge-connected, then every (t−1)-coloring of H assigns

either one color to S1 and all t− 1 colors to S2 or vice versa.

Proof Sketch. Suppose G is not t-edge-connected. We know from [24] that S
has cardinality t− 1. Let c denote a (t− 1)-coloring of H with c(u) = c(v) = 1.
Lemma 7 ensures that v ∈ c1i(u)∀i ∈ {2, 3, .., t − 1}. Therefore u and v are
the endpoints of t − 2 Kempe chains, where each chain is contained within
c1i(u) for some i. By Observation 1, the chains are edge disjoint, and so each
contains at least one distinct element of S ′ = S\{uv}. Thus there is a one-to-
one correspondence between chains and elements of S ′. This means that every
element of S′ has an endpoint assigned color 1 by c. If c assigns only color 1 to
S1, then it must assign all t−1 colors to S2. Similarly, if c assigns all t−1 colors
to S1, then it must assign only color 1 to S2. The only remaining case occurs if
c assigns more than one but fewer than t− 1 colors to S1. This is handled with
a contradiction-based argument and an application of Lemma 7. 2

Theorem 3. Any t-immersion-critical graph other than Kt is t-edge-connected.

Proof Sketch. Suppose otherwise, as witnessed by some G, not isomorphic to
Kt, that is only (t− 1)-edge-connected. We apply Lemma 8 and, without loss of
generality, let c denote a (t − 1)-coloring of H that assigns color 1 to S1 ∪ {v}.



Thus all t− 1 colors are assigned to S2. From here Kempe chains are applied to
show that Kt−1 is immersed in C2 using a model whose corners are the elements
of S2. With another application of Lemma 8, a Kt is found to be immersed in
G using a model whose corners are u ∪ S2. 2

Corollary 1. If G is t-immersion-critical and not Kt, then δ(G) ≥ t.

Proof. Immediate from Theorem 3 and the fact that δ(G) is an upper bound
on G’s edge connectivity. 2

Corollary 2. If G is t-color-critical with a vertex u of degree t− 1, then Kt is

immersed in G via a model whose corners are u ∪N(u).

Proof. Follows from the proof of Theorem 3 by letting S be the set of edges
incident on u. 2

4 Conclusions

We note that previous work on Hajós conjecture provides additional supporting
evidence for both the t = 5 and t = 6 cases. If our conjecture is true in these
cases, then it has no effect on Hajós conjecture. This is because a t-chromatic
graph may contain an immersed Kt with or without containing a topological Kt.
On the other hand, if our conjecture is false for either case, then it means that
Hajós conjecture is also false for that case. This is because a t-chromatic graph
without an immersed Kt must also be without a topological Kt. This would be
quite a revelation, given that Hajós conjecture for t ∈ {5, 6} has remained open
for roughly 60 years.

Settling the general case seems rather foreboding. Perhaps this view is un-
fairly influenced, however, by knowledge of the long-standing difficulty of set-
tling Hadwiger’s conjecture. Observe that Kempe chains are not vertex disjoint.
Yet the minor order is inherently dependent on vertex-disjoint paths. In this
we sense room for optimism: the immersion order is concerned only with edge-
disjoint paths, and Kempe chains are indeed edge disjoint. Given the vast array
of applications for coloring and the immersion order, we believe that the nature
of their relationship warrants continued study.
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