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Abstract

We demonstrate how combinatory molecular computationnallparallel self-
assembly of several kinds of nanomembranes and nanotubes.s@h nanomem-
brane is a square grid constructed of cross-linked horantd vertical chains. We
show that a relatively minor change causes it to self-askemto a nanotube with the
same cross-linked structure. A second nanomembrane is alayen arranged in a
hexagonal grid.

1 Cross-linked Membranes

1.1 General Grid Construction

Our goal is to construct a nanomembrane structured as a-lanked grid, as shown in
Figs. 1 and 2. One row of the grid is constructed by (Eq. 73 D2ag):

O, FY;--- YV, X = F(ViX® ). (v, XW) (Y, XxO). (1)

*This research is supported by Nanoscale Exploratory Reisegant CCR-0210094 from the National
Science Foundation. It has been facilitated by a grant fiwenniversity of Tennessee, Knoxville, Center
for Information Technology Research. This report may beldseany non-profit purpose provided that the
source is credited.
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Figure 1: Nanomembrane structured as a cross-linked gudh & grid can be created by
éﬁNYI <Y, X:---X,,, whereN is an inert combinator an¥f;, ..., Y, X4,..., X, are
any complexes. The vertical red chains (the “warp”) and thgle horizontal red chain are
composed of linked (application) primitives. The horizontal, green chairige(twoof”),
which lie below the vertical chains, are composed of linkddharing) primitives. The dark
circles along the left border repres@nprimitives (result caps) that result from deleting the
last sharing reference to ea&h. The red, diagonal arrow in the upper right is thebilical
connectionthat is, the root of the combinator tree. The area in the dhteed rectangle
is expanded in more detail in Fig. 2. See Figs. 3 and 4 for limtsons of a cross-linked
grid.



Figure 2: Detailed structure of cross-linked grid. The fegdepicts an area near the top
of the grid as indicated by the blue dotted rectangle in FidNdtice that the uppermo#st
(application) primitive is oriented differently from théher A groups.

(For the use of primes and parenthesized superscriptsitatedsharing, seltroduction
and Sec. 17 [Mac02a].) That, constructs the indicated sharing structure follows from
®, =S, oK (Eqg. 72 [Mac02a]) and the following lemma.

Lemma 1 (Eg. 38 [Mac02a]) Forn > 1,
S FY, - Yo X = FXMW (Y, XYY (Y, X D) (v, X(©). (2)
Proof: For the base of the induction observe that by Eq. 32 [Mac02a]:

SIFY:X — SFYiX
— FXO (v x0).

For the induction assume> 1 and apply Eq. 37 [Mac02a]:

Sni1FYiYs--- Yo X = (BS,0S)FV1Ys---Yp X

BS.(SF)Y1Ys- - Yo X

Sa(SFY1)Yz -+ Yo X

SFYiX™ (Y, X))o (Y, XD)(Y, 11 X @)

FXM (1 X)X Y) - (VX D) (V0 X ).

U

O
Since®,, is used to construct a row, it's worthwhile to look at its cgtéon in detail:

O, FY; - YV, X = (SpoK)FY;---Y, X
= S, (KF)Y;--- Y, X
= KFXM™ (v, X" D)...(v,X0) (3)
= FY X" D). (v,XO)



Figure 3: Visualization of front of a small cross-linked mamembrane. Such a membrane
could be created bygrid; /NY X with W = W (replicated terminal groups; see Def. 1 or
2). The view is from the front-left, so it displays the samaesof the nanomembrane as
Figs. 1 and 2. The vertical, red chains (warp) are composegbaiication A) primitives.
They are connected across the top by a horizontal cha#nmfmitives, starting from the
umbilical connection at the upper right, and terminatingiwhitishN group at the left
end. The brownish groups at the lower ends of the verfiaathains are arbitrary terminal
groupsY (the “loom weights,” perhaps stretching the metaphor). hbegzontal, green
chains (woof) are composed of sharing) complexes. The dark groups on the nearest
ends are “result capsP(primitives). Arbitrary terminal groupX can be seen on the far
ends of the horizontal chains.



Figure 4: Visualization of rear of a small cross-linked nawonbrane. This is the same
membrane as in Fig. 3, but viewed from the opposite side,dplaly better the horizontal
chains (woof).



Notice that theK combinator in Eq. 3 discardk ™, the most recently made sharing refer-
ence toX:
KFX™ — F.

According to the rules of the deletion reaction (Sec. 6 [M2ad]) the deleted ™ complex
is replaced by a “result capP(primitive, Sec. 11 [Mac02a]); the primitive is shown as a
black dot on the left end of each row in Fig. 1. To constructdbeplete grid, we iterate
the row constructiom: times, in accord with Eq. 75 [Mac02a]:

The following theorem shows that the correct cross-linkearisg structure (as shown in
Fig. 1) is constructed.

Theorem 1 Form,n > 1,
IMFY; Y Xy Xy = FX Y x0-Dy v, xO0 X @) (5)

Proof: The base of the induction is established by Eq. 1. /roP 1, expand the power
(Sec. 28 [Mac02a]) and use Eq. 1:

OHEY - Yo Xy - X X
— (®" 0, )FY; -V X1 X X1
= (O, )Yy Yo Xy X X
= &, FX" V. xe )y, x©O . xO)x,
—

m

FOAXTY - XX - (X0 XX,

m

1.2 Identical Terminal Groups

With the foregoing formulation, the terminal groups on figows andY -columns are all
potentially different. More commonly, we would want thenhtale same X; = X,j =
1,...,m,andY, =Y,k = 1,...,n. We can use the elementary duplicators (Egs. 40, 44
[Mac02a]) to duplicate a singl& or Y. We useW if we want the terminal groups to be
replicated, andV if we want a single copy to be shared. LettMgrepresent eitheW or

W (depending on whether sharing is wanted or not), we will stiatanm x n grid with

X andY terminal groups is computed bygridp,, ,,, defined as follows.

Definition 1 (xgridp)

xgridp,, , = B(BW™ 1) (BW"~1¢!). (6)



We begin with the shared case, since it is more general.
Theorem 2 gridp) For W = W,

xgridp,, , FYX = o7 Fy =1 ...y O xn=1... x(©) 7)
Proof: Observe that

xgridp,,, , FYX = B(BW™ )(BW"'d7)FYX
— BW™ {(BW" 1¢"F)Y X
= BW™ (W (d"F))Y X
— W IWr YT F)Y)X.

Here we make use of Eq. 51 [Mac02a], which shows the sharfegteif iterated/V:

Wt (W (@ F)Y) X = Wri(@rF)yxm ... x©
= Prpy-D.. . y©xm-D . xO)

O
Thus xgridp,,, ,NY X results in the sort of structure show in Fig. 5. Its structsiescribed
formally by the following corollary.

Corollary 1

xgridp,,  NY X = N(Y(»=1) xm=1r-1) . xO®-1)y. . (y© xm-10) ... x©0)00)
; @
The double parenthesized superscripts indicate the satiucture. The first superscript
indicates the distance frotN along the vertical sharing chain (in green) on the right of
Fig. 5; the second superscript indicated the distance fraeright along the horizontal
sharing chains (green).

Proof: Follows directly from Thms. 1 and 23
The case of replicated terminal groups follows from the @daarg Theorem 2 by omitting
the superscripts indicating sharing:

Corollary 2 ForW = W,

v ——
xgridp,, ,FYX = "FV . Y X---X. 9)

1.3 Size of Molecular Program Structures

We consider next the size of molecular progragridp,, ,. Referring to Def. 1 we see that

several combinatord\(, ®,,) are raised to powers. The size of these program structsires i
proportional to the powers, since (Sec. 28 [Mac02a)):

XY =9(N — 1) + N|X| total primitives
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Figure 5: Nanomembrane structured as cross-linked gridstiared terminal groups. Such
a structure is computed bgridp,,, ,NY X or xgrid,,, ,NY X with W = W. The diagram
may be understood by comparison with Fig. 1. The ends akthrews andY -columns are
tied together by (sharing) primitives.




(Seelntroduction [Mac02a] for avdescription of our notation for sizes gf condior com-
plexes.) Furthermore (Sec. 25®,| = 18n — 7, so we can see tha®'| € O(mn).
Specifically, one can show (fen, n > 1):

@™ = (5mn —2)S + (4mn +m — 2)K + (9mn +m — 5)A (10)
= 18mn + 2m — 9 total primitives (11)
xgridp,, ,| = (5mn+9m +9n —18)S + (4mn + 9Im + 8n — 16)K +
(9mn + 18m + 17n — 35)A (12)
= 18mn + 36m + 34n — 57 total 13)

This is troublesome, since it suggests that we must use agmosfructure of size(mn)

to construct a grid of siz&(mn). However, as discussed in a previous report [Mac02b],
we can avoid this problem by using iterators or “Church nair(Sec. 23 [Mac02a]),
sinceZyX = X¥. Then,

|ZnX| = 1A+ |Zn] + [X]; (14)
that is,O(N + | X|) as opposed t@(N|X]|). Since (Sec. 23 [Mac02a)),
|Zy| = (BN +1)S+ (2N + 3)K + (5N + 3)A = 10N + 7 total, (15)

this might not seem an improvement, but the advantage isapipahen we observe that
1Z,2,| € O(m + n); specifically,

2@, = (3m+5n—1)S+2(m+4n+2)K+ (5m+9n)A = 10m +18n+ 1 total (16)

As a result of the forgoing we see that it is advantageousdefirgexgridp in terms of
Church numerals. Thus we modify Def. 1 to:

Definition 2 (xgrid)
xgrid,,, , = B(B(Zy—1W))(B(Z,—1W)(Z,,D»)). (17)
By construction it immediately follows that

Corollary 3
xgrid,, , = xgridp,, .. (18)
Therefore xgrid,,, ,NY X will construct a grid such as shown in Fig. 5. As expected, the
size isO(m + n):
xgrid,,, .| = (6m +8n+15)S + (4m + 6n + 22)K + (10m + 14n + 36)A (19)
= 20m + 28n + 73 total (20)

It is of course possible to factd;, andZ, out ofxgrid,, ,, to get a program structurg
independent of grid dimensions,

GZnZ, = xgrid,, .-

However, there seems to be little point in this exercise;esiwhen it comes time to con-
struct a grid of particular dimensions, we imagine that il we as easy to synthesize
xgrid,,, ,, directly as to synthesiz8Z,,Z,. Both have size)(m + n).
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Figure 6: Basic structure of a cross-linked nanotube. Ongy/rib (red) is shown complete
and only the middles of the staves (green), and backbone)(bllhe staves are shown
outside the tube (that is, it is as though the bottom of Figad lreen bent forward out of
the paper to form the tube), since this is the way it would ntiksty self-assemble. The
green oval connecting the backbone to the top of the rib iskia@ing V) primitive that
completes the ring. In this example the tube has circuméeren = 5 (the number of
staves) and an indeterminate lengtfthe number of ribs).

2 Cross-linked Tubes

The preceding construction of a cross-linked nanomembrande converted into a cross-
linked nanotube. Consider Fig. 1; our approach will be tgleach column back to the top
of itself. That is, instead of pointing tg,, the bottom of the column will be bent around to
connect to a sharing node that points to the top of the columhe intended structure is
shown in Fig. 6; Figs. 7 and 8 are visualizations of a smalbtizive.

The cycle fromY}, to the top of the column may be created\bythe sharing fixed-point
combinator (Secs. 22 [Mac02a], 5.3 [Mac02b]), which hasftilewing effect (see also
Fig. 9 [Mac02b]):

YF =y wherey = (F y©). (21)

That is, we have a shared referené€ to an application of the functiof’ to a shared
reference)(?) to that same application.
From Thm. 1, we know that thith column of the grid (Fig. 1) has the form

(Ve XR) L X (k)

m

Thekth ring, indicated in red in Fig. 6, therefore has the form
yi wherey, = (v, X{" - X[P). (22)

To construct this witlY we need to be able to find dnsuch that

Fy=yX{"™...xn"k, (23)

10



Figure 7: Visualization of small cross-linked nanotubee fstaves in circumference, four
ribs in length. Such a nanotube may be createctopes; 4 X with W =W (replicated
terminal groups; see Def. 4). The view is from the side, cape to Fig. 6, but also
shows the proximal, non-umbilical end of the tube. Thgroup is the whitish group at
the proximal end of the backbone, which is the chain of fodrAdapplication) groups at
the top of the picture; the umbilical connection is visibie¢hee distal end of the backbone.
Each rib is a chain of fiva primitives (shown in red). Along the outside of the tube are fi
staves, each a chain of four sharing primitives (shown iemye At the proximal end of
each stave is B primitive (result cap), shown as a small dark sphere. At teabends of
the staves are the terminal groupsvisible as small, yellowish spheres on the two nearest
staves. For a different view, see also Fig. 8.

11



Figure 8: Visualization of small cross-linked nanotube.e™ew is from the umbilical
end of the same nanotube shown in Fig. 7. The umbilical cdroreto the end of the
backbone is visible at the top of the picture; fthgroup is barely visible at a whitish group
at the distal end. The green groups immediately below th&lmae are the sharing/}
primitives, which complete the pentagonal ribs and contiesn to the backbone. At the
proximal end of each stave is the terminal graXipshown as a small, yellowish sphere.
At the distal end of each stave igprimitive (result cap); one is slightly visible as a dark
sphere at the far end of the lowest stave.

12



The argumeny can be moved to the right by use of Eq. 109 [Mac02a]:

y X X0k ey xR L x (o) (24)

— C[m]le(”*’“) o X k) (25)
Hence ]
ye = YF whereF = C[m]le("’k) oo X (k)

m

However, to apply Thm. 1 we neeg as a functiorG of X" ™ ... X(n—k so that we can
write
g = GXMR L x k),

m

Therefore, use Eq. 5 [Mac02a] as follows:

gy = GXITR L x0k) (26)
= Y(ColX{"H . X Ry 27)
= B™Y(Cpl) X" - xR, (28)
Hence, )
G = B"Y(Ciml). (29)
Therefore, a nanotube in circumference and in length, with groupsX;, .. ., X,, on the

connected (“umbilical”) end, and result caps on the distdl €an be computed by

n

v —N—
O"NG---GX;...X,,.
We have thus proved the

Lemma 2 LetG = B™Y(Cpyyl). Then,

n

~ ——
NG --GX1... Xy => NyiVeooyl®
wherey;, = (y,(co)Xl(n_k) o X [R))

In the usual situation, all the terminal groups will be ideal, X,, = X, so we can us|v
(i.e., W or W) to simplify the definition, for example:

n

X ¥ < ——
W LW H(@™N)G) X = d"NG ---GXm V... x(O),
Thus we have

Definition 3 X ) ]
xtubep,, , = W™~ (W~ (D7N)(B™Y (Cpmyl)))- (30)

13



Again, because ob™ this program structure is of siz@(mn), but we can avoid this
problem by using Church numerals in a slightly more compéidalefinition:

Definition 4 (xtube)
xtube,, , = WL (W"™(Z,,8,N) (B™Y (Cm1))). (31)

If the terminal groups are shared, th&vt = W; if they are replicated, theklv = W.

Its size is
Ixtube,,,| = (27m + 12n — 28)S + (24m + 10n — 22)K +
(51m + 22n — 48)A (32)
= 102m + 44n — 96 total (33)

The total includes ond and oneY in addition to theSs, Ks, andAs. The construction of
nanotubes is described by the following theorem:

Theorem 3 (tube)

xtube,, , X = Ny%l)---yfll) (34)
wherey, = (y\0 Xm-D—k) ... x On—k)) (35)

As before (Cor. 1), the double parenthesized superscrgpsesent the sharing of the ter-
minal groups ifW = W, otherwise, ilW = W, the first parenthesized number of each pair
should be ignored.

3 Hexagonal Membranes

Our goal is to define a membrane structured as a hexagonaggidas shown in Figs. 9
and 10. To accomplish this, the following notation will bdgfal:

Yeo = x;c,p (36)
Urg = (TrjThjp), 0<j<n, (37)
Yen = Tkm, (38)
Thr1; = (Ykj-1 yfw-), j=1,....,n:k > 1. (39)

(The primes indicate sharing, as patroduction and Sec. 17 [Mac02a].) Notice that
rows haven elements, and thg rows haven + 1. Therefore, the grid will be built up
one double-row at a time, that is, fram ; to x4, ;. In accomplishing this, the following
lemma will be useful; it will be used for constructing the Naped parts of the hexagons
(constructed of sharing primitives, Sec. 17 [Mac02a]).

14
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A1t

y 1,n
\

\ * 1,n-2 X 1,n-1 xl,n
Figure 9: Nanomembrane structured as hexagonal grid. pesh@nctures are sharing)
primitives; inverted-V junctures are applicatioh) (primitives. The area in the blue dotted

rectangle is expanded in more detail in Fig. 10. Such a grigllmeaconstructed blygrid, , ,,
(Def. 8).
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Figure 10: Detailed structure of hexagonal grid. The figuepicts an area near the top
of the grid as indicated by the blue dotted rectangle in FigA Qapplication) primitives
are shown in redy (sharing) primitives in green. Notice that the uppermdgroup is
oriented differently from the otheX groups.

Lemma 3 Forn > 0,
Wi F Xy X, = FX{ X - X X (40)

Proof: This is proved inductively. By Eq. 100 [Mac02a],

W[O]F = |F = F.

Forn > 0 apply Eg. 102 [Mac02a]:

v

Wi ) FX1 X+ X (BWp o W)FX 1 X, - Xy
BW, (WF) X1 X5 Xpps
Wi (WEX )Xy - X1
725.¢P. ¢9. CEERD. (D,

FXIX\ X)Xy X! X1

FEr el

The following lemma will be used to construct the inverteg&fts of the hexagons
(constructed of application @ primitives, Sec. 1 [Mac02a)).

Lemma4 Forn > 0,

BMFX\Y; - X, Y, = F(X Y1) (X,Y,). (41)

16



Proof: For the base of the induction, apply Eqg. 112 [Mac02a]:
BUF —= F.
For the induction assume> 0 and apply Eq. 114 [Mac02a]:

B X\ Vi XoYs - X1 Vot = (BoBB")FX1VIXoVs - Xyt Ve
— B(BBMF) X1V XoYs - X1 Vi
— BBMF(X,Y)XoYs- - X1 Vo
= B[n](F(X1Y1))X2Y2 o Xor1 Yo
= F(XiY1)(XpY3) - (Xny1Yai1).

a
The construction of g-row from anz-row is accomplished by the following operation:

Definition 5 (Vrow) §
Vrow,, = W, o BB 1, (42)

Theorem 4
Vrow, F'xg 1+ Thn = FYro - - Yo
Proof: By Lemma 3,

A ! !
W[n]F.Z'k,l Ty = ka,lxk,l © T Tk

By Lemma 4,
-1
BB V) 1% pk2 Ty Thn1 T T
-1
= Bl ) ok12h 0 Th2  * Thopo1 Thn—1Th T
= Fay(Te1%)s) - (Thn 17 0)Thn
= FyroYk1* " Ykn—1Ykn-
Therefore,
Vrow, Fxyq - T = (W[n] o BB["_l])kaJ C e Tgp
= Wyy(BBM UF) 2y, 24,
= BB[”_I]Fmﬁc,lxk,l - x}enxkn
= Fyro Yin-
O

The construction of am-row from ay-row is accomplished by the following operation:

17



Definition 6 (Arow) §
Arow,, = BWj,_;; o BI".

Theorem 5
Arow, F'yr o« Ypn = FTpp11 - Togin-

Proof: By Lemma 3,

v

BWi— ) FYk 0¥k - Yen—1Ykn = W[n—l] (FYk,0) Yk, Ykn—1Ykn
= FYr oYk 1V Ypn1Ykin—1Ykn-

By Lemma 4,

B Fyh 00 10kt - - Vb1 Ukm—1Ukm = F(Uko¥h1) - - (Ykn-1Ykn)

= Fﬂ?k+1,1 *Tk+1me
Therefore,

ArOWnFyk,Oylc,l C Ykn—-1Yknm — (BW[nfl] o B[n])Fyk,Oylc,l “Ykn—1Ykn
= BWp, y(B™F) Yok Yk 1Yk

= B[n]Fyk,Oy;c,lyk,l - 'y;c,n—lyk,nflyk,n
= Frpii1 Tegin

O
As a consequence, the construction of a double-row is acicsimeg by:

Definition 7 (drow)
drow,, = Vrow,, o Arow,,.

Theorem 6
drow, Fxy 1 Tpp = FTpi11 Thgimn-
Proof:
drow,Fxy -« 2k, = (Vrow, o Arow,)Fzy -z,

= Vrow,, (Arow, F)zx 1 Tgn
— ArOWnFyk,O Ykn
= FZpy11 Tryipne

O

A hexagonal grid is computed by iteratidgpw,, .

18
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Corollary 4
drow, ' Fzg - Tpp = FOpim1- - Thpmon-
Proof: By induction onm,

(drown)m“ka,l T, = (drow, odrow,')Fxy---Tky
drow,, (drow) )z 1 - - - Tg

)

=

m
— drown F.I‘k_|_1,1 Tyl
—=

F$k+m+1,1 * Tk+m+1,n-

O
In general, the first-row can be identical or shared copies of a singlsoz, ; = . Hence
anm x n grid is computed by

n

Wt (drow™ F)z = drow™F Zz - - 2

whereW is eitherW or W, depending on whether sharing:ofs desired or not. Therefore
we can define a generator for anx n hexagonal grid:

Definition 8 (hgrid) R
hgrid,,, , = Zn-1W(Z,,drow,,N). (45)

The inert combinaton) is used in place of the combinatérin the preceding derivations
to ensure that the grid is static. To decrease the size ofdimplexes, we have expressed
the powers by iteratoraV"—1 = 7, _,W, drow;' = Z,,drow,,. The sizes are as follows, for
m>1,n>2:

Vrown| = (171 — 15)S + (16n — 14)K + (33n — 30)A = 66n — 59 total, (46)
Arow,| = (171 —10)S + (16n — 10)K + (33n — 21)A = 66n — 41 total, (47)
|drow,,| = (34n —23)S + (32n — 22)K + (66n — 46)A = 132n — 91 total, (48)

lhgrid,, .| = (3m +37n —17)S + (2m + 34n — 12)K 4 (5m + 71n — 29)A
= 10m + 142n — 57 total (49

The latter total includes 1 for tHe primitive.

As Fig. 9 shows, the vertical borders of the hexagonal gredfammed byy, o = zj, ,
andyy, = x,ﬁ‘)g This might be fine, but it also might stretch or bend the Ingkgroups.
Be that as it may, it presents an opportunity to show how agjiglifferent hexagonal
grid, a “terminated grid,” might be constructed (Figs. 181 42). In this gridyy,o andyy,
are inert ) complexes, and the deletion of , andng; cause them to be replaced by
“result caps” P primitives; see Secs. 3 and 6 in [Mac02b]). This structuisputed by
a modifiedVrow:

19
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Figure 11: Nanomembrane structured as hexagonal grid ithinal groups. Such a grid
may be constructed blgridt,, , (Def. 9). Black dots arél primitives, gray dots ar®
primitives. A visualization of a small grid of this kind is Fig. 12.

Definition 9 (hgridt)

Vrowt, = Wi, 0KloK,_ s 0Bl o CMINoCIN, (50)
drowt, = Vrowt, o Arow,,, (51)
hgridt,,, = Zu,—1W(Z,,drowt,N). (52)

The correctness of the definition ledridt,,, ,, follows from the following theorem.

Theorem 7 Let
Y0 = Yen = N. (53)

Then,
Vrowt, Fxp 1 Zpn = FYro- - Ykn-

Proof: By Lemma 3,
W[n]ka,l Ty = F$;c,1$k,1 .- -:rﬁc,n:rk,n.
By the definitions oK (Eq. 24 [Mac02a]) andl(Eq. 19 [Mac02a]),
KIFz) 1 2p1 - -+ Ty Thn == Fp1 -+ Ty Thne
By EqQ. 98 [Mac02a],

! !
Kien—2)F xp1 - “Tpn T = Fap,---x
—————
2n—2

’n'

20



Figure 12: Visualization of small hexagonal grid producedhgridt, ; X. The reddish
structures aré (application) primitives and the greenish af€sharing) primitives. The
dark groups on the left and right are inert place-hold@rarfd N primitives). The light
structure in the upper left is an ineN) combinator. The three brownish structures on the
bottom are copies ok, whatever it might be.

21



By Lemma 4,

[n—1] AR A AR TR !

= Fyk,l *c Ykn—1-
By Egs. 116 [Mac02a] and 53 (above),

C[n]INFyk,l . yk,n—l e IFyk,l e yk,'rL—lN
= Fyri - Yen—1Ykn-

By the definition ofC (Eq. 8 [Mac02a]),

CINFyp1 - Yen—1Yrkn = 1EFNygp1 - Yrn—1Ykn
= FyroVYk,1 " Ykn—1Ykn-

O
Figure 12 is a depiction of the hexagonal grid constructetgpigt, ; X; it may be under-
stood by comparison with Figs. 10 and 11.
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