
December 27, 2002
LAPACK3E -- A
Fortran 90-enhanced
version of LAPACK

Edward Anderson
Science Applications International Corporation
Edward.C.Anderson@saic.com
LAPACK3E is a version of the public domain numerical linear algebra package

LAPACK 3 enhanced with selected features of Fortran 90. The use of Fortran

90 enhances LAPACK by allowing a common source for single and double pre-

cision, more uniform specification of scaling constants, and encapsulation of

some internal subroutine interfaces. Thread-safety is introduced as a new fea-

ture for LAPACK by eliminating all the SAVE statements from the Fortran 77

package. Generic interfaces in the style of LAPACK95 are provided for all the

subroutines in LAPACK, while maintaining backward compatibility with both

the LAPACK 3 and LAPACK95 interfaces. Numerous bug fixes and improve-

ments are also incorporated.

1.0 Introduction -- Evolution of LAPACK interfaces

The interfaces and naming conventions of LAPACK [Anderson et al. 1999] fol-

low those of the Level 2 and Level 3 BLAS [Dongarra et al. 1988, Dongarra et
al. 1990]. Like the BLAS, LAPACK was mostly written before Fortran 90 was

standardized, so it was constrained to use only Fortran 77 features. Tools devel-

oped at NAG from Toolpack were used to enforce strict Fortran 77 compliance,

to convert from single precision to double precision, and to format the com-

ments and code in a uniform way. Subsequent updates to the basic LAPACK

package, most recently in 1999, have maintained Fortran 77 compatibility

despite the general availability of Fortran 90 compilers.

Fortran 90 wrappers for the driver routines in LAPACK were created as part of

the LAPACK95 package [Barker et al. 2001]. These new interfaces provided

• generic interfaces for the BLAS and some (but not all) LAPACK routines

• dynamic allocation of work space

• optionally, shorter argument lists using optional arguments
1 of 28

Common source
LAPACK3E builds on the interface improvements of LAPACK95 by imple-

menting

• generic interface modules for all routines in LAPACK

• at least two interfaces for each BLAS and LAPACK typed routine, the natu-

ral interface and a point interface

• common source for single and double precision

LAPACK3E also improves upon LAPACK in the following areas

• centralized specification of machine constants in a module

• elimination of SAVE statements for thread safety

• more uniform use of scaling constants such as SMLNUM, BIGNUM, etc.

• elimination of SLABAD, a crutch for avoiding badly scaled arithmetic

• improved scaling of several routines

• bug fixes from the LAPACK release notes and reports from LAPACK users

In addition, LAPACK3E incorporates many of the algorithmic improvements

from the Cray Scientific Library [Anderson and Fahey 1997] and a subsequent

LAPACK 3 supplement to libsci [Anderson 1999].

Source code for LAPACK3E and several precompiled libraries are available at

http://www.netlib.org/lapack3e.

This report describes the new features of LAPACK3E and the motivation behind

them. Section 2.0 describes LAPACK3E features to implement a common

source for single and double precision via the specification of Fortran 90 inter-

face modules and compiler preprocessor options. Section 3.0 addresses the

issue of thread safety in LAPACK and how it is achieved in LAPACK3E. Sec-

tion 4.0 details some of the algorithmic improvements in LAPACK3E. Finally,

Section 5.0 discusses possible extensions to LAPACK3E to further enhance its

usefulness.

2.0 Common source

LAPACK was developed with the aid of a suite of Fortran tools called Toolpack.

Three of the features that were used extensively were

1) Automatic conversion from single to double precision (with the aid of a file

for mapping single precision names to double precision names)

2) Standard formatting of source code statements, including the placing of

descriptive comments around the declarations

3) Checking of arguments for agreement in number, kind, and rank
2 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Common source
Toolpack was very strict about Fortran 77 compatibility, so even widely adopted

Fortran 77 extensions such as the DO/ENDDO construct could not be used in

LAPACK. Fortran 77 compatibility may still be important to some people, but

most, if not all, commercial Fortran compilers today fully support Fortran 90/

95. LAPACK3E freely uses features of Fortran 90 and no facility is provided

for going back to Fortran 77.

Fortunately, many of the functions of Toolpack can now be performed by For-

tran 90/95 compilers. Conventions for parameterizing the KIND of floating

point declarations make it simple to convert between the supported real and

complex types (currently just 32-bit and 64-bit). Generic subroutine interfaces

allow users to write more portable code, with the correct specific routine name

chosen at compile time. The compile-time resolution of generic subroutine

calls also provides some built-in argument checking and the ability to support

different calling sequences through overloading. The only Toolpack feature that

Fortran 90 compilers don’t support is reformatting of the source code.

This section describes how features of the Fortran 90 language and de facto
standards for preprocessing are used in LAPACK3E to achieve the goal of a

common source for single and double precision.

2.1 Parameterizing the KIND

LAPACK95 addressed the problem of how to convert from single to double pre-

cision by parameterizing the Fortran 90 KIND using the parameter WP (for

"working precision"). The LAPACK95 module LA_PRECISION contained

the definition

MODULE LA_PRECISION
 INTEGER, PARAMETER :: SP=KIND(1.0), DP=KIND(1.0D0)
END MODULE LA_PRECISION

This module could be invoked in the calling routine either as

USE LA_PRECISION, ONLY: WP => SP ! single precision

or

USE LA_PRECISION, ONLY: WP => DP ! double precision

All subsequent REAL and COMPLEX variables were declared using the KIND

value WP, for example,

REAL(WP) :: R
COMPLEX(WP) :: C

In this way, a subroutine could be changed from single precision to double pre-

cision by changing SP to DP on the USE LA_PRECISION line. However,

separate subroutines were still provided for each precision.
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 3 of 28

Common source
In LAPACK3E, the KIND is also parameterized using an integer parameter WP.

WP is defined along with several other constants in two Fortran 90 modules

called LA_CONSTANTS (for 64-bit precision) and LA_CONSTANTS32 (for

32-bit precision), as follows:

 MODULE LA_CONSTANTS
 INTEGER, PARAMETER :: WP = 8
 ...
 END MODULE LA_CONSTANTS

 MODULE LA_CONSTANTS32
 INTEGER, PARAMETER :: WP = 4
 ...
 END MODULE LA_CONSTANTS32

Section 2.2 contains details on the other constants defined in these modules.

Each subroutine in LAPACK has been modified to USE the LA_CONSTANTS
module, and the preprocessor renames it to LA_CONSTANTS32 if necessary.

LAPACK3E makes some assumptions about the functionality of the Fortran

preprocessor based on industry standard practices. First, the file extension of an

LAPACK3E program unit that requires Fortran preprocessing is changed from

.f to .F. The pre-processor is assumed to recognize #include, #define,

and #if/#else/#endif constructs, and it is assumed that there are com-

piler options for macro expansion that will allow a #define statement to be

applied to non-comment source code lines. All the information for the prepro-

cessor is contained in a file called lapacknames.inc which is included as

the first line of every LAPACK3E .F file. The template for this change is as

follows:

#include "lapacknames.inc"
 SUBROUTINE SGETRF(...)
 USE LA_CONSTANTS
 ...
 END

The included file contains #define statements for renaming one subroutine or

module name to another. The one related to the LA_CONSTANTS module is

#ifdef LA_REALSIZE == 4 || LA_REALSIZE == 32
#define LA_CONSTANTS LA_CONSTANTS32
#endif

This specification tells the preprocessor to rename LA_CONSTANTS to

LA_CONSTANTS32 if the compile time defined constant LA_REALSIZE is

set to 4 or 32 (as in 4 bytes, or 32 bits). The compile lines for creating a 32-bit

version of SGETRF from the common source file sgetrf.F on several differ-

ent platforms are as follows:
4 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Common source
IBM: xlf -WF,-DLA_REALSIZE=4 -o sgetrf.o -c sgetrf.F
Cray: f90 -F -DLA_REALSIZE=4 -o hgetrf.o -c sgetrf.F
SGI: f90 -DLA_REALSIZE=4 -macro_expand -o sgetrf.o
 -c sgetrf.F
Sun: f90 -DLA_REALSIZE=4 -o sgetrf.o -c sgetrf.F

Note that the 32-bit version of SGETRF would be called HGETRF on a Cray

platform. Subroutine renaming is discussed further in section 2.3.

Once the KIND of "working precision" has been defined as the integer parame-

ter WP, all floating point REAL and COMPLEX declarations can be written in

terms of this KIND, as REAL(WP) or COMPLEX(WP). The KIND is also used

in constants and in initialization statements. Most constants in LAPACK were

already specified in PARAMETER statements. but those that were not have been

made PARAMETERs in LAPACK3E, and their initialization statements have

been modified to use WP, for example,

REAL(WP) :: SCL
PARAMETER :: (SCL = 0.125_WP)

2.2 Parameterizing other constants

The previous section showed how one of the new Fortran 90 modules

LA_CONSTANTS and LA_CONSTANTS32 is USE’d in every program unit in

LAPACK3E. Besides the KIND parameter WP, many other constants common

to several LAPACK routines are defined as PARAMETERs in the

LA_CONSTANTS and LA_CONSTANTS32 modules. They include

ZERO the real constant 0.0

HALF the real constant 0.5

ONE the real constant 1.0

TWO the real constant 2.0

THREE the real constant 3.0

FOUR the real constant 4.0

EIGHT the real constant 8.0

TEN the real constant 10.0

CZERO the complex constant (0.0, 0.0)

CHALF the complex constant (0.5, 0.0)

CONE the complex constant (1.0, 0.0)

SPREFIX a character constant, set to ’S’ or ’D’ (’H’ or ’S’ for Cray)

CPREFIX a character constant, set to ’C’ or ’Z’ (’G’ or ’C’ for Cray)

LAPACK also makes extensive use of a variety of machine parameters that are

re-computed whenever they are needed via the auxiliary routines SLAMCH or

DLAMCH. Computing these machine parameters added a significant amount of

overhead to some subroutines and led to the use of SAVE blocks to retain the

values between calls in a few places, a poor programming practice that inter-
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 5 of 28

Common source
feres with thread safety. In LAPACK3E, these quantities are specified as

PARAMETERs in LA_CONSTANTS and LA_CONSTANTS32, ensuring that

they are defined consistently and obviating the need to SAVE them. They

include

EPS the machine epsilon, usually computed as SLAMCH(’E’)
ULP the machine precision, usually computed as SLAMCH(’P’)
SAFMIN the safe minimum, usually computed as SLAMCH(’S’)
SAFMAX the safe maximum, often computed as 1/SAFMIN
SMLNUM a scaled minimum, often SLAMCH(’S’) / SLAMCH(’P’)
BIGNUM a scaled maximum, often computed as 1/SMLNUM
RTMIN sqrt(SMLNUM), used in sum-of-squares calculations

RTMAX sqrt(BIGNUM), used in sum-of-squares calculations

The modules LA_CONSTANTS and LA_CONSTANTS32 have been hard-coded

with constants appropriate for IEEE arithmetic, Cray IEEE arithmetic (on the

CRAY T3D/T3E), and Cray arithmetic (as on Cray PVP systems through the

CRAY SV1). Pre-defined constants known to the Cray compilers are used to

distinguish between the cases. Versions of SLAMCH and DLAMCH that use the

Fortran 90 intrinsic functions, instead of LA_CONSTANTS or

LA_CONSTANTS32, to determine floating point model parameters are pro-

vided with the package and can be used to set the module files appropriately for

any other architecture.

2.3 Renaming in the preprocessor

Section 2.1 introduced the include file lapacknames.inc, which appears in

every .F file in LAPACK3E and contains renaming instructions for the prepro-

cessor. Besides instructions for renaming LA_CONSTANTS to

LA_CONSTANTS32, this file also contains instructions for renaming LAPACK

routines for different precisions. The default is to use 64-bit precision, but if the

defined constant LA_REALSIZE is set to 4 or 32, subroutine names appropriate

for 32-bit precision are used.

On most machines, the LAPACK routine name for 32-bit precision begins with

the letter S or C, such as SGETRF and CGETRF, and the routine name for 64-bit

precision begins with the letter D or Z, such as DGETRF and ZGETRF. This is

the case when the default REAL and COMPLEX types are 32 bits in size. On

such machines, scientific users typically use 64-bit precision in order to get

greater accuracy. However, on Cray platforms (including both the CRAY PVP:

YMP/C90/T90/SV1 lines and the CRAY MPP: T3D/T3E lines) the default

REAL and COMPLEX kind is 64 bits, and double precision is rarely used or is

not available. The Cray Scientific Library provides 64-bit BLAS and LAPACK

routines following the naming convention for the default REAL and COM-

PLEX kind, using routine names beginning with S and C. The CRAY T3E
6 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Common source
library also provides some 32-bit BLAS using the non-standard prefixes H for

real and G for complex.

In LAPACK3E, the default precision of the common source modules is 64-bit.

The file names and specific routine names on the SUBROUTINE or FUNCTION
line use names starting with S for real data and C for complex data, following

old habits from the LAPACK development days. If the defined constant

LA_REALSIZE is set to 4 or 32, then the subroutine or function names are left

alone on most machines and are renamed to HYYZZZ or GYYZZZ on Cray

machines. If the defined constants LA_REALSIZE is not set (or is set to any

value other than 4 or 32), then the subroutine or function names are renamed to

DYYZZZ or ZYYZZZ on non-Cray machines, and left alone on Cray machines.

The outline of the lapacknames.inc file is as follows:

#if LA_REALSIZE == 4 || LA_REALSIZE == 32
#ifdef _CRAY
#define CGBTF2 GGBTF2

<other and rules here>

#endif
#define LA_CONSTANTS LA_CONSTANTS32

#else
#ifndef _CRAY
#define CGBTF2 ZGBTF2

<other and rules here>

#endif
#endif

Renaming in the preprocessor, combined with the parameterization of constants

from Sections 2.1 and 2.2, would have been enough to achieve the goal of a

common source for single and double precision without any other changes. But

LAPACK95 took the additional step of defining interface modules for the

LAPACK routines it called and using generic interfaces for all internal subrou-

tine calls. This forces the compiler to match a specific interface to the generic

interface at compile time and provides a compile-time check that the number

and type of arguments at the calling site is correct and that a pre-compiled

LAPACK library is compatible with a user’s code. This is such a powerful fea-

ture that it has been adopted in LAPACK3E as well

2.4 Generic interfaces

Fortran 90 has the capability for overloading, that is, defining a generic interface

which can be resolved to a type-specific procedure at compile time. For exam-

C G→ S H→

C Z→ S D→
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 7 of 28

Common source
ple, one could define a generic interface LA_XFOO to one of four type-specific

names SFOO, DFOO, CFOO, and ZFOO as follows:

MODULE LA_XFOO
INTERFACE LA_FOO

SUBROUTINE SFOO(X)
 USE LA_CONSTANTS32, ONLY : WP
 REAL(WP), INTENT(INOUT) :: X(*)
END SUBROUTINE SFOO

SUBROUTINE DFOO(X)
 USE LA_CONSTANTS, ONLY : WP
 REAL(WP), INTENT(INOUT) :: X(*)
END SUBROUTINE DFOO

SUBROUTINE CFOO(X)
 USE LA_CONSTANTS32, ONLY : WP
 COMPLEX(WP), INTENT(INOUT) :: X(*)
END SUBROUTINE CFOO

SUBROUTINE ZFOO(X)
 USE LA_CONSTANTS, ONLY : WP
 COMPLEX(WP), INTENT(INOUT) :: X(*)
END SUBROUTINE ZFOO

END INTERFACE ! LA_FOO
END MODULE LA_XFOO

Note that each of the specific interfaces has a unique argument list because the

parameter WP is defined to be 4 in LA_CONSTANTS32 and 8 in

LA_CONSTANTS. A program that USE’s the LA_XFOO module can then call

one of the xFOO routines using the generic name:

USE LA_XFOO ! must go at the beginning of the program unit

...
CALL LA_FOO(X)

Depending on the type (whether real or complex) and kind (32-bit or 64-bit) of

the array argument X, the compiler will substitute a call to one of SFOO, DFOO,

CFOO, or ZFOO or it will generate an error message if no matching interface

was found.

The problem with generic names is that the arguments at the calling site must

match one of the specific interface specifications exactly in type, kind, and rank.

Type and kind are no problem, but rank is a nuisance. Since Fortran 77 passes

all arguments by reference, Fortran programmers are accustomed to treating an

array as a block of consecutive storage locations and implicitly changing its
8 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Common source
shape across subroutine boundaries. A 1-D work array may be allocated in a

high-level routine and passed to a subroutine where it is treated as a 2-D matrix,

or a higher-dimensional array may call one of the Level-1 BLAS to perform a

vector operation on one column of the array. With reference to the above mod-

ule definition, all of the following calls are invalid:

USE LA_CONSTANTS, ONLY: WP
USE LA_XFOO
REAL(WP) :: A(10,10), W(100)

CALL LA_FOO(A) !!! 2-D array A doesn’t match 1-D array X

CALL LA_FOO(A(1,1)) !!! scalar A(1,1) doesn’t match 1-D array X

CALL LA_FOO(W(51)) !!! scalar W(51) doesn’t match 1-D array X

All Fortran 90 compilers will treat these calls as errors, complaining that it

could not find a specific routine in the generic interface that matches the call.

When mismatches occur, your options are

1) Match the interface to the call

2) Match the call to the interface

The first option can quickly lead to exponential explosion. In the BLAS, for

example, there are up to three array arguments in the argument list, each of

which could be declared as an array of one to seven dimensions in the calling

program, or could be an indexed array that appears to be a scalar to the com-

piler. In LAPACK, there can be 10 or more array arguments, and providing

interfaces for all the ways one of those routines could be called would require

overloading a generic interface with over 1 billion specific interfaces! Obvi-

ously this is a worst case -- most instances of array contraction involve arrays of

just one higher dimension, and most instances of array expansion involve arrays

of one lower dimension -- but any exponential is a bad exponential when code

size is an issue.

The second option has its disadvantages too, because it puts the burden on the

user to adjust his call to match the library. Certainly most users would expect

that if they declare all the arrays in their program exactly like those in the sub-

routine they want to call, they should be able to call the generic interface with-

out any special indexing. This is called the "natural interface" in LAPACK3E,

and it is provided as one option for every BLAS and LAPACK interface specifi-

cation. Most of the BLAS and LAPACK interface specifications also provide a

second interface, in which all the array arguments are defined as scalars. This

interface would match a calling site in which all the arrays were indexed, a com-

mon occurrence in LAPACK. It is called the "point interface" in LAPACK3E.

The LAPACK3E interface modules specify the point interface as the default,

accessible without any additional overhead, and the natural interface as a wrap-
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 9 of 28

Common source
per to the point interface, with the overhead of an extra subroutine call. The

wrapper routines are declared private to the module and are not callable directly.

For example, a generic interface LA_COPY implementing both the point and the

natural interfaces for a BLAS-like subroutine SCOPY1 would be defined as fol-

lows:

MODULE LA_XCOPY

INTERFACE LA_COPY

! Point interface for xCOPY1

SUBROUTINE SCOPY1(N, X, Y)
 USE LA_CONSTANTS32, ONLY: WP
 INTEGER, INTENT(IN) :: N
 REAL(WP), INTENT(IN) :: X
 REAL(WP), INTENT(OUT) :: Y
END SUBROUTINE SCOPY1

MODULE PROCEDURE SCOPY1_X1Y1

END INTERFACE ! LA_COPY
PRIVATE SCOPY1_X1Y1
CONTAINS

! Natural interface for xCOPY1

SUBROUTINE SCOPY1_X1Y1(N, X, Y)
 USE LA_CONSTANTS32, ONLY: WP
 INTEGER, INTENT(IN) :: N
 REAL(WP), INTENT(IN) :: X(*)
 REAL(WP), INTENT(OUT) :: Y(*)
 CALL SCOPY1(N, X(1), Y(1))
END SUBROUTINE SCOPY1_X1Y1

END MODULE LA_XCOPY

The actual specific routine SCOPY1 is generally defined in a separate program

module and may reside in another library. In LAPACK3E, most such modules

would have specifications for a DCOPY1 and perhaps CCOPY1 and ZCOPY1 as

well, but the other types are omitted here. With this definition, LA_COPY could

be called in a user’s program as follows:

USE LA_CONSTANTS32
USE LA_XCOPY
REAL(WP) :: W(100), X(100), Y(10,10)
...
CALL LA_COPY(100, W, X) ! Matches the natural interface
10 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Common source
CALL LA_COPY(50, W(1), X(51)) ! Matches the point interface

CALL LA_COPY(10, Y(1,1), Y(1,2))! Matches the point interface

Any call can be made to match the point interface simply by indexing all the

unindexed arrays. So, for example, the second call above, which might have

been

CALL SCOPY1(50, W, X(51))

in the original type-specific code, must change SCOPY1 to LA_COPY and W to

W(1) to match one of the generic interfaces.

Alternatively, one could try to match the natural interface by passing array sec-

tions in place of indexed arrays. This technique should be used with caution

because it can change the dimensions of multi-dimensional arrays and it may

force the compiler to make a temporary copy of the array, consuming dynamic

memory space and degrading performance. No array sections are used in

LAPACK3E.

2.5 LAPACK3E modules

The archive file liblapack3e.a created by an LAPACK3E installation

includes object code for all the LAPACK routines and auxiliary routines,

replacements for the BLAS routines SNRM2, SCNRM2, DNRM2, and DZNRM2,

any other BLAS needed for that platform, and all the LAPACK3E modules.

Users of LAPACK3E can choose to use as many of the Fortran 90 modules as

they like. They can use none of the LAPACK3E modules, and continue to call

LAPACK routines by their type-specific Fortran 77 names. They can use just

the LA_CONSTANTS or LA_CONSTANTS32 modules to parameterize their

floating point declarations as REAL(WP) or COMPLEX(WP). Or they can use

the BLAS and LAPACK modules, and call the BLAS and LAPACK subroutines

by their generic names to do compile-time argument checking.

The BLAS modules are LA_BLAS1, LA_BLAS2, and LA_BLAS3. Depending

on the ability of one’s Fortran 90 compiler, it may be more efficient to specify

which interfaces one wants from a particular module, for example,

USE LA_BLAS3, ONLY: LA_GEMM

Similar modules are defined for the BLAS in LAPACK95; the LAPACK3E

modules implement only the Fortran 77 calling sequence, and provide both the

natural interface and the point interface as defined in Section 2.4.

The main LAPACK modules are LA_LAPACK and LA_AUXILIARY. Inter-

faces for all the LAPACK routines and driver routines are defined in the

LA_LAPACK module, which is approximately 20,000 lines long. Interfaces for

the commonly used LAPACK auxiliary routines are defined in the

LA_AUXILIARY module. It includes interfaces for routines to compute Giv-
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 11 of 28

Thread safety
ens rotations, Householder reflections, matrix norms, and other operations of

possible interest to LAPACK users.

Many other LAPACK auxiliary routines are only used internally and are not of

general interest. Their interfaces are defined in separate modules to keep the

size of the LA_AUXILIARY module reasonable. For example, the module

LA_XGETF2 defines a generic interface to the LAPACK auxiliary routine

xGETF2, which is only called from xGETRF. In version 1.1 of LAPACK3E,

there are 63 of these internal modules. A complete list can be found by down-

loading the LAPACK3E package and entering

ls la*.f la*.F

in the LAPACK3E/SRC directory.

3.0 Thread safety

The issue of thread safety arises when running a parallel program on a symmet-

ric multi-processing (SMP) machines using a shared memory programming

model such as OpenMP. With OpenMP, the programmer identifies regions of

his or her code that can be run in parallel (often, iterations of a DO loop) and

inserts compiler directives to request parallel execution of those regions. In the

parallel region, multiple processes or threads may be employed to execute the

independent regions in parallel, thereby reducing the overall running time of the

code. However, no two threads can modify the same memory location, or

results will be unpredictable. COMMON blocks and SAVE blocks are usually

allocated from the shared stack or heap, so the presence of these constructs in a

subroutine may mean that it can not be called by two independent threads at the

same time, in other words, the subroutine is not "thread-safe". There are no

COMMON blocks in LAPACK, but there are some SAVE statements, so the

most recent LAPACK release (version 3.0, 1999) is not thread-safe.

SAVE statements in LAPACK arise in two different contexts:

1) Reverse communication in the auxiliary routines xLACON and xLASQ3

2) Saving computed constants so they don’t have to be recomputed, for perfor-

mance reasons

This section discusses the changes that were made to LAPACK to eliminate the

SAVE statements and make LAPACK3E thread-safe.

3.1 Reverse communication

Reverse communication is a technique for interfacing with the calling routine to

have it provide information you don’t need in the argument list. It is used in the

LAPACK auxiliary routine SLACON to pass back a vector , have the callingx
12 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
routine compute or for an array A, and re-enter with a new vector x.

The array A may be a general matrix or banded or symmetric or triangular;

SLACON doesn’t need that information. It was a simple matter to take the three

integer variables that were needed from one call of xLACON to the next and add

them to the argument list of a new version, which was renamed xLACN2. Then

the SAVE statement was not needed and could be deleted. Similar changes

were made to xLASQ3, which was renamed xLADQ3.

3.2 Computed constants in a block

In low-level routines, the overhead of computing certain constants that involve

function calls, divides, or square roots can be significant. To reduce this over-

head, some LAPACK auxiliary routines enclosed the computation of constants

in a block that was computed the first time the routine was called and then

saved, using code such as

LOGICAL FIRST
DATA FIRST / .TRUE. /
SAVE FIRST, ...
IF(FIRST) THEN
 ...
 FIRST = .FALSE.
END IF

The question of how best to remove SAVE statements inserted for performance

reasons was one of the earliest motivations for parameterizing more of the

machine parameters in LAPACK3E. As PARAMETERs, these constants are

expressed as efficiently as the language will allow, and they never need to be

computed, not even the first time through as in LAPACK. SAVE blocks in sev-

eral auxiliary routines were removed as part of this parameterization, finally

making LAPACK3E thread-safe.

4.0 Algorithmic improvements

The modifications to LAPACK necessary to create a common source code for

single and double precision, to define Fortran 90 interfaces, and to make the

package thread-safe did not require any changes to the algorithms or numerical

results. However, that’s not all that went into LAPACK3E. LAPACK3E also

contains updated versions of some algorithmic improvements from the Cray

Scientific Library [Anderson and Fahey 1997], a subsequent LAPACK 3 supple-

ment to libsci [Anderson 1999], the LAPACK release notes (http://
www.netlib.org/lapack/release_notes.html), and the new

BLAS standard [Blackford et al. 2002]. In addition, work done to clean up the

definitions of scaling constants, and subsequent testing on a Cray T3E-1200, an

IBM RS/6000 SP, and a Sun Ultra-4, necessitated some more careful scaling

near underflow and overflow, particularly on machines with IEEE arithmetic

and gradual underflow.

Ax AT x
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 13 of 28

Algorithmic improvements
4.1 SLAMCH

The original LAPACK package included a function SLAMCH to compute and

return various parameters from the floating point model, such as the machine

epsilon, the maximum exponent, the maximum and minimum magnitude, etc.

The function performed a lot of computation and the instructions for installing

LAPACK recommended running it once on a particular platform and putting its

output in a DATA statement [Anderson, Dongarra, and Ostrouchov 1992].

These parameters are now directly accessible from Fortran 90 intrinsic func-

tions, and a Fortran 90 version of SLAMCH has been available for some time

[Anderson 1999]. In LAPACK3E, most uses of SLAMCH have been replaced by

direct use of constants defined in the LA_CONSTANTS and

LA_CONSTANTS32 module files. The Fortran 90 version is provided anyway

in the SRC and INSTALL directories as a guide to setting LA_CONSTANTS
and LA_CONSTANTS32 on new architectures.

4.2 SLABAD and the complex divide

Many LAPACK routines in LAPACK 3 call an auxiliary routine SLABAD (or

DLABAD) to take the square root of SMLNUM and BIGNUM if the exponent

range of the machine is very large. The name referred to "bad" Cray arithmetic,

but it turned out that the lack of a guard digit in Cray floating-point was never an

issue for scaling. Special scaling in LAPACK is really only needed to avoid

overflow or underflow in the complex divide operation . At the time

LAPACK was developed, the Cray compiler (and some others) implemented a

complex divide as

The denominator of the right-hand expression will overflow if Re(y) or Im(y) is
greater than sqrt(OVERFLOW), and will underflow to zero, causing a divide by

zero, if Re(y) and Im(y) are both less than sqrt(UNDERFLOW). The correct

way to perform a complex divide can be found in Knuth [1981] and is imple-

mented in the LAPACK auxiliary routines SLADIV and CLADIV. The algo-

rithm to compute is as follows:

if(ABS(D) < ABS(C)) then
 E = D / C
 F = C + D*E
 P = (A+B*E) / F
 Q = (B-A*E) / F
else
 E = C / D
 F = D + C*E
 P = (B+A*E) / F
 Q = (-A+B*E) / F
end if

x y⁄

x
y

x
y

y
y
---⋅ x y

Re y()2 Im y()2
+

---= =

p q(,) a b(,) c d(,)⁄=
14 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
This algorithm could be made safer still by testing for C or D outside a safe

range for reciprocating, and doing additional scaling in those cases. This wasn’t

needed in xLADIV, but it is done in xRSCL (Section 4.3) and xLARTG (Section

4.5).

SLABAD was removed from all the LAPACK routines and auxiliary routines in

LAPACK3E, but it was necessary to adjust the scaling in a few places to avoid

some unscaled sums of squares. SLABAD was not removed from the test pack-

age, but it was replaced by a "stub" that does no work. This allowed for much

more rigorous testing of the LAPACK software than had previously been done,

because test cases scaled closer to the underflow and overflow thresholds were

generated. In testing on a CRAY T3E, a special version of SLABAD was used

that takes the square root of underflow and overflow in the test code for the com-

plex cases only.

4.3 SRSCL/CRSCL

LAPACK extended the BLAS by providing a reciprocal scale routine that, given

a scalar SA and a vector X, computes (1/SA)*X. In order to guard against

overflow or underflow if SA were outside the range of numbers that could be

safely reciprocated, the subroutine set up an iterative scaling loop that scaled by

the safe minimum or its reciprocal as needed to get SA into a safe range. A

pseudo-code1 outline of the LAPACK algorithm is as follows (note d = denom-

inator, u = numerator, |d| = ABS(d)):

 d = SA; u = 1; t = .TRUE.
 do while (t)
 d1 = d*SMLNUM; u1 = u/BIGNUM
 if(|d1| > |u| .and. u /= 0) then

! Pre-multiply x by SMLNUM if d is large compared to u.

 s = SMLNUM; d = d1
 else if(|u1| > |d|) then

! Pre-multiply x by BIGNUM if d is small compared to u.

 s = BIGNUM; u = u1
 else

! Multiply x by u/d and return.

 s = u / d; t = .FALSE.
 end if
 x = s*x
 end do

1. This is valid Fortran 90 code except for |x| = ABS(x), but the code structure and some of the

operators and variable names have been modified from the original to make it easier to read.
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 15 of 28

Algorithmic improvements
The problem with this algorithm is that if SA is Inf or -Inf on a machine with

IEEE arithmetic, no amount of scaling will ever get it into a safe range. Con-

sider what happens when SA = Inf. Then d = Inf, u = 1, d1 = Inf, u1 = SML-
NUM, and every time through the (now infinite) loop, x is scaled by SMLNUM
with no change in d or u.

In the LAPACK3E version, there is no infinite scaling loop. One scaling pass

should be enough to get a number outside the range of invertible numbers into

that range (if that were not true, then more than half the representable numbers

would be "denormalized" numbers. Put another way, the number of exponent

bits would be fewer than the log of the number of mantissa bits. This is theoret-

ically possible, but unlikely.) Consequently, the LAPACK3E version of SRSCL
does at most one extra scaling. It could perhaps be improved further by check-

ing for exceptional values on entry to avoid even this one extra scaling. The

simplified algorithm has the following structure:

 d = SA
 if(|d| > BIGNUM) then

! Pre-multiply x by SMLNUM if |SA| is very large

 x = SMLNUM*x; d = d*SMLNUM
 else if(|d| < SMLNUM) then

! Pre-multiply x by BIGNUM if |SA| is very small

 x = BIGNUM*x; d = d*BIGNUM
 end if
 s = 1/d

x = s*x

4.4 SLASSQ/CLASSQ

The LAPACK auxiliary routine SLASSQ computes a sum of squares for a vec-

tor x, returning scalar values SCL and SUMSQ such that

where s is the initial value of SCL and q is the initial value of SUMSQ. The val-

ues s and q allow xLASSQ to be used to compute a single sum of squares for a

series of vectors, as is required for the Frobenius norm of a matrix. If properly

done, SLASSQ can be used to implement SNRM2, the 2-norm routine from

Level 1 BLAS, as follows:

SCL = ONE
SUMSQ = ZERO
CALL SLASSQ(N, X, INCX, SCL, SUMSQ)
SNRM2 = SCL*SQRT(SUMSQ)

SCL
2
SUMSQ⋅ x 1()2 x 2()2 … x n()2 s2 q⋅+ + + +=
16 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
The scaling factor SCL is key to the safe implementation of SLASSQ; without

it, the sum of squares would overflow if the magnitude of any element of x were

greater than sqrt(SAFMAX), or it would underflow to zero if the magnitude of

each element of x were less than sqrt(SAFMIN).

The LAPACK version of SLASSQ makes one pass through the vector x and con-

tinually rescales the sum by the largest x(i) in absolute value. This method

avoids overflow by keeping the sum of squares near 1 while the scale factor SCL
is always less than 1. The LAPACK algorithm for a unit-stride vector x is as fol-

lows:

do i = 1, N
 if(x(i) /= ZERO) then
 d = |x(i)|
 if(SCL < d) then
 SUMSQ = 1 + SUMSQ*(SCL/d)**2
 SCL = d
 else
 SUMSQ = SUMSQ + (d/SCL)**2
 end if
 end if
end do

There are two problems with this algorithm:

1) If SCL >= ONE and SUMSQ = ZERO on entry and | x(i)| < 1 for each x(i),

then none of the x(i)’s will be scaled and the sum of squares will under-

flow to zero if each x(i) is less than sqrt(SAFMIN) in absolute value. This

is bad because a natural way to initiate a sum of squares is with SCL = ONE
and SUMSQ = ZERO.

2) The algorithm inhibits vectorization and consequently exhibits poor perfor-

mance.

The LAPACK3E version is based on a version described for the Cray Scientific

Library [Anderson and Fahey 1997] with additional logic for denormalized

numbers, which are not invertible. In the LAPACK3E algorithm, an initial pass

is made through the vector x to find the maximum entry in absolute value. If the

maximum is in a safe range, a second pass is made to compute the sum of

squares without scaling. If the maximum is outside the safe range, the second

pass computes the sum of squares with scaling, where the scaling constant is

always an invertible number. The two-pass algorithm is efficient on a vector

machine because it removes the IF tests from the loops, and it also does well on

a cache-based machine because the second pass will typically find the vector in

the cache. The new algorithm is up to 40 times faster than LAPACK on a Cray

vector machine, and up to four times faster on an IBM SP.

The LAPACK3E algorithm for a unit-stride vector x is outlined below.
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 17 of 28

Algorithmic improvements
 HITEST = RTMAX / real(N+1, WP)

! Pass through once to find the maximum value in x.

 p = ZERO
 do i = 1, N
 p = max(p, |x(i)|)
 end do
 q = max(SCL*sqrt(SUMSQ), p)

if(SCL == ONE .and. q > RTMIN .and. q < HITEST) then

! No scaling should be needed.

 do i = 1, N
 SUMSQ = SUMSQ + x(i)**2
 end do
 else if(p > ZERO) then

! Scale by q if SCL = ONE, otherwise scale by max(q, SCL).

 q = min(max(q, SAFMIN), SAFMAX)
 if(SCL == ONE .or. SCL < q) then
 SUMSQ = (SUMSQ*(SCL / q))*(SCL / q)
 SCL = q
 end if

! Add the sum of squares of values of X scaled by SCL.

 do i = 1, N
 SUMSQ = SUMSQ + (x(i) / SCL)**2
 end do
 end if

An alternative algorithm due to Blue [1978] is found in the original Level 1

BLAS routine SNRM2 [Lawson et al. 1979]. That algorithm makes one pass

through the vector x as in the LAPACK version, but it only scales when neces-

sary as in the LAPACK3E version. Blue’s algorithm is efficient and, in fact, is

faster than LAPACK3E, but it is written in a very unstructured programming

style and consequently many scientific library writers have apparently tried to

rewrite it, with not much success. The instructions for installing LAPACK3E

include compiling a new version of xNRM2 to avoid the widespread scaling

inadequacies in the netlib and vendor implementations of this function.

4.5 SLARTG/CLARTG

The LAPACK auxiliary routines for generating and applying Givens rotations

are used extensively in the package and have been through several recent revi-
18 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
sions. In the real case, a Givens rotation is a rank-2 correction to the identity of

the form

where and for some angle θ. Premultiplication of a vec-

tor x by G(i,j,θ) amounts to a clockwise rotation of θ radians in the (i, j) plane.

If , the vector y can be described by

We can force to be zero by choosing θ to be the angle described by the vec-

tor in the (i, j) plane, which leads to the formulas

In practice, r, like any square root of a sum of squares, must be computed with

scaling to avoid underflow when both and are less than the square root of

underflow, or when one of or is greater than the square root of overflow.

Since a Givens rotation only modifies two elements of a vector, its action can be

described by the 2-by-2 linear transformation

G i j θ, ,()

1

…
1

c s

1

…
1

s– c

1

…
1

=

c θ()cos= s θ()sin=

y G i j θ, ,() x=

yk

cxi sx j ,+ k i=

sxi– cx j ,+ k j=

xk , k i j,≠





=

y j

xi x j

T

r xi
2 x j

2
+±=

c xi r⁄=

s x j r⁄=

xi x j

xi x j

c s

s– c

f

g

r

0
c2 s2

+, 1= =
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 19 of 28

Algorithmic improvements
The LAPACK auxiliary routine SLARTG computes c, s, and r satisfying this

equation, given f and g. The choice of sign for c and s gives rise to several algo-

rithmic variants [Anderson 2000]:

1. BLAS SROTG [Lawson et al. 1979]

c = 1, s = 0: g = 0

c = 0, s = 1: f = 0

c > 0, sign(s) = sign():

s > 0, sign(c) = sign(): otherwise

2. LAPACK 3 SLARTG

c = 1, s = 0: g = 0

c = 0, s = 1: f = 0

 sign(c) = -sign(f), sign(s) = -sign(g): and f < 0

 sign(c) = sign(f), sign(s) = sign(g): otherwise

3. LAWN150

c = sign(f), s = 0: g = 0

c = 0, s = sign(g): f = 0

 sign(c) = sign(f), sign(s) = sign(g): otherwise

4. BLAS Technical Forum version [Bindel et al. 2002]

c = 1, s = 0: g = 0

c = 0, s = sign(g): f = 0

c > 0, sign(s) = sign(f)*sign(g): otherwise

Algorithm 3 has the smallest set of points of discontinuity in the real case, but

Algorithm 4 has the best continuity in the complex case if we add the require-

ment that the complex code produce identical results to the real code when f and

g are real [Bindel et al. 2002]. In LAPACK3E, an algorithm equivalent to Algo-

rithm 4 is used. The mathematical specification for this algorithm in the com-

plex case is as follows:

where c is real and r, f, g, and s are complex. When f = g = 0, r = 0 and we

choose c = 1, s = 0. Otherwise,

g f⁄ f g>

f g⁄

f g>

c s

s– c

f

g

r

0
,= c2 s s⋅+ 1=
20 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
Bindel et al. [2002] describe an implementation of xLARTG which contains

SAVE blocks and tries to scale at least 3 times if given IEEE exceptional values

as inputs. The LAPACK3E version fixes these problems in a straightforward

implementation. SLARTG is shown in abbreviated form below:

SUBROUTINE SLARTG(F, G, CS, SN, R)
USE LA_CONSTANTS
REAL(WP) CS, F, G, R, SN
REAL(WP) D, F1, FS, G1, GS, T, TT
INTRINSIC ABS, SIGN, SQRT
F1 = ABS(F)
G1 = ABS(G)
IF(G == ZERO) THEN
 CS = ONE
 SN = ZERO
 R = F
ELSE IF(F == ZERO) THEN
 CS = ZERO
 SN = SIGN(ONE, G)
 R = G1
ELSE IF(F1 > G1) THEN
 IF(F1 > SAFMIN .AND. F1 < SAFMAX) THEN
 T = G / F
 TT = SQRT(ONE+T*T)
 CS = ONE / TT
 SN = T*CS
 R = F*TT
 ELSE
 F1 = MIN(SAFMAX, MAX(F1, SAFMIN))
 FS = F / F1
 GS = G / F1
 TT = SQRT(FS*FS + GS*GS)
 D = ONE / TT
 CS = ABS(FS)*D
 SN = GS*SIGN(D, F)
 R = F1*SIGN(TT, F)
 END IF

x()sgn
x x⁄ ,

1,



≡
x 0≠
x 0=

r f() f 2 g 2
+sgn=

c
f

f 2 g 2
+

---------------------------=

s
f()sgn g⋅

f 2 g 2
+

---------------------------=
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 21 of 28

Algorithmic improvements
ELSE
 IF(G1 > SAFMIN .AND. G1 < SAFMAX) THEN
 T = F / G
 TT = SQRT(ONE+T*T)
 D = ONE / TT
 CS = ABS(T)*D
 SN = SIGN(D, F)*SIGN(ONE, G)
 R = G1*SIGN(TT, F)
 ELSE
 G1 = MIN(SAFMAX, MAX(G1, SAFMIN))
 FS = F / G1
 GS = G / G1
 TT = SQRT(FS*FS + GS*GS)
 D = ONE / TT
 CS = ABS(FS)*D
 SN = GS*SIGN(D, F)
 R = G1*SIGN(TT, F)
 END IF
END IF
RETURN
END

The complex case is similar but is complicated slightly by concerns over the

safety of dividing a complex number by a real. According to the Fortran 90

standard, Z/R where Z is complex and R is real should be computed by first

converting R to complex and then computing Z/Y, where

Y = CMPLX(R, ZERO, KIND(R))

However, a few machines are known to compute Z/Y as (Z*CONJG(Y))/
(Y*CONJG(Y)) as described in Section 4.2, which is prone to overflow or

underflow when computing Y*CONJG(Y) = REAL(Y)**2 + IMAG(Y)**2.

In LAPACK3E’s version of CLARTG, Z/R computations are always converted

to (1/R)*Z. For performance reasons, we would like this to be computed as

CMPLX((1/R)*REAL(Z), (1/R)*IMAG(Z))

If an optimizing compiler does not do this for you, it could be done explicitly.

The LAPACK auxiliary routines SLARGV and CLARGV are related to SLARTG
and CLARTG, computing a vector of Givens rotations instead of just one. In

LAPACK3E, these routines are consistent with SLARTG/CLARTG, a feature

not shared by all previous versions of LAPACK.

4.6 SGEBAL/CGEBAL

Subroutines for balancing (BALANC in EISPACK [Smith et al. 1976] and

xGEBAL in LAPACK) are applied to general nonsymmetric matrices in order

to isolate eigenvalues and make the magnitudes of elements in corresponding

rows and columns nearly equal. This can reduce the 1-norm of a matrix and
22 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
improve the accuracy of its computed eigenvalues and/or eigenvectors. The first

step looks for zeros in a dense n-by-n matrix A and permutes it to the form

where R11 and R33 are upper triangular. The diagonal elements of R11 and R33
are the isolated eigenvalues of A. The second step determines a diagonal scaling

matrix D22 that is applied to A22, replacing it with . The scaling

matrix is determined iteratively by scaling each row and column by powers of

the radix until they are nearly equal. After the permutations and balancing, the

matrix A is transformed to

The scaling for a particular row and column of A22 proceeds as follows. Let

C = 1-norm of the i-th column of A22 excluding the diagonal

R = 1-norm of the i-th row of A22 excluding the diagonal

Assume C <= R, SCL = 1/8 (LAPACK) or 1/16 (EISPACK), and SCL2 = SCL2.

In BALANC from EISPACK, the row scaling factor G is computed as2

F = R*SCL
G = ONE
DO WHILE(C < F)
 F = F*SCL2
 G = G*SCL
END DO

After the loop, the row is scaled by G < 1 and the column by 1/G. This scaling

is safe for A22, but there are no checks for overflow or destructive underflow in

the scaling of A12 and A23. The LAPACK version adds these checks, but in an

unnecessarily cumbersome way.

In SGEBAL from LAPACK3E, the checks are implemented as additional tests

on the DO WHILE condition. Two additional norms are required:

2. This code fragment is restructured from the original -- there are no DO WHILE statements in

EISPACK.

PAPT
R11 A12 A13

0 A22 A23

0 0 R33

=

D22

1– A22D22

D 1– PAPT D

R11 D22 A12 A13

0 D22

1– A22D22 D22

1– A23

0 0 R33

=

LAPACK3E -- A Fortran 90-enhanced version of LAPACK 23 of 28

Algorithmic improvements
CA = max norm of the i-th column of A
RA = max norm of the i-th row of A

Then the balancing step takes the form

F = R*SCL
G = ONE
DO WHILE(C < F .AND. CA < G*SFMAX .AND. RA*G > SFMIN)
 F = F*SCL2
 G = G*SCL
END DO

The extra test CA < G*SFMAX guards against overflow in the diagonal element

of A22 or in the i-th column of A12 when scaled by 1/G. EISPACK probably

should have included this test as well. The test RA*G > SFMIN guards against

destructive underflow when scaling the i-th row by G. This condition probably

wouldn’t have occurred in the days of EISPACK because most machines would

have underflowed to zero, making F = 0 and forcing C < F to be false. However,

in IEEE arithmetic, precision can be lost when scaling the row even before it

underflows to zero.

We haven’t said what SFMAX and SFMIN are. To implement EISPACK-style

balancing, one would set SFMAX to be the safe maximum (SAFMAX in

LAPACK3E) and SFMIN to be the safe minimum (SAFMIN in LAPACK3E).

But there are test cases for which EISPACK-style balancing makes the matrix

norm much worse and can lead to overflow later on. This issue needs further

study, but as an interim fix, LAPACK3E’s SGEBAL limits SFMAX to 100 times

the norm of A. The LAPACK3E test package also replaces the test code for

xGEBAL and xGEBAK in the LAPACK 3 package with a more thorough suite of

tests.

4.7 Solve routines xxxTRS

One of the more dramatic improvements to LAPACK for the Cray Scientific

Library was a redesign of the routines to solve linear systems with multiple

right-hand sides [Anderson and Fahey 1997]. The LAPACK routines, in keep-

ing with the strategy of pushing all parallelism into the BLAS, solve across all

the right-hand sides at once using Level 2 and 3 BLAS. This design is ineffi-

cient if there is only one or a small number of right-hand sides, the most com-

monly occurring case, because one of the dimensions in the Level 2 or 3 BLAS

call is small. A better approach is to take advantage of the independence of the

right-hand sides and solve for them in parallel. In the Cray Scientific Library,

parallelism was expressed in terms of Cray autotasking directives; in

LAPACK3E, it is expressed using OpenMP. This method is also faster for one

right-hand side because it avoids calling Level 2 and 3 BLAS with one dimen-

sion equal to 1.
24 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Algorithmic improvements
The following discussion of the redesign of the LAPACK solve routines bor-

rows from Anderson and Fahey [1997]. The standard solve routine xxxTRS
was renamed xxxTS2, and special case code for one right-hand side was added

to xxxTS2. Then a new routine xxxTRS was written to call xxxTS2 in a par-

allel loop. The stride for the parallel loop, called NB by analogy with the block

factorization routines where NB is the block size, is determined by a call to a

new auxiliary routine ILATRS, which returns NB = 1 if it is more efficient to

solve for each right-hand side independently, and NB > 1 if it is more efficient to

solve for NB right-hand sides at a time.

The structure of SSYTRS with the new design is as follows:

 IF(NRHS.EQ.1) THEN
 NB = 1
 ELSE
 NB = MAX(1, ILATRS(1, SPREFIX // ‘SYTRS’,
 & UPLO, N, NRHS, -1, -1))
 END IF
 IF(NB.GE.NRHS) THEN
 CALL LA_SYTS2(IUPLO, N, NRHS, A, LDA, IPIV, B,
 & LDB)
 ELSE

!$OMP PARALLEL DO PRIVATE(J,JB)
!$OMP CNCALL

 DO J = 1, NRHS, NB
 JB = MIN(NRHS-J+1, NB)
 CALL LA_SYTS2(IUPLO, N, JB, A(1,1), LDA,
 & IPIV(1), B(1,J),LDB)
 END DO

!$OMP END PARALLEL DO

 END IF

Note in particular that if NB = 1, then each column of the right hand side matrix

B is solved independently in the DO loop.

This leaves the question of how to set the “blocksize” NB in ILATRS. Based on

experience with optimizing LAPACK for the Cray library, we assume that it is

better to solve for one right-hand side at a time if NB < 8. The OpenMP func-

tion OMP_GET_NUM_THREADS is used to determine how many threads are

available for parallel execution, and the function OMP_GET_DYNAMIC is used

to determine if the number of threads is dynamic (if true) or static (if false). If

the number of threads is dynamic, the right-hand sides are parceled out in

chunks of about 32. If the number of threads is static, the right-hand sides are
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 25 of 28

Future extensions to LAPACK3E
divided evenly among the threads. The function ILATRS is implemented as

follows in LAPACK3E:

#ifdef _OPENMP
 NCPU = OMP_GET_NUM_THREADS()
#else
 NCPU = 1
#endif
 ILEN = 32

 IF(NCPU.EQ.1) THEN
 NB = N2
 ELSE
#ifdef _OPENMP
 IF(.NOT.OMP_GET_DYNAMIC()) THEN
 NUSE = NCPU
 ELSE
 NUSE = (N2+ILEN-1)/ILEN
 END IF
#else
 NUSE = NCPU
#endif
 NB = (N2+NUSE-1) / NUSE
 END IF

 IF(NB.LT.8) NB = 1
 ILATRS = NB

Note that the value of NUSE may be greater than the number of threads if the

number of threads is dynamic and the number of right-hand sides N2 is large.

This is a heuristic choice intended to help balance the load in the dynamic envi-

ronment.

5.0 Future extensions to LAPACK3E

LAPACK3E generalizes some of the type-specific features of LAPACK in a

way that is portable, maintainable, and extensible. However, these features have

only been applied to the LAPACK source routines. Applying these design

improvements to the LAPACK test and timing code would improve the package

in many of the same ways that LAPACK has been improved, by combining the

source code for single and double precision, defining scaling parameters more

consistently, and reducing the overhead of small cases. It would also simplify

testing new variants of LAPACK, such as a 32-bit version for Cray platforms or

a higher precision version on a machine with extended precision arithmetic.

Complicating this task is the lack of any tools to apply LAPACK3E-style

changes to LAPACK-style code.
26 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

Future extensions to LAPACK3E
Much more could also be done to simplify the argument lists of certain

LAPACK routines. Currently, the generic interfaces in LAPACK3E only save

the users from having to decide what should be the first letter of the subroutine.

LAPACK95 went further, overloading the interfaces of the LAPACK driver rou-

tines with other, simpler, interfaces. So, for example, instead of an option argu-

ment to indicate whether or not to compute an array of eigenvectors, the array

itself would be an optional argument, and the driver routine would compute the

eigenvectors if that argument were provided. LAPACK95 also allocates work-

space dynamically in the LAPACK driver routines, so that the workspace argu-

ments are not needed. With some similar additions to the interface

specifications, LAPACK3E could be made a superset of LAPACK95.

One concern about creating yet another version of LAPACK is that it further

complicates the problem of keeping all the LAPACK versions consistent. Cur-

rently there are versions of LAPACK in Fortran, Fortran 90/95, C, C++, and

Java, as well as related projects such as ScaLAPACK [Blackford et al. 1997]

that all start from the same base. The creation of a master version for all of

these LAPACKs is well beyond the scope of this paper. But LAPACK3E does

unify LAPACK 3 with variations in the Cray Scientific Library and in the

LAPACK 3 supplement to libsci, and it could subsume LAPACK95 with some

additional work overloading the interfaces of the driver routines. In this respect,

it is a step in the right direction.

References

E. Anderson, Installing LAPACK 3 on CRAY Machines, online technical

report, Dec. 1999. (http://www.cs.utk.edu/~eanderso/
lapack3.html)

E. Anderson, Discontinuous Plane Rotations and the Symmetric Eigenvalue

Problem, LAPACK Working Note 150, University of Tennessee, CS-00-454,

December 2000.

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du

Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,

LAPACK Users’ Guide, Third Edition, SIAM, Philadelphia, 1999.

E. Anderson, J. Dongarra, and S. Ostrouchov, Installation Guide for LAPACK,

LAPACK Working Note 41, University of Tennessee, CS-92-151, June 1992.

E. Anderson and M. Fahey, Performance Improvements to LAPACK for the

Cray Scientific Library, LAPACK Working Note 126, University of Tennes-

see, CS-97-359, April 1997.

V. A. Barker, L. S. Blackford, J. Dongarra, J. Du Croz, S. Hammarling, M.

Marinova, J. Wasniewski, and P. Yalamov, LAPACK95 Users’ Guide, SIAM,

Philadelphia, 2001.
LAPACK3E -- A Fortran 90-enhanced version of LAPACK 27 of 28

Future extensions to LAPACK3E
D. Bindel, J. Demmel, W. Kahan, and O. Marques, On Computing Givens Rota-

tions Reliably and Efficiently, ACM Trans. Math. Soft., Vol. 28, No. 2, June

2002, pp. 206-238.

L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M.

Heroux, L. Kaufman, A. Lumsdaine, A. Petitet, R. Pozo, K. Remington, and

R. C. Whaley, An Updated Set of Basic Linear Algebra Subprograms

(BLAS), ACM Trans. Math. Soft., Vol. 28, No. 2, June 2002, pp. 135-151.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J.

Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and

R. C. Whaley, ScaLAPACK Users’ Guide, SIAM, Philadelphia, 1997.

J. L. Blue, A portable Fortran program to find the Euclidean norm of a vector,

ACM Trans. Math. Soft., Vol. 4, No. 1, 1978, pp. 15-23.

S. Browne, J. Dongarra, E. Grosse, and T. Rowan, The Netlib Mathematical

Software Repository, D-Lib Magazine, September 1995. (http://
www.netlib.org/srwn/srwn21.html)

J. J. Dongarra, J. Du Croz, S. Hammarling, and I. Duff, A Set of Level 3 Basic

Linear Algebra Subprograms, ACM Trans. Math. Soft., 16(1):1-17, March

1990.

J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, An Extended Set

of FORTRAN Basic Linear Algebra Subprograms, ACM Trans. Math. Soft.,
14(1):1-17, March 1988.

D. E. Knuth, The Art of Computer Programming, Volume 2, Seminumerical
Algorithms, Second edition, Addison-Wesley, Reading, MA, 1981.

C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh, Basic linear algebra

subprograms for Fortran usage, ACM Trans. Math. Soft., Vol. 5, 1979, pp.

308-323.

B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. Ikebe, V. C. Klema,

and C. B. Moler, Matrix Eigensystem Routines -- EISPACK Guide, Second
Edition, Springer-Verlag, 1976.
28 of 28 LAPACK3E -- A Fortran 90-enhanced version of LAPACK

	LAPACK3E -- A Fortran 90-enhanced version of LAPACK
	1.0 Introduction -- Evolution of LAPACK interfaces
	2.0 Common source
	2.1 Parameterizing the KIND
	2.2 Parameterizing other constants
	2.3 Renaming in the preprocessor
	2.4 Generic interfaces
	2.5 LAPACK3E modules

	3.0 Thread safety
	3.1 Reverse communication
	3.2 Computed constants in a block

	4.0 Algorithmic improvements
	4.1 SLAMCH
	4.2 SLABAD and the complex divide
	4.3 SRSCL/CRSCL
	4.4 SLASSQ/CLASSQ
	4.5 SLARTG/CLARTG
	4.6 SGEBAL/CGEBAL
	4.7 Solve routines xxxTRS

	5.0 Future extensions to LAPACK3E
	References

