
Next Generation Content Distribution Using the
Logistical Networking Testbed

Scott Atchley, Micah Beck, Hunter Hagewood, Jeremy Millar,
Terry Moore, James S. Plank, and Stephen Soltesz

{atchley, mbeck, hagewood, millar, tmoore,
plank, soltesz}@cs.utk.edu

Technical Report UT-CS-02-498
Logistical Computing and Internetworking Laboratory

Department of Computer Science
University of Tennessee

1122 Volunteer Boulevard, Suite 203
Knoxville, TN 37996 USA

Abstract. We describe the difficulties of content distribution and building an ad
hoc content distribution network using the Network Storage Stack and a pub-
licly available testbed. The testbed uses the Network Storage Stack, developed
at the University of Tennessee, which allows for flexible sharing and utilization
of writable storage as a network resource. The ad hoc content distribution net-
work improves resource utilization and user throughput without highly central-
ized control. The networking testbed provides over 10 TB of shared storage
around the world that is available to all for research.

1 Introduction

Information dissemination for producers and consumers of large datasets over the
wide-area network is a logistical challenge. Data that is generated by research simula-
tions and multimedia enthusiasts can be difficult to obtain because it is often stored at
network endpoints and served by slow transfer services such as HTTP and FTP. We
will discuss current strategies (mirroring and content distribution networks) and their
benefits and shortcomings including scalability issues. To overcome these problems,
the Logistical Computing and Internetworking Laboratory at the University of Ten-
nessee has developed the Logistical Networking Stack that allows users to store data
in the network and access it quickly and easily. We discuss the layers of the stack and
how we built a high-performance content distribution system that overcomes many of
the deficiencies of modern content delivery techniques using the components of the
networking stack.

2 Current Methods

Content replication strategies and techniques have continued to evolve. We examine
in this section two commonly used methods for making popular content more easily
accessible and some of the benefits and shortcomings of both.

2.1 Traditional Mirroring

Mirrors are non-authoritative replicas of resource-intensive Internet content. They are
a simple content delivery solution designed to spread network traffic across machines
that do not share a common Internet connection. This strategy is used when the con-
tent attracts a large number of visitors, saturating available HTTP or FTP connections,
or when the content sought has the potential to consume a significant percentage of
available bandwidth. It is very much akin to web-caching solutions [14], but with
longer persistence.

The mirroring process begins with the master copy. This is usually an HTTP or
FTP service with a recognized brand name (e.g. redhat, mandrake). Other locations
with available resources and interest in the content (either direct or indirect) agree to
replicate the service by downloading the contents of the master node and then keeping
the contents current using scripts and file transfer tools (such as rsync [7]). Once that
relationship is established, the master node advertises the additional servers that mir-
ror its content. Mirror nodes with substantial resources may also be used as interme-
diaries for other nodes, creating a replication tree and relieving the load on the master
node.

The mirroring solution does achieve the basic objective of distributing network
traffic, but creates significant problems for content owners and does little to improve
the user's access to information. Content owners must depend on the administrators of
the mirrors to preserve the quality of their work. Much more coordination is required
because administration is not centralized, therefore reducing system-wide control and
responsiveness. Other possible administrative problems include rogue synchroniza-
tion jobs and clandestine mirrors.

Little information about the official mirror sites is offered to the user, resulting in
poor load-balancing and trial-and-error access. The domain names of the mirrors
usually indicate what country they are in and other geographical pointers are some-
times included in the list. Occasionally the maximum number of connections allowed
at each mirror will be provided, but no information is typically available about how
many are already in use. This limited information can influence the user in unpredict-
able ways such as always picking the first mirror even if the list is ordered alphabeti-
cally. Asking the user to choose based on such limited information does not maximize
the efficiency of the available resources and results in an uneven distribution of traffic
and lower performance for the user. Information about each mirror's network connec-
tion status and number of connections used may provide a basis for better decision-
making, but the bottom line is that the user is the resolution service.

2.2 Advanced Content Distribution Networks

The Internet2 Distributed Storage Infrastructure (I2-DSI) project is a replicated host-
ing platform for Internet content and services [6]. Its purpose is to investigate issues
surrounding content distribution networks (CDN) by building a geographically dis-
tributed test bed that supports various types of Internet services. I2-DSI, like most
CDNs, relies heavily on file replication to ensure the benefits advertised by CDN
services, namely improved latency, reduced bandwidth consumption, and automated
backup.

The I2-DSI project looks for high-demand content and services of interest to the
academic and research communities. This content is then “channelized” for portability
and replicated across the I2-DSI [4]. I2-DSI uses Cisco’s Distributed Director to map
a single hostname to multiple machines, which directs the request for content to the
appropriate mirror. The appropriate mirror is determined by weighted network metrics
such as border gateway protocol (BGP), which determines network proximity by hop
count, and other metrics [8]. This method is superior to traditional mirroring since the
resolution process is transparent to the user and ensures a better utilization of the
replicated content and associated resources. This approach does not address the prob-
lem of servers becoming overloaded if more of the clients are closer to one of the
mirrors.

Content being served by I2-DSI can manifest detectable patterns of utilization. The
patterns are often temporal or geographical in nature. Once understood, this informa-
tion allows the administrators to forecast CDN resource utilization and develop con-
tent replication strategies to further improve content delivery. Once setup and prop-
erly configured, a CDN is an effective and sophisticated means of information access
and delivery.

There are two barriers to making CDNs a more common service: cost and replica-
tion integrity. Deploying a CDN for publicly available content is expensive. It re-
quires administrative control over nodes with large storage capacity at geographically
dispersed locations with adequate connectivity. Details regarding machine mainte-
nance and co-location agreements are drawn out. Each node must be configured to
participate in the resolution scheme and to automatically update its directory struc-
ture. The administrative system for a CDN must be concerned with both hardware and
content availability. Failed hardware components must be reported as well as failed or
corrupted data replication. CDNs can be scalable, but due to this administrative over-
head, not rapidly expandable.

The difficulty in maintaining replication integrity over a CDN is not because of in-
adequate corruption detection of single files, but the delay caused by the replication of
very large files. I2-DSI hosts mirrors of popular Linux distributions. These are CD
images stored as files with a .iso extension whose typical size is 660MB. A single
release of these distributions usually includes three CDs with an aggregate file size of
1.98 GB. When a new release is published, the I2-DSI system must make four uncor-
rupted copies of each of the three CDs from the publishing I2-DSI node. Before this
occurs, the publishing I2-DSI node must retrieve its copy from an authoritative
source. It would take approximately eleven hours to complete the replication on I2-
DSI under optimal network conditions and perfect job scheduling. It is common for
full replication to take twenty-four hours or more.

This delay creates serious problems. Since the replication is a two-step process, us-
ers directed to the publishing node will be able to access the Linux files before users
directed to nodes that have not finished replicating. Therefore, users nearer to mirrors
may receive the older version of the content and they cannot override the automatic
mirror selection in order to get the new content. Also, the master site is not only
sending replicas to the mirrors, but it is also serving client requests, which greatly
adds to its load. Once other machines finish replicating, more users will have access
to the files, but inconsistencies will be obvious until the process is finished. Strategies
for reducing user load on nodes doing replication have been suggested, but tend to
increase the duration of the process by reducing the level of parallelism. Even when
the replication is finished, the traffic generated by the Linux user community reduces
the delivery performance of other content hosted by I2-DSI resulting in an overall
cancellation of CDN benefits.

3 exDN: Ad Hoc Content Distribution Networks

What is needed is a more flexible framework for moving content to distribution sites,
decentralized load-balancing to ensure use of all available resources while maintain-
ing scalability, the ability to quickly add more replicas as demand requires, and im-
prove throughput to end users. After designing and implementing the Internet2-DSI
infrastructure, the LoCI Lab developed the Network Storage Stack to provide storage
as a scalable and sharable resource to the wide-area [5]. Based on this protocol stack,
the LoCI Lab has deployed a Logistical Networking Testbed. Using this testbed,
content owners can quickly set up an ad hoc content distribution network.

3.1 The Network Storage Stack and Logistical Networking

The Internet Protocol (IP) Stack serves as the basis for networking communication
worldwide. The IP stack has at its foundation a simple service — datagram delivery.
The failure mode is simple as well — the datagram either arrives or it does not. The
IP layer makes no guarantees. Based on this simple service, more complex services
can be built such as TCP, which does offer delivery guarantees. This notion of build-
ing complex services on top of unreliable services is based on the end-to-end argu-
ments [13] and it is because of this design the Internet has been able to scale so well.

Using the IP stack as a guideline, the Logistical Computing and Internetworking
(LoCI) Lab at the University of Tennessee has developed the Network Storage Stack.
The goal of the Network Storage Stack is to add storage resources to the Internet in a
sharable, scalable manner just as IP made possible scalable, sharable communication.
The parts of the Network Storage Stack are shown in figure 1. Next, we will briefly
outline each layer.

Fig. 1. The layers of the Network Storage Stack abstract necessary details such as hardware
devices while exposing as much policy as possible.

3.1.1 Internet Backplane Protocol
The foundation of the Network Storage Stack is the Internet Backplane Protocol
(IBP). IBP allows anyone to share disk space or memory space over the network. The
server software can run in user space. The user sets the amount of space to share and
the maximum time allowed for any single allocation.

IBP is a simple service with the following operations:
Allocate: Request space for a limited time
Store: Write data to an allocation. The writes are append-only.
Load: Read from an allocation.
Copy: Perform a third-party transfer from one allocation to another with-

out bringing the data back to the client. The Copy call uses TCP and
is available on every IBP depot.

MCopy: Perform third-party transfers in point-to-point or point-to-multipoint
mode. The MCopy call can use many protocols including TCP, reli-
able and unreliable UDP, and non-IP protocols. The depots allow
plug-in modules to provide additional protocols. All depots in-
volved in the transfer must support the specified protocol.

Manage: Change the properties of the allocation.
Because IBP has a few, simple operations, we believe that the service can scale as

easily as the Internet. See [5] for a more detailed look at IBP including types of allo-
cations and other policies.

3.1.2 Logistical Backbone
Once a user knows the hostnames and ports for some IBP depots, the user can allocate
space and then write and read from it. To help users find IBP depots, part of the next
layer up of the stack is the Logistical Backbone (L-Bone). The L-Bone is a resource
discovery service that maintains a list of public depots and metadata about those de-
pots.

The metadata includes IBP information such as hostname, port, and allocation du-
ration policy, as well as recent space availability values. The L-Bone periodically
polls the depots to update the space availability values. In addition to the IBP meta-
data, the L-Bone can also store geographic location information as well as machine
room characteristics such as data backup policy, power backup availability, and oth-
ers. The L-Bone client library provides the ability to find depots matching specific
criteria (available space, duration policy, IBP allocation type, etc.). It also provides
the ability to check if a list of depots are available and still meet the needs of the user.

The L-Bone servers use the Network Weather Service (NWS) [15] to monitor
throughput between depots. NWS takes periodic measurements between depots,
which it stores and uses to produce forecasts when needed. The L-Bone client library
allows the client to provide a source list of depots and a target list of depots to the
server. The server will query NWS and then return a matrix of the throughput fore-
casts.

As of December 2002, the L-Bone lists over 140 depots (Figure 2) on five conti-
nents. These depots are serving over 10 TB of publicly available storage.

Fig. 2. As of December 2002, the L-Bone has over 140 IBP depots worldwide that are sharing
over 10 TB of publicly available storage.

3.1.3 exNode
Handling a large number of IBP capabilities can be cumbersome. The exNode library
automates the handling of IBP capabilities and allows the user to associate metadata
with the capabilities.

In the Unix file system, the inode maintains an index of disk blocks that map the
file’s contents to the disk. In Unix, these blocks must be a uniform size throughout the
disk and there must be only one block per offset within the file. The exNode is a
similar data structure that allows a user to chain IBP allocations together into a larger
logical entity that is much like a network file (Figure 3).

Fig. 3. exNode compared to the inode.

Unlike the inode, the exNode is not limited to fixed size allocations and the
exNode may have varying-size IBP allocations. Also, unlike the inode, which is as-
sumed to be on a reliable disk, the exNode holds IBP allocations on a network that is
assumed to be unreliable. Because of this inherent unreliability, the exNode may have
many replicas of the data over different IBP depots to improve fault-tolerance. See
figure 4 for sample exNodes.

Fig. 4. Sample exNodes.

The exNode also allows for allocations that contain auxiliary data, which is not
part of the file extent. For example, the allocations may contain Reed-Solomon code
blocks or parity codings. These blocks can improve fault-tolerance with a lower space
requirement than replication alone.

The exNode has two major components, arbitrary metadata and mappings. Map-
pings may have metadata as well. Metadata consists of <name, value, type> triplets
where the types are 64-bit integers, 64-bit floating point numbers, character strings,
and metadata lists. The metadata lists allow nesting of metadata.

Each mapping may also have function metadata that describes how the data was
encoded. The function metadata is a nested list that describes the type of encodings
and their relative order. Each function has arguments and optionally metadata. If the
user has encrypted and check-summed the data, he can store the encryption algorithm
name, the encryption key and the checksum algorithm name using the function meta-
data. The exNode library does not include any data conditioning functions itself.

The exNode library allows a user to create an exNode, attach mappings to it, store
IBP capabilities into the mappings and add metadata to the mappings. When a user
wants to write the exNode to disk or to pass it to another user, he can use the exNode
library to serialize it to XML. Because of the XML format, exNodes created on one
platform can be interchanged with exNodes from any other supported platform.

3.1.4 Logistical Runtime System
Although the L-Bone makes it easier for the user to find depots and the exNode han-
dles IBP capabilities for the user, the user still has to manually request allocations,
store the data, create the exNode, attach mappings to the exNode and insert the IBP
allocations and metadata into the mappings. The next layer on the Network Storage
Stack is the Logistical Runtime System (LoRS). The LoRS layer consists of a C API
and a command line interface (CLI) tool set that automate the finding of IBP depots
via the L-Bone, creating and using IBP capabilities and creating exNodes. Using
LoRS is akin to creating and using network “files”.

The LoRS tools provides six basic functions:
Upload: Store data to a network file.
Download: Retrieve data from a network file.
Augment: Add replicas to a network file.
Trim: Remove replicas from a network file.
Refresh: Modify the expiration time of a network file.
List: View the network file’s metadata
The LoRS API provides much more fine-grain control. The API can store data

from files or memory. Third parties may also use the API to implement new tools or
capabilities such as multicast augments and overlay routing.

Both the LoRS tools and API provide end-to-end services. To ensure that the data
stored on the IBP depots was not altered in transit or while on disk, LoRS can insert
MD5 checksums. During a download, if a block’s checksum does not match, the
block is discarded and the same extent is downloaded from another source.

To protect data while in transit and while stored on a depot, which should be con-
sidered an un-trusted server, LoRS provides multiple types of encryption, including
DES. With the API, the application may use additional encryption algorithms and
then add the algorithm type and key as function metadata to the exNode.

In addition to replication for improving fault-tolerance, LoRS allows coding blocks
to be stored as well. These coding blocks are like the parity blocks used in RAID
storage systems. While simple replication may provide an adequate measure of fault-

tolerance, the addition of coding blocks can greatly improve fault-tolerance. Even if a
certain extent of the file does not exist in any replica, it may be possible to regenerate
that data from the remaining data and the coding blocks.

Lastly, to reduce the amount of data transmitted, stored and retrieved, LoRS sup-
ports compression.

3.1.5 Applications Using the Logistical Networking
We have shown that Logistical Networking provides a flexible framework. We now
outline several applications where the strengths of Logistical Networking are shown
more clearly.

3.1.5.1 Multimedia Streaming
In addition to content delivery (discussed in 3.2), multimedia-streaming servers have
the additional requirement for a sustained minimum throughput to provide uninter-
rupted playback. Commercial multimedia delivery solutions typically require special
purpose server software, proprietary protocols and dedicated machinery, which can be
quite costly.

Video IBPster [2] demonstrated at iGrid2002 that Logistical Networking could re-
liably deliver high bit-rate video (10-15 Mbps) using freely available, generic infra-
structure (typically desktop class PCs located around the world). A progress-driven
redundancy download algorithm makes it possible to maintain the minimum neces-
sary throughput for streaming multimedia on top of un-tuned TCP [11].

3.1.5.2 Overlay Routing
In addition to third party point-to-point transfers, Logistical Networking supports a

variety of overlay routing techniques.
Store-and-Forward Routing
While it is relatively well known that store-and-forward routing is effective at the

link level, the abstractions provided by the TCP/IP stack encourage programmers to
avoid similar algorithms at the application level. Indeed, TCP provides a reliable,
point-to-point view of the network. However, significant gains in performance can be
made simply by applying low-level routing techniques to application-level transfers.
Logistical networking enables source-directed overlay routing by providing explicit
control of network buffers to applications.

In particular, we have conducted a number of preliminary experiments in the area
of store-and-forward overlay routing. Routing is accomplished by replacing a single
point-to-point data transfer with a number of smaller transfers through intermediate
buffers. For instance, a single transfer from A to C can be replaced with two transfers:
A to B, followed by B to C. Early experiments indicate performance gains of ap-
proximately 75% on average.

Multi-Path Routing
In addition to allowing applications to benefit from link-level type data routing,

Logistical Networking also allows applications to make use of novel new approaches
to data transfer. A promising example of such an approach is multi-path routing.

Multi-path routing is the simultaneous transfer of multiple data blocks via separate
intermediaries. This transfer can be conceptualized as a scatter from the source to

some number of intermediaries, followed by a gather from those intermediaries to the
ultimate destination. This approach is similar to that taken by the NetLets project at
ORNL [12], and we expect to see similar performance gains.

Overlay Multicast
Logistical networking can also be used to implement overlay multicast, or point-to-

multipoint routing. Here, multicast trees are built from a number of logistical storage
depots and transfers within distinct sub-trees occur in parallel. Transfers between
nodes of the multicast tree may take advantage of any of the previously described
routing mechanisms in order to enhance performance. Additionally, IP multicast may
be used in networks where it is supported.

3.1.5.3 Data Caching
By providing storage within the network, Logistical Computing allows applications to
take advantage of data locality. Two uses of data caching are checkpointing and data
staging.

Checkpointing
Checkpointing is a well-understood means for dealing with the possibility of fail-

ures. However, checkpointing a large distributed application can be problematic,
particularly if the application is running on some sort of RPC platform without dedi-
cated storage (e.g., NetSolve [1]).

Logistical networking is uniquely suited to the problem of managing checkpoints
in distributed computing systems. The time-limited storage provided by IBP maps
cleanly to the intrinsically short duration of checkpoints. Furthermore, the anonymous
nature of logistical storage ensures that applications have access to storage as needed.
Moreover, the geographic distribution of logistical storage depots makes it likely that
the application will be able to access storage that is nearby.

A second application of checkpointing is to facilitate the migration of compute jobs
from one node to another. Again, the capabilities of a logistical network are well
suited to this sort of interaction. Process state can be checkpointed to logistical stor-
age and moved quickly to another depot, perhaps across the world, for resumption on
another compute platform.

Data Staging
We define data staging as pre-staging inputs and caching of intermediate values in

distributed systems. One project that is exploring the potential of Logistical Net-
working for data management is NetSolve [1, 3].

Typically NetSolve clients pass the data and the operation to be performed to the
NetSolve server. The server performs the computation and returns the result to the
client. If the output of one computation is needed as input to another computation, it
needs to be resent by the client.

In order to eliminate returning intermediate values to the client, NetSolve can store
the first computation’s results using the LoRS API and generate an exNode. The
NetSolve server then returns the exNode to the client. Next, the client sends the
exNode and the requested operation as input parameters to the next NetSolve server.
This lightens the burden on the client and reduces the time to complete all the com-
putations [5].

3.1.5.4 Distributed, Parallel IO
The Terascale Supernova Initiative (TSI) [9] is a collaborative, multi-disciplinary
effort sponsored by the Department of Energy's SciDAC program. TSI is developing
models for core collapse supernovae and enabling technologies in radiation transport,
radiation hydrodynamics, nuclear structure, linear algebra, and collaborative visuali-
zation. The TSI team is composed of members from one national lab and eight uni-
versities.

The centerpiece of the TSI effort is a large-scale magneto-hydrodynamics simula-
tion. To date, simulations have been run on 3203 and 6403 node meshes, and runs on
10243 node meshes are planned for the near future. The storage requirements of this
simulation are massive: small runs produce output data on the order of 120 GB, while
the largest runs are expected to produce data on the order of 20 TB.

The storage and movement of such large data sets between institutions is a major
challenge for the TSI effort. In order to meet this challenge, TSI is a major integrator
of Logistical Networking technologies. Logistical networking will be used to augment
or replace legacy systems such as HPSS [10]. While such systems are able to meet the
storage requirements of TSI, they are unable to address the distributed collaboration
requirements. In particular, data managed by HPSS must reside in one mass storage
system at a time, at one of the TSI sites. When users at another site need to access the
data, it must be packaged and shipped over the network using standard data transfer
mechanisms such as FTP.

Logistical networking will be used as the default output mechanism for TSI appli-
cation codes. Rather than outputting to a parallel file system for staging to HPSS,
applications will output data directly to IBP buffers. Once a portion of the output is
generated and stored in IBP, that IBP allocation will be added to the exNode that
contains all of the output. The exNode will then be replicated to logistical depots at
collaborating sites and to mass storage for archival purposes. The primary advantage
of this scheme is that data will reside at all sites simultaneously, allowing collabora-
tors across many different administrative domains to access the data as soon as it is
available. This will greatly simplify the complex data packaging and transport re-
quirements of the project.

Additionally, the overlay routing techniques described previously can be applied to
significantly speed up the necessary data transfer operations. Since the size of the
output data will be quite large, the use of explicit overlay routing and the ability to use
different protocols within IBP’s mcopy() operation will greatly reduce transfer times.

3.2 Creating Ad Hoc Content Distribution Networks

The I2-DSI project has leveraged the speed, storage, and resolution service of the
Logistical Networking Stack to create an exNode Distribution Network (exDN) that
overcomes many of the problems discussed in 2.1 and 2.2.

Using a combination of HTTP and IBP services, websites that consume large
amounts of bandwidth because of large file delivery can store the files in IBP depots
and provide links to their respective exNodes. Others who also suffer from high num-
ber of simultaneous visitors can replicate the HTML portions of the site across a CDN
such as I2-DSI. The replication integrity problem is nullified by separating web con-

tent from data content since traditional CDN synchronization techniques are better
suited to the small size of HTML-type files. Additional copies at additional locations
of popular data files can be generated quickly within IBP storage without disrupting
user access or compromising data integrity.

Users who visit the I2-DSI Linux mirrors are able to retrieve the CD images via
HTTP or using the LoRS tools. An exNode for each of the CD images is advertised as
well as the .iso files. The user can download the exNode and use LoRS to retrieve the
CD image from IBP storage. A browser plug-in for LoRS is available to reduce the
number of steps and give IBP storage a web interface. The download of the file starts
automatically when a link to an exNode is selected if the plug-in is installed.

Once the publishing node for the Linux I2-DSI channels receives a full copy of the
latest distribution, each CD image is uploaded into IBP storage to generate its
exNode. The upload procedure uses the lors_upload tool in conjunction with the -l
(location) argument and creates twelve copies of the .iso file across 30-36 IBP nodes
spanning the continental United States in approximately 20-25 minutes. In other
words, 7.9 GBs of data are transferred and stored over the wide-area network with an
average throughput of 42 Mbps compared to the 2 Mbps that I2-DSI gets using rsync.
The resulting exNodes are published and replicated across I2-DSI in a matter of min-
utes giving visitors to all mirrors immediate access the new content even if the tradi-
tional I2-DSI rsync copies are still being copied.

Forty-five minutes is a realistic download time for retrieving a Linux CD image
over HTTP from a non-saturated source. If the user has at least a 10 Mbps network
connection, she can download the same file using LoRS in approximately eleven
minutes. This is made possible by the advanced download algorithm and the multi-
threaded capabilities of the LoRS download tool [11]. The LoRS download tool uses
an adaptive algorithm to determine which file fragments to retrieve from each source
node. The LoRS download tool handles a failure from one source (i.e. if the source is
not available or is it not accepting connections) and automatically tries retrieving the
block from an alternate source. The download tool adapts to the various sources per-
formance. For example, if a closer node is overloaded and its performance drops, the
download tool will adapt and retrieve from more remote copies that perform better.
This is highly significant because the resolution service is exNode-specific and per-
formed by the client instead of using the entire system and being centralized, as is the
case of I2-DSI.

Given the time-sensitive nature of IBP storage, methods must be implemented to
account for exNode decay. It is possible that allocations and IBP depots used during
the initial upload procedure will become unreachable/unavailable after the exNode is
generated and published via HTTP. Strategies for simulating persistence are devel-
oped using the lors_refresh tool and are assisted by increasing the number of copies
and checking for problems with the lors_trim tool. The content owner is responsible
for maintaining a satisfactory level of reliability. Another concern is the level of ac-
cess intended by the content owner. Making the full exNode available to users grants
them the ability to make additional copies or delete allocations. To prevent this, con-
tent owners can create read-only versions of exNodes by removing the encoded ad-
ministrative capabilities.

4 Conclusions

We have described an architecture that allows data to be stored for a limited time in
the wide-area without requiring a user account. We have also put in place a testbed
open to researchers to explore the capabilities of sharable storage that has over 140
nodes serving over 10 TB of storage. We have specifically detailed how to create an
ad hoc content distribution network using the testbed that has the benefits of improved
performance and better resource usage than traditional mirroring and content distri-
bution networks.

The IBP, L-Bone, exNode and LoRS software is open-source and available for
download (http://loci.cs.utk.edu). People interested in adding more public storage
resources to the L-Bone can do so easily. They can simply download and install the
IBP server software. They would then register the depot with the public L-Bone.

5 Acknowledgements

This material is based upon work supported by the National Science Foundation un-
der grants ANI-0222945, ANI-9980203, EIA-9972889, EIA-9975015 and EIA-
0204007, the Department of Energy under grant DE-FC02-01ER25465, and the Uni-
versity of Tennessee Center for Information Technology Research. The authors would
like to acknowledge Alex Bassi, Xiang Li and Yong Zheng for their work on IBP,
Ying Ding for her contributions with the LoRS download algorithm and the NetSolve
team.

References

1. Arnold, D. et al. User’s Guide to NetSolve V1.4.1. Techical Report, ICL-UT-02-05. Uni-
versity of Tennessee Innovative Computing Laboratory. June, 2002.

2. Atchley, S., Soltesz, S., Plank, J. S., and Beck, M. Video IBPster. Accepted for publication
in Future Generation of Computer Systems.

3. Beck, M., et. al. Middleware for the use of storage in communication. Accepted for publi-
cation in Parallel Computing.

4. Beck, M., Moore, T. The I-2 DSI Project: An Architecture for Internet Content Channels.
Computer Netowrking and ISDN Systems, 1998 30(23-23): pp. 2141-2148.

5. Beck, M., Moore, T., and Plank, J.S. An end-to-end approach to globally scalable network
storage. Proc. of ACM SIGCOMM '02, Pittsburgh, August 2002.

6. http://dsi.internet2.edu/
7. http://samba.anu.edu.au/rsync/
8. http://www.cisco.com/univercd/cc/td/doc/product/iaabu/distrdir/dd2501/index.htm
9. http://www.phy.ornl.gov/tsi/
10. http://www4.clearlake.ibm.com/hpss/index.jsp
11. Plank, J., Atchley, S., Ding, Y. and Beck, M., Algorithms for High Performance, Wide-

Area, Distributed File Downloads. Technical Report CS-02-485, University of Tennessee
Department of Computer Science, October 8, 2002.

12. Rao, N. S. V. Multiple paths for end-to-end delay minimization in distributed computing
over the Internet. Proc. of the ACM/IEEE Conference on Supercomputing. Denver, Colo-
rado, 2001.

13. Saltzer, !J !. ! !H !. ! !, ! !Reed, !D !. ! !P !. !, ! !a !n !d ! !C !l !a !r !k, !D !. ! !D !. !. ! !E !n !d !- !t !o !- !e !n !d ! arguments ! !in ! !s !y !s !t !e !m ! !design !. ! !A !C !M !
!Transactions! !o!n! !C!o!m!p!u!t!e!r! !S!y!s!t!e!m!s!,! !2!(!4!)!:!277-!2!88!,! !N!o!v!e!m!b!e!r! !1!9!8!4!.

14. R. Tewari, M. Dahlin, H.M. Vin, and J. Kay. Beyond Hierarchies: Design Considerations
for Distributed Caching on the Internet. Technical Report CS98-04, Department of Com-
puter Sciences, UT Austin, Austin, Texas, USA, May 1998.

15. Wolski, R., Spring, N., and Hayes, J. The Network Weather Service: A distributed re-
source performance forecasting service for metacomputing. Future Generation Computer
Systems, 15(5-6):757-768 , 1999.

