
Finite-choice algorithm optimization in
Conjugate Gradients∗

Jack Dongarra and Victor Eijkhout†

January 2003

Abstract

We present computational aspects of mathematically equivalent implementa-
tions of the Conjugate Gradient method. Since the implementations have different
performance characteristics, but compute the same quantities, an adaptive imple-
mentation can at run time pick the optimal choice.

1 Introduction

Recent times have seen the emergence of software that dynamically adapts itself to
its computational environment. One example is ATLAS [9], where upon installation a
generator program produces and times many equivalent implementations of Blas level 3
routines, keeping the most efficient one. This process consumes time – up to several
hours – but only once per installation; linking to the generated library can give several
factors improvement in the performance of a code.

Here we investigate the issue of optimizing Conjugate Gradient methods. The
choice between different but mathematically equivalent implementations can be made
at run-time rather than at installation-time as in the the ATLAS case. Another im-
portant difference between our case and ATLAS is that the search space in Atlas is
multi-dimensional, and with such a degree of freedom along each dimension, that we
can essentially consider it infinite. The choices among different implementations of
CG, by contrast, are very finite. They can be realized by simple switches in one over-
arching implementation. What is more, since all implementations compute the same
quantities, switching between one implementation and another can be done during a
run, without restarting.

The variants of CG we consider are all geared towards optimization in the case of
parallel execution. Several authors [1, 2, 4, 6] have proposed numerically equivalent
implementations of the Conjugate Gradient method that rearrange the inner product

∗Lapack Working Note 159, University of Tennessee Computer Science report ut-cs-03-502
†Innovative Computing Lab, Department of Computer Science, University of Tennessee, Knoxville TN

37996

1



computations, usually at the expense of some extra computation. The new arrange-
ments of inner products are such that all inner products in a single iteration can com-
bine their communication stages. On parallel architectures with a large latency this can
give appreciably savings in overall execution time. We also consider an implementa-
tion of IC-preconditioned CG by van der Vorst [3] which overlaps one inner product
with half of the preconditioner application, effectively hiding its communication time.

Since all these methods compute the same scalar and vector quantities in each it-
eration, a dynamic implementation can evaluate performance characteristics of the ar-
chitecture during the first few iterations, and finish the process with what is perceived
to be the optimal method for the given input parameters.

Our choice of CG is no intrinsic limitation of the techniques described; the inner
product elimination strategies of [1, 2, 4, 6] can be applied immediately to BiCG (and
hence to QMR) and with slightly more effort to such methods as BiCGstab.

2 Variants of Conjugate Gradients

In this section we consider several rearrangement strategies for the Conjugate Gradient
method.

The Conjugate Gradient method in its original form [5] has two inter-dependent
inner products: each inner product is used to compute a vector, which in turn is needed
for the other inner product. In a parallel context, each inner product can potentially take
a time disproportionate to its scalar operation count, and the thought of rearranging the
method to combine the inner products is then a naturaly one.

The Saad/Meurant, Chronopoulos/Gear, and Eijkhout variants of CG below pro-
ceed by combining inner products; they involve more scalar operations than the origi-
nal method. Since all methods have the same convergence speed in terms of numbers
of iterations, on a single processor these variants clearly offer no advantage over the
classical formulation. On a large number of processors and a high-latency network
they will probably offer an advantage, offsetting the extra operations with decreased
communication time.

2.1 The Saad/Meurant method

A first proposed variant by Saad [7] uses

rt
i+1M

−1ri+1 + rt
iM

−1ri = α2
i (Api)tM−1(Api), (1)

so the termrt
i+1M

−1ri+1 can be computed recursively without the need for an in-
ner product, and before the vectorri+1 is actually constructed. Instead of comput-
ing rt

iM
−1ri, we compute(Api)tM−1(Api) at the same time we computept

iApi. The
vectorM−1ri is now computed by an extra recurrence

M−1ri+1 = M−1ri − αiM
−1Api.

However, this method illustrates the potential dangers of rearranging operations:
the variant methods are not guaranteed to be as stable as the original. Indeed, this
method is unstable in many cases.

2



The first variant we actually consider here for implementation is a modification by
Meurant [6] of Saad’s method, and this has in practice been shown to be as stable as
the original method. Meurant proposed to use equation (1) only as a predictor and used
in βi; after ri+1 andM−1ri+1 have been constructed, the value ofrt

i+1M
−1ri+1 is

computed as an explicit inner product – to be used inαi+1 – combined with the other
two inner products. We give the structure of the algorithm in figure 1.

• Frompi form Api andM−1Api.

• Now compute simultaneously the inner products

pt
iApi, rt

iM
−1ri, and (Api)tM−1(Api);

• with rt
iM

−1ri computeαi = pt
iApi/rt

iM
−1ri, and the value of the inner prod-

uctrt
i+1M

−1ri+1 = −riM
−1ri+α2

i (Api)tM−1(Api). With this, also compute
βi = ri+1M

−1ri+1/riM
−1ri. Save the vectorM−1Api.

• Updateri+1 = ri − αiApi andM−1ri+1 = M−1ri − αiM
−1Api.

• Updatepi+1 = M−1ri+1 − βipi.

Figure 1: Meurant’s modification of Saad’s CG method.

2.2 The Chronopoulos and Gear method

The second variant we consider was published by Chronopoulos and Gear [1] and
eliminates the other,ptAp, inner product. This method was later independently redis-
covered by D’Azevedo, Eijkhout, and Romine[2], who proved that it is as stable as the
original CG method.

The basic relation for this variant,

pt
iApi = rt

iM
−tAM−1ri − β2

i pt
i−1Api−1, (2)

replaces theptAp inner product byrtM−tAM−1r, which can be computed combined
with thertM−1r inner product. Also, we now constructApi recursively from

Api+1 = AM−1ri+1 +
i∑

k=1

Apkuki+1

rather than explicitly by a matrix-vector product. We give the structure of the algorithm
in figure 2.

2.3 The Eijkhout variant

Eijkhout has proposed [2, 4] a method that is very similar to the Chronopoulos and Gear
one. It is also based on recursive calculation ofptAp from an actually constructed inner

3



• Fromri andM−1ri compute simultaneously

rt
iM

−1ri and (M−1ri)tAM−1ri;

• with this, computeβi = ri+1M
−1ri+1/riM

−1ri.

• Recursively computept
iApi from rt

iM
−tAM−1ri andpt

i−1Api−1 from

pt
iApi = rt

iM
−tAM−1ri − β2

i pt
i−1Api−1,

• With pt
iApi computeαi = pt

iApi/rt
iM

−1ri, and use this to updatexi andri to
xi+1 andri+1.

• Apply the preconditioner to formM−1ri+1, then the matrix to formAM−1ri+1.

• Now constructApi+1 recursively by

Api+1 = AM−1ri+1 + Apiβi

Figure 2: Chronopoulos and Gear’s method

product(M−1r)tA(M−1r). Equation (2) is then replaced by

pt
iApi = rt

iM
−tAM−1ri + βi(M−1ri−1)t(Api−1), (3)

This requires the recursive construction of theApi vectors from the actual matrix-
vector productAM−1ri. Additionally, there is now a third inner product(M−1ri)t(Api)
in each iteration. This inner product can be combined with the already existing ones,
so there is only an increase in the scalar work per iteration, not in the communication
behaviour. There is no stability analysis for this method, but in tests it has appeared as
stable – or better – as the Chronopoulos/Gear variant.

2.4 Van der Vorst’s method

Finally, for the special case of preconditioning by a Block Jacobi method with an In-
complete Cholesky solve of the blocks we consider a method by van der Vorst [3]
which overlaps one inner product computation with the second half of the Cholesky
solve.

The crucial observation here is that, in the presence of a Cholesky preconditioner
M = LLt, the inner productrtM−1r can be computed as(L−1r)t(L−1r), that is,
before the preconditioned residualM−1r has been formed completely. The method
then is

constructs = L−1r
calculatez = L−ts, and simultaneously

4



ztr = sts.

This method is by heuristic reasoning exactly as stable as the original method; in
fact, since it uses symmetry to a larger extent than the original method it may in fact be
more stable. While the other methods presented here can be generalized beyond CG,
for instance to the BiCG method, this method essentially relies on the symmetry of the
preconditioner and on Arnoldi orthogonalization, as opposed to Lanczos orthogonal-
ization in the BiCG method. Thus, no generalization to other methods than CG offers
itself. However, by combining van der Vorst’s overlapping trick with the Saad/Meurant
method, we find a variant of CG whereall inner product communications can be hid-
den.

2.5 Norm calculation

For all methods except van der Vorst’s and Meurant’s – note that this include the orig-
inal formulation – communication latency can be eliminated in the norm calculation
that is performed for the convergence test. These CG methods feature the following
lines:

calculate‖r‖;
and possibly terminate the iteration

calculatez = M−1r
calculateztr

Rearranging this as

calculatez = M−1r
calculate combined‖r‖ andztr;

and possibly terminate the iteration

combines the norm and inner product calculations, but in the final iteration one super-
fluous inner product is computed. This variant may be an improvement if the savings
in the inner product computation outweighs the loss because of the extra inner product.
This will often be the case, but not when

• there is no savings in the inner products, because the communications cost are
negligible, or

• the preconditioner is relatively expensive and the number of iterations low.

Of course, if the stopping test is onztr there is no separate norm calculation; with a
test on‖z‖ the norm calculation can be combined with the inner product.

2.6 Block orthogonalization of residuals

The orthogonal residuals of the CG method are linear combinations of a Krylov se-
quence based on the first residual. Thus, communication latency could be lessened
by computing explicitly a numbers of Krylov vectors, and orthogonalizing themen

5



bloc [1, 8]. Its clearest disadvantage is instability that grows with the number of Krylov
vectors computed.

Computational benefits are a mixed story:

• If all inner products are computed simultaneously, in essence using a classic
Gram-Schmidt method for orthogonalization, the influence of latency is greatly
diminished.

• The QR factorization used for the Gram-Schmidt orthogonalization is a Blas
Level 3 kernel, hence more efficient in execution than the inner products in the
original method.

• On the other hand, while in CG a residual is only orthogonalized against the
previous two, in this method it has to be orthogonalized against alls − 1 other
vectors. Hence, the scalar computation cost is higher than of the original method:
O(s2) inner products as opposed toO(s).

We expect that this method may be advantageous on machines that have a large differ-
ence between Blas levels 1 and 3 performance.

References

[1] CHRONOPOULOS, A., AND GEAR, C. s-step iterative methods for symmetric
linear systems.Journal of Computational and Applied Mathematics 25(1989),
153–168.

[2] D’A ZEVEDO, E., EIJKHOUT, V., AND ROMINE, C. Lapack working note 56:
Reducing communication costs in the conjugate gradient algorithm on distributed
memory multiprocessor. Tech. Rep. CS-93-185, Computer Science Department,
University of Tennessee, Knoxville, 1993.

[3] DEMMEL , J., HEATH, M., AND VAN DER VORST, H. Parallel numerical linear
algebra. InActa Numerica 1993. Cambridge University Press, Cambridge, 1993.

[4] EIJKHOUT, V. Lapack working note 51: Qualitative properties of the conjugate
gradient and lanczos methods in a matrix framework. Tech. Rep. CS 92-170, Com-
puter Science Department, University of Tennessee, 1992.

[5] HESTENES, M., AND STIEFEL, E. Methods of conjugate gradients for solving
linear systems.Nat. Bur. Stand. J. Res. 49(1952), 409–436.

[6] M EURANT, G. Multitasking the conjugate gradient method on the CRAY X-
MP/48. Parallel Computing 5(1987), 267–280.

[7] SAAD , Y. Practical use of polynomial preconditionings for the conjugate gradient
method.SIAM J. Sci. Stat. Comput. 6(1985), 865–881.

[8] VAN ROSENDALE, J. Minimizing inner product data dependencies in conjugate
gradient iteration. Tech. Rep. 172178, ICASE, NASA Langley Research Center,
Hampton, Virginia, 1983.

6



Classical Saad/Meurant Chronopoulos/Gear Eijkhout
Norm calculation:

error =
√

rtr
Preconditioner application:
z ←M−1r z ← z − αq z ←M−1r id

Matrix-vector product:
az ← A× z id

Inner products 1:

ρ← ztr ρpredict ← −ρtrue + α2µ
error =

√
rtr

ρ← ztr
ζ ← ztaz

error =
√

rtr
ρ← ztr
ζ ← ztaz

ε← (M−1r)t(Ap)

β ← ρ/ρold β = ρpredict/ρold β ← ρ/ρold id
Search direction update:
p← z + βp id id id

Matrix-vector product:
ap← A× p id ap← az + βap id

Preconditioner application:
q ←M−1ap

Inner products 2:

π ← ptap

π ← ptap
µ← aptq

error =
√

rtr
ρtrue = ztr

π ← ζ − β2π π ← ζ + βε

α = ρ/π . . . ρtrue . . . α = ρ/π
Residual update:
r ← r − αAp id id id
3 separate inner products 4 combined 3 combined 4 combined

1 extra vector update id id

Figure 3: Structure of the inner loop of the CG variants

7



[9] WHALEY, R. C., PETITET, A., AND DONGARRA, J. J. Automated empirical
optimization of software and the ATLAS project.To appear in Parallel Computing
(2001). Also available as University of Tennessee LAPACK Working Note #147,
UT-CS-00-448, 2000 (www.netlib.org/lapack/lawns/lawn147.ps).

8


	Introduction
	Variants of Conjugate Gradients
	The Saad/Meurant method
	The Chronopoulos and Gear method
	The Eijkhout variant
	Van der Vorst's method
	Norm calculation
	Block orthogonalization of residuals


