

The Internet Backplane Protocol Data Mover Module

Erika Fuentes {efuentes@cs.utk.edu}
Logistical Computing and Internetworking Laboratory

Computer Science Department, University of Tennessee

Abstract
The Internet Backplane Protocol (IBP) is a mechanism that implements storage of data in
the network using shared physical resources to support Logistical Networking in large
scale; it provides a series of functions to handle the data. This data is stored in what is
known as IBP depots, which also provide data management services. The Data Mover
Module is a plug-in tool designed to enable advanced data transfers (high performance/reliable)
in IBP and to provide point-to-multipoint data transfers (as a form of Overlay Networking, hiding
data processing and performance issues from the user, and allowing developers to add new data
movers with flexibility depending on the requirements of the applications.

1. Introduction

1.1 The Internet Backplane Protocol
The Internet Backplane Protocol (IBP) is middleware for managing and using remote storage [1].
It acquired its name because it was designed to enable applications to treat the Internet as if it
were a processor back plane. IBP is composed of servers (depots) and clients. The IBP Client
side is composed of a series of functions that conform the API that can perform a variety of
operations over the data located in the depots (IBP allocations), some examples of these, are
implemented by functions such as IBP_load, IBP_store, IBP_manage, IBP_copy, and
IBP_mcopy. The IBP Server or depot contains the handlers for the requests. IBP supports
Logistical Networking, which combines transmission with storage resources to provide scalability
and QoS [2].

The IBP_copy call can be used to copy data from one source depot to a single target, this function
essentially offers access to a simple data transfer using a single TCP stream; it is built into the
IBP depot writes the data to the local file system.

In order to move the data to more than one target using IBP_copy it is necessary to implement an
external mechanism at user level using multiple calls to this function (i.e. multithread copy), or
even using only IBP_load and IBP_store, but this could raise trust and performance concerns. In
here lies the necessity for an internal function that gives ability to enable advanced data transfers
providing point-to-multipoint copies, hiding the implementation details and giving the user access
to a variety of methodologies to perform this task.

1.2 The Data Mover Module

Data mover is a plug-in tool designed to perform a point-to-multipoint data transfer as a form of
overlay networking; it is an external module that can access the IBP allocations using standard
IBP API functions (IBP_store and IBP_load) implementing the IBP_mcopy service in the IBP
depot and allows handling point-to-multipoint copy requests from the client (see Fig.1).

This program runs independently from IBP; it is created as a separate process from the original
IBP server, it is self-contained and flexible and can provide access to a variety of operations and
protocols to perform the transfers. The options currently implemented work over TCP and UDP
protocols. The TCP option supports sequential and simultaneous modalities, and the UDP option
uses the “Blaster” algorithm and currently supports only point-to-point and simultaneous point-
to-multipoint versions. The Data Mover module has been integrated to be part of the IBP
services, but remaining as an independent process, which hides all the data processing and
performance details from the user, but allows the developer to add new types of data movers with
flexibility depending on the requirements of the environment or application.

Figure 1: Schema of a simple multi copy scenario, S denotes the source depot and A, B, C represent the
target depots.

2. Design

Four main design parts can be identified in the Data Mover scheme; the first one is the client
(user) API that is part of the IBP Client library. The second one is the interface between the plug-
in and the IBP Server code, the third part involves all the main Data Mover plug-in functions and
management, and the last part contains the data movers. Each of these parts is defined in the
following subsections.

 S

Source IBP
depot

Target IBP
depots

 A

 B

 C

client

2.1 Client API: IBP_mcopy
This function operates in the client side (fig 6), and is part of the IBP client library; through its
parameters, the user can specify which kind of data mover (protocol and method) wants to use to
carry out the data transfer each target with specific options. This interface also specifies which are
the source and target IBP capabilities and associated depots, as well as the data size and starting
offset for the data to copy and the number of targets desired. This API will be described in detail
in the implementation section, including the data types return values and specific behavior and
parameters for the existent data movers.

2.2 Server Interface: handle_mcopy
This function is located within the IBP depot (fig 7), is the counterpart of IBP_mcopy, it receives
and serves the request in two parts: the first one indicates the size of the second request
depending on how many targets will be involved in the copy, and the second one contains all the
data necessary to perform the copy to each of the target depots. This function then spawns a new
process that executes the Data Mover control that takes charge the request, waiting for the return
of the data mover and reports the outcome to the client.

Figure 6. IBP_mcopy call is located in the client side

2.3 Data Mover Control (DMC)
This is the core of the Data Movers, it can be considered as a manager of the functionality; it
receives the instructions from the depot through handle_mcopy, parses the arguments and
parameters, processes them and chooses and executes the type of data mover required as a
separate process with the respective parameters.

The Data Mover Control works both in the source depot and in each of the target depots, and the
data transfer is done based in the typical client-server paradigm; the DMC has two modalities
depending where it has been originated, either in the source or in a target depot and needs to
perform several activities: spawn a local Data Mover process in the source depot that behaves as a
client, then it sends a message to each of the targets with the type of data mover and parameters to
indicate that they have to invoke a symmetric DMC server process, this is done through an
internal request function known as IBP_datamover with parameters such as target capabilities,
type of data mover and options, finally it executes the desired data mover.

After both DMC’s have been created, the client reads the data (associated with an IBP capability)
from the local storage and sends it through the network; the servers receive it on the other side
and write it as an IBP capability to their local storage system. This behavior is illustrated in
figure 2. After the transfer is done, the data mover returns success or failure to the DMC process,
which passes this result to the IBP depot process and this back to the IBP Client (user).

2.4 Data Mover programs
These are specific data transfer programs; they implement different methods of moving data and
can use different network protocols as desired, each of them has it’s own mode of operation and
parameters. Currently, only a few data movers are implemented and they can support TCP and
UDP protocols. These will be addressed in detail in the Implementation section.

Fig.2 The Data Mover general scheme design: this picture shows the three main design components and how they
relate to each other (arrows). Dotted lines indicate IBP calls implemented independently from the data movers, black
lines indicate data flow within the data mover modules.

3. Implementation and Integration with IBP

For the implementation we can identify three different layers extracted from the design described
in the previous section, these are: integration with IBP, Data Mover Control, and Data Mover
programs or plug-ins.

3.1 Integration with IBP
This is the uppermost layer and it contemplates the IBP_mcopy in the IBP client side and the
handle_mcopy function in the IBP server-depot side, as described in the previous sections, this
code’s purpose is basically to create an interface between the IBP code and the data movers,
translate the parameters of one into the other’s, create the DMC process and report return values

from it to the user. IBP_mcopy() is a blocking call that returns only when all required data is
successfully copied from source depot to each of the targets. Table 1 presents the IBP_mcopy
API in detail

 Variable name Variable type

Parameters pc_SourceCap IBP_cap

 pc_TargetCap[] IBP_cap

 pi_CapCnt unsigned int

 ps_src_timeout IBP_timer

 ps_tgt_timeout IBP_timer

 pl_size unsigned long int

 pl_offset unsigned long int

 dm_type[] int

 dm_option[] int

 dm_service int

Return value unsigned long int

Table 1. IBP_mcopy API: IBP_cap data type defines a capability, and IBP_timer holds the timeout for the
depot and the sync. IBP_mcopy() copies up to size bytes, starting at offset, from the storage area accessed
through the IBP read capability source, and writes them to the storage area(s) accessed through the IBP
write capability(ies) target[]. The number of target depots is CapCount. For this call to succeed, source
must be a readcap returned by an earlier call to IBP_allocate(), target must be a writecap returned by a
similar call.

3.2 Data Mover Control
It is implemented as a plug-in module to the IBP depot, it is activated by forking a new DMC
process whenever an IBP_mcopy or IBP_datamover command is detected; the new process takes
over control, it parses the command line, identifies the kind of service, the type of data mover
requested and executes the transfer. The first Data Mover Control is generated in the source
depot, after parsing the argument list creates a series of IBP_datamover commands and sends one
to each of the target depots. In each of the targets, the IBP depot receives the command and
creates a local Data Mover process that act as servers.

After a Data Mover process is created, it runs as an independent process and it has two main
parts:

• Control process: it parses the command line passed from the IBP depot, strips the
parts of the command (capabilities, targets, ports and data mover options), identifies
the targets and data mover options and operation mode (client or server), and creates
the arguments required by the second part with this data; it is also responsible for
recognizing and choosing the data mover program to be executed.

• In the second part a new process is generated using fork and exec, the new process
the one that transfers the data from the source to the target(s). There exist several
implementations that run over different protocols (TCP and UDP) and use different
methodologies (sequential, round-robin, optimized threaded); the new process is also
independent from the Data Mover main calling process and from the IBP depot.

Figure 3 shows the general data flow followed for the implementation of this part of the data
mover module.

3.3 Data Mover Plug-ins
The data moving process is at the lowest level (see fig.2), is here where the protocols and transfer
methods are implemented. All the data movers are composed of two pieces of code, one that
implements the client side, and one for the server side. The client side is the more complex piece
since it must handle transfers to multiple targets with different cases like multiple transfers
sequentially, simultaneous or threaded. These client implementations at this time need to receive
the same uniform parameters, which are:

- File descriptor of the associated source capability in the IBP depot
- Full string containing the actual capability (file name) in the source depot
- Size of the file to transfer
- Offset in the file where to start to read the data to be transferred
- Full strings containing the capabilities in each of the target depots
- Options: e.g. port numbers where the server part will be running in the target depots
- Type of data mover used for server side
- Type of service for client side

As for the server side, there are currently only two kinds of servers, for TCP and UDP because
they only need to implement a basic functionality in one host, which is one of the targets, by
reading from the socket established with the client and writing to the local storage system the data
received, and this is generic to all the clients of its same protocol.

Table 2 shows how the choices of data movers are defined in the API using the parameters
dm_types[] and dm_service, the first one specifies the data mover type for the target depots, and
the second specifies the corresponding type for the source depot.

 Targets Source Description

Sequential transfers TCP DM_UNI DM_SMULTI
DM_PMULTI Simultaneous transfers

UDP DM_BLAST DM_MBLAST UDP based transfers

Table 2. API options for the existing data mover plug-ins.

4. Experimental results

IBP_mcopy is a more general facility than IBP_copy, designed to provide access to operations
that range from simple variants of basic TCP-based data transfer to highly complex protocols
using multicast and real-time adaptation of the transmission protocol, depending of the nature of
the underlying backbone and of traffic concerns. In all cases, the caller has the capacity to
determine the appropriateness of the operation to the depot’s network environment, and to select
what he believes the best data transfer strategy.

The experiments completed concentrate in the following operations that the Data Mover software
can support:

• Point-to-multipoint through simple iterated TCP unicast transfers
• Point-to-multipoint through simultaneous threaded TCP unicast transfers.

• Fast, reliable UDP data transfer over private network links [3]

The design goal of the Data Mover plug-in and the function IBP_mcopy is to provide an
optimized point to multipoint transfer tool, as well as a support for different protocols and

methods for data transfer. In order to visualize and compare the behavior of the different methods
to perform the data movement, three main experiments were completed under a specific
environment where each of the nodes involved were interconnected with a stable, fast link within
a local area network (LAN). The subsections 4.1.1 and 4.1.2 describe these experiments and
their corresponding results, as well as a comparison of their performance and possible
optimizations, using the Data Mover module, with the commonly used methods, such as
IBP_copy and TCP respectively.

4.1 TCP Data Movers performance
This experiment concentrates in the comparison of the three variants of TCP data movers
currently implemented, and the optimizations that they characterize.

Figure 3.a

Figure 3.b

Sequential TCP

0

20

40

60

80

100

120

140

0 10000 20000 30000 40000 50000

size (KB)

ti
m

e
(s

ec
)

5 targets

4 targets

3 targets

Threaded TCP

0

5

10

15

20

25

30

35

40

0 10000 20000 30000 40000 50000

size (KB)

ti
m

e
(s

ec
) 3 targets

4 targets

5 targets

Figure 3.c

As we can observe by comparing the three figures above the transfer time increases
proportionally to the size. Figure 3.a is the most conservative method, it transfers the data
sequentially to each host, one after the previous one has been completed, as the chart shows the
time increases significantly as does the number of targets. Figure 3.b shows a first
implementation to perform simultaneous TCP transfers using threads, is more efficient but can be
improved (note gaps between curves - same data is read by as many threads as copies are
needed); the time increase is still proportional to the number of hosts but not as dramatic as the
first case. Figure 3.c shows a simultaneous transfer using “optimized” threads, the
implementation improves the performance to some extent by performing less read accesses to the
source data than the previous one, in here the time variation for the different number of targets is
relatively small (note gaps between curves – only one read).

In figure 4, we can observe and compare the rates in MB/s for each of the TCP data movers
described above for a constant number of targets (5), as the size increase, the rate tends to
stabilize, however, the difference between the rates obtained by the different methods is
noticeable, mostly compared to the Sequential approach; as for the simultaneous and threaded
data movers the rates are more similar, but the thread approach has some performance gain.

Optimized Threaded TCP

0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000

size (KB)

ti
m

e
(s

ec
) 5 targets

4 targets

3 hosts

Figure 4: general bandwidth comparison between the three TCP data movers addressed

4.2 Point to Multipoint TCP
This subsection concentrates in comparing the transfer of different amounts of data using multiple
simultaneous point to point TCP data transfers implemented at user level using threads, and using
a single point to multipoint implementation of the Data Mover to transfer the same amounts of
data. As figure 2 reveals the latter approach shows an improvement in the overall transfer time.
This experiment consisted of transferring several pieces of data of different sizes from one to
various numbers of nodes.

C o mp ar iso n bet ween Simul t aneo us po int 2 p o int and sing le
p o int 2 mult ip oint D at a M o vement s

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10

size(MB)

n=2

n=3

n=4

n=5

n'=2

n'=3

n'=4

n'=5

Fig. 2. Dotted lines represent the multiple simultaneous point to point TCP transfers the number of hosts

used in different tests is given by n. The continuous lines represent point to multipoint approach, and
number of hosts for this cases is given by n.

TCP Data Movers Bandwidth Comparison (5 hosts)

0

1

2

3

4

5

6

7

8

9

0 50000 100000 150000 200000 250000

Size (KB)

B
an

d
w

id
th

 (
M

B
/s

)

Sequential

Threaded

Opt. Threaded

4.3 Point-to-Point UDP versus TCP
The experiment described in this subsection consists of a comparison between the transfer times
using TCP and UDPBlaster point-to-point Data Movers. Figure 3 shows the improvement
achieved by using UDPBlaster. The Data Mover plug-in could support a variety of protocols and
methods; however, for the purpose of this experiment we concentrate on the comparison of TCP
versus UDP, to show how the improvement can be achieved within the same data mover using
different protocol depending on the characteristics of the backbone being used. It is important to
note that since this protocol is still in the experimental phase may behave differently in diverse
test environments under different circumstances.

Comparison between different protocols for data transfer

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

size (MB)

tim
e

(s
ec

)

TCP (IBP)

UDP Blaster (IBP)

Fig. 3. Improvement seen by using UDPBlaster

5. Conclusion

The design goals of the Data Mover plug-in and the function IBP_mcopy() are:

• To provide a flexible point-to-multipoint transfer tool that supports different protocols
and transfer methods

• To allow access to a variety of operations depending on the nature of the underlying
backbone and of traffic concerns

• To permit a simple implementation that avoids trust and performance concerns using an
encapsulated approach, even if software architectures based on external data movement
operations are still of great interest.

At all times t he user has the capacity to determine the appropriateness of the operation to the
depot’s network environment, and to select what he believes is the best data transfer strategy.

6. References

[1] Plank, J., Beck, M., Elwasif, W., Moore, T., Swany, M., Wolski, R.; “The Internet Backplane
Protocol: Storage in the Network”; in NetStore99: The Network Storage Symposium, (Seattle,
WA, 1999)

[2] Beck, M., Arnold, D., Bassi, A., Berman, F., Casanova, H., Dongarra, J., Moore, T., Obertelli,
G., Plank, J. Swany, M., Vadhiyar, S., and Wolski, R.; “Logistical Computing and

Internetworking: Middleware for the Use of Storage in Communication”; in the 3rd International
Workshop on Active Middleware Services, San Francisco, August, 2001.

[3] Beck, M., Fuentes, E.; “A UDP-Based Protocol for Fast File Transfer”, Department of
Computer Science, University of Tennessee, Knoxville, TN, CS Technical Report, ut-cs-01-456,
June, 2001, http://www.cs.utk.edu/~library/2001.html.

