The I nter net Backplane Protocol Data Mover Module

Erika Fuentedefuentes@cs.utk.eHu
Logistical Computing and Internetworking Laboratory
Computer Science Department, University of Tennessee

Abstract

The Internet Backplane Protocol (IBP) is a mechanism that implersiemége of data in
the network using shared physical resources to support LogisticaloNatgy in large

scale; it provides a series of functions to handle the data. This datarexd in what is
known as IBP depots, which also provide data management serviee®ata Mover
Module is a plug-in tool designed to enable advanced data transfers (high perfofrakaicie)

in IBP and to provide point-to-multipoint data transfers (as a form ofl@y&letworking, hiding
data processing and performance issues from the user, and allowing devetoaddsrtew data
movers with flexibility depending on the requirements of the atjalitcs.

1. Introduction

1.1 TheInternet Backplane Protocol

The Internet Backplane Protocol (IBP) is middlewarenf@anaging and using remote storage [1].
It acquired its name because it was designed to enabliesdupls to treat the Internet as if it
were a processor back plane. IBP is composed of serv@mstgpand clients. The IBP Client
side is composed of a series of functions that conform tHeth®&® can perform a variety of
operations over the data located in the depots (IBP &thosy, some examples of these, are
implemented by functions such as IBP_load, IBP_store, mi&fhage, IBP_copy, and
IBP_mcopy. The IBP Server or depot contains the hanfitershe requests. IBP supports
Logistical Networking, which combines transmission withrate resources to provide scalability
and QoS [2].

The IBP_copy call can be used to copy data from one salot to a single target, this function
essentially offers access to a simple data transfeg assingle TCP stream; it is built into the
IBP depot writes the data to the local file system.

In order to move the data to more than one target using IBP ittispyecessary to implement an
external mechanism at user level using multiple callhigfunction (i.e. multithread copy), or
even using only IBP_load and IBP_store, but this could raisé &nd performance concerns. In
here lies the necessity for an internal function thatsjakslity to enable advanced data transfers
providing point-to-multipoint copies, hiding the implemeita details and giving the user access
to a variety of methodologies to perform this task.

1.2 The Data Mover Module

Data mover is a plug-in tool designed to perform a point-tlijpaint data transfer as a form of
overlay networking; it is an external module that can acties IBP allocations using standard
IBP API functions (IBP_store and IBP_load) implementihg IBP_mcopy service in the IBP
depot and allows handling point-to-multipoint copy requésts the client (see Fig.1).

This program runs independently from IBP; it is created ssparate process from the original
IBP server, it is self-contained and flexible and can pi@access to a variety of operations and
protocols to perform the transfers. The options curréemlemented work over TCP and UDP
protocols. The TCP option supports sequential and simolisnaodalities, and the UDP option
uses the “Blaster” algorithm and currently supports only pohmeint and simultaneous point-
to-multipoint versions. The Data Mover module has beesgiated to be part of the IBP
services, but remaining as an independent process, which dliddse data processing and
performance details from the user, but allows the developsdmew types of data movers with
flexibility depending on the requirements of the environmenppli@ation.

client

— Target IBP
N depots

B
Source IBF i
depot
P e
C

Figure 1: Schema of a simple multi copy scendidenotes the source depot and A, B, C represent the
target depots.

2. Design

Four main design parts can be identified in the Data Mosteerse; the first one is the client
(user) API that is part of the IBP Client library. Tdecond one is the interface between the plug-
in and the IBP Server code, the third part involves all thm i@ata Mover plug-in functions and
management, and the last part contains the data movech oE#hese parts is defined in the
following subsections.

2.1 Client API: IBP_mcopy

This function operates in the client side (fig 6), angast of the IBP client library; through its
parameters, the user can specify which kind of data m{pvetocol and method) wants to use to
carry out the data transfer each target with spegifimns. This interface also specifies which are
the source and target IBP capabilities and associatedsdegoivell as the data size and starting
offset for the data to copy and the number of targetsetke This API will be described in detail
in the implementation section, including the data types retalues and specific behavior and
parameters for the existent data movers.

2.2 Server Interface: handle_mcopy

This function is located within the IBP depot (fig 7)the counterpart of IBP_mcopy, it receives
and serves the request in two parts: the first one atelicthe size of the second request
depending on how many targets will be involved in the copytlamdecond one contains all the
data necessary to perform the copy to each of the tdegets. This function then spawns a new
process that executes the Data Mover control that takegeckhe request, waiting for the return
of the data mover and reports the outcome to the client.

IBF_mcopy
IBFP Client

handle_ueopy

IBF server
(source depot)

Somce
cap

Figure 6. IBP_mcopy call is located in the client side

2.3 Data Mover Control (DMC)

This is the core of the Data Movers, it can be consilasea manager of the functionality; it
receives the instructions from the depot through handle_mcognses the arguments and
parameters, processes them and chooses and executes tleé tigia mover required as a
separate process with the respective parameters.

The Data Mover Control works both in the source depot am@ch of the target depots, and the
data transfer is done based in the typical client-sgraeadigm; the DMC has two modalities
depending where it has been originated, either in the sourtea target depot and needs to
perform several activities: spawn a local Data Mover m®aethe source depot that behaves as a
client, then it sends a message to each of the targétsheitype of data mover and parameters to
indicate that they have to invoke a symmetric DMC servecgss) this is done through an
internal request function known as IBP_datamover withrpaters such as target capabilities,
type of data mover and options, finally it executes theeteslata mover.

After both DMC’s have been created, the client readsiait@ (associated with an IBP capability)
from the local storage and sends it through the networkseheers receive it on the other side
and write it as an IBP capability to their local storagstem. This behavior is illustrated in

figure 2. After the transfer is done, the data mover retsuccess or failure to the DMC process,
which passes this result to the IBP depot process andabisto the IBP Client (user).

2.4 Data Mover nroarams

IEP Client
IEP_meopyisourcetarget, data mover paratneters)

/f_v_—_ﬂx\ Allocated capabilities for /f_——___ﬁ\
\H-—______ﬂ—f"'/ source atd target _________J/
IEF server e e It it hael et r== IEF server
(source depot) i i (tatrget depot)
| |

Sonrce Target
Cap . - cap
1 A,
& n—_’;ﬂ/ ., s \h’“——;h @
© ‘l.“.ll._ Diata transfer g
DM control p T o’ @ D control
DI client “ ¥ | DI zerver
@
| |
L] IBP datamoventarget data mover parameters)

Fig.2 The Data Mover general scheme design: this pichwesthe three main design components and how they
relate to each other (arrows). Dotted lines inditBE calls implemented independently from the data moversk bla
lines indicate data flow within the data mover modules.

3. Implementation and Integration with IBP

For the implementation we can identify three diffédagyers extracted from the design described
in the previous section, these are: integration with, IB&a Mover Control, and Data Mover
programs or plug-ins.

3.1 Integration with I1BP

This is the uppermost layer and it contemplates! 8@ ntopy in the IBP client side and the
handl e_ntopy function in the IBP server-depot side, as described ipté&e@ous sections, this
code’s purpose is basically to create an interface batiwes IBP code and the data movers,
translate the parameters of one into the other’s, cteatBMC process and report return values

from it to the user.I BP_ntopy() is a blocking call that returns only when all requirethda
successfully copied from source depot to each of the targaible 1 presents the IBP_mcopy

APl in detall

Vari abl e nanme

Variabl e type

Par anet ers pc_Sour ceCap | BP_cap
pc_Tar get Cap[] | BP_cap
pi _CapCnt unsi gned i nt
ps_src_ti meout I BP_ti ner
ps_tgt_tinmeout I BP_ti ner

pl _size unsi gned | ong int
pl _of f set unsi gned | ong int
dm type[] i nt
dm option[] i nt
dm servi ce i nt

Return val ue

Table 1. IBP_mcopy API: IBP_cap data type defines a chiyabind IBP_timer holds the timeout for the
depot and the sync. IBP_mcopy() copies up to size bysetingtat offset, from the storage area accessed
through the IBP read capability source, and writes thethdcstorage area(s) accessed through the IBP
write capability(ies) target[]. The number of targepats is CapCount. For this call to succeed, source
must be a readcap returned by an earlier call to IBstadé(), target must be a writecap returned by a
similar call.

unsi gned | ong int

3.2 Data Mover Control

It is implemented as a plug-in module to the IBP depot, dctsrated by forking a new DMC
process whenever an IBP_mcopy or IBP_datamover commandaeatktthe new process takes
over control, it parses the command line, identifies the kfrgervice, the type of data mover
requested and executes the transfer. The first Batger Control is generated in the source
depot, after parsing the argument list creates a sefri&_datamover commands and sends one
to each of the target depots. In each of the tardedsIBP depot receives the command and
creates a local Data Mover process that act as servers

After a Data Mover process is created, it runs asndapendent process and it has two main
parts:

» Control process: it parses the command line passed fronBEh@lépot, strips the
parts of the command (capabilities, targets, ports and datarroptions), identifies
the targets and data mover options and operation mode (@lisetver), and creates
the arguments required by the second part with this datalso responsible for
recognizing and choosing the data mover program to be executed

* Inthe second part a new process is generated usinig andexec, the new process
the one that transfers the data from the source to tbet(s). There exist several
implementations that run over different protocols (TCP dbdP) and use different
methodologies (sequential, round-robin, optimized threadee)new process is also
independent from the Data Mover main calling process andtfiertBP depot.

Figure 3 shows the general data flow followed for the impléatiem of this part of the data
mover module.

3.3 Data Mover Plug-ins
The data moving process is at the lowest level (see fig.Bgre where the protocols and transfer
methods are implemented. All the data movers are compafsevo pieces of code, one that
implements the client side, and one for the server side.clidm side is the more complex piece
since it must handle transfers to multiple targets wlifferent cases like multiple transfers
sequentially, simultaneous or threaded. These dhligsiementations at this time need to receive
the same uniform parameters, which are:

- File descriptor of the associated source capabilitheniBP depot

- Full string containing the actual capability (file nanme)he source depot

- Size of the file to transfer

- Offset in the file where to start to read the dathe transferred

- Full strings containing the capabilities in each of #rget depots

- Options: e.g. port numbers where the server part willilbeing in the target depots

- Type of data mover used for server side

- Type of service for client side

As for the server side, there are currently only two kirfdseovers, for TCP and UDP because
they only need to implement a basic functionality in one,hebkich is one of the targets, by
reading from the socket established with the client andhgrib the local storage system the data
received, and this is generic to all the clients ofatmes protocol.

Table 2 shows how the choices of data movers are defined in thesikig the parameters
dm_types[] and dm_service, the first one specifies therdateer type for the target depots, and
the second specifies the corresponding type for the source depo

Targets Sour ce Description
TCP DM_UNI DM _SMULTI Sequential transfers
DM _PMULTI Si nul t aneous transfers
ubP DM _BLAST DM _MBLAST UDP based transfers

Table 2. API options for the existing data mover plug-ins

4. Experimental results

| BP_ntopy is a more general facility than IBP_copy, designed to praaidess to operations
that range from simple variants of basic TCP-based wartesfer to highly complex protocols
using multicast and real-time adaptation of the transonigzotocol, depending of the nature of
the underlying backbone and of traffic concerns. In all casescaller has the capacity to
determine the appropriateness of the operation to the debii®rk environment, and to select
what he believes the best data transfer strategy.

The experiments completed concentrate in the followingabioess that the Data Mover software
can support:
* Point-to-multipoint through simple iterated TCP unidaansfers

* Point-to-multipoint through simultaneous threaded TCleastitransfers.
* Fast, reliable UDP data transfer over private netwioksl|[3]

The design goal of the Data Mover plug-in and the function_Bgdpy is to provide an
optimized point to multipoint transfer tool, as well aswpport for different protocols and

methods for data transfer. In order to visualize and coeriba behavior of the different methods
to perform the data movement, three main experiment® wempleted under a specific
environment where each of the nodes involved were interconnected sigible, fast link within
a local area network (LAN). The subsections 4.1.1 and 4.5&ide these experiments and
their corresponding results, as well as a comparison of theiformance and possible
optimizations, using the Data Mover module, with the commonlyd usethods, such as
IBP_copy and TCP respectively.

4.1 TCP Data Movers per for mance
This experiment concentrates in the comparison of the Waréents of TCP data movers
currently implemented, and the optimizations that theyacterize.

Sequential TCP
140
120
. 100
é 80 - —— 5 targets
-~ / —— 4 targets
40 -
20
0 10000 20000 30000 40000 50000
size (KB)
Figure 3.a
Threaded TCP
40
35
30
2 25 | —— 3 targets
£ 20 —— 4 targets
jé 15 1 —— 5 targets
10 -
0 T T T T
0 10000 20000 30000 40000 50000
size (KB)

Figure 3.b

Optimized Threaded TCP
35
30
25
’g 20 | —— 5 targets
< —— 4 targets
2 15
= ——3hosts
10
5 i
0 : : : :
0 10000 20000 30000 40000 50000
size (KB)
Figure 3.c

As we can observe by comparing the three figures above thsfeiraime increases
proportionally to the size. Figure 3.a is the most cwadee method, it transfers the data
sequentially to each host, one after the previous one hascbawleted, as the chart shows the
time increases significantly as does the number of ts@rgeFigure 3.b shows a first
implementation to perform simultaneous TCP transfers ubnegds, is more efficient but can be
improved (note gaps between curves - same data is read imaras threads as copies are
needed); the time increase is still proportional to the murabhosts but not as dramatic as the
first case. Figure 3.c shows a simultaneous transfer u&pgmized” threads, the
implementation improves the performance to some extentrigrpeng less read accesses to the
source data than the previous one, in here the time varfatitine different number of targets is
relatively small (note gaps between curves — only one read).

In figure 4, we can observe and compare the rates in MiB/sdch of the TCP data movers
described above for a constant number of targets (5),easizk increase, the rate tends to
stabilize, however, the difference between the rates obtdigethe different methods is
noticeable, mostly compared to the Sequential approacfur abe simultaneous and threaded
data movers the rates are more similar, but the thigardach has some performance gain.

TCP Data Movers Bandwidth Comparison (5 hosts)

5 — Sequential
4 1 —— Threaded
3 —— Opt. Threaded

Bandwidth (MB/s)

0 50000 100000 150000 200000 250000
Size (KB)

Figure 4: general bandwidth comparison between the threed@@Amovers addressed

4.2 Point to Multipoint TCP

This subsection concentrates in comparing the transfeffefeht amounts of data using multiple
simultaneous point to point TCP data transfers imphteatkat user level using threads, and using
a single point to multipoint implementation of the Daver to transfer the same amounts of
data. As figure 2 reveals the latter approach shows prouw@ment in the overall transfer time.
This experiment consisted of transferring several pietetata of different sizes from one to
various numbers of nodes.

Comparison between Simultaneous point2point and single
point2multipoint Data Movements

size(MB)

Fig. 2. Dotted lines represent the multiple simultangmirst to point TCP transfers the number of hosts
used in different tests is given by n. The continuous legsesent point to multipoint approach, and
number of hosts for this cases is given by n.

4.3 Point-to-Point UDP versus TCP

The experiment described in this subsection consists of par@on between the transfer times
using TCP and UDPBlaster point-to-point Data Movers. Figureh8ws the improvement
achieved by using UDPBlaster. The Data Mover plug-iicceupport a variety of protocols and
methods; however, for the purpose of this experiment we coateiin the comparison of TCP
versus UDP, to show how the improvement can be achieved whiisame data mover using
different protocol depending on the characteristics of tle&ldmme being used. It is important to
note that since this protocol is still in the experimeptelse may behave differently in diverse
test environments under different circumstances.

Comparison between different protocols for data transfer

25 /./-
2

1.5

—8—TCP (IBP)
—#&— UDP Blaster (IBP)

time (sec)

0.5

size (MB)

Fig. 3. Improvement seen by using UDPBlaster

5. Conclusion

The design goals of the Data Mover plug-in and the fun¢&dh mcopy() are:

* To provide a flexible point-to-multipoint transfer tobbt supports different protocols
and transfer methods

* To allow access to a variety of operations depending onatfwge of the underlying
backbone and of traffic concerns

* To permit a simple implementation that avoids trust@ardormance concerns using an
encapsulate@pproach, even if software architectures based on ektet@amovement
operations are still of great interest.

At all times t he user has the capacity to determinegpeopriateness of the operation to the
depot’s network environment, and to select what he belis\the best data transfer strategy.

6. References

[1] Plank, J., Beck, M., Elwasif, W., Moore, T., Swa M., Wolski, R.;*The Internet Backplane
Protocol: Storage in the Network”in NetStore99: The Network Storage Symposium, (Seattl
WA, 1999)

[2] Beck, M., Arnold, D., Bassi, A., Berman, F., Cagea, H., Dongarra, J., Moore, T., Obertelli,
G., Plank, J. Swany, M., Vadhiyar, S., and Wolski, RLpgistical Computing and

Internetworking: Middleware for the Use of Storage in Communicafionthe 3rd International
Workshop on Active Middleware Services, San Franciscguay 2001.

[3] Beck, M., Fuentes, EA UDP-Based Protocol for Fast File Transfer’'Department of
Computer Science, University of Tennessee, Knoxville, TN, €ilical Report, ut-cs-01-456,
June, 2001, http://www.cs.utk.edu/~library/2001.html.

