
Scalable Parallel Algorithms for Difficult Combinatorial
Problems: A Case Study in Optimization∗

Faisal N. Abu-Khzam, Michael A. Langston† and Pushkar Shanbhag
Department of Computer Science, University of Tennessee, Knoxville, TN 37996–3450

Abstract
A novel combination of emergent algorithmic meth-
ods, powerful computational platforms and support-
ing infrastructure is described. These complementary
tools and technologies are used to launch systematic
attacks on combinatorial problems of significance.
As a case study, optimal solutions to very large in-
stances of the NP-hard vertex cover problem are
computed. To accomplish this, an efficient sequen-
tial algorithm and two forms of parallel algorithms
are implemented. The importance of maintaining a
balanced decomposition of the search space is shown
to be critical to achieving scalability. With the syn-
ergistic combination of techniques detailed here, it is
now possible to solve problem instances that before
were widely viewed as hopelessly out of reach. Tar-
get problems need only be amenable to reduction and
decomposition. Applications are also discussed.

Key Words
Algorithm Design, Parallel Computing, Optimiza-
tion, Load Balancing, Applications

1 Preliminaries

An innovative technique for dealing with foundational
NP-complete problems is based on the theory of fixed-
parameter tractability.

A problem of size n, parameterized by k, is
fixed-parameter tractable if it can be decided in
O(f(k)nc) time, where f is an arbitrary func-
tion and c is a constant independent of both n

and k.

The origins of fixed-parameter tractability (henceforth
FPT) can be traced back some 15 odd years, to the work

∗This research is supported in part by the National Science Foun-
dation under grants EIA–9972889 and CCR–0075792, by the Office of
Naval Research under grant N00014–01–1–0608, by the Department of
Energy under contract DE–AC05–00OR22725, and by the Tennessee
Center for Information Technology Research under award E01–0178–
261.

†Communicating author: langston@cs.utk.edu.

by Fellows and Langston on applications of well-quasi
order theory, the Robertson-Seymour theorems, noncon-
structivity, and in particular the minor and immersion or-
ders. See, for example, [9, 10, 11]. Efforts at that time
were motivated by the theme that, by fixing or bounding
parameters of relevance to the problem at hand, one might
be able to exploit a non-uniform measure of algorithmic
efficiency. In the intervening years, Downey and Fellows
developed the major theoretical basis of FPT [8]. More re-
cently, something of a cottage industry in FPT algorithm
design has begun to flourish, with research groups and
workshops now held around the world. Despite all this
activity, however, the main focus has remained on theo-
retical issues, especially worst-case bounds, problem re-
strictions and the W-hierarchy (a fixed-parameter analog
of the polynomial hierarchy). Few serious attempts have
been made at large-scale practical implementations. A no-
table exception is the work of Cheetham et al [4].

2 Exemplar

Perhaps the best-known example of an FPT problem, and
the one we use as a case study here, is vertex cover. In
this problem, the inputs are an undirected graph G with
n vertices, and a parameter k < n. The question asked is
whether G contains a set C of k or fewer vertices that cov-
ers every edge in G, where an edge is said to be covered
if either (or both) of its endpoints is in C.

In terms of worst-case analysis, the asymptotically-
fastest algorithm currently known for vertex cover is due
to the work of Chen et al [5], and runs in O(1.2852k+kn)
time. Compare this with O(nk), the time required to ex-
amine all subsets of size k by brute force. Of course an
attractive worst-case bound is no guarantee of a practical
algorithm. Nevertheless, it is remarkable that the requi-
site exponential growth (assuming P 6= NP) has been
reduced to a mere additive term.

Algorithms designed to solve FPT problems are some-
times rather loosely termed “fixed-parameter algorithms.”
Such algorithms were originally intended to work only
when the parameter in question was truly fixed. The al-
gorithm described in [3], for example, was aimed only at



determining whether an input graph has a vertex cover of
size at most 5.

In contrast, our interest here is on pushing the bound-
ary of feasible computation. We seek to construct effec-
tive methods for finding optimal vertex covers in huge
graphs, irrespective of any particular parameter value. To
accomplish this, we exploit, build upon and implement
techniques gleaned in large part from recent advances in
the theory of fixed-parameter algorithm design. We detail
the salient features of some of these techniques in the next
section.

3 Reduction and Decomposition

The goal of problem reduction is to condense an arbitrary
input instance down to a relatively small computational
core. The intent is to find a core whose size depends only
on k, and to find it in time polynomial in n. In the context
of FPT, this operation is generally termed “kernelization,”
and is often accomplished with assorted forms of prepro-
cessing.

For vertex cover, preprocessing makes it possible to
eliminate vertices of very low degree. It is trivial to elim-
inate vertices of degree one. (There is no gain in using a
leaf to cover its only incident edge.) It is straightforward
to eliminate vertices of degree two. There is also a way to
eliminate some but not all vertices of degree three, but it
is complicated and not necessarily worth the extra effort
in practice.

It is also well known that there are ways to eliminate
vertices of very high degree. To illustrate, suppose a ver-
tex, v, has degree k + 1 or more. Then v must be in any
satisfying cover. (Otherwise all its neighbors would be re-
quired to be in the cover, and there are simply too many of
them.) So we merely remove v, reduce k by one, and ask
the vertex cover question again, now on the new, smaller
instance. It turns out that when no more vertices can be
removed in this fashion, the reduced graph (core) has size
at most k2. This idea has been around for a long time, and
was described formally in [2].

Newer, more powerful kernelization methods rely on
linear programming relaxation and related techniques
[12, 13]. We have implemented several of these, includ-
ing some very fast LP codes graciously provided to us by
Bill Cook at Georgia Tech [6]. We have also devised and
fine-tuned several alternate strategies. The culmination of
all this is a suite of efficient low-order polynomial-time
routines that produce a core of size at most 2k. Details
about their use can be found in [1].

As soon as reduction is complete, the core is ready to be
passed to the decomposition stage. The problem now be-
comes one of exploring the core’s search space efficiently.
In the parlance of FPT, this is known as “branching.” This

is an extremely challenging task. Even though the core is
now of bounded size, its search space typically contains
an exponential number of candidate solutions. We use an
implicit tree structure and a depth-first search to organize
the search for a satisfying cover. Each internal node of the
tree represents a choice. For example, one might make
the choice at the root by selecting an arbitrary vertex, v.
Then the left subtree may denote the set of all solutions in
which v is to be in the cover. The right subtree may de-
note the set of all solutions in which v is not in the cover.
This over-simplification alone is enough to reveal one of
many curiosities: solutions are often found faster should
it be that v is not in the cover. This is because, when v

is unused, all its neighbors must be in the cover and, if
the degree of v is high, we converge much more rapidly
toward a solution. Moving on down the tree, each leaf is a
set of k or fewer vertices that may or may not form a valid
cover, corresponding to a potential solution. Although ef-
fective, this form of decomposition is an exhaustive pro-
cess to be sure. (This should come as no surprise. After
all, the underlying problem is NP-complete.)

Of course reduction and decomposition need not be
stand-alone tasks. As decomposition proceeds, new in-
stances generated can sometimes be further reduced by a
re-application of preprocessing rules. This technique is
often termed “interleaving.” See [14] for more informa-
tion and analysis.

Decomposition clearly requires the lion’s share of com-
putational resources. Thus, it is important to note that the
subtrees spawned off at each level can be explored in par-
allel. Moreover, the depth of the tree can be at most k. All
that needs to be done at a leaf is to check whether the re-
moval of the leaf’s candidate solution leaves an edgeless
graph (all edges are covered).

Decomposition via the branching process is depicted in
Figure 1. Figure 1(a) shows a sample graph for which
we want to find a vertex cover of size four. Figure 1(b)
shows a resultant tree search, rooted at v. In this example,
we have favored branching at a node of highest current
degree. Because a depth-first search is employed, and
because a solution is eventually found in the root’s left
subtree, the dotted edge leading to the root’s right sub-
tree need not be traversed by a sequential algorithm. This
is not a property easily exploited by parallel algorithms.
As we shall see, parallel algorithms may be very lucky or
very unlucky as the solution space is decomposed.

4 Parallelism

Parallelization works hand-in-hand with the results of de-
composition. The task of spawning processes is structured
by the same tree that is used to explore the core’s search
space. To explicate, suppose both n and k are large, and

2



6

7

0

1

2

3

4

5

���
�

���
�

���
�

���
�

��	
	

(a)



�
�

��


���
�

C={}
k=4

k=3
C={1}

C={1,0,3,5}
k=0

YES

k=2
C={1,4}

C={1,4,2} C={1,4,0,3}
k=0

NO

k=1

NO

C={1,4,2,6}
k=0

NO

C={1,4,2,0,3}
k=−1

C={0,2,3,5,6}
k=−1

NO

(b)

Figure 1: The use of branching to find a vertex cover.

32 processors are available. Because the search tree has
a branching factor of two, decomposition will have used
the first 5 << k levels of its tree to split the input into 32
subgraphs, one for each processor. In turn, each proces-
sor will, in parallel, examine its subgraph using the search
tree technique.

Once spawned, these tasks are left to run in a virtually
unstructured manner. They can be farmed out as the need
arises, and serviced in anything from a tightly-coupled
to a widely-distributed fashion. No barrier synchroniza-
tion is needed. No MPI-like tools are required. A process
need not even know its siblings exist. Each is free to run
to completion, at its own pace, returning its result when-
ever it is finished. We have run our codes on several dif-
ferent platform/gridware combinations. Our best results
have generally been obtained with minimal intervention,
however, in the extreme case by directly launching secure
shells (SSHs).

5 Initial Results on Synthetic Data

We first tested our algorithms on synthetic data sets.
These were mostly pseudo-random graphs generated in a
variety of ways. The results were always impressive. In
fact our best results were obtained on synthetic data sets
graciously provided by Frank Dehne at Carleton Univer-
sity [7]. See Table 1. Numbers listed there reflect wall
clock times.

These results are intriguing. Three different graphs are
listed, each with 600 vertices, and each containing a ver-
tex cover of size 400. On them we used 32 processors,
each running at 500 MHz. At first we thought the sequen-
tial routine must be hung. Traces revealed, however, that
it was humming along nicely. It is just that these graphs
have a lot of edges and their search spaces are huge. The
average speedup we observe is something north of 30,000.
Because we are only employing 32 processors, this would

3



Graph Sequential Sequential Parallel
Name Reduction Decomposition Decomposition

RG30 1 second halted after two days 5 seconds
RG31 1 second halted after two days 4 seconds
RG32 1 second halted after two days 4 seconds

Table 1: Intriguing results on synthetic graphs of size 600.

surely have to be characterized as super-super-linear!
We have sought to determine what factors could have

caused this unusually fortuitous sort of parallel behavior.
Should we abandon the streamlined sequential code, and
re-write it so that it uses multiple threads or otherwise em-
ulates the actions of the parallel version?

One factor is the way in which solutions are scattered
about the search space. It has been observed before [4]
that solutions tend to be highly non-uniformly distributed.
In this setting, therefore, decomposition can do much
more for us than merely help guide the search and paral-
lelize the process. One or more processors may find a so-
lution relatively close to the root of its respective subtree.
The searches occurring at other processors may be fruit-
less; it matters not. Our parallel run time is based solely
on the time required for the earliest-finishing processor to
deliver to us a solution, at which point the other proces-
sors are halted. Yet the sequential algorithm is doomed to
plod along, exhaustively examining each and every sub-
tree until it stumbles across a solution-laden region of the
search space.

After a little more digging, however, we believe the
main factor is the makeup of the graphs themselves. These
synthetic graphs are somewhat grid-like, which for tech-
nical reasons places our parallel algorithm at a great ad-
vantage. In short, we were lucky. The super-super-linear
speedups seen here are mainly artifacts of the data. Never-
theless, they do caution us against trying to read too much
into contrived examples, and speak a familiar story: rely
only on real data.

6 Dynamic Load Balancing

As we move toward the use of non-synthetic data, the
generic parallel decomposition technique just outlined has
proved useful in many of our experiments. The result has
been much smaller runtimes than those for corresponding
sequential codes. In some nagging cases, however, we
would observe only very small, sometimes even negligi-
ble, speedups. In an occasional extreme case, all but one
of the processors would finish quickly, leaving the lone

remaining processor to do the bulk of the computation. In
short, we were unlucky. Observe that we can get lucky,
achieving excellent speedup, only on “yes” instances. But
we can get unlucky, achieving little or no speedup at all,
on both “yes” and “no” instances. We iterate the deci-
sion algorithm to attain optimality. Interestingly, we have
found that the closer we get to converging the parameter
to its optimal value, the more likely we are to get unlucky.

Thus, to maintain scalability as more and more ma-
chines come on line, it has been imperative that we in-
corporate at least some primitive form of dynamic load
balancing into our methods. We have studied a number
of strategies but, as we show in the next section, even a
simple scheme seems to have a tremendous impact. We
hesitate to interrupt active processes, and therefore refrain
from redistributing processor loads until all processors but
one are idle. Of course one could probably invent data for
which all processors but two, or three, or any fixed num-
ber are idle. And we are building out our system to be
robust enough to handle these cases and others of their
ilk. But thus far this is not what real data seems to tell us
is happening.

7 Results on Non-Synthetic Data

Many applications of vertex cover rely on its relationship
to clique. In this problem, the inputs are an undirected
graph G with n vertices, and a parameter k < n. The
question asked is whether G contains a set C of k or more
vertices such that every pair of elements in C is connected
by an edge in G.

Clique is not FPT (unless the W hierarchy collapses).
Fortunately, vertex cover is a complementary dual to
clique. To see this, suppose we wish to determine whether
G contains a large clique, where large means of size at
least n − k for some suitable choice of k. Let G denote
the complement of G. Then G has a clique of size at least
n − k if and only if G has a vertex cover of size at most
k. This duality is depicted in Figure 2. Figure 2(a) shows
a clique in a sample graph, G1. Figure 2(b) shows the
corresponding vertex cover in G2 = G1.

4



�������
�

���
�

���
�

���
�

	�		�	




���
�

���
�

���
�

���
�

���
�

�������
�

���
�

������������

���
�

���
�

�� 
 

!�!!�!"�""�" ##$$ %�%%�%&�&&�&

''(
(

))*
*

++,
,

-�--�-.�..�.//0
0 =1G 2 1G G

(a) (b)

Figure 2: The duality between clique and vertex cover.

An important use of clique is in the analysis of protein
sequence data that is now widely available from a variety
of sources. For example, given such data, relations be-
tween sequences can be determined using codes such as
the well-known ClustalW package, which returns a score
for each sequence pair. A complete graph, G, is then con-
structed, with vertices denoting sequences and edges la-
beled with the corresponding scores. The source data of-
ten contains outliers, duplicates and so forth, and so in
many applications we seek first to obtain the largest pos-
sible set of closely-related sequences before proceeding
with the analysis.

Since we are interested in a maximum set of closely
related sequences, we need to find in G a set of vertices
whose pairwise scores are greater than a certain (biolog-
ically significant) threshold. To accomplish this, edges
whose labels are less than the threshold are removed. This
produces a new graph, G′, and it remains to find in G′ a
set of vertices that are completely related. Of course this
is just a restatement of the clique problem.

Working with biologists, we have downloaded vast
assortments of sequence data against which to test our
codes. These have been obtained mainly from the Na-
tional Center for Biotechnology Information (NCBI).
Each data set corresponds to a family of protein sequences
that share a common domain. A representative set of re-
sults using data from the SH2 and SH3 domains is re-
ported in Table 2. As before, we used 32 processors, each
running at 500 MHz. Wall clock times are listed.

These results are particularly telling, because the rel-
evant parameter is just converging on the optimal value.
Note the significance of dynamic load balancing.

8 Conclusions

We believe this case study has been fruitful. By cou-
pling algorithms based on the notion of fixed-parameter
tractability with parallel computing platforms, we think

we have identified an attractive way to design scalable
parallel algorithms for difficult optimization problems.
Certain features, however, most notably load balancing,
are critical.

Some of our methods are being incorporated into the
parallel, high-performance release of Clustal, dubbed
ClustalXP, due out soon. We are currently adding hard-
ware acceleration in the form of Pilchard FPGA boards
into our system, in an effort to handle particularly recal-
citrant subproblems. We are also exploring mechanisms
for avoiding our primitive load-balancing interrupts, for
example, by allowing heavily-loaded processors to spawn
subtrees out to a job queue that is maintained by a task
manager.

Despite these and other growing pains, we think our re-
sults to date are worthy of attention. Problems as large as
those listed in Table 2 were until recently considered by
many to be hopelessly out of reach. In clique applications
alone, we are now routinely returning cliques whose ver-
tices number in the hundreds, on graphs whose vertices
number in the thousands. Just imagine a straightforward
O(nk) algorithm on problems of that size! In fact we re-
cently solved a problem on DNA microarray data whose
size was 12,422. The clique we returned (via vertex cover)
denoted a set of 369 genes that appear experimentally to
be co-regulated. This one took us a few days to solve even
with our best current methods. Yet solving it at all was
probably unthinkable just a short time ago. We believe
the practical implications of this work are manifest.

Acknowledgments

We are grateful to Mike Fellows and Fran Rosamond
for their collaboration and encouragement, to Bill Cook
for providing us with the streamlined linear programming
routines we employed in our reduction algorithms, and to
Frank Dehne for access to some of the data sets we used
in preliminary testing of our implementations.

5



Graph Graph Cover Instance Sequential Sequential Parallel Dynamic
Name Size Size Type Reduction Decomposition Decomposition Decomposition

SH2-5 839 399 yes 34 seconds 7 seconds not needed not needed
SH2-5 839 398 no 34 seconds 141 minutes 82 minutes 20 minutes

SH3-10 2466 2044 yes 203 minutes just under 5 days just under 5 days 140 minutes
SH3-10 2466 2043 no 203 minutes just under 5 days just under 5 days 620 minutes

Table 2: Representative results on large non-synthetic graphs.

References

[1] Faisal N. Abu-Khzam. Topics in Graph Algorithms:
Structural Results and Algorithmic Techniques, with
Applications. PhD thesis, Dept. of Computer Sci-
ence, University of Tennessee, 2003.

[2] J.F. Buss and J. Goldsmith. Nondeterminism within
P. SIAM Journal on Computing, 22:560–572, 1993.

[3] Kevin Cattell and Michael J. Dinneen. A character-
ization of graphs with vertex cover up to five. In
ORDAL, pages 86–99, 1994.

[4] J. Cheetham, F. Dehne, A. Rau-Chaplin, U. Stege,
and P. J. Taillon. Solving large FPT problems on
coarse grained parallel machines. Technical report,
Department of Computer Science, Carleton Univer-
sity, Ottawa, Canada, 2002.

[5] J. Chen, I. Kanj, and W. Jia. Vertex cover: further
observations and further improvements. Journal of
Algorithms, 41:280–301, 2001.

[6] W. Cook. Private communication, 2003.

[7] F. Dehne. Private communication, 2003.

[8] R. G. Downey and M. R. Fellows. Parameterized
Complexity. Springer-Verlag, 1999.

[9] M. R. Fellows and M. A. Langston. Nonconstructive
advances in polynomial-time complexity. Informa-
tion Processing Letters, 26:157–162, 1987.

[10] M. R. Fellows and M. A. Langston. Nonconstruc-
tive tools for proving polynomial-time decidability.
Journal of the ACM, 35:727–739, 1988.

[11] M. R. Fellows and M. A. Langston. On search, de-
cision and the efficiency of polynomial-time algo-
rithms. Journal of Computer and Systems Sciences,
49:769–779, 1994.

[12] D. Hochbaum. Approximation Algorithms for NP-
hard Problems. PWS, 1997.

[13] G.L. Nemhauser and L. E. Trotter. Vertex packings:
Structural properties and algorithms. Mathematical
Programming, 8:232–248, 1975.

[14] R. Niedermeier and P. Rossmanith. A general
method to speed up fixed-parameter tractacle algo-
rithms. Information Processing Letters, 73:125–
129, 2000.

6


