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Abstract
We propose certain non-Turing models of computation, but our intent is not to
advocate models that surpass the power of Turing Machines (TMs), but to de-
fend the need for models with orthogonal notions of power.  We review the na-
ture of models and argue that they are relative to a domain of application and are
ill-suited to use outside that domain.  Hence we review the presuppositions and
context of the TM model and show that it is unsuited to natural computation
(computation occurring in or inspired by nature).  Therefore we must consider
an expanded definition of computation that includes alternative (especially ana-
log) models as well as the TM.  Finally we present an alternative model, of con-
tinuous computation, more suited to natural computation.  We conclude with
remarks on the expressivity of formal mathematics.
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1. Introduction
The principal purpose of this article is to argue for and to propose certain non-
Turing Machine models of computation.  The intent is not so much to advocate
models that surpass the power of Turing Machines (TMs) as to defend the need
for models with orthogonal notions of power.  Traditionally, the power of a
computational model has been defined in terms of the class of functions it can
compute.  However there are alternative criteria of merit (notions of power)
more appropriate to natural computation (computation occurring in or inspired by
nature).
I begin by reviewing the nature of mathematical models of any sort, arguing that
they are relative to a domain of application or concern and are generally ill-
suited to use outside that domain.  This observation motivates a discussion of the
presuppositions and context of the TM model, arguing that, valuable though it is,
it is ill-suited to certain important applications.  It has been argued that Turing
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computation is what we mean by computation, but I propose a broader definition
of computation that includes Turing computation as well as alternative (espe-
cially analog) models.  This is followed by a discussion of natural computation,
which asks questions that the TM model is unsuited to answer.  Finally I will
present an alternative model, of continuous computation, more suited to ad-
dressing the important issues in natural computation.  I conclude with some re-
marks on the expressivity of formal mathematics.
We will be discussing models of computation, so it will be worthwhile to begin
by reviewing some characteristics of models in general.  (See MacLennan 2003b
for a more systematic discussion of these issues.)  Models are tools intended to
address a class of questions about some domain of phenomena.  They accom-
plish this purpose by making simplifications (idealizing assumptions) relevant to
the domain and to the intended class of questions.  Such simplification is both
their strength and weakness.
The idealizing assumptions have an (often indefinite) range of applicability over
which they give reasonably good answers, but outside of this range they give
progressively poorer answers, which reflect the structure of the model more than
the underlying phenomena.  (That is, these answers tell us more about the map
than about the territory it purports to describe.)  Sometimes, of course, the range
of applicability of a model is larger than intended, but this is a lucky accident
and should not be assumed.  Therefore we should remind ourselves of the in-
tended domain of applicability of the TM model lest we inadvertently extend it
outside of its range of usability.

2. The Turing-Machine Model
2.1. Historical Context

We may begin to understand the range of applicability of the TM model by re-
calling the historical context that gave it birth: it was developed to answer ques-
tions in the formalist program in mathematics, which attempted to reduce
mathematics to a calculus (discrete formal system). Therefore the appropriate in-
formation representations were idealizations of mathematical or logical formu-
las, and the processes operating on these representations were idealizations of
formal mathematical proof and calculation.  The central issue was the provability
of formulas, since this is relevant to questions of consistency and completeness in
formal mathematics.  Therefore, a key concept was the class of theorems, or for-
mulas derivable from a given set of axioms by given rules of inference.
A closely related issue, when effective calculability is more the concern than for-
mal axiomatics, is the class of functions computable by a specified calculus or
class of calculi.  Typically the problem of computability is recast as a problem of
computing a function of the integers: given an input integer, whether it will
eventually compute the corresponding output integer.  In accord with the as-
sumptions of formal logic (a proof can be any finite length), a function was con-
sidered computable if for any input the corresponding output would be pro-
duced after finitely many steps.
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Similarly, as appropriate for questions of consistency and completeness, no
bounds were placed on the length of the individual steps, so long as they were
finite.  Likewise, no bounds were placed on the size of formulas, so long as they
were finite.
As this theory of computation evolved, questions of algorithm complexity were
eventually addressed, but from a correspondingly abstract perspective.  For ex-
ample, asymptotic complexity was formulated consistently with these assump-
tions: once one has chosen to ignore the speed of the individual steps, all that
remains is how the number of steps grows with the size of the input.  Similarly,
one may analyze the size of the formulas produced during the computation.
This perspective has led to the curious view that any polynomial-time algorithm
is “fast” and that problems that are polynomial-time reducible are virtually
identical.  So, for example, an algorithm that takes 

† 

N100  years is fast, but one that
takes 

† 

2N  nanoseconds is “intractable.”

2.2. Assumptions
Having reviewed the TM model in its historical context, we can summarize its
principal assumptions.  (Note that some of these assumptions are abandoned in
some extensions of the TM model, but they form a basis from which the exten-
sions are made.)  The TM belongs to the larger class of calculi, therefore we re-
view the characteristics of a calculus or discrete formal system; see MacLennan
(1994b, 2003b) for a more systematic analysis.

2.2.1. Information Representation
In a calculus, information representation is formal, finite, and definite.  Formality
means that information processing is both abstract and syntactic, that is, the op-
eration of a calculus depends only on the form of the representations, in contrast
to their substance1 (abstract formality) and their meaning (syntactic formality).  Ab-
stract formality, when combined with an assumption of an unlimited supply of
the representing substance, implies infinite producibility (and reproducibility) of
formulas having a given form, which is fundamental to the expression of infinity
in formal mathematics (Markov 1961, chs. 1-2).  Syntactic formality permits me-
chanical processing, since we know how to make mechanisms respond to the
form of representations (but perhaps not to their meanings).  This was a primary
goal in the formalist program in mathematics, but also important if we want to
eliminate the “ghost in the machine” in artificial intelligence or in scientific theo-
ries of natural intelligence.
In calculi, information representations are assumed to be finite in size and num-
ber of constituents.  This is certainly reasonable in the context of formalist
mathematics, since mathematical formulas are finite arrays of discrete symbols.
It was also essential to a principal historical goal of axiomatic mathematics,

                                                  
1 I use “substance” for the individuating substrate, which makes one instance of a
formula different from another.  It might be chalk on a blackboard, light on a
display screen, electrons on a capacitor, electromagnetic energy of a given fre-
quency at a given time in a given location, etc.
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which was to account for the infinite in terms of the finite (e.g., Peano axioms,
limits).
Finally, in a calculus, information representation is assumed to be definite, that is,
all determinations are simple and positive (hence reliable).  This is because for-
malist mathematicians were concerned with what could be calculated or proved
if these formal processes were carried out with the care and reliability that for-
malization permits.
There are several additional implications of these assumptions with regard to in-
formation representation and processing.  Although these assumptions are rea-
sonable in the original context of the study of effective calculability (and also, to a
large extent, for many applications of digital computers), it should be noted that
they are idealizations, and are problematic under less ideal circumstances, such
as will be described later.
First we will consider texts, the concrete physical instantiations of information
representations or formulas.  The smallest (and therefore indivisible) constituents
of a text are called tokens.  Their presence or absence is definite (i.e., they are
definitely separable from the background) as is their extent (i.e., where one ends
and another begins).  Tokens belong to a finite number of types, the determina-
tion of which is definite (i.e., types are reliably and mechanically discriminable).
The tokens belonging to a type are mutually interchangeable, without any effect
on the operation of the calculus.  (That is, for the purposes of the calculus, the set
of allowable tokens may be partitioned into a finite number of equivalence
classes.)  For convenience we may refer to the matter and form of a token, pro-
vided these terms are not interpreted too concretely (e.g., “matter” as physical
matter, “form” as shape).  Finally, we assume that it is always possible to make
another token of a specified type (i.e., we never run out of the “stuff” constituting
tokens).
Notice that the notion of mechanically determinable types is not entirely precise.
For example, humans can reliably and mechanically discriminate red and green
tokens, but probably not beautiful and ugly tokens.  Humans could use, with
considerable reliability, pictures of the faces of Gödel and Turing as tokens of
two distinct types, but it would be more difficult for a mechanical device to do so
with contemporary face-recognition technology.
The notion of mechanical determination is partly relative to what we are trying
to explain.  For example, if we are studying formal mathematics, it is reasonable
to assume that mathematicians can reliably distinguish mathematical symbols,
and this process is taken to be unproblematic and transparent.  However, if we
are attempting to give a computational account of human visual pattern recogni-
tion, then it is precisely this sort of process than cannot be taken for granted, and
must be reduced to more elementary discriminations.
A text is a finite and definite ensemble of interrelated tokens; that is, we can de-
termine reliably which tokens belong to the text, and there are a finite number of
them.  Thus, we may say that a text is finite in breadth and depth.
For the purposes of the calculus, the possible physical relations among the tokens
of a text are divided into a finite number of equivalence classes (which may be
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called elementary schemata), and it is always definitely, reliable, and mechanically
determinable whether or not a particular elementary schema holds among par-
ticular tokens.  Therefore, as we did for tokens, we may analyze texts in terms of
matter and form.
Some combinations of elementary schemata may not be physically realizable.  A
physically possible combination of elementary schemata is called a schema, which
is the form of a text for the purposes of the calculus.  Further, the schema to
which a text belongs depends only on the types of the constituent tokens, not on
the specific tokens (a consequence of abstract formality).  (That is, the types and
elementary schemata induce an equivalence relation on texts, the equivalence
classes of which are called schemata.)
There are assumed to be no resource limitations on the construction of texts; that
is, one can always obtain tokens of the required types and arrange them into a
text belonging to a specified schema.  Generally, no a priori limit is set on the size
of a text (although in practice they are always limited by physical resources).

2.2.2. Information Processing
Like information representation, information processing in a calculus is formal,
finite, and definite.  In particular, computation comprises a finite number of dis-
crete, atomic steps of definite type, each step requiring finite time and energy.  At
each step there is a corresponding text, the state of the computation, and at each
step an operation occurs, which replaces the old state with a new state (which
may be obtained by rearranging the old state, or by constructing a new state
from scratch, or by any combination of the two).2  The operation applied in a step
depends definitely on the old state’s schema (that is, on its syntax, not its sub-
stance); likewise, it constrains only the schema of the new state, not its substance.
The changes effected by an operation are mechanical, that is, they require no
judgment.  However, as already remarked, the standard of what is “mechanical”
is somewhat relative to what is being explained.  For example, the sensorimotor
processes involved in the manual application of an inference rule in formal logic
and the substitution for a bound variable in the lambda-calculus are commonly
taken as mechanical processes, but they are complex to implement on a com-
puter.  Another example:  deciding the termination of an arbitrary TM descrip-
tion-input pair cannot be accomplished by a TM, but for some purposes we may
take this as a primitive operation (i.e., we may assume we have an oracle for the
halting problem).
The computational process may be deterministic (if in a given state at most one
operation is possible) or non-deterministic (if more than one is possible); that is,
there are syntactic (formal) constraints on the applicable operations, and these
constraints may limit the operations to one, or more than one, at each step.  (The
absence of any applicable operation is often taken to signal the termination of the
computation.)  Thus, in the general, possibly nondeterministic framework, we
                                                  
2 For simplicity I will restrict my attention to processes without external input.
External input is not relevant to the present discussion, and in any case it can be
incorporated into the present framework, for example, by making the input text
part of the initial state.
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can see that the steps of a computation are defined by a relation between the
schemata of the new and old states (e.g., in the context of formal logic, the rela-
tion is “immediate derivability”).
Finally, the termination of a computation is definite; that is, we can determine
reliably whether or not it is finished computing.  Two common ways of signaling
termination of a computation are by generating a text conforming to a class of
terminal schemata, or by the absence of any applicable operations (as previously
remarked).

2.2.3. Algorithms and Programs
Because of the foregoing assumptions, a computational process in a calculus can
always be represented in a finite number of discrete, finite rules, that is, in a pro-
gram.  This is because a finite-energy operation can inspect only a finite number
of tokens and elementary schemata; similarly, it can directly affect only a finite
number of them.  Therefore the preconditions and effects of an operation can be
expressed in a finite rule, that is, by a schema constructed of types and elemen-
tary schemata akin to those in the original calculus.  Thus, computational proc-
esses (algorithms) can be represented in physical texts or formulas.  This finite,
physical representation of computational process allows the construction of uni-
versal machines, such as the Universal TM and general-purpose digital comput-
ers.

3. Defining Computation
3.1. Digital and Analog Computation

I will be arguing that natural computation, such as occurs in neural networks,
requires non-Turing models of computation, but it may be objected that these
processes are not, strictly speaking, computation, which is defined in terms of the
Turing machine.    That is, it might be argued that  “computation,” a previously
vague concept, was first defined precisely by Turing, and that this is the essential
import of the Church-Turing Thesis (see Copeland 1996; Copeland & Sylvan 1999
for a discussion).  This would imply that “non-Turing model of computation” is
a contradiction in terms.  Therefore, it is necessary to start with a discussion of
the definition of “computation.”  The best definition is far from obvious.  Indeed
an entire issue of the journal Minds and Machines (4, 4; 1994) was devoted to the
question, “What is Computation?”
Certainly “computation” may be defined narrowly or broadly, and the theoreti-
cal success of the Turing-machine model and the practical success of digital
computers have encouraged a narrower definition.  Indeed, many authors have
advocated, or assumed, that computation is equivalent to Turing-computation
(see quotations in Copeland 1996; Copeland & Sylvan 1999).  Although this defi-
nition has the obvious advantage of precision, it also has less-obvious disadvan-
tages.
First, “computation” has traditionally included both digital (or discrete) and
analog (or continuous) computation.  In the era of manual computation we find
both digital devices (e.g., abaci, desk calculators) and analog devices (e.g., nomo-
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graphs, pantographs); the slide rule is hybrid: analog computation with digital
readout.
The constructions of traditional (i.e., compass and straight-edge) Euclidean ge-
ometry are early examples of continuous computation.  Consider, for example,
such “problems” as: “to divide a given straight line into two parts, so that the
rectangle contained by the whole and one of the parts shall be equal to the square
of the other part” (Euclid II.51), “to find a mean proportional between two given
straight lines” (VI.13), “to cut a given straight line in extreme and mean ratio”
(VI.30).  These constructions are actually hybrid algorithms comprising discrete
steps making use of continuous operations.
Similarly, throughout most of the era of automatic computation, there have been
analog computers, from Bush’s differential analyzer, through electronic analog
computers, to modern analog VLSI devices (Mead 1989).

3.2. A Functional Definition
In the mid-twentieth century many scientists embraced computation and infor-
mation processing as ways of understanding phenomena in their own disci-
plines.  A notable example is the use of computational models in cognitive sci-
ence, but linguistics, sociology, genetics, and evolutionary biology may also be
mentioned.  Especially when we are dealing with natural systems such as these,
computation is better viewed as a matter of what is being accomplished rather
than how it is accomplished.
For example, it now appears that primary visual cortex (area V1) does a Gabor-
wavelet transform (Daugman 1984, 1985a, 1985b, 1988).  That is, it implements a
particular mathematical operation, and that seems to be its purpose in the visual
system.  It is natural and informative to say that it computes a Gabor-wavelet
transform.  However, to apply the narrower definition of computation, we
would have to understand the actual mechanism in the brain before we could
say this.  If we found a discrete process fitting the assumptions of the Church-
Turing thesis, we could call it a computation, otherwise we would have to call it
something else (a “pseudo-computation”?).  But this seems to be perverse.
Surely it is more informative and accurate to say that V1 is computing a Gabor-
wavelet transform, regardless of whether the underlying technology is “digital”
or “analog.”
These considerations have motivated the following functional (i.e., purpose
based) definition of computation (MacLennan 1994a, 1994c, 2001):
Definition 1: Computation is a physical process the purpose of which is the abstract
manipulation of abstract objects.
By an “abstract object” I mean an object defined by its formal properties.  This
includes the various kinds of numbers, of course, but also such objects as se-
quences, sets, relations, functions, curves, Booleans (truth values), trees, strings,
and so forth.  Similarly, “abstract manipulation” includes the application of
functions to their arguments (e.g., square root, Fourier transform), as well proc-
esses evolving in abstract time (e.g., Newton’s algorithm, formal deduction, gra-
dient descent).
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However, because abstract objects do not exist physically, the manipulations
must be accomplished indirectly, by physical manipulation of physical surro-
gates.  Thus integers may be represented by the beads of an abacus or the bits of
a digital computer, and real numbers may be represented by the position of the
slide and stock of a slide rule or by electrical current in an analog computer.
That is, abstract formal processes are represented by concrete physical processes.
(Even mental arithmetic takes place in the physical brain.)
There is an issue that we must address before we consider the relation of the ab-
stract process to its physical realization in computation, and that is the problem-
atic use of “purpose” in the preceding definition.  Scientists are justifiably wary
of teleological definitions, which appeal to purpose or function.  Nevertheless, I
think it is unproblematic in this case, for in two domains — biology and technol-
ogy — attributions of purpose can be made in an objective way.
It is an objective issue (decidable, for example, by appeal to the designers)
whether or not a device has been designed for purposes of computation (i.e., ab-
stract manipulation of abstract objects), and so we can objectively affirm that
your laptop is computing, as also did slide rules.  Establishing purpose or func-
tion in a biological context is more difficult, but scientists routinely draw such
conclusions; so, they make objective determinations of the function of the stom-
ach, heart, immune system, and so forth.  (The major danger here is oversimplifi-
cation, since the biological systems often serve multiple functions: evolution is
opportunistic.  Thus, although there are certainly purely computational systems
in the brain, we should not be surprised to find systems that serve other pur-
poses while they compute.)
What about other physical systems?  Can we say (to take a classic example) that
the solar system is computing Kepler’s laws?  The answer is No.  Where there is
no objective basis for attributing purpose (e.g., the motion of the planets), there is
little to be gained by viewing a process as computation.  No doubt there are bor-
derline cases (e.g. in very simple organisms, populations, simple artificial de-
vices), but they do not destroy the general utility of the definition.
Since the purpose of a computational system is abstract manipulation of abstract
objects, we have an operational test of whether or not a particular natural system
is computational (MacLennan 1994c).  If the purpose or function of that system
would be fulfilled as well by another system using different physical surrogates
with the same formal properties, then the system is computational.  That is, since
its function is accomplished independently of its concrete physical instantiation,
its purpose is abstract, formal, computational.  This is multiple instantiability,
which is a familiar property of digital computation, but holds as well for analog.
Thus, for example, if the same abstract (dimensionless) quantities can be repre-
sented by electrical voltages or fluidic pressures, or by any other concrete physi-
cal quantities with the same formal properties, without loss of function, then the
system is computational.  In contrast, the digestive system is not computational,
since it will not fulfill its function if, for example, enzyme concentrations are re-
placed by other quantities (e.g., electrical charge density), having the same for-
mal properties.
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3.3. Autonomy
It will be worthwhile to make a few remarks about differing degrees of auton-
omy in computational processes, since the TM model takes a somewhat limited
view.  Autonomy refers to the degree to which a process proceeds independently
of any input.3  (Here I am referring to computational input to an information-
processing module; see “Transduction” below on input/output interactions with
the physical environment.)
We may think of the input and state of a process as the independent and de-
pendent variables of the computation.  That is, the external inputs are independ-
ent of the computation in question (although perhaps they are outputs of other
computational processes).  The internal state, however, is completely (but per-
haps nondeterministically) dependent on the external inputs and previous inter-
nal state.  (Output is most easily treated as a projection of the state, as will be ex-
plained in more detail later.)
The most autonomous computation has a specified initial state and proceeds in-
dependently of external input.  Simple examples include the computation of a
specific number such as 

† 

2  or 

† 

e .  When the computation is complete, the output
is projected from the state in any of several possible ways.
A more common situation, which is only slightly less autonomous, accepts input
once, at the beginning of the computation, and then proceeds autonomously un-
til completion, when the result may be projected from the state.  (Alternately, the
input may become the initial state of the computation.  Also, a sequence of out-
puts might be projected from intermediate internal states.)  A simple of such a
computation would be the computation of 

† 

ln x , for a given number 

† 

x , by inte-
gration of 

† 

1
udu

1

x
Ú .  Another would be the computation of the Fourier transform

of a given input image.  Clearly, a computation of this sort is computing some
function 

† 

f x( )  for an arbitrary unspecified input 

† 

x .  It is worth observing that this
is the paradigm case in the traditional theory of computation, which defines
computational power in terms of classes of functions.
In the next lower degree of autonomy, the process depends on its input through-
out the computation; that is, it depends on a (discretely or continuously) varying
input signal.  There are two broad subclasses: the output may be projected from
the state once at the end of the computation, or it may be projected from inter-
mediate states at various times during the computation.  An example in which a
time-varying input signal leads to a single output would be a classifier for an
auditory signal, such as a spoken word recognition system.  For examples in
which a (discretely or continuously) varying output signal is generated, we may
take any control systems (e.g., feedback control systems for sensorimotor coordi-
nation or industrial process control).

                                                  
3 This notion of autonomy, which comes from control theory, is unrelated to that
used in artificial intelligence and robotics, which refers to a system’s ability to
behave intelligently without external guidance.
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Perhaps the least autonomous computation is one in which the internal state
(and hence also the output) depends only on the current external input; such a
memoryless process is completely reactive.
These ideas are easy to express mathematically; for simplicity I will restrict my
attention to deterministic processes.  Let the internal state space 

† 

Y and the exter-
nal input space 

† 

F be any given spaces, and let 

† 

T  be an appropriate (discrete or
continuous) time domain.  Then the state transition function 

† 

P : Y ¥ F Æ Y  de-
fines the state at the next instant of time:

† 

y ¢ t ( ) = P y t( ),f t( )[ ],
for time-varying internal state 

† 

y : T Æ Y and time-varying input 

† 

f : T Æ F.  For
discrete-time processes 

† 

¢ t = t +1 (representing the next step); for continuous-time
we may take (informally, for the time being) 

† 

¢ t = t + dt .
Then, a completely autonomous process, which depends on no external input,
has the form 

† 

P y,f( ) = P0 y( ) where 

† 

y 0( ) =y0 , the fixed initial state (taking, with-
out loss of generality, 

† 

t = 0 as the initial time).  For a process that depends only
on the initial input, 

† 

P y,f( ) = P1 y,f 0( )[ ] .  For a completely non-autonomous, reac-
tive process, we have 

† 

P y,f( ) = P2 f( ).  This should be sufficient to illustrate the
approach.

3.4. Transduction
Before leaving the definition of computation, it is necessary to say a few words
about transduction.  Transduction is the process that converts a signal in a specific
physical form into the implementation-independent representation suitable for
computation, or vice versa. For example we may have a transduction that con-
verts an external optical signal into the internal computational media (e.g., elec-
trical signals in a computer or brain), or which converts from the computational
media to mechanical forces applied by output effectors (e.g., muscles or me-
chanical actuators).  Although computation is by definition physically instanti-
ated, it is generically instantiated, and so formal.  However, in transduction, if the
physical realization of the peripheral variable is changed (say, from voltage to
fluid pressure), the transduction cannot be expected to serve its purpose in the
system; it is specifically instantiated.  Transduction brings formal computation
into interaction with the physical world, and therefore it is a critical issue in situ-
ated intelligence and the symbol grounding problem (Harnad 1990, 1993; MacLen-
nan 1993c).
We may divide the relations that govern the behavior of a situated computa-
tional system into formal relations and material relations, which govern computa-
tion and transduction, respectively.  In the formal equations, all that is relevant to
the computation is the form of the representations.  Although these forms must
be instantiated in some physical quantities, the specific physical instantiation is
irrelevant to the computational purpose.  Thus, a computer may make use of
electrical representations in some places and optical representations in others.  So
also in the brain, both electrical and chemical representations are used.  Since the
physical quantities are irrelevant, the formal relations are effectively dimension-
less.  The material relations, on the other hand, deal with physical quantities in
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an essential way, otherwise they will not serve their purpose.  For example, ma-
terial relations that relate light intensity to computational inputs will not serve
their purpose (in an organism or a robot) if they are altered to relate some other
physical quantity (say, pressure).  Therefore, at least some of the variables in the
material relations carry physical dimensions.  Specifically, an input transduction
has dimensionless outputs, but physically dimensioned input; the opposite holds
for an output transduction.
From another perspective we can think of information representations in terms
of their form and their matter (by which I mean the “stuff” — be it physical matter
or energy — constituting the representations).  Pure computation deals with the
form of representations; their matter is irrelevant to the computation.  On the
other hand, a pure transduction changes the matter of a representation without
altering its form.  Thus an optical signal might be converted to an electrical rep-
resentation.  Pure transductions typically remove the physical dimensions of in-
put quantities or add them to output quantities, in effect scaling the variables.
Thus the material relations of a pure transduction may have a very simple form
(e.g., “

† 

e = v /10mv” relates an input voltage 

† 

v  to a dimensionless real number 

† 

e).
Pure transduction is actually quite rare; it is more common to change the form
along with the matter of the representation.  For example, a continuous physical
quantity might be categorized and discretized by an analog-to-digital converter.
Conversely, an output device might interpolate continuously between its discrete
inputs, as in a digital-to-analog converter.  Even transductions that do not con-
vert between discrete and continuous quantities typically alter the form of the
information.  For example, a photodiode implements an “impure” transduction
since it filters the analog signal as well as converting it from an optical to an
electrical representation.  As previously remarked, such combination of function
is especially common in natural systems.

3.5. Classification of Computational Processes
Hitherto, so far as possible, I have dealt with computation in “topology-neutral
terms,” so that the discussion applies equally well to discrete- and continuous-
time processes.  Now, however, we must distinguish three different classes of
processes characterized by the topologies of their state and (computational) input
spaces and by the topology of time (MacLennan 2001).  There are three important
classes:4

C: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !continuous-time process over continuous state-space,
CD: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !discrete-time process over continuous state-space,
D: ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !discrete-time process over a discrete state-space.

For examples of class D we may take conventional digital computer programs.
Examples of class CD include Newton’s algorithm and some formulations of
computation over the reals (Blum, Shub, & Smale 1988); they are closely related
to topological algorithms and other systems studied by Burgin (1992, 2001).
Systems of differential equations are obvious examples of class C.
                                                  
4 Class DC, continuous-time processes over discrete state-spaces, is excluded by
the laws of physics.
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In the most common cases time is linear.  Thus discrete time is a well-ordered
discrete set, typically homeomorphic to the integers (or a subset thereof).  Con-
tinuous time is homeomorphic to the reals 

† 

0,•[ )  or a closed interval thereof.
More generally, a computational time domain may be defined as a partial order
on an appropriate discrete set or continuum of “instants.”
Although the continuous/discrete distinctions are mathematical and precise, hy-
brid computations are possible.  For purposes of this classification, if any com-
ponent of the state or any of the input spaces are discrete, then the process must
be considered class D or (if some are continuous) CD.

3.6. Realization as Homomorphism
The physical realization of an abstract computational process can be expressed
more precisely by putting it into mathematical form.  The abstract process that a
computational system implements has some mathematical structure; for exam-
ple, it might be a function on the integers or a system of differential equations.
The purpose of the computational system is to physically instantiate or realize
this abstract structure; thus the system has the generic structure common to all
realizations of that abstract computation.  However, the realizing physical sys-
tem always has additional specific properties irrelevant to the computation.  (For
example, an electronic AND gate radiates heat and electromagnetic noise, but
these properties are not relevant to the computation of logical conjunction.)
Therefore, in an ideal case, there is a homomorphism from the realizing system to
the abstract system, a mapping that loses irrelevant physical structure while pre-
serving the relevant (computational) structure.
More formally, consider a computational process 

† 

P : Y ¥ F Æ Yon abstract state
space 

† 

Y and abstract input space 

† 

F.  There will be a corresponding (discrete or
continuous) time domain 

† 

T and a monotonically increasing function 

† 

n : T Æ T
that gives the next “instant” of abstract time (as before, this is informal for con-
tinuous processes).  The state and input are functions of time, 

† 

y : T Æ Y  and

† 

f : T Æ F, satisfying the abstract process equation:

† 

y n t( )[ ] = P y t( ),f t( )[ ] , for 

† 

t Œ T .
Similarly, an intended physical realization is a function 

† 

P : S ¥ X Æ X  on physical
state space 

† 

S  and physical input space 

† 

X .  This process will take place in real-
time 

† 

R≥0 = 0,•[ )  at (discrete or continuous) instants of time given by monotoni-
cally increasing 

† 

n : 0,•[ ) Æ 0,•[ ) .  The states 

† 

s : 0,•[ ) Æ S  and inputs 

† 

x : 0,•[ ) Æ X
are functions of time satisfying the concrete process equation:

† 

s n t( )[ ] = P s t( ), x t( )[ ] , for 

† 

t Œ 0,•[ ).
Further, suppose we have functions mapping the physical representations to
their abstract correspondents:   

† 

H s : S Æ Y ,   

† 

H i : X Æ F , and   

† 

H t : 0,•[ ) Æ T .  The
latter function defines a correspondence between time in the abstract and physi-
cal systems:

  

† 

n H t t{ }( ) = H t n t( ){ }.
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(If   

† 

H t  is an identity function, we have a real-time system; that is, abstract time is
physical time.)  The physical process realizes the abstract process provided that
these functions commute under the state and input mappings:

  

† 

H s s n t( )[ ]{ } = P H s s t( ){ },H i x t( ){ }[ ].

3.7. Approximate Realization
Most realizations are imperfect.  That is, some of the abstract structure may not
be supported by the physical implementation.  For example, integer arithmetic
on a digital computer may overflow and depth of recursion may be limited;
analog computation is subject to noise.  To put it a differently, an explanation of
a physical system as implementing a particular abstract computational process is
a model of that physical system, and typically an idealization of the real system.
It is also important to observe that an approximate realization can be of a differ-
ent type to the realized system.  To take a familiar example, a system of differen-
tial equations may be realized approximately by a digital computer program
(manipulating discrete floating point numbers in discrete steps).  Conversely,
although perhaps less obviously, a continuous physical system can approxi-
mately realize a discrete computational or formal system.  For example, in every
digital computer binary logic devices are implemented approximately by elec-
tronic circuits obeying continuous differential equations.  So also, the mathemati-
cian scribbling on a blackboard is an approximate continuous realization of for-
mal logic and mathematics.
I must digress to forestall a possible misunderstanding.  When we classify an ab-
stract process as C, CD, or D, the classification is precise, because we are dealing
with a mathematical classification of mathematical objects (i.e., their topology).
However, when we classify physical realizations as continuous or discrete, we
must treat them at the relevant level of abstraction.  For example, for most cir-
cuits it is reasonable to treat electrical charge as a continuous quantity.  However,
for very small devices we must take account of the fact that charge is quantized
in terms of electron charges.  At even smaller scales we must treat electrons as
continuously distributed probability amplitudes.  What they are ultimately (sup-
posing we can ever know) is irrelevant; what we want is a model appropriate to
the scale at which we are working.  Thus, when we classify a physical process as
C or D, for example, we mean that that is a good model for the purposes at hand.

4. Natural Computation
4.1. Natural Computation Defined

The reader may agree that the TM grew out of a particular set of concerns some-
what removed from modern computation, but see no reason to doubt its efficacy
as a general model of computation.  Therefore, in this section I will discuss
“natural computation” (e.g., Ballard 1997) as an important area of computer ap-
plication to which the TM model is especially unsuited (see MacLennan 2003b for
a fuller discussion).
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Definition 2: Natural computation is computation occurring in nature or inspired by
that in nature.
Examples of computation occurring in nature include information processing in
the brain, in the immune system, and through evolution by natural selection; in-
deed, the entire discipline of cognitive science is oriented around computational
models.  In all of these cases (and more) scientists have found it fruitful to under-
stand natural processes in terms of computation.  Therefore, natural computation
is an important discipline for its contribution of theories, models, and metaphors
to the other sciences.
Examples of computation inspired by nature include artificial neural nets, ge-
netic algorithms, simulated immune systems, ant colony optimization, particle
swarm optimization, and simulated annealing.  Their considerable actual and
potential importance in many applications has illustrated the technological value
of understanding computation in nature.  These non-traditional computational
paradigms are most relevant in those applications that are most similar to natural
systems, for example, autonomous robotics, real-time control systems, and dis-
tributed intelligent systems.  Therefore, in order to understand the models of
computation most relevant to natural computation, we will need to keep in mind
these kinds of applications as well as natural systems in which computation
plays a role.

4.2. Relevant Issues
I will begin by reviewing some of the issues that are most relevant in natural
computation, and therefore which should be addressed in suitable models of
computation.  One of the most obvious requirements of natural computational
systems is real-time response.  For example, generally an animal must respond to a
sensory stimulus within a fraction of a second; similarly, sensorimotor coordina-
tion takes place in real-time.  Thus the speed of the basic operations is critical;
also, the absolute number of steps from input to output in a discrete-time process
and the rate of a continuous-time process must be such as to deliver usable re-
sults in prescribed real-time bounds.  Further, algorithms that yield progres-
sively closer approximations to an answer will be more useful than those in
which intermediate results are useless, since the former will permit the use of
premature results, if so required by real-time considerations.  Such algorithms
also facilitate anticipatory processes, which prepare for a response before its ini-
tiation.
Analysis of algorithms based on the traditional (TM) model of computation is
oriented toward asymptotic complexity, that is, how utilization of some resource
(typically time or space) grows with the size of the input.  Such analysis is less
relevant in the context of natural computation, since the size of the input is gen-
erally fixed (e.g., by the structure or anatomy of a sensory system).  For example,
our optic nerves have approximately one million nerve fibers delivering im-
pulses at several hundred Hertz. That is the magnitude of input with which our
visual systems must deal.  If it can deliver its results in the required real-time
constraints, it does not matter how its algorithms would perform with ten times
the number of inputs or ten times the impulse rate.
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Certainly algorithms in natural computation can be compared, but the criteria of
merit are different.  One of these criteria is speed of response.  Although the sizes of
the inputs and outputs are fixed, one algorithm may be better than another if it
can deliver a result in less real-time.  Another criterion of merit is generality of re-
sponse.  That is, while the input and output dimensions and the real-time re-
sponse limits are fixed, a natural computation may be improved by increasing
the range of inputs to which it responds well.
A related criterion is flexibility in response to novelty.  That is, still within the
bounds of its input/output spaces, one computational system may be better able
to respond appropriately to novel inputs than can another.  A novel input is one
that an artificial algorithm was not designed to handle, or that was outside of the
environment of evolutionary adaptedness that led to the evolution of a naturally
occurring algorithm.
Related to this is the issue of adaptability.  Since the natural environment is un-
predictable and ever-changing, an important issue in natural computation is
whether a system can adapt to a changing environment, and how quickly it can
do so, while retaining existing competence.  Thus we are concerned with com-
putational processes that can change their dynamics on various timescales.
Therefore, natural computation systems can be compared with respect to the
quality and speed of their adaptation as well as the stability of their learning.
This does not imply that all natural computation algorithms are adaptive, but
that models of natural computation should easily accommodate adaptation.
Further, since we assume the presence of noise and other sources of uncertainty,
gradual adaptability is generally preferable to precipitous change.  Thus the grad-
ual adaptation exhibited by, for example, neural networks and genetic algo-
rithms, is more appropriate than the discrete addition and deletion of rules typi-
cal of learning algorithms based on calculi (traditional discrete formal systems).
Tolerance to noise, error, faults, and damage is also important in natural computa-
tion.  The natural world is messy, so animals and autonomous robots, for exam-
ple, must be able to make use of inputs that are very noisy.  Furthermore, natural
computation itself is noisy and imprecise: biological devices such as neurons
have many sources of noise and their computation is inaccurate.  For example,
neural signaling has perhaps one digit of precision.  Analog computational de-
vices have similar properties.
Finally, since the natural world is dangerous and often hostile, natural computa-
tion systems may be damaged, and so their behavior should be robust in the
presence of faults or other sources of error.  Therefore natural computation sys-
tems must operate in such a way as to be immune to noise, errors, faults, and
damage, or even to exploit them (as, for example, noise is exploited in stochastic
resonance).

4.3. Relevant Assumptions
Based on these considerations, it is possible to outline some of the assumptions
that are appropriate for a model of natural computation.  First, a natural compu-
tation system must be physically realizable, and so its use of matter and energy
must be finite; all physically-instantiated quantities must be finite.  Furthermore,
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noise and other characteristics inherent in physical instantiation may dictate
other sorts of finiteness (e.g., bandwidth, rates of variation).  For example, noise
is often high-frequency, which limits bandwidth on the high-frequency end.
Also, spatially distributed information may have an underlying “graininess,”
which is equivalent to high-frequency noise.  Real-time response requirements
and physical size may limit frequency (temporal or spatial) on the low end.
It is reasonable to suppose that natural computation exhibits a kind of syntactic
formality, by which I mean that the computation is governed by the physical as-
pects of representations, not by any meanings that they may be supposed to
have.  (Here I am not using syntax in any precise linguistic sense, but by analogy
with formal languages and to indicate the physical form of a signal as opposed to
its semantics or meaning.)  In this sense we can speak of a continuous formal system
(MacLennan 1995).  There are at least two reasons for this assumption.  First, a
principal reason for using computational models in the natural sciences is to
banish the “ghost in the machine” from our scientific explanations.  If we can ac-
count for some behavior or cognitive capacity, for example, by a purely mechani-
cal process, then we are confident that we are not falling into a circular argument
and assuming what we are trying to explain.  Second, in order to design
autonomous, intelligent machines, we have to be able to reduce natural compu-
tation to purely mechanical processes, that is, to systems that we can design and
build.
Natural computation systems, insofar as they are purely computational, also ex-
hibit abstract formality, that is, a dependence on the abstract forms of representa-
tions and their formal relationships, rather than on their substance.  Of course, as
previously explained, we cannot assume that naturally occurring information
processing systems will be purely computational, since nature often combines
functions.  Indeed, as we apply natural computation in artificial systems, we too
may find it advantageous to combine function.  Nevertheless, natural computa-
tion qua computation is characterized by abstract formality.
As previously discussed, real-time response is generally important in natural com-
putation.  Therefore the notion of an abstract sequence of (albeit finite) computa-
tional steps is of limited use in natural computation.  Instead, regardless of
whether we are dealing with discrete- or continuous-time processes, we will
generally want, at least in principle, to be able to relate these to real-time.  That
is, we will be concerned with the rates of continuous-time processes and with ab-
solute bounds on the duration of the steps of discrete-time processes.
Since the laws of physics are continuous (especially at the typically relevant
scales), often input, output, and state spaces should be assumed to be continua,
and information processing should be assumed to be continuous in real-time.
Therefore, continuous models are often better matches to the relevant phenom-
ena than discrete models.
Natural computation assumes that noise, uncertainty, error, and indeterminacy
are always present (in both information representation and processing).  For each
“correct” representation there will be others that are arbitrarily close, so repre-
sentational spaces are best treated as continua.  Hence robustness is important:
small errors should lead to small effects.  Therefore it is generally appropriate to
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assume that functions and processes are continuous.  Discontinuous processes
can lead to brittle response, which is typical of conventional computation, but
undesirable in natural computation.
On other hand, input, output and other representations are assumed to be of
fixed “size” (e.g., dimension, physical extent, bandwidth), as opposed to the “fi-
nite but unbounded” representations typical of TM computation.
The ability to adapt gradually to novelty implies that physical representations of
natural computational processes are at least partially continuous (as opposed to
digital computer programs, which are finite, discrete structures, which, if they
adapt at all, must do so in discrete steps).
In the most characteristic cases, natural computation is non-terminating.  That is, a
natural computation system is in continuous interaction with its environment,
and that interaction terminates only when the system (e.g., organism, popula-
tion) ceases to exist.  Thus it is not usually useful to think of natural computation
as computing a function (essentially a model more appropriate to old-fashioned
“batch” computing).  Rather, most natural computation systems are better
viewed as real-time control systems.  Therefore we assume that, in the general
case, useful natural computation may be non-terminating.

5. Motivation for Continuous Computation
5.1. Principle of Continuity

The preceding discussion of natural computation makes no commitment as to
whether discrete or continuous models are preferable.  This is an empirical issue,
and no doubt different instances of natural computation will require different
sorts of models.  Nevertheless, for a number of reasons in the remainder of this
paper I will focus on continuous models, and in particular on field computation.
First, discrete models are already familiar, and so there is little need to discuss
them further here.  Second, continuous computation, and in particular field com-
putation, will serve as an example of an alternative model to the TM, which is
more relevant to natural computation in the brain.  It is also relevant to large arti-
ficial neural networks and to massively parallel analog computers (optical com-
puters, Kirkhoff machines, etc.).  Furthermore, continuity avoids brittleness and
enhances robustness and flexibility.  Small changes have small effects.  Hence
continuous information representation and processing is especially suited to
natural computation.  Therefore, in order to keep our attention focused on this
alternative model, in the remainder of this paper I shall adopt a Principle of Conti-
nuity, which constrains our models to be continuous; in particular, information
representation and processing are assumed to be continuous.

5.2.  Continuous Information Representation
We focus on continuous information representation for a variety of reasons.
First, there is considerable evidence for the use of continuous representations in
the brain.  One should not be misled by the “all or nothing” generation of a neu-
ral impulse, for (1) the impulse is a continuous waveform defined by differential
equations (the Hodgkin-Huxley equations), (2) information is encoded in the
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continuously variable rate and phase of impulses, and (3) impulses in dendrites
are graded and interact spatiotemporally according to differential equations (the
cable equations).  Further, (4) the synaptic efficacies, which — so far as we know
— encode memory, are complex functions of the spatial distribution of (albeit
discrete) receptors.  Similarly, most artificial neural net models are, at least par-
tially, continuous.  Although they are often implemented on digital computers,
they are most naturally described by continuous mathematics (real numbers, lin-
ear algebra, derivatives, differential equations, etc.).
Therefore, in accord with our Principle of Continuity, we assume that all infor-
mation representations are continuous (i.e., they are drawn from continuous
spaces).  Naturally, continuous quantities can be approximated by discrete
quantities, but we must beware of modeling artifacts resulting from the process
of approximation, especially when we are investigating fundamental properties
of computation.  The more direct — and safer! — approach is to use continuous
models from the beginning.  A discrete approximation is adequate only if it does
not alter the phenomena of interest.
How, then, is information represented continuously?  Certainly finite-
dimensional vector spaces are appropriate for many purposes, and they are a
common medium of representation in both natural and artificial neural systems.
However, for many purposes infinite-dimensional vector spaces (i.e., Hilbert
spaces) are more useful.  In particular, in modeling the activity of the nervous
system it is often useful to treat an information representation as a field, that is, a
spatially extended continuum of continuous quantity.
Thus, sensory images are naturally described as fields; consider a static visual
scene: intensity (of various wavelengths) varies continuously over the optical
field.  Similarly in an auditory image the sound pressure varies continuously
with time.  Indeed, visual images are also time-varying, so they are continuous
functions of space and time.  We should not be misled by the fact that, for exam-
ple, the retina comprises a finite number of discrete receptors, for the number is
so large (

† 

108) that it is mathematically more transparent to treat it as a contin-
uum.  Motor images are also naturally modeled as fields, since they represent the
continuous motion of the body in space (MacLennan 1997).
Cortical maps, in which significant information in represented by spatially-
distributed activity in a patch of cortex, have sufficiently many elements to be
treated as fields.  There are at least 150 thousand neurons in each square milli-
meter of cortex, and so even the smallest cortical maps have hundreds of thou-
sands of neurons, enough to be treated mathematically as a continuum.  As a
consequence, field-oriented models have been useful in explaining the operation
of cortical maps (citations in MacLennan  1997, 1999).
It is worth observing that fields contradict many of the assumptions underlying
calculi.  First, whereas formulas are built up from tokens, fields do not have
atomic components in any useful sense.  Certainly we can think of the (uncount-
able) infinity of infinitesimal points, such as the light intensity of a particular
wavelength at an infinitesimal point in space and time, but this is far indeed
from the concrete tokens of a calculus.
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In fact, whereas the fundamental operations in a calculus operate on tokens, and
more complex operations result from combinations of these, in field computation
the field is treated as a whole.  We may analyze what happens to individual
points (e.g., ray tracing in optics), but that is for our cognitive convenience.  In
nature, the field is processed as a whole in parallel.  Think of the processing of a
visual image by the retina and through the visual system, or of the sensation of
touch distributed over the skin, or of the motor output to the muscles of a gym-
nast or dancer.
Certainly, the sensory system analyzes images to extract information from them,
and the motor system synthesizes a total motor image from subimages, but in
neither case is the decomposition given and canonical, as in the formulas of a cal-
culus.  Indeed, learning an appropriate decomposition is often a critical problem
for a sensory system.
Although there is evidence that the nervous system makes use of mathematical
decompositions of fields, such as Fourier transforms and wavelet decomposi-
tions (e.g., Daugman 1984, 1985a, 1985b, 1988; MacLennan 1991), these opera-
tions are continuous and holistic.  Even when a finite discrete set of (continuous!)
coefficients is extracted, as in a generalized Fourier series,

† 

f = ckbk
k= 0

N

Â ,

the coefficients are computed by inner products over the entire image (or over
extended parts of it, as in some windowed Fourier transforms).  That is, to com-
pute from image 

† 

f  the coefficient 

† 

ck  corresponding to basis function 

† 

bk , we inte-
grate over whole images:

† 

ck = bk,f = bk x( )f x( )dx
W

Ú .

Thus, in continuous representations, the orientation is on analysis rather than on
synthesis (or construction), as it is in discrete representations.

5.3.  Continuous Information Processing
Given that information representation in the brain is continuous, information
processing might be either continuous-time or discrete-time (i.e., class C or CD).
In addition to the Continuity Principle, there are several reasons for focusing on
continuous information processing.
First, the underlying physical processes in the brain are continuous at the rele-
vant level of abstraction; for example, electrical propagation and chemical diffu-
sion processes are defined by differential equations.  Certainly, abrupt events
may occur, such as the firing of a neuron, but these are best treated as continuous
processes that are only approximately discrete.  (And indeed the firing of a neu-
ron is described by a differential equation, the Hodgkin-Huxley equation.)
Similarly, information processing in analog computers is defined by differential
equations.  Even when artificial neural networks are simulated on digital com-
puters, the program is often performing a discrete-time approximation to a con-
tinuous mathematical process (as when a learning algorithm, such as back-
propagation, approximates gradient descent by taking discrete, finite steps).
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Second, the bulk of the information processing in animals is continuous.  For ex-
ample, sensorimotor coordination is a continuous, real-time process.  Even many
higher cognitive processes are accomplished by continuous manipulation of
mental images.  For example, Shepard (1975; Shepard & Metzler 1971) has shown
that mental rotation of three-dimensional objects is a continuous process (see ad-
ditional citations in MacLennan 1988).

5.4. Apparently Rule-like Behavior
A cognitive domain in which discrete representations and processes might seem
to be required includes language, verbal reasoning, propositional knowledge
representation, and other apparently rule-based behavior.  And this may be so.
However, we think that even here continuous models have much to contribute,
especially in explaining the flexibility and adaptability of human rule-like be-
havior, including, in particular, formal methods as applied by mathematicians
(Dreyfus & Dreyfus 1986; MacLennan 1988).  Understanding these mechanisms
could give artificial systems some of these same advantages.
For example, we can sketch the following model of rule-like behavior in a con-
tinuous system (MacLennan 1995, 2003a).   First observe that a rule-based system
categorizes a situation into one of a finite number of classes, each of which is
handled by an applicable rule.  Then an applicable rule extracts from the situa-
tion certain low-dimensional index information (represented by the variables in
the rule), which particularizes the situation.  The actions performed by the rule
depend only on this index information and the content of the rule.  So if it creates
a complex representation, all of the information must come either from the rule
itself or from the particulars selected by the low-dimensional index information.
From the perspective of continuous computation, a rule projects a complex im-
age through a low-dimensional subspace.  Further, any function that can be de-
composed into a finite set of such projections will act as though it is obeying a
finite set of rules even if the actual intermediate space is not physically repre-
sented.  That is, if a function 

† 

F : F Æ Y  between high-dimensional spaces 

† 

F and

† 

Y, can be decomposed,

  

† 

F = Qk o Pkk=1

N
U ,

where 

† 

Pk : F Æ Ik and 

† 

Qk : Ik Æ Y , for low-dimensional intermediate spaces 

† 

Ik ,
then the system will appear to be following rules, even if the physical computa-
tion is not structured in this way.  That is, a system may appear to be following
rules even though it is not; in effect the rules are illusory.
This continuous model of rule-like behavior has several advantages.  First, if a
function is approximately decomposable in this way, then its behavior will be
correspondingly approximately rule-like.  Thus we have an approach to dealing
with exceptions in rule-like behavior.  In effect, although intermediate informa-
tion may be generally confined to the low-dimensional spaces 

† 

Ik , it may occa-
sionally (exceptionally) be outside this space, although still in a larger, higher-
dimensional intermediate space.  That is, we are assuming that a more accurate
decomposition is represented by 

† 

Pk : F Æ Ck  and 

† 

Qk : Ck Æ Y, where 

† 

Ik Ã Ck  and

† 

Ck  is high dimensional.  Therefore the difference between exactly and only ap-
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proximately rule-like behavior is the difference between the range of 

† 

Pk  being
entirely or only mostly confined to a low-dimensional 

† 

Ik .
More importantly, this model shows how rule-like behavior may be gradually
adaptive.  In a discrete computational system that is actually following rules,
fundamental adaptation requires the deletion or addition of rules, which will re-
sult in abrupt changes of behavior.  In a continuous system, however, through
gradual adaptation, the ranges of some or all of the projections may first expand
from the small subspaces 

† 

Ik  to larger subsets of the 

† 

Ck  and then contract to dif-
ferent low-dimensional spaces 

† 

¢ I k .  From the perspective of the observer, the sys-
tem will have evolved from rule-like behavior, through an intermediate non-
rule-like phase, into a new phase that appears to be following different rules.
Apparently, the rules gradually dissolve and then resolidify as different rules.

6. Foundations of Continuous Computation
6.1. Information Representation

With this introduction to some of the advantages we hope to obtain from an un-
derstanding of continuous information representation and processing, we can
turn to a more precise account of its properties.  Certainly, there have been a
number of approaches to continuous and topological computation (Blum & al.
1988; Burgin 2001; Moore 1996; Pour-El 1974; Rubel 1981, 1993; Shannon 1941).
However, in the following I will postulate certain properties that we expect to
hold for any continuous computational system.  This in effect defines a kind of
continuous formal system, which we term a simulacrum, and, as a possible founda-
tion for continuous information processing, is the continuous analog of a calcu-
lus, or discrete formal system, in its role as the foundation of TM computation
(MacLennan 1993a, 1994b, 1995).  Since simulacra are intended to be physically
realizable — as they must be as a model of natural computation — these postu-
lates will be constrained by what seems to be physically possible in the most
general terms.

6.1.1. Topology of Images
Through a phenomenological analysis of the invariants encountered in continu-
ous information representation and processing systems, we have proposed a set
of common characteristics of simulacra (MacLennan 1994b), which are summa-
rized here.
We begin by characterizing image spaces, that is, the spaces from which images, or
continuous representations, are drawn.  (Images correspond to the formulas of a
calculus.)  Our analysis suggests that similarity of images can be quantified and
that such quantification has the mathematical properties of a metric.  Further,
what defines an image space as a single space is that any image can be continu-
ously transformed into any other in the space.  Thus:
Postulate 1: Image spaces are path-connected metric spaces.
Therefore, image spaces have at least the cardinality of the real numbers (Haus-
dorff 1957, p. 175).
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For various technical reasons it is reasonable to assume two additional properties
of images spaces:
Postulate 2: Image spaces are separable and complete.
A space is complete if all its Cauchy sequences have limits in the space, and it is
separable if it has a countable dense subset.  The practical implications of this
postulate are that there is a countable set of images in the space that can be used
to approximate any image by a sequence of increasingly similar images, and
conversely that all such sequences have limits in the space.  Completeness and
separability are in effect the conditions that permit the description of continuous
spaces in our discrete mathematical language; they bridge the continuous and
discrete.
In support of this postulate we may observe that a continuum is often defined as a
nontrivial connected compact metric space (e.g., Moore 1964, p. 158), and that a
compact metric space is both separable and complete.  Furthermore, a theorem of
Urysohn shows that a metric space with a countable base, such as a continuum,
is homeomorphic (topologically equivalent) to a subset of the Hilbert space
  

† 

L2 R( ) (Nemytskii & Stepanov 1989, p. 324).  As we have seen, Hilbert spaces are
natural mathematical models of many image spaces and are widely used in natu-
ral computation.  It is also the basis of field computation, which is computation
over Hilbert spaces (MacLennan 1987, 1990, 1993b, 1997, 1999).

6.1.2. Images and their Forms
Physical realizability places additional constraints on images.  First observe that
images are extended over some physical continuum (which, in the simplest case,
may be a single point).  That is, the domain 

† 

W of an image (considered as a func-
tion 

† 

f : W Æ K ) is a topological continuum (connected compact metric space).
Certain physical quantities, the values of the image 

† 

f w( ) , 

† 

w Œ W, vary continu-
ously over its extent.  That is, the image defines a continuous function 

† 

f : W Æ K
of the domain 

† 

W.  Further, since 

† 

W is compact we know that 

† 

f  must be uniformly
continuous (Mendelson 1990, p. 178).
A field’s domain is bounded (finite in extent), which means that it occupies a fi-
nite amount of “space” (whatever concept of space is appropriate to the physical
representation, as represented in the metric).  Note that for the typical case in
which 

† 

W Ã Rn  the Heine-Borel theorem guarantees that the compact domain 

† 

W is
closed and bounded.  This finiteness requirement must be modified slightly for
temporal images, that is, images varying in time.  In these cases the domain is
given by 

† 

W = U ¥ R≥0 , where 

† 

R≥0  represents time (from process initiation) and 

† 

U is
a bounded continuum (the signal’s non-temporal extent).  Thus 

† 

f u,t( ) is the
value of the field at location 

† 

u Œ U and time 

† 

t .
The codomain 

† 

K  of an image is also a continuum, and since the range of a field’s
variation is finite, the codomain 

† 

K  is bounded continuum.  Typically, 

† 

K Ã Rn , a
closed and bounded subset of a finite-dimensional vector space.  In summary:
Postulate 3:  An image is a uniformly continuous function over a bounded continuum
(which may, however, be unbounded in the positive time dimension).
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As previously remarked, it is often appropriate to assume in addition that the
variation is band-limited; that is, if the image is expanded in an ordinary Fourier
series, then all the coefficients are zero beyond some point.
Subject to the preceding restrictions, we assume that it is possible to construct an
image with any pattern of variation over its extent (that is, all bounded continu-
ous functions are possible images).  Also, in accord with the principle of abstract
formality, only the pattern of variation (the form) of the image is relevant to
computation, not its substance.  Finally, in accord with the Principle of Continu-
ity, we stipulate:
Postulate 4: Maps between images spaces are continuous.
This postulate has many important consequences for classification and categori-
zation in image spaces, which are discussed in MacLennan (1993a, 1994b).  An-
other consequence of the Continuity Principle is:
Postulate 5: Interpretations of simulacra are continuous.
Since a continuous image of a compact path-connected metric space is a compact
path-connected metric space, the interpretations of images constitute an image
space.  That is, for image space 

† 

F and continuous 

† 

f , the range

† 

f F[ ]  is an image
space.

6.2. Information Processing

6.2.1. States and Processes
A process has a complete state, comprising a finite number of internal state im-
ages, and a finite number (possibly zero) of (external) input images.  All these
images vary continuously in time (if they vary at all).  The instantaneous configu-
ration of a process comprises the forms of its internal state and external input im-
ages.  This configuration governs (not necessarily deterministically) the continu-
ous change of (internal) state through time, and such government depends con-
tinuously on the configuration.
For nondeterministic processes, there is a continuous probability density func-
tion defined over possible computational trajectories.  Therefore, there is a con-
tinuum between possible trajectories and impossible trajectories, and thus there
are soft constraints on the admissibility of trajectories.
Instead of asking whether a continuous process terminates, it is generally more
meaningful to determine whether it is asymptotically stable.  Such processes
converge continuously toward their results, so if an agent must act before an op-
timal answer has been obtained, it will still have a relatively good result.  (Of
course, such equilibria are only temporary, since natural computation never
stops; typically, the equilibrium will be destabilized by a change of input, which
then enables a new equilibrium to be achieved.)

6.2.2. Topological Definition of Process
In topological terms, a deterministic autonomous process is a continuous func-
tion 

† 

P : Y ¥ R Æ Y (where 

† 

Y is the complete state space) that defines the state at
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a future time in terms of the current state: 

† 

yt +Dt = P yt ,Dt( ) .  Clearly, such proc-
esses satisfy the group properties:

† 

P y,0( ) =y ,

† 

P P y, t1( ),t2[ ] = P y,t1 + t2( ) .
More generally, for non-autonomous as well as autonomous processes, the Prin-
ciple of Continuity requires:
Postulate 6: Formal processes in simulacra are continuous functions of time, input im-
ages, and process-state images.
We have seen that image spaces are homeomorphic to subsets of Hilbert spaces,
and since Hilbert spaces are Banach spaces, we can define the derivative of a
process.  Note that

† 

˙ y t = lim
t Æ0

y t +t -yt

t
=

d
dt

P yt ,t( )
t = 0

.

Therefore, if 

† 

P  is differentiable, we can write a deterministic autonomous proc-
ess as a differential equation 

† 

˙ y = Q y( ) where 

† 

Q y( ) = d
dt P y,t( ) t = 0 .  A similar ap-

proach can be used for non-autonomous processes.

6.2.3. Potential Descent
Hill-descending processes illustrate many of these ideas.  Suppose 

† 

V y( )  is a
bounded scalar-valued potential function defined over states 

† 

y Œ Y.  Then gra-
dient descent is a simple deterministic continuous autonomous process:

† 

˙ y = -r—V y( ) , where 

† 

r  is the rate of descent.
For nondeterministic descent, we can define, for example, the probability density

† 

P y, ˙ y ( )  of change 

† 

˙ y t( )  to state 

† 

y t( )  by a soft constraint such as this:

† 

P y, ˙ y ( ) =
-—V y( ) ⋅ ˙ y [ ]+

—V y( ) ⋅ ˙ y 
,

where 

† 

x +  represents the non-negative part of 

† 

x  (of course, a smooth, sigmoidal
function could be used instead).  The effect of this is to make the probability den-
sity of a state change equal to the non-negative part of the cosine of the angle
between the negative gradient and the direction of state change.  Therefore, de-
scent along the negative gradient will be most probable, but other potential-
decreasing directions will also be allowed, with their probability decreasing to
zero as they approach orthogonality to the gradient.  Then 

† 

P y,a,b{ }, the prob-
ability of following trajectory 

† 

y  from time 

† 

a  to time 

† 

b, can be expressed:

† 

P y,a,b{ } = exp logP y(t), ˙ y t( )[ ]d t
a

b

Ú .
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6.3. Process Representation
Finally, it will be worthwhile to consider the form that programs may take in the
context of continuous computation.  This is important theoretically, for its rele-
vance to universal computation, and practically, as a foundation of general-
purpose continuous computers.

6.3.1. Discrete Formulas
Of course, many continuous processes can be defined by differential equations or
other mathematical formulas.  In these cases we are using static discrete struc-
tures (the formulas) to define continuous-time processes.  Similarly, researchers
from Shannon onward have designed general-purpose analog computers on the
base of interconnecting discrete computational elements from a finite set (Shan-
non 1941; Pour-El 1974; Rubel 1981, 1993; Moore 1996; MacLennan 1987, 1990,
1999).
Even in this familiar case, however, there are some subtleties that we should no-
tice.  Consider the simple differential equation, 

† 

¢ y = ry .  If 

† 

r  is a rational number,
then this equation can be written down, that is to say, it can be represented in a
finite, discrete structure.  If 

† 

r  is not rational, we cannot write it down (represent
it discretely and finitely), but if 

† 

r  is a computable real number, then we can at least
provide a finite procedure for generating progressively better rational approxi-
mations.  That is, we have a finite, discrete structure (a digital computer pro-
gram) 

† 

p  such that 

† 

limk Æ• p k( ) = r .  In effect, our finite, discrete representation is

† 

¢ y = [limk Æ• p k( )]y .  Notice, however, that the set of computable real numbers is
denumerable, so most real numbers are non-computable.  Therefore, most con-
tinuous processes obeying an equation of the form 

† 

¢ y = ry  will not be finitely de-
scribable in discrete symbols, either directly (by giving a finite formula for ra-
tional 

† 

r ) or indirectly (by giving a finite algorithm for approximating comput-
able 

† 

r ).  In general, we can see that most continuous processes cannot be ex-
pressed or even approximated arbitrarily closely by a finite, discrete structure.
In contrast, an analog computer has no such limitation.  If we have an analog
computer programmed to integrate 

† 

¢ y = ry  for a given rate 

† 

r , then this input can
be provided directly as a continuous quantity (e.g., a voltage or light intensity);
there is no need to express it discretely (e.g., as a string of digits or an approxi-
mating digital computer program).  The equation 

† 

¢ y = ry  can be finite in size,
provided we are allowed to represent 

† 

r  directly by a continuous magnitude
rather than a finite, discrete formula.  That is, 

† 

r  must be represented by an image
rather than a formula.
It is important to avoid several traps into which we may be drawn by our dis-
crete thinking habits.  For example, it may be argued that the continuous output
of an analog computation has to be measured, which converts it to a rational
number.  Conversely, to input a quantity, it is argued, it must be typed as a
number or selected from a finite set, which means that the set of possible inputs
is denumerable.  However, both of these objections arise from the incorrect as-
sumption that a continuous computation is interfacing with a discrete environ-
ment (such as a human user typing in numbers or viewing a digital readout).
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First, even if a human is using an analog computer, inputs and outputs may be
continuous:  input can be gestural or through a joystick or slider; output can be a
dial-less pointer or a visual image.  Further, in the context of natural computation
(which is our focus here), there is generally no “user” providing inputs or con-
suming outputs.  Typically, an organism is responding to continuous inputs
from its environment by making continuous actions in its environment.  Input,
processing, output: they are all continuous, and there need not be discrete com-
puting anywhere.  The simplest and most appropriate model is to assume that all
the quantities and processes are continuous, as they are normally assumed to be
in physics.

6.3.2. Guiding Images
We have seen that there are limits to expressing continuous computational proc-
esses in finite, discrete formulas (“programs”), therefore we might ask if there is
some alternative more appropriate to continuous computation.  We have already
seen one possible extension: the inclusion of continuous quantities in an other-
wise discrete representation.  This suggests that, just as discrete computational
processes are most naturally represented by finite, discrete formulas (programs),
so continuous computational processes might be represented by finite, continu-
ous images.  We call these continuous analogues of programs guiding images.
For a concrete example, consider a potential surface 

† 

V y( )  defined over states

† 

y Œ Y.  This can serve as a simple guiding image for a continuous computation:
for a deterministic computation, start in an initial state 

† 

y0  and follow the gradi-
ent downward, 

† 

˙ y = -r—V y( ) , until an equilibrium (a minimum or saddle-point)
is reached.  (An asymptotic equilibrium must exist due to the boundedness of
images.)  The same guiding image can also govern a nondeterministic descent, as
was explained in Section 6.2.3.
But where do we get the guiding image for a continuous computation without
describing it discretely?  Just as a human can write a digital computer program,
so a human can “sculpt” (or “paint” or “dance”) the guiding image of a continu-
ous process.  More likely, perhaps, a human may be in an interactive continuous
feedback loop with a continuous computation system that is creating a guiding
image.  Finally, just as a rule-based system can be constructed by a learning algo-
rithm, so also a guiding image may be sculpted by a continuous adaptive algo-
rithm.  (This is, in effect, what many neural net learning algorithms do.)  In nerv-
ous systems, the guiding images are created by continuous developmental proc-
esses and experiential learning.  This is the origin of many of the guiding images
encoded in cortical maps.

7. Ubiquity of Calcular Assumptions
I have argued that the TM model acquires many of its characteristics from the
context in which it developed: problems in formal logic and mathematics.  I have
also argued that a different, equally important set of concerns, those involved in
natural computation, suggests a different set of assumptions and consequently
different models of computation, including continuous computation.  Neverthe-
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less, I would like now to come full circle and consider some issues in the episte-
mology of mathematics raised by our broadened idea of computation.
Although I have pointed out that many specific continuous computations are in-
expressible in finite, discrete formulas, it will be apparent that I have made full
use of the tools of mathematics — including topology and functional analysis —
to discuss continuous computation.  This may seem odd, given that I have stated
my intention to adopt the Continuity Principle and eschew discrete representa-
tions and processes.  The reason, of course, is that I want to attain some precision
in my statements and arguments.  Nevertheless, the reader may be left with the
impression that discrete representations and processes are somehow more fun-
damental than continuous.  To explore this issue, it will be necessary to consider
some developments in the history of mathematics.
Recall that in Euclid’s Elements continuous magnitudes and discrete numbers are
separately axiomatized; in effect they are taken to be equally fundamental.  Nev-
ertheless, mathematicians were more comfortable with the integers, perhaps be-
cause of troublesome issues of irrationality and infinity associated with the con-
tinuum.  In any case, the “arithmetization of geometry” became a project in the
development of mathematics, which was eventually declared solved as a conse-
quence of the late-nineteenth century constructions of Dedekind, Weierstrass,
Cantor, and others.  Therefore, we now routinely accept that the (continuous)
real numbers are constructed in some way from the (discrete) rationals.  The in-
tegers, from which the rationals are constructed, are considered most funda-
mental.  Hence the historical importance of the recursive construction of the in-
tegers (e.g., by the Peano axioms) and of computation defined in terms of func-
tions on the integers.
The reasons for this preference lie very deep, historically and psychologically,
and are outside of the scope of this article.  Nevertheless, it is relevant to indicate
some of the issues involved.  As is well known, the ancient Pythagoreans made
use of figured numbers, that is, arrangements of identical tokens, to discover and
prove theorems in number theory.  Thus, square numbers were literally square
figures, and so forth for triangular numbers, pentagonal numbers, etc.  Typically
the tokens were pebbles (Greek yh=foi, Latin calculi), and from the manipulation
of these we get our words calculus, calculate, etc.  These are the historical roots of
the theory of discrete formal systems and of the TM model of computation.
A preference for the integers is just one aspect of a tendency to analyze complex
phenomena into parts or units that are simple, elementary, atomic (literally, “in-
divisible”), and nearly featureless (having only the simplest features, preferably
quantized), but that have a definite identity (each unit is absolutely identical to
itself and absolutely different from each other unit).  Here also we may see the
roots of modern particle physics (which traces its ancestry to the century after
Pythagoras) and of genetics.  There is much to recommend this view of the world
(witness the success of modern science and technology), but it has less obvious
limitations when applied to the complexity of the natural, especially the biologi-
cal, world (e.g., Roszak 1999).
It may be argued that mathematics has advanced far beyond the figured num-
bers of the Pythagoreans, or the crude axioms of Euclid, and that topology, for
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example, is able to describe spaces with varied and rich structures.  But observe:
mathematical topology is point-set topology.  Topology is built on the concept of
a space as set of points: self-identical and featureless, but each absolutely distinct
from all other points (although, of course, they may be nearer or farther in some
metric sense).  Conceptually, continua are sets of points, functions and relations
are sets of point pairs, and so forth.  Mathematical points, indivisible tokens, con-
ceptual atoms: they are all psychologically the same.
It may seem that there is no alternative, but that is because the point set approach
to mathematics has been so successful.  A function does not have to be viewed as
a set of point pairs; at one time it was more common to understand it as a con-
tinuous curve or graph, and category theory treats functions and sets more ho-
listically.  Certainly the point-set approach is a triumph of generality, but it
comes with a price, a fundamental atomic bias.
The point-set approach has not been accepted without criticism (Menger 1928);
for example Karl Menger (1940) provides a useful survey of various approaches
to “topology without points” (Milgram 1939, 1940a, 1940b; Stone 1936, 1937;
Wallman 1937).  His own approach begins with lumps, which are “closer to the
physicist’s concept of space” than are idealized points.  Nevertheless, Menger
(1940) concludes that

even the introduction of points as nested sequences of lumps
somehow transcends what can be observed in nature.  For, by a
lump, we mean something with a well defined boundary.  But well-
defined boundaries are themselves results of limiting processes
rather than objects of direct observation.  Thus, instead of lumps,
we might use at the start something still more vague — something
perhaps which has various degrees of density or at least admits a
gradual transition to its complement.

But let’s dig deeper.  Set theory is defined by some axiom system such as the
Zermelo-Fraenkel axioms, which are typically expressed in a formal language
such as first-order predicate logic with equality (FOPLE), in which equality is
axiomatized with its familiar properties (reflexivity, symmetry, transitivity).  As
a consequence, the objects described by the Zermelo-Fraenkel axioms (be they
interpreted as sets, functions, relations, numbers, or anything else) have the
character of self-identical, mutually distinct atomic units.
It may be supposed that the equality axioms are the source this character, but
they only manifest it most clearly.  In any consistent formal logical system, we
will have some well-formed formulas that are provable and others that are not,
and therefore induced relations of identity and non-identity in any valid domain
of interpretation (model).  (Indeed, the domain of interpretation is itself taken to
be a mathematically well-defined domain, which means that the identity of its
objects will be definite.)  The distinctness and definiteness of the tokens, types,
and syntactic relations in our formal languages are inherently connected with the
distinctness and definiteness of the mathematical objects (points, etc.) about
which they can speak (express true propositions).
This is, I think, the implication of the Löwenheim-Skolem Theorem, which says
that any consistent formal axiom system must have a countable model (valid
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domain of interpretation).  (Such a model is constructed from the formal lan-
guage and axiom system itself.)  Thus a discrete formal system cannot escape de-
finitively and absolutely from the discrete realm.  In particular, the real contin-
uum cannot be uniquely characterized in a discrete formal language.  (In this
sense, the historical project of arithmetizing geometry has failed.)
Now, my purpose is not to criticize mathematics, which is as important a tool in
natural computation as in other scientific and engineering disciplines.  Rather, I
am trying to call attention to the fact that when we put on the spectacles of mod-
ern mathematics we are apt to see discreteness — “points” — even in continua,
and we are apt to suppose that such continua, and the continuous processes op-
erating on them, are completely and adequately describable by discrete formal
systems.
Of course, mathematics is intended to be a language of precision, but the Löwen-
heim-Skolem Theorem and similar results hint that the very discreteness of for-
mal syntax and inference may limit what it can express.  However, one of the les-
sons of natural computation is that in many natural systems precision may be
unnecessary and even detrimental.  More generally, there are many kinds of in-
formation that are useful to organisms, and many ways of processing it; mathe-
matics is just one kind, of limited applicability, primarily useful to a relatively
small subset (scientists etc.) of one species (Homo sapiens).  That is, while the dis-
crete formal language of mathematics may be useful for talking about natural
computation, there is good reason for doubting that it is anything like the me-
dium of natural computation.

8. Conclusions
We have seen that models are relative to a context of concerns; although they
may be applicable outside of their historical context of origin, they cannot be as-
sumed to be so.  Further, using a model outside of its appropriate (but often in-
determinate) domain runs the risk of deceiving us with incorrect results.  There-
fore we must expose the idealizing assumptions of a model and determine the
extent to which they are applicable in any intended domain of application.
In particular, I have argued that the TM model owes its idealizing assumptions
to issues in the formalist program in mathematics.  Nevertheless, in part because
the earliest digital computers were designed by scientists educated in this same
background, the TM has proved reasonably successful as a model of traditional
(especially batch-processing) digital computing.
However, as we have tried to apply computational models to nature, and as we
have sought to design algorithms, computers, and robots inspired by biological
systems, natural computation has emerged as an important area of concern,
which asks different questions and addresses different issues from the traditional
theory of computation.  In particular, the real-time response, flexibility, robust-
ness, and adaptability of natural computation make continuous models of com-
putation attractive.  Therefore I have argued for a broadened definition of com-
putation, which includes continuous representations and processes, on the basis
that computation is a matter of what is being accomplished (manipulation of ab-
stract form independently of material substrate), rather than of how it is accom-
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plished (digital or analog technology).  Continuous computation, in fact, contra-
dicts many of the assumptions of the TM model; moreover it is better suited to
addressing the issues of natural computation.
Finally, I indicated briefly that the contrast between discrete and continuous
formal systems is related to deeper issues in epistemology and the foundations of
mathematics.
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