On the Practical Use of LDPC Erasure Codes for Distributed
Storage Applications

James S. Plank and Michadl G. Thomason*

Department of Computer Science
University of Tennessee
[plank, thomason]@cs.utk.edu

Technical Report UT-CS-03-510
http://www.cs.utk.edu/ plank/plank/papers/CS-03-510.html

This paper has been submitted for publication.
Please see the above URL for current publication status.

September 23, 2003

Abstract

As peer-to-peer and widely distributed storage systems
proliferate, the need to perform efficient erasure coding,
instead of replication, is crucial to performance and ef-
ficiency. Low-Density Parity-Check (LDPC) codes have
arisen as alternatives to standard erasure codes, such as
Reed-Solomon codes, trading off vastly improved de-
coding performance for inefficiencies in the amount of
data that must be acquired to perform decoding. The
scores of papers written on LDPC codes typically ana-
lyze their collective and asymptotic behavior. Unfortu-
nately, their practical application requires the generation
and analysis of individual codes for finite systems.

This paper attempts to illuminate the practical con-
siderations of LDPC codes for peer-to-peer and dis-
tributed storage systems. The three main types of LDPC
codes are detailed, and a huge variety of codes are gen-
erated, then analyzed using simulation. This analysis
focuses on the performance of individual codes for fi-
nite systems, and addresses several important heretofore
unanswered questions about employing LDPC codes in
real-world systems.

*This material is based upon work supported by the National
Science Foundation under grants ACI-0204007, ANI-0222945, and
EIA-9972889, and the Department of Energy under grant DE-FCO02-
01ER25465.

1 Introduction

Peer-to-peer and widely distributed file systems typi-
cally employ replication to improve both the perfor-
mance and fault-tolerance of file access. Specifically,
consider a file system composed of storage nodes dis-
tributed across the wide area, and consider multiple
clients, also distributed across the wide area, who de-
sire to access a large file. The standard strategy that
file systems employ is one where the file is partitioned
into n blocks of a fixed size, and these blocks are repli-
cated and distributed throughout the system. Such a sce-
nario is depicted in Figure 1, where a single file is par-
titioned into eight blocks numbered one through eight,
and each block is replicated on four of eight storage
servers. Three separate clients are shown accessing the
file in its entirety by attempting to download each of the
eight blocks from a nearby server.

Replicated systems such as these provide both
fault-tolerance and improved performance over non-
replicated storage systems. However, the costs are high.
First, each block must be replicated m times to toler-
ate the failure of any m — 1 servers. Second, clients
must find close copies of each of the file’s blocks, which
can be difficult, and the failure or slow access of any
particular block can hold up the performance of the en-
tire file’s access. Aggressive or intelligent download-
ing strategies have been proposed and evaluated for such
systems [AWO03].

Erasure encoding schemes (schemes originally de-

Figure 1: A widely distributed file system hosting a file
partitioned into eight blocks, each block replicated four
times. Three clients are depicted accessing the file from
different network locations.

veloped for communication on the binary erasure chan-
nel (BEC)) improve both the fault-tolerance and down-
loading performance of replicated systems [WKO02]. For
example, with Reed-Solomon erasure encoding, instead
of storing the blocks of the files themselves, n + m en-
codings of the blocks are calculated, and these are stored
instead. Now the clients need only download any n
blocks, and from these, the n blocks of the file may
be calculated. Such a scenario is depicted in Figure 2,
where 32 encoding blocks, labeled A through Z and a
through f are stored, and the clients need only access the
eight closest blocks to compute the file.

Figure 2: The same system as Figure 1, employing
Reed-Solomon coding instead of replication. Again the
file is partitioned into eight blocks, but now 32 encoding
blocks are stored so that clients may employ any eight
blocks to calculate the file.

Reed-Solomon coding has been employed effectively
in distributed storage systems [RWE*01, KBC*+00],
and in related functionalities such as fault-tolerant data
structures [LS00], disk arrays [BM93] and secret shar-
ing [Rab89]. However, it is not without costs. Specifi-

cally, encoding involves breaking each block into words,
and each word is calculated as the dot product of two
length-n vectors under Galois Field arithmetic, which is
more expensive than regular arithmetic. Decoding in-
volves the inversion of an n x n matrix, and then each
of the file’s blocks is calculated with dot products as in
encoding. Thus, as n grows, the costs of Reed-Solomon
coding induce too much overhead [BLMR98].

In 1997, Luby et al published a landmark paper
detailing a coding technique that thrives where Reed-
Solomon coding fails [LMST97]. Their codes, later
termed “Tornado Codes,” calculate m coding blocks
from the n file blocks in linear time using only cheap
exclusive-or (parity) operations. Decoding is also per-
formed in linear time using parity; however, rather than
requiring any n blocks for decoding as in Reed-Solomon
coding, they require fn blocks, where f is an over-
head factor that is greater than one, but approaches one
as n approaches infinity. A content-distribution system
called “Digital Fountain” was built on Tornado Code
technology, and in 1998 its authors formed a company
of the same name [Dig02].

Tornado Codes are instances of a class of codes
called Low-Density Parity-Check (LDPC) codes, which
have a long history dating back to the 60’s [Gal63],
but have received renewed attention since the 1997 pa-
per. Since 1998, the research on LDPC codes has
taken two paths — Academic research has resulted
in many publications about LDPC codes [RGCV03,
WKO03, SS00, RU03], and Digital Fountain has both
published papers [BLM99, Lub02, Sho03] and received
patents [LSST00b, LMO01, LSS*00a, Lub01a, Lub01b]
on various aspects of coding techniques. The issue of
patent infringement is discussed in section 7 below.

LDPC codes are based on graphs, which are used to
define codes based solely on parity operations. Nearly
all published research on LDPC codes has had the same
mission — to define codes that approach “channel capac-
ity” asymptotically. In other words, they define codes
where the overhead factor, f, approaches one as n ap-
proaches infinity. It has been shown [LMS*97] that
codes based on regular graphs — those where each node
has a constant incoming and outgoing cardinality — do
not have this property. Therefore, the “best” codes are
based on randomly generated irregular graphs. A class
of irregular graphs is defined, based on probability dis-
tributions of node cardinalities, and then properties are
proven about the ensemble characteristics of this class.
The challenge then becomes to design probability dis-
tributions that generate classes of graphs that approach
channel capacity. Hundreds of such distributions have
been published in the literature and on the web (see Ta-
ble 1 for 80 examples).

Although the probabilistic method [ASE92] with

random graphs leads to powerful characterizations of
LDPC ensembles, generating individual graphs from
these probability distributions is a non-asymptotic, non-
ensemble activity. In other words, while the proper-
ties of infinite collections of infinitely sized graphs is
known, and while there has been important work in
finite-length analysis [DPT*02], the properties of indi-
vidual, finite-sized graphs, especially for small values
of n, have not been explored to date. Moreover, these
properties have profound practical consequences.

Addressing aspects of these practical consequences is
the goal of this paper. Specifically, we detail how three
types of LDPC graphs are generated from given proba-
bility distributions, and describe a method of simulation
to analyze individual LDPC graphs. Then we generate
a wide variety of LDPC graphs and analyze their per-
formance in order to answer the following five practical
questions:

1. What kind of overhead factors (f) can we expect
for LDPC codes for small and large values of n?

2. Are the three types of codes equivalent, or do
they perform differently?

3. How do the published distributions fare in pro-
ducing good codes for finite values of n?

4. lIsthere a great deal of random variation in code
generation from a given probability distribu-
tion?

5. How do the codes compare to Reed-Solomon
coding?

In answering each question, we pose a challenge to
the community to perform research that helps network-
ing systems researchers make use of these codes. It is
our hope that this paper will spur researchers on LDPC
codes to include analyses of the non-asymptotic proper-
ties of individual graphs based on their research.

2 ThreeTypesof LDPC Codes

Three distinct types of LDPC codes have been de-
scribed in the academic literature. All are based on bi-
partite graphs that are randomly generated from prob-
ability distributions. We describe them briefly here.
For detailed presentations on these codes, and stan-
dard encoding/decoding algorithms, please see other
sources [LMS*97, JKM0O, Sho00, RU03, WKO03].

The graphs have L + R nodes, partitioned into two
sets — the left nodes, Iy,...,Ir, and the right nodes,
ri,...,rr. [Edges only connect left nodes to right

nodes. A class of graphs G is defined by two proba-
bility distributions, A and P. These are vectors com-
posed of elements Ay, As,... and Py, P, ... such that
>iAi=1land) ,P =1 LetgbeagraphinG. A;is
the probability that a left node in g has exactly ¢ outgo-
ing edges, and similarly, P; is the probability that a right
node in g has exactly ¢ incoming edges.*

Given L, R, A and P, generating a graph g is in the-
ory a straightforward task [LMS+97], We describe our
generation algorithm in section 4 below. For this sec-
tion, it suffices that given these four inputs, we can gen-
erate bipartite graphs from them.

To describe the codes below, we assume that we
have n equal-sized blocks of data, which we wish to
encode into n + m equal-sized blocks, which we will
distribute on the network. The nodes of LDPC graphs
hold such blocks of data, and therefore we will use the
term “node” and “block” interchangeably. Nodes can
either initialize their block’s values from data, or they
may calculate them from other blocks. The only opera-
tion used for these calculations is parity, as is common
in RAID Level 5 disk arrays [CLG194]. Each code gen-
eration method uses its graph to define an encoding of
the n data blocks into n + m blocks that are distributed
on the network.

To decode, we assume that we download the fn clos-
est blocks, By,...Byy,, in order. From these, we can
calculate the original n data blocks. Our hope is that f
is very close to one, and that the encoding and decoding
processes are efficient.

2.1 Systematic Codes

With Systematic codes, L = n and R = m. Each left
node /; holds the i-th data block, and each right node r;
is calculated to be the exclusive-or of all the left nodes
that are connected to it. A very simple example is de-
picted in Figure 3(a).

Systematic codes can cascade, by employing d >
1 levels of bipartite graphs, g1, ..., g4, Where the right
nodes of g; are also the left nodes of g; 1. The graph of
level 1 has L = n, and those nodes contain the n data
blocks. The remaining blocks of the encoding are right-
hand nodes of the d graphs. Thus, m = Zle R;. A
simple three-level cascaded Systematic code is depicted
in Figure 3(b).

Encoding and decoding of both regular and cascad-
ing Systematic codes are straightforward operations and
are both linear time operations in the number of edges
in the graph.

1An alternate and more popular definition is to define probability
distributions of the edges rather than the nodes using two vectors A and
p. The definitions are interchangeable since (A, P) may be converted
easily to (X, p) and vice versa.

Figure 3: (a) Example 1-level Systematic code for n =
4, m = 3. (b) Example 3-level Systematic code for n =
8, m=_8.

2.2 Gallager (Unsystematic) Codes

Gallager codes were introduced in the early
1960’s [Gal63]. With these codes, L = n + m,
and R = m. The first step of creating a Gallager code
is to use g to generate a (n +m) x n matrix M. This is
employed to calculate the n + m encoding blocks from
the original n data blocks. These blocks are stored in
the left nodes of g. The right nodes of g do not hold
data, but instead are constraint nodes — each r; has the
property (guaranteed by the generation of M) that the
exclusive-or of all nodes incident to it is zero. A simple
Gallager code is depicted in Figure 4(a).

m

[2+14+]5+17=0
r2 @t@ @
[1+12+3+17=0
\r3 @)@ @
[2+13+|4+16=0 @ @
(@) (b)

Figure 4: (a) Example Gallager code forn = 4, m =
3. Note that the right nodes define constraints between
the left nodes, and do not store encoding blocks. (b)
Example IRA code for n = 4, m = 3. The left and
accumulator nodes are stored as the encoding blocks.
The right nodes are just used for calculations.

Thus, encoding is an expensive operation, involving

the generation of M, and calculation of the encoding
blocks. Fortunately, if the graph is low density (i.e. the
average cardinality of the nodes is small), M is a sparse
matrix, and its generation and use for encoding and de-
coding is not as expensive as a dense matrix (as is the
case with Reed-Solomon coding). Decoding is linear in
the number of edges in the graph. Fortunately, M only
needs to be generated once per graph, and then it may
be used for all encoding/decoding operations.

2.3 IRA Codes

Irregular Repeat-Accumulate (IRA) Codes are System-
atic codes, as L = n and R = m, and the information
blocks are stored in the left nodes. However, an extra
set of m nodes, z1,...,2n, are added to the graph in
the following way. Each node r; has an edge to z;. Ad-
ditionally, each node z; has an edge to z;41, for i < m.
These extra nodes are called accumulator nodes. For
encoding, only blocks in the left and accumulator nodes
are stored — the nodes in R are simply used to calcu-
late the encodings and decodings, and these calculations
proceed exactly as in the Systematic codes. An example
IRA graph is depicted in Figure 4(b).

3 Asymptotic Properties of LDPC
Codes

All three classes of LDPC codes have undergone asymp-
totic analyses that proceed as follows. Arate R = 21—
is selected, and then A and P vectors are designed.
From these, it may be proven that graphs generated from
the distributions in A and P can asymptotically achieve
capacity. In other words, they may be successfully de-
coded with fn downloaded blocks, where f approaches
1 from above as n approaches co.

Unfortunately, in the real world, developers of wide-
area storage systems cannot break up their data into
infinitely many pieces. Limitations on the number of
physical devices, plus the fact that small blocks of data
do not transmit as efficiently as large blocks, dictate
that » may range from single digits into the thousands.
Therefore, a major question about LDPC codes (ad-
dressed by Question 1 above) is how well they perform
when n is in this range.

4 Assessing Performance

Our experimental methodology is as follows. For each
of the three LDPC codes, we have written a program
to randomly generate a bipartite graph g that defines an
instance of the code, given n,m, A, P, and a seed for a

random number generator. The generation follows the
methodology sketched in [LMS+97]:

For each left node [;, its number of outgoing edges &;
is chosen randomly from A, and for each right node
r;, its number of incoming edges ¢; is chosen randomly
from P. This yields two total number or edges, 7, =
YF & and Tr = YOI, «; which may well differ by
D > 0. Suppose T, > Tg. To rectify this difference,
we select a “shift” factor s such that0 < s < 1. Thenwe
subtract sD edges randomly from the left nodes (mod-
ifying each ¢; accordingly), and add (1 — s)D edges
randomly to the right nodes (modifying each ¢; accord-
ingly). This yields a total of 7" total edges coming from
the left nodes and going to the right nodes.

Now, we define a new graph g’ with T left nodes, T'
right nodes and a random matching of 7" edges between
them. We use ¢’ to define g, by having the first £&; edges
of ¢’ define the edges in g coming from I;. The next &
edges in g’ define the edges coming from /5, and so on.
The right edges of g are defined similarly by the right
edges of ¢’ and «;.

At the end of this process, there is one potential prob-
lem with g — there may be duplicate edges between two
nodes, which serve no useful purpose in coding or de-
coding. We deal with this problem by deleting duplicate
edges. An alternative method is to swap edges between
nodes until no duplicate edges exist. We compared these
two methods and found that neither outperformed the
other, so we selected the edge deletion method since it
is more efficient.

We evaluate each random graph by performing a
Monte Carlo simulation of over 1000 random down-
loads, and calculating the average number of blocks re-
quired to successfully reconstruct the data. This is re-
ported as the overhead factor f above. In other words,
if n = 100, m = 100, and our simulation reports
that f = 1.10, then on average, 110 random blocks of
200 total blocks are required to reconstruct the 100 orig-
inal blocks of data from the graph in question.

Theoretical work on LDPC codes typically calculates
the percentage of capacity of the code, which is 3100%.
We believe that for storage applications, the overhead
factor is a better metric, since it quantifies how many
block downloads are needed on average to acquire a file.

5 Experiments

5.1 CodeGeneration

The theoretical work on LDPC codes gives little insight
into how the A and P vectors that they design will per-
form for smaller values of n. Therefore we have per-
formed a rather wide exploration of LDPC code gener-
ation. First, we have employed 80 different sets of A

and P from published papers on asymptotic codes. We
call the codes so generated published codes. These are
listed in Table 1, along with the codes and rates for
which they were designed. The WKO03 distributions are
for Gallager codes on AWGN (Additive White Gaus-
sian Noise) channels, and the R03 distributions are for
IRA codes on AWGN and binary symmetric channels.
In other words, neither is designed for the BEC. We in-
cluded the former as a curiosity and discovered that they
performed very well. We included the latter because dis-
tributions for IRA codes are scarce.

Second, we have written a program that generates
random A and P vectors, determines the ten best pairs
that minimize f, and then goes through a process of
picking random A’s for the ten best P’s and picking ran-
dom P’s for the ten best A’s. This process is repeated,
and the ten best A/P pairs are retained for subsequent
iterations. Such a methodology is suggested by Luby et
al [LMS98]. We call the codes generated from this tech-
nigue Monte Carlo codes.

Third, we observed that picking codes from some
probability distributions resulted in codes with an ex-
tremely wide range of overhead factors (see section 6.4
below). Thus, our third mode of attack was to take the
best performing instances of the published and Monte
Carlo codes, and use their left and right node cardinal-
ities to define new A’s and P’s. For example, the Sys-
tematic code in Figure 3(a) can be generated from any
number of probability distributions. However, it defines
a probability distribution where A =< 0,0.75,0.25 >
and P =< 0,0,1 >. These new A’s and P’s may then
be employed to generate new codes. We call the codes
so generated derived codes.

5.2 Tests

The range of potential tests to conduct is colossal. As
such, we limited it in the following way. We focus on
three rates: R € {1,%,%}. Inother words, m = 2n,
m = n,and m = . These are the rates most studied
in the literature. For each of these rates, we generated
the three types of codes from each of the 80 published
distributions for all even n between 2 and 150, and for
n € {250, 500, 1250, 2500, 5000, 12500, 25000, 50000,
125000}2. For Systematic codes, we tested cascading
levels from one to six.

For Monte Carlo codes, we tested all three codes with
all three rates for even n < 50. As shown in section 6.2
below, this code generation method is only useful for
small n.

Finally, for each value of n, we used distributions
derived the best current codes for all three coding meth-

20ne exception is n = 125000 for R = % due to the fact that
these graphs often exceeded the physical memory of our machines.

Name | Source # of Amas Prao | Developed | Rate: [3, 3, 3]
Codes for
L97A | [LMST97] 2 | 1,048,577 | 30,050 | Systematic [0,1,1]
L97B | [LMS*T97] | 8 8-47 16-28 | Systematic [0,4,4]
S99 [Sho99] 19 2-3298 | 6-13 | Gallager [4,7,8]
SS00 | [SS00] 3 9-12 7-16 | Gallager [0,3,0]
MO0 | [MCEOO] 14 2-20 3-8 IRA [0,6,8]
WKO03 | [WK03] 6 11-50 8-11 | Gallager* [0,6,0]
RUO3 | [RUO3] 2 8-13 6-7 Gallager [0,2,0]
RO3 | [RGCVO3] | 8 100 8 IRA* [0,8,0]
U03 | [Urbo3] 22 6-100 6-19 | Gallager [6,9,7]

Table 1: The 80 published probability distributions (A and P) used to generate codes.

ods (and all six cascading levels of Systematic codes) to
generate codes for the ten nearest values of n with the
same rate. The hope is that good codes for one value
of n can be employed to generate good codes for nearby
values of n.

In sum, this makes for over 100,000 different data
points, each of which was repeated with over 100 differ-
ent random number seeds. The optimal code and over-
head factor for each data point was recorded and the data
is digested in the following section.

6 Results

Our computational engine is composed of 160 machines
(Sun workstations running Solaris, Dell Pentium work-
stations running Linux, and a Macintosh PowerBook
running OSX) which ran tests continuously for over a
month. Tests continue to be run. We organize our re-
sults by answering each of the questions presented in
Section 1 above.

6.1 Question 1

What kind of overhead factors can we expect for LDPC
codes for small and large values of n?

All of our data is summarized in Figure 5. For each
value of n and m, the coding and generation method that
produces the smallest overhead factor is plotted.

All three curves of Figure 5 follow the same pat-
tern. The overhead factor starts at 1 when m = 1 or
n = 1, and the Systematic codes become simple repli-
cation/parity codes with perfect performance. Then the
factor increases with n until n reaches roughly twenty
at which point it levels out until n increases to roughly
100. At that point, the factor starts to decreases as n
increases, and it appears that it indeed goes to one as n
gets infinitely large.

Although we only test three rates, it certainly appears
that the overhead factor grows as the rate approaches

— Rate=1/3
— Rate=1/2
Rate =2/3
1.20 \
5 115 e,
g
[V
el
g / \\
L
T 110 -
o]
1.05
1.00 ‘ ; ‘ ; :
1 10 100 1000 10000 100000

n

Figure 5: The best codes for all generation methods for

1<n<125,000,and R = %, 2.

zero. This is intuitive. At one end, any code with a rate
of one will have an overhead factor of one. At the other,
consider a one-level Systematic code with n = 3 and
m = oo. There are only seven combinations of the left
nodes to which a right node may be connected. There-
fore, the right nodes will be partitioned into at most
groups, where each node in the group is equivalent. In
other words, any download sequence that contains more
than one block from a node group will result in over-
head. Clearly, this argues for a higher overhead factor.
Challenge for the Community: The shape of the
curves in Figure 5 suggests that there is a lower bound
for overhead factor as a function of n and m (or alter-
natively as a function of n and R). It is a challenge to
the theoretical community to quantify this lower bound
for finite values of n and m, and then to specify exact
methods for generating optimal or near optimal codes.

6.2 Question 2

Are the three types of codes equivalent, or do they
perform differently?

They perform differently. Figures 6 - 8 show the
best performing of the three different codes for the three
rates. All three show a similar pattern — for small values
of n, Systematic codes perform the best. However, when
n roughly equals 100, the IRA codes start to outperform
the others, and the Gallager codes start to outperform the
Systematic codes. This trend continues to the maximum
values of n.

1.30
A\ — Systematic
1.25 /N \"‘ — Gallager
5 / IRA
g 120 m‘{‘
i / K/\
he]
g 115 /
®
110
3 /
1.05
1.00 ‘ ; ‘ ; :
1 10 100 1000 10000 100000

n

Figure 6: Comparing methods, R = %

/\/-/\ — Systematic
— Gallager
115
S // \ IRA
g
(1
g 110
< / -
§ Z
O 1.05
1.00 T T T T T
1 10 100 1000 10000 100000

n

Figure 7: Comparing methods, R = %

W — Systematic
1.10- "“‘m\— — Gallager
S IRA
g /,/AVX N
[V
1./ AN
< 105 =
o >
>
o \
1.00 T T T T T
1 10 100 1000 10000 100000

n

Figure 8: Comparing methods, R = %

(@) (b) (©)

Figure 9: (a) Example 1-level Systematic code for n =
4, m = 4. (b) Equivalent Gallager code. (c) Gallager
code generated from the same A and P as (b).

Unfortunately, since the theoretical work on LDPC
codes describes only asymptotic properties, little insight
can be given as to why this pattern occurs. One curious
point is the relationship between one-level Systematic
codes and Gallager codes. It is a trivial matter to con-
vert a one-level Systematic code into an equivalent Gal-
lager code by adding m left nodes, I, 41,- .-, lntm 1O
the Systematic graph, and m edges of the form (1,4, 7;)
for1 <4 < m. An example is the Systematic code in
Figure 9(a), which is equivalent to the Gallager code in
Figure 9(b). Both have overhead factors of 1.11. This
fact would seem to imply that overhead factors for one-
level Systematic codes would be similar to, or worse
than Gallager codes. However, when n < 50, the one-
level Systematic codes vastly outperform the others; the
Gallager codes perform the worst. A clue to this be-
havior can be seen in Figure 9(c). This is a Gallager
code whose nodes have the same cardinalities as the
code in Figure 9(b), and thus would be generated by
the same values of A and P. However, its overhead
factor is 1.21! To hammer this point home further, we
performed the same conversion on a Systematic graph
where n = m = 20, and the overhead factor is 1.16.
The node cardinalities of the equivalent Gallager graph
were then used to generate values of A and P, which
in turn were used to generate 500 new Gallager graphs
with the exact same node cardinalities. The minimum
overhead factor of these graphs was 1.31 (the average
was 1.45, and the maximum was 1.58). What this sug-
gests is that for smaller graphs, perhaps A and P need
to be augmented with some other metric so that optimal
codes can be generated easily.

Challenge to the community: A rigorous compari-
son of the practical utility of the three coding methods
needs to be performed. In particular, a computationally

attractive method that yields (near) optimal codes for fi-
nite n would be exceptionally useful. This is highlighted
by the fact that one-level Systematic codes vastly out-
perform Gallager codes for small n, even though equiv-
alent Gallager codes may be constructed from the Sys-
tematic codes.

------ Monte Carlo —— Published ----Derived
125 ¥ :
5 1201)
g i a ﬁ!
© -
L 1.15+4 v] b
% l T ; e
< 110 ’
o) :
>
O 105
100 T T 1 T T 1 T T 1
o 2 RO 2 PO =
8 8 8° % 8 8° 8 8 &
n n n
Systematic Gallager IRA

Figure 10: Performance of various codes for n < 150
whenR = 1.

6.3 Question 3

How do the published distributions fare in producing
good codes for finite values of n?

In the next two graphs, we limit our scope to R = 1,
as the results for the other two rates are similar. First,
we present the performance of the three code genera-
tion methods for the three coding methods for small n
in Figure 10. As in the other graphs, the best performing
instance for each value of n is plotted.

In all coding methods, the Monte Carlo generation
method produces better codes than the published distri-
butions whenn is roughly less than 15. At that point, the
exponential number of possible A/P combinations dras-
tically reduces the effectiveness of Monte Carlo code
generation. From that point until n is in the high double-
digits, the performance of the published codes is notice-
ably worse than the derived codes. As n grows past
100, the derived and published codes perform roughly
equally. Thus, for small n(< 100), the answer to Ques-
tion 3 is clearly inadequately.

Figure 11 addresses which published distributions
perform well in generating small codes. Each graph
plots four curves — the best codes generated from dis-
tributions designed for the particular code and rate, the
best codes generated from distributions designed for the

----Different Code
——— Best instance

------ Same Code, Same Rate
—— Same Code, Different Rate

1.20 Al
5 ;
8 115
LL
o)
8 110
o)
>
S 105
1.00 T T 1 T T 1 T T 1
o 2 2o = 2o =
8 8 §° 8 8§ g° 8 &8 &
n n n
Systematic Gallager IRA

Figure 11: Performance of published distributions for
n <150 whenR = 1.

particular code, but not for the rate, the best codes gen-
erated from distributions designed for other codes, and a
reference curve showing the best codes from Figure 10.

Source | Designed for | Rate | Percentage
[McEO00] IRA 2/3 46.6%
[RUO3] Gallager 1/2 24.0%
[Urb03] Gallager 1/3 12.3%
[Sho99] Gallager 2/3 11.0%
[Sho99] Gallager 1/2 4.1%
[Urb03] Gallager 1/2 2.0%

Table 2: Distributions that generated the best Systematic
codes for n < 150

In all three graphs, the worst codes were generated
from distributions designed for the particular code, but
for a different rate. In both the Gallager and IRA codes,
the best codes were generated from distributions de-
signed for the code and rate; and in the Systematic
codes, the best codes were clearly derived from distribu-
tions designed for other codes. Probing further, Table 2
shows the breakdown of which distributions produced
the best Systematic codes. The significance of this is
none other than the fact that the derivation of good Sys-
tematic codes for small n is clearly not well understood
at this point.

For large n, we plot the best published and derived
codes for all rates and coding methods in Figure 12.
Note that in each graph, the y-axis has a different scale.
There are several interesting features of these graphs. In
the middle graph, where R = % the published distribu-
tions perform best relative to the derived distributions.
This is not surprising, since the bulk of the published

—— Syst. Published —— Gallager Published IRA Published
-=---Syst. Derived - -~ Gallager Derived IRA Derived
1.25 1.15 110
§ 1.20+
3 \ 1.10+
L‘E 1.15+ \
= \
\ 1.05
i 1107
o L. 1.05+——
> ~ S
O 1051 — = —_
lOO T T T 100 T T T 100 T T T
§ B P Ié [~ »é‘ = =
g g g g g 8 g g g
o Q o o o (@)
o o o
n n n
Rate = 1/3 Rate = 1/2 Rate = 2/3

Figure 12: Performance of all codes and rates for
large n.

distributions (46 of the 80) are for R = 1. For R = 2,
all three coding methods perform similarly in their best
instances. For R = % it is not surprising that the pub-
lished distributions fare poorly in relation to the derived
distributions, since only 10 of the 80 published distri-
butions are for R = % and these are only for Gallager
codes. It is interesting that given this fact, the derived
IRA codes significantly outperform the others. It is also
interesting that the published IRA codes for R = % per-
form so poorly in comparison to the derived codes.

------ Same Code, Same Rate --- Different Code

—— Same Code, Different Rate ——— Best instance
1.30 /\/\\

1.25 .

5 « \

Q A ¥ \ v

8 1.20 < \ \\‘

Fo R —— \ N\

8 \\ S \\ RSN, \\ S\es=

T 1104 S NS — N

- \. N L, \,

5 \\\ \\:\ \N
1.05 — — —
1.00 T T T T T T T T T

S
o (@) o [oN®) o o [oNe] o (@) (@)
°c 8 8 8° 8 8 8° 8 8 8
o Q o Q o Q
o o o
n n n
Systematic Gallager IRA

Figure 13: Published Distributions, R = .

Figures 13 - 15 address which published distributions
perform well in generating large codes, much like Fig-
ure 11 addresses them for small codes. Significant fea-
tures from these graphs are that only Gallager codes, and
IRA codes for R = % benefit from the distributions de-

------ Same Code, Same Rate --- Different Code
—— Same Code, Different Rate ——— Best instance
1.20
i A
g 115 N
& A N\ \
\:\ “‘\\‘ \‘\i\
§ 110 NN W ®
< S S= L N
= \ Y R\ % O —
2 1054 A A
(@) \\\ \:’\\ \.\‘\u
\\\\ \\\\ \\\\
100 T T T T T T T T T
[S - - =
8 8 8 88 8 8 88 8 8 8
° 8 8 e 8 8 ° 8 8
o (=) o
n n n
Systematic Gallager IRA

Figure 14: Published Distributions, R = %

--- Different Code
——— Best instance

------ Same Code, Same Rate
—— Same Code, Different Rate

1.10

1.05

Over head Factor

00000T -

Systematic

Gallager IRA

Figure 15: Published Distributions, R = %

signed specifically for them. The Systematic codes in
particular perform poorly using their own published dis-
tributions. As displayed by the IRA graph of Figure 14,
the only published distribution that performs optimally
(where “optimally” is defined with respect to the codes
in our tests) is for IRA codes with R = % This is the
second of the eight RCV03 distributions, which, ironi-
cally, were not designed for this usage of IRA codes.
Thus, for large n, our answer to Question 3 has to be
that the published distributions perform poorly, certainly
in relation to the derived codes. To explore this fur-
ther, we decided to experiment with deriving IRA codes
without any basis in the published codes. Figure 16 dis-
plays the results. In this graph, the dashed lines show
our original best IRA codes, derived from the published
distributions. The solid lines show the performance of

120

N

--- Rate=1/3: Original
— Rate = 1/3: From Monte Carlo
--- Rate = 1/2: Origina
— Rate = 1/2: From Monte Carlo
Rate = 2/3: Original
Rate = 2/3: From Monte Carlo

Overhead Factor

100
100

1000

Figure 16: Derived IRA Codes.

codes derived solely from the Monte Carlo codes for
even n. < 26. This is just 13 starting points for each
rate. To help in the derivation, we generate codes for the
following values of n:

- Even values less than 150

- Multiples of 10 less than 1000

- Multiples of 50 less than 5000

- 7500, 12500, 25000, 50000, 75000 and 125000

As of the submission of this paper, the generations have
been proceeding on 90 of our machines for 11 days.
For all rates, when n. < 1000, the codes derived from
published distributions perform no better than the ones
derived from the 13 starting points. As n progresses
higher, the codes derived from published distributions
outperform the others, although by less than 0.01 for
R = % and % As we continue to generate codes, we
anticipate that the gap between the two methods will
shrink.

6.4 Question 4

Is there a great deal of random variation in code
generation from a given probability distribution?

Obviously, this depends on the distribution, and how
the distribution is utilized. In Table 3, we select six
probability distributions in order to test their variation
in code generation. For each of the distributions, we
generated over 1000 random codes for n = 125,000,
and present a digest of the results in Figure 17. For each
distribution we draw a Tukey plot [Tuf83], which shows
the quartiles for the data and its mean.

The first distribution, S99, from [Sho99], is for a reg-
ular graph, where the left nodes each have two outgoing
edges, and the right nodes have six incoming edges. As
such, we expect little random deviation, which is borne
out by the experiments. (We do expect some, because of
the random nature of graph generation and of the down-
loading simulation).

S99* uses the same distribution, but for a different
rate. As described in Section 4, when the total number

10

Source Code Rate Rate A P
Designed | Used | range range
S99 Gallager 2/3 2/3 2 6
S99* | Gallager 2/3 1/2 2 6
RUO03 | Gallager 172 1/2 2-13 7
uo3 Gallager 1/2 1/2 | 2-100 | 10-11
RO3 IRA 1/2 1/2 | 2-100 8
L97A Syst. 1/2 2/3 | 3-1M | 11-30K

Table 3: Range of code generation for given probability
distributions.

2.0
1.9
3rd Quartile —
1.8+ Mean —»
5 1.7 Median —»
B 1st Quartile —=
L‘E 1.6 oA
Max —
° |
g 15 . °
144
g 1.34
124 Eo
1.1 B] T
10 T T T
) Cc py) ~
g 8 2 8 8 ¢
@ >

Figure 17: The variation in code generation for six se-
lected distributions, n = 125, 000.

of edges generated by the left and right nodes do not
match, edges are added to or subtracted from random
nodes until they do match. Thus, even a regular distri-
bution such as this one, when employed for the wrong
rate as in this instance, can generate a wide variety of
graphs. It is interesting that this distribution produces
better codes for the wrong rate, both in the best and me-
dian case, than the rate for which it is developed. It is
also interesting that this regular graph, which theoret-
ically should achieve an asymptotic overhead factor of
oeesr = 145 for R = 2 [Sho99], in actuality achieves
a far better one for both rates.

The next two distributions, RU03 and U03, are for
Gallager graphs with rate % RUO3 is right regular,
meaning all right-hand nodes have the same number
of incoming edges, which is a desirable property, be-
cause it simplifies code analysis and distribution gener-
ation [Sho99, RU03]. U03 is nearly right regular. Both
distributions generate codes with a large spread in per-
formance; however, both have the desirable quality that
their medians are very close to their minimum values. In
other words, one does not have to generate many codes
to get one that performs optimally or near optimally.

The next distribution, for IRA graphs, is also right
regular, but has far less desirable generation properties,
as it has a very large range of overhead factors, and its
median is extremely high. The last distribution, for two-
level Systematic codes, is one whose nodes have an ex-
ceptionally large range of cardinalities — over a million
for left nodes (although with n = 125, 000, the range is
reduced to 32,769), and over 30,000 for right nodes. In-
terestingly, though, its range of overhead factors is less
than R03, although it is still a large range.

While more distributions can be displayed, the bot-
tom line remains the same — some distributions yield
good codes with only a few iterations of code gener-
ation. Others require a longer time to generate good
codes. Clearly, one must generate multiple instances of
codes to find one that performs well for given values
of n and m.

Challenge To The Community: Besides asymptotic
performance, some measure of how quickly a distribu-
tion yields good codes in practice should be developed.
While distributions such as R03 for IRA graphs and
L97A for Systematic graphs do produce excellent codes,
they only do so in relatively rare cases, and thus are dif-
ficult to employ.

6.5 Question 5

How do the codes compare to Reed-Solomon coding?

The Digital Fountain authors have demonstrated that
Tornado codes greatly outperform Reed-Solomon codes
for R = 1 and large n [BLMR98]. On the other
end of the spectrum, the implementers of OceanStore,
a highly distributed file system, selected Reed-Solomon
coding for their erasure-based archival service, employ-
ing small values of n and a rate of % [RWET01]. In the
middle of these two extremes resides a gray area, which
is exacerbated by the fact that the literature on LDPC
codes is heavy on theory and light on practice.

Answering this question thoroughly is beyond the
scope of this paper. However, in this section, we per-
form a high-level analysis that should aid researchers
faced with the decision of choosing between Reed-
Solomon and LDPC codes. Our methodology is as
follows. We employ Reed-Solomon coding based on
Vandermonde matrices, as described in [Pla97, Riz97,
PDO03], as there exists a simple public domain imple-
mentation in C [Pla03]. We assume that the following
metrics can be measured:

e Syor: The average rate of performing bitwise
exclusive-or, in MB/s.

e Siown: The average rate of downloading blocks, in
MB/s.

11

o S%p: The average rate (in MB/s) of multiplying
a block of data by a constant, using Galois Field
arithmetic GF'(2%), which is employed by Reed-
Solomon coding. For practical purposes, we re-
strict ourselves to z € {8, 16}. With GF(28), one
encodes 8-bit words, and n + m must be less than
256. With GF(2'°), one encodes 16-bit words,
and n +m < 65536.

e f¥ (n): The time to invert an n x n matrix in

inv
GF(27%).
Given these metrics, the time to download n blocks

of size B MB, encoded with Reed-Solomon coding, and
then to use them to regenerate an original file is:

+ﬂ). @)

B B
T +ffm<n)+n*(—” S
xror

Sdown SZF
The first term is the download time. The second is the
time to invert the encoding matrix, and the third is the
time to recalculate the n data blocks (each block is re-
calculated by a Galois Field dot product of length n vec-
tors).

Given an LDPC code based on a graph with E edges
and an overhead factor of f, the time to download fn
blocks of size B MB, encoded with the LDPC code, and
then to use them to regenerate an original file is roughly:

fBn
Sdown

EB
SZ‘OT)

O]

For Gallager codes, this does not include the time to ma-
nipulate the matrix M.

Szor 637 MB/s

S8, 218 MB/s

Si6, 20.2 MB/s

8 () 3.83 x 107%n3 s
16 (n) 118 x 103 s
Sdown | [45.75,1.08,0.256] MB/s

Table 4: Measured metrics for comparing Reed-
Solomon and LDPC coding

To compare the various codes, we used the metrics
summarized in Table 4. The coding metrics were mea-
sured on a Dell Precision 330, with an Intel Pentium 4
processor running Linux, using the public-domain
Reed-Solomon coding routines from GFLIB [Pla03].
There are three sets of download times, measured by
downloading 1 GB files from various hosts on the Inter-
net.

e Fast: This is when the client is connected via 100
Mb Ethernet to our institution’s gateway network,

whose connectivity is up to 500 Mb to the com-
modity Internet. Given that, we have observed av-
erage download speeds of 45.75 MBY/s.

e Medium: This is when the client is connected to
our institution’s wireless network. In this situation,
we have observed download speeds of 1.08 MB/s.

e Slow: This is when the client is using a private,
home wireless network, connected to the Internet
via a cable modem to a commercial ISP. In this sit-
uation, the download speeds are 0.256 MB/s.

Using these metrics and equations (1) and (2), we
calculate the average time to download a 1 GB file us-
ing Reed-Solomon coding and the three kinds of LDPC
codes. For each value of n, we set B to % MB, and
use the values of f and E for the best instances of each
code from our earlier tests. In Figures 18 - 20 we show
results for each value of Sgown, With n < 150. We in-
clude the “perfect” download time in these graphs — this
is simply (1024 MB)/S 30,5, and represents the time to
download the file without coding (or erasures).

---- Reed-Solomon — Systematic
--- Perfect IRA — Gallager
Rate=1/3 Rate=1/2 Rate = 2/3
60, 60, 60,
i i i
! | !
! l |
” 40{{:?‘:: 40- 40
©
c
(% Ff:_“: F::_—_",Zz
204 T 204 T 204 T
0 T T 1 O T T 1 O T T 1
© 8 5 5 ° &8 5 5 ° 8 5 &
o o o o o o
n n n

Figure 18: Download times on the Fast client.

On the Fast client, the LDPC codes significantly out-
perform Reed-Solomon coding for all values of n. This
is because the computational overhead of parity and Ga-
lois Field arithmetic is the dominant factor in the down-
load’s performance, and Reed-Solomon coding, even for
small n, is penalized by the expensive Galois Field arith-
metic operations. Focusing solely on the LDPC codes,
the Systematic codes outperform the IRA codes, which
in turn outperform the Gallager codes. This is due to the
fact that the underlying graphs have fewer edges — the
Gallager graphs have m more left nodes than the others,
and the IRA graphs have an extra 2m — 1 edges for the
accumulator nodes.

12

Rate=2/3 Rate = 3/3
! 1300 '

1300+

1200 ['A‘v’\“\wlzom i 12004 |
m\, i i
1

Seconds

900 T
a

Figure 19: Download times on the Medium client.

For the Medium client, individual downloads are
roughly 40 times slower than the Fast client. Thus, the
higher overhead factors of LDPC codes have a greater
impact. For all rates, Reed-Solomon coding outper-
forms the LDPC codes for small values of n (n < 36
forR=1n<26forR =1 andn <12forR = 2).
However, its performance rapidly deteriorates because
of the expensive arithmetic operations and the O(n?)
matrix inversion. As with the Fast client, Systematic
codes outperform the other LDPC codes, but this differ-
ence becomes less pronounced as n increases, because
the download cost, and not the number of edges, be-
comes the dominant factor.

Rate=1/3 Rate=1/2 Rate=2/3

i !
i i
H 1
5000 i 5000-] i 5000
i , .
! f o
! , .
! .

Seconds

Figure 20: Download times on the Slow client.

Finally, on the Slow client, the slow download speeds
severely penalize the performance of the LDPC codes
in favor of Reed-Solomon codes for small values of n.
However, as n grows, the matrix inversion time of Reed-
Solomon coding again penalizes it to the point where
LDPC codes vastly improve upon them. The graphs
for R = and R = 3 show the points at which n +
m becomes greater than 256, and Reed-Solomon cod-
ing requires the use of more expensive arithmetic in
GF(219).

Thus, the answer to Question 5 is that as down-
load speeds improve, rates increase, and n increases,
LDPC codes compare favorably to Reed-Solomon
codes. However, when n is small and the download
speeds are slow, Reed-Solomon coding can significantly
outperform LDPC codes. For example, when download-
ing to the slow client with n = m = 10, Reed-Solomon
coding outperforms LDPC codes by over eight minutes.

Challenge to the Community: The analysis in this
section is simplistic in that it employs simple equa-
tions based on average values. In reality, download
speeds can vary greatly from block to block, follow-
ing non-trivial probability distributions. A better anal-
ysis of Question 5 needs to be performed, which ei-
ther performs actual downloads of data on the wide-
area network, or employs download traces to simulate
downloads. Additionally, Cauchy Reed-Solomon cod-
ing [BKK*95] should be evaluated, as it performs arith-
metic operations in GF(2!) for all values of n and m.

7 Of Patentsand Publishing

Due to the extremely legal wording common to most
patents, and the fact that patent infringement is only
truly proven in court, it is somewhat hazy to us whether
licenses from Digital Fountain (from patents [LSS*00b,
LSSt00a, LMST00, LMO01]) need to be obtained by
those who generate and utilize the LDPC codes de-
scribed in this paper. Until recently, the “experimen-
tal use” exception has protected university researchers
from infringing patents when the research conducted is
not for profit. However, this exception has recently been
brought into question [ES03]. The fact remains that
the myriad articles (e.g. [McEOO, JKM00, RGCV03])
and books (e.g. [RU03, WKO03]) written on LDPC codes
based on randomly generated bipartite graphs can likely
be brought under fire by Digital Fountain, but whether
they are guilty of patent infringement can only be proven
in court. Since this paper evaluates, but does not publish
codes, it should not infringe these patents.

We have had conversations with members of Digi-
tal Fountain’s executive team and licensing department,
and while we have no official words from them, they
appear to be supportive of academic research on LDPC
codes, and focus their concern on commercial infringe-
ment. That said, it is unclear whether publishing the best
codes from our testing on our web site, or our code gen-
eration programs, or even the best probability distribu-
tions constitutes a threat to Digital Fountain. Our hope
is to work with Digital Fountain to be able to clarify
their position by the time this paper completes review.

13

8 Conclusion

This paper has performed a practical exploration of the
utility of LDPC codes for wide-area network storage
applications. While the asymptotic properties of these
codes have been well studied, we have attempted to il-
luminate their performance for finite systems. The bot-
tom line is that in terms of downloading overhead, the
codes display their worst performance for 10 < n <
100. Then their performance indeed improves asymp-
totically. In most cases, especially for smaller n, it ap-
pears that generating good instances of the codes is a
black art, as deriving probability distributions in a more
or less evolutionary way is more successful than using
the theoretically based published probability distribu-
tions. Clearly there is an opportunity for theoretical re-
search on codes for small n to have very wide-reaching
impact.

Our cursory analysis in section 6.5 sheds some light
on the tradeoffs between Reed-Solomon and LDPC cod-
ing. A significant conclusion from this analysis is that
while there are indeed practical situations where Reed-
Solomon coding clearly outperforms LPDC codes, there
are also practical situations where LPDC codes outper-
form Reed-Solomon coding for all values of n. Itis a
subject of future work to perform a more thorough anal-
ysis of the tradeoff between these two types of codes.

One limitation of the LDPC codes in this paper is that
they have not been designed to adjust to different rates.
It is easy to envision a situation where a file already
broken into n blocks is spread among n + m storage
servers, and then m' new servers are added to the sys-
tem. If the coding method that stores the original n + m
blocks can adapt efficiently to a rate of sy then
adding new coding blocks to the system Is a straight-
forward and efficient operation. However, if the cod-
ing technique must be altered to accommodate the new
rate, then old coding blocks must be discarded, and new
ones calculated in their place, which will be inefficient.
Reed-Solomon codes have the feature that they adapt to
any rate, although the same inefficiencies pointed out by
section 6.5 apply. New codes called LT codes and Rap-
tor codes, that adapt to any rate with optimal asymptotic
performance have been developed by Luby and Shokrol-
lahi [Lub02, Sho03]. It is a subject of future work to
perform a practical analysis of these codes.

References

[ASE92] N. Alon, J. W. Spencer, and P. Erdos. The Prob-
abilistic Method. John Wiley & Sons, New York,

1992.

M. S. Allen and R. Wolski. The Livny and Plank-
Beck Problems: Studies in data movement on the

[AW03]

[BKK*95]

[BLM99]

[BLMRYS8]

[BMO3]

[CLG'94]

[Dig02]

[DPT*02]

[ES03]

[Gal63]

[JKMOO]

[KBCT00]

[LMO1]

[LMS*97]

computational grid. In SC2003, Phoenix, Novem-
ber 2003.

J. Blomer, M. Kalfane, M. Karpinski, R. Karp,
M. Luby, and D. Zuckerman. An XOR-based
erasure-resilient coding scheme. Technical Re-
port TR-95-048, International Computer Science
Institute, August 1995.

J. W. Byers, M. Luby, and M. Mitzenmacher.
Accessing multiple mirror sites in parallel: Us-
ing tornado codes to speed up downloads. In
IEEE INFOCOM, pages 275-283, New York,
NY, March 1999.

J. Byers, M. Luby, M. Mitzenmacher, and
A. Rege. A digital fountain approach to reliable
distribution of bulk data. In ACM SIGCOMM ’98,
pages 56-67, Vancouver, August 1998.

W. A. Burkhard and J. Menon. Disk array stor-
age system reliability. In 23rd International Sym-
posium on Fault-Tolerant Computing, pages 432—
441, Toulouse, France, June 1993.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz,
and D. A. Patterson. RAID: High-performance,
reliable secondary storage. ACM Computing Sur-
veys, 26(2):145-185, June 1994.

Digital Fountain, Inc. Next generation data trans-
fer: the meta-content revolution. A Digital Foun-
tain White Paper, www.digitalfountain.
com, 2002.

C. Di, D. Proietti, I. E. Telatar, T. J. Richardson,
and R. L. Urbanke. Finite-length analysis of low-
density parity-check codes on the binary erasure
channel. IEEE Transactions on Information The-
ory, 48:1570-1579, June 2002.

E. Ergenzinger and M. Spruill. Basic science in
US Universities can infringe patents. The Scien-
tist, 17(5), March 2003.

R. G. Gallager. Low-Density Parity-Check Codes.
MIT Press, Cambridge, MA, 1963.

H. Jin, A. Khandekar, and R. McEliece. Irregu-
lar repeat-accumulate codes. In 2nd International
Symposium on Turbo codes and Related Topics,,
Brest, France, September 2000.

J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton,
D. Geels, R. Gummadi, S. Rhea, H. Weath-
erspoon, W. Weimer, C. Wells, and B. Zhao.
Oceanstore: An architecture for global-scale per-
sistent storage. In Proceedings of ACM ASPLOS.
ACM, November 2000.

M. Luby and M. D. Mitzenmacher. Loss resilient
code with double heavy tailed series of redundant
layers. U.S. Patent #6,195,777, 2001.

M. Luby, M. Mitzenmacher, A. Shokrollahi,
D. Spielman, and V. Stemann. Practical loss-
resilient codes. In 29th Annual ACM Symposium
on Theory of Computing,, pages 150-159, 1997.

14

[LMS98]

[LMS*00]

[LS00]

[LSS*00]

[LSST00b]

[LubO1a]

[LubO1b]

[Lub02]

[MCEO0]

[PDO3]

[Plag7]

[Pla03]

[Rab8g]

[RGCV03]

[Riz97]

M. Luby, M. Mitzenmacher, and A. Shokrol-
lahi. Analysis of random processes via and-or tree
evaluation. In 9th Annual ACM-SIAM Symposium
on Discrete Algorithms, January 1998.

M. Luby, M. D. Mitzenmacher, M. A. Shokrol-
lahi, D. A. Spielman, and V. Stemann. Message
encoding with irregular graphing. U.S. Patent
#6,163,870, 2000.

W. Litwin and T. Schwarz. Lh*rs: a high-
availability scalable distributed data structure us-
ing Reed Solomon codes. In Proceedings of the
2000 ACM SIGMOD International Conference
on Management of Data, pages 237-248, 2000.

M. Luby, M. A. Shokrollahi, V. Stemann, M. D.
Mitzenmacher, and D. A. Spielman. Irregu-
larly graphed encoding technique. U.S. Patent
#6,081,909, 2000.

M. Luby, M. A. Shokrollahi, V. Stemann,
M. D. Mitzenmacher, and D. A. Spielman.
Loss resilient decoding technique. U.S. Patent
#6,073,250, 2000.

M. Luby. Information additive code generator and
decoder for communication systems. U.S. Patent
#6,373,406, 2001.

M. Luby. Information additive group code gen-
erator and decoder for communications systems.
U.S. Patent #6,320,520, 2001.

M. Luby. LT codes. In IEEE Symposium on Foun-
dations of Computer Science, 2002.

R. J. McEliece. Achieving the Shannon Limit:
A progress report. Plenary Talk, 38th Allerton
Conference, October 2000.

J. S. Plank and Y. Ding. Note: Correction to the
1997 tutorial on reed-solomon coding. Techni-
cal Report CS-03-504, University of Tennessee,
April 2003.

J. S. Plank. A tutorial on Reed-Solomon coding
for fault-tolerance in RAID-like systems. Soft-
ware — Practice & Experience, 27(9):995-1012,
September 1997.

J. S. Plank. GFLIB - C procedures for Ga-
lois Field arithmetic and Reed-Solomon cod-
ing. http://www.cs.utk.edu/ " plank/
plank/gflib/index.html, 2003.

M. O. Rabin. Efficient dispersal of information
for security, load balancing, and fault tolerance.
Journal of the Association for Computing Ma-
chinery, 36(2):335-348, April 1989.

A. Roumy, S. Guemghar, G. Caire, and S. Verdu.
Design methods for irregular repeat accumulate
codes. In IEEE International Symposium on In-
formation Theory, Yokohoma, Japan, 2003.

L. Rizzo. Effective erasure codes for reli-
able computer communication protocols. ACM
SIGCOMM Computer Communication Review,
27(2):24-36, 1997.

[RUO3]

[RWE*01]

[Sho99]

[Sho00]
[Sho03]

[SS00]

[Tuf83]

[Urb03]

[WKO02]

[WKO03]

T. Richardson and R. Urbanke. Modern cod-
ing theory. Draft from Ithcwww.epfl.ch/
papers/ics.ps, August 2003.

S. Rhea, C. Wells, P. Eaton, D. Geels,
B. Zhao, H. Weatherspoon, and J. Kubiatowicz.
Maintenance-free global data storage. IEEE In-
ternet Computing, 5(5):40-49, 2001.

M. A. Shokrollahi. New sequences of linear
time erasure codes approaching the channel ca-
pacity. In Proceedings of AAECC-13, Lecture
Notes in CS 1719, pages 65-76, New York, 1999.
Springer-Verlag.

M. A. Shokrollahi. Codes and graphs. Lecture
Notes in Computer Science, 1770, 2000.

A. Shokrollahi. Raptor codes. Technical Report
DR2003-06-001, Digital Fountain, 2003.

M. A. Shokrollahi and R. Storn. Design of ef-
ficient erasure codes with differential evolution.
In IEEE International Symposium on Information
Theory, Sorrento, Italy, 2000.

E. R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Connecti-
cut, 1983.

R. Urbanke et al. LdcpOpt - a fast and ac-
curate degree distribution optimizer for LPDC
ensembles. http://1thcwww.epfl.ch/
research/ldpcopt/index.php, 2003.

H. Weatherspoon and J. Kubiatowicz. Erasure
coding vs. replication: A quantitative compari-
son. In First International Workshop on Peer-to-
Peer Systems (IPTPS), March 2002.

S. B. Wicker and S. Kim. Fundamentals of
Codes, Graphs, and Iterative Decoding. Kluwer
Academic Publishers, Norwell, MA, 2003.

15

