
IBPCA: IBP with MD5

Rebecca Collins
rcollins@cs.utk.edu

Abstract

This document presents a description of the five client applications for
the Content Addressable IBP (IBPCA). The description includes the
data structures and calls used by the C implementation of IBPCA.
Knowledge of IBP is assumed.

Introduction

IBPCA uses MD5 hashes to reference data stored in the depots. This is
done by incorporating the MD5 hash of stored data in the read
capability for a storage area. When new data is appended to a storage
area, the updated storage area requires a new read capability. IBPCA
operates a level above IBP.

Contents

1. DATA STRUCTURES
1.1 IBP_depot, IBP_timer, and IBP_attributes
1.2 ulong_t
1.3 IBP_cap
1.4 ibp_probe_info

2. CLIENT APPLICATIONS
2. 1 IBP_CA_allocate
2.2 IBP_CA_load
2.3 IBP_CA_manage
2.4 IBP_CA_store
2.5 IBP_CA_store_block

3. INPUT/OUTPUT SUMMARY
4. ADVANTAGES OF USING IBPCA

4.1 Checking Integrity of Stored Data
4.2 Preventing Redundant Network Traffic

1. DATA STRUCTURES

1.1 IBP_depot, IBP_timer, and IBP_attributes

IBP_depot, IBP_timer, and IBP_attributes are all defined in
IBP_ClientLib.h, a library from the IBP. Descriptions of IBP_depot,
IBP_timer, and IBP_attributes can be found in section 1 of IBP v1.1.1
API.

1.2 ulong_t

ulong_t is an unsigned long integer. It is also defined in
IBP_ClientLib.h

1.3 IBP_cap

IBP_cap is a char * . It is also defined in IBP_ClientLib.h. IBP_cap’s
are supposed to have a special format. With IBP, they have the format:

ibp://hostname:port/key/WRMKey/WRM

There are read, write, and management capabilities with IBP, but with
IBPCA there are only read and write capabilities. IBPCA capabilities
have this format:

Read capabilities:
ibpca://hostname:port/R/MD5-checksum
Write capabities:
ibpca://hostname:port/W/random_string

where

hostname and port are the same as in the IBP capability
MD5-checksum is the MD5 hash of the data in the storage
depot that the read capability references
random_string is a randomly generated string of length 32

1.4 ibp_probe_info

ibp_probe_info is used in IBP_CA_manage.

Variable Type

size int

maxSize int

exists int

attrib struct ibp_attributes

When IBP_CA_manage is being used with the
IBP_CA_MANAGE_PROBE command, the values in the
ibp_probe_info struct will be filled in with the correct values upon
return. Their initial values do not matter.

When IBP_CA_manage is being used with the
IBP_CA_MANAGE_TIME command, the the duration of the storage
will be extended to attrib.duration if it is shorter than attrib.duration.
Nothing happens otherwise. The values of maxSize, exists, and attrib
will be updated upon return.

When IBP_CA_manage is being used with the
IBP_CA_MANAGE_SIZE command, the size of the storage will be
increased to maxSize if the current size is smaller than maxSize.
Nothing happens otherwise. The values of maxSize, exists, and attrib
will be updated upon return.

When IBP_CA_manage is being used with the
IBP_CA_MANAGE_DEL command, the values of the ibp_probe_info
struct are ignored.

2. CLIENT APPLICATIONS

Five client applications are implemented for the IBPCA:

int IBP_CA_allocate(IBP_depot depot, IBP_timer timeout, ulong_t
maxsize, IBP_attributes attributes, IBP_cap
writecap);

int IBP_CA_load(IBP_cap ca_readcap, IBP_timer timeout, char *buf,
ulong_t size, ulong_t offset);

int IBP_CA_manage(IBP_cap man_cap, IBP_timer timeout, int cmd,
ibp_probe_info *status);

int IBP_CA_store(IBP_cap ca_writecap, IBP_timer timeout, char
*data, ulong_t size, IBP_cap readcap);

int IBP_CA_store_block(IBP_depot depot, IBP_timer timeout, ulong_t
size, char *data, IBP_attributes attributes,

IBP_cap ca_readcap);

2. 1 IBP_CA_allocate

 variable name variable type

parameter depot IBP_depot

 timeout IBP_timer

 maxsize ulong_t

 attributes IBP_atrributes

(output) writecap IBP_cap

Return value void *

IBP_CA_allocate allocates maxsize bytes of storage into the depot,
with attributes attributes. The duration must be finite, and the data
type must be byte-array.

Return Values
On successful completion, 0 is returned, otherwise –1 is returned and an
error message is sent to stderr. The following conditions will cause
IBP_CA_allocate to fail:

Invalid attributes – For example, infinite duration
IBP_allocate error – Described in section 3 of IBP v1.1.1 API.

2.2 IBP_CA_load

 variable name variable type

parameter readcap IBP_cap

 timeout IBP_timer

 buf char *

 size ulong_t

Return value ulong_t

IBP_CA_load loads size bytes, starting at the offset position, from the
byte-array accessed through readcap and stores the bytes into buf.

Return Values
On successful completion, the number of bytes read is returned,
otherwise –1 is returned and an error message is sent to stderr. The

following conditions will cause IBP_CA_load to fail:

Invalid size/offset
Readcap has an expired duration
IBPCA internal error
IBP_load error – Described in section 4 of IBP v1.1.1 API.

2.3 IBP_CA_manage

 variable name variable type

parameter man_cap IBP_cap (a readcap or a writecap)

 timeout IBP_timer

 cmd int

 status ibp_probe_info *

Return value void

IBP_CA_manage lets the user perform the following operations on a
storage area (IBP_MANAGE_SIZE and IBP_CA_MANAGE_DEL
require a writecap):

IBP_CA_MANAGE_PROBE updates status with information
about the storage area: whether it exists (if the capability is
valid), its attributes, size, and maximum capacity.
IBP_CA_MANAGE_TIME extends the duration of a storage
area unless the new duration is less than the one that already
exists.
IBP_CA_MANAGE_SIZE increases the maximum size of a
storage area unless the new size is smaller than the one that
already exists.
IBP_CA_MANAGE_DEL deletes a write capability

Return Values
On successful completion, 0 is returned, otherwise –1 is returned and an
error message is sent to stderr. The following conditions will cause
IBP_CA_manage to fail:

IBPCA internal error
Storage area does not exist. That is, writecap/readcap is invalid
or expired
A readcap was sent when a writecap was required
IBP_manage error – Described in Section 7 of IBP v1.1.1 API.

2.4 IBP_CA_store

 variable name variable type

parameter writecap IBP_cap

 timeout IBP_timer

 data char *

 size ulong_t

(output) readcap IBP_cap

Return value ulong_t

IBP_CA_store appends to a writecap previously obtained from
IBP_CA_allocate. The first size bytes of data are appended to the
byte-array referenced by writecap. Readcap is then constructed from
the entire byte-array’s MD5-checksum.

Return values
On successful completion, 0 is returned, otherwise –1 is returned and an
error message is sent to stderr. The following conditions will cause
IBP_CA_store to fail:

Expired or Invalid writecap
IBPCA internal error
IBP_store error –Described in section 3 of IBP v1.1.1 API.

2.5 IBP_CA_store_block

 variable name variable type

parameter depot IBP_depot

 timeout IBP_timer

 size ulong_t

 data char *

 attributes IBP_attributes

(output) readcap IBP_cap

Return value int

IBP_CA_store_block allocates and stores data into the depot. The
duration of the storage must be finite, and the data type must be
byte-array. The allocated storage space will be read only. If the data to
be stored is identical to one already stored, it will not be sent over the
network a second time. Instead, the readcap for the original storage will

be returned and the duration of the storage will be updated.

Return values
On successful completion, 0 is returned, otherwise –1 is returned and an
error message is sent to stderr. The following conditions will cause
IBP_CA_store_block to fail:

Invalid attributes – For example, infinite duration
IBP_store error – Described in section 3of IBP v1.1.1 API.
IBP_allocate error – Described in section 2 of IBP v1.1.1 API.

3. INPUT/OUTPUT SUMMARY

IBPCA calls IBP commands to access the IBP depots. The capabilities
are treated a bit differently in the IBPCA since there are no manage
capabilities and the read capabilities are updated after every store. The
following table summarizes the IBP commands called by IBPCA client
applications and the role of capabilities in the procedures.

IBPCA command
IBP

command
IBP

Requires
IBPCA

Requires
IBP

Returns
IBPCA
Returns

IBP_CA_allocate IBP_allocate

IBP
readcap
writecap

managecap

IBP_CA
writecap

IBP_CA_store IBP_store
IBP

writecap
IBP_CA
writecap

IBP_CA
readcap

IBP_CA_manage IBP_manage
IBP

managecap

IBP_CA
writecap

or
readcap

IBP_CA_store_block
IBP_allocate

IBP_store

IBP_CA
readcap

4. ADVANTAGES OF USING IBPCA

MD5 is a message-digest algorithm that generates a unique 16 byte
string for a data block. This string is used as a checksum in the IBPCA.
Changing one bit of the data will change the MD5 checksum that is
computed from the data. It is possible to have two files with the same
checksum, but it is highly unlikely to happen at random. It is currently

computationally infeasible to deliberately create a file with a given
checksum or two files with the same checksum [1]. Since there is
reasonable assurance that two files will have different checksums, the
checksums can be used to distinguish files. The properties of the MD5
hashes give the IBPCA several advantages over the original IBP.

4.1 Checking Integrity of Stored Data

The client can check the integrity of stored data since the MD5
checksum of a file should be the same before and after the file is stored
in the IBP depots. The readcap has the original checksum in it, and the
checksum of the downloaded data is easily computed.

4.2 Preventing Redundant Network Traffic

When a client wants to store a file, the checksum of the file can be
compared to the checksums of files that are already stored. If the file is
already stored, then the client just gets access to the existing storage
and the data is not transferred a second time. This saves bandwidth and
disk space on the depot. IBP_CA_store_block is the only client
application that currently implements this feature.

References

[1] Rivest, R. “The MD5 Message-Digest Algorithm”, RFC 1321, MIT
and RSA Data Security, Inc., April 1992.

