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Abstract

This paper describes an extension to the In-
ternet Backplane Protocol (IBP), called Content-
addressable IBP (IBPCA). IBP is an important pro-
tocol in distributed, Web, Grid and peer-to-peer com-
puting settings, as it allows clients in these settings
to access, manipulate and manage remote storage de-
pots in a scalable and fault-tolerant fashion. Content-
addressability adds the ability to reference storage by
hashes of its contents. In this paper, we discuss the
rationale behind IBPCA, important design decisions,
and performance implications.
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1 Introduction

In distributed, Web, Grid, and peer-to-peer applica-
tions, the management of storage is of paramount im-
portance. Storage location, ownership, capacity and
reliability all impact the performance of these appli-
cations, and storage solutions based on extensions to

legacy file systems [5, 8, 13] are too limiting for one
or more of these dimensions. Logistical Network-
ing [3,11] has been proposed and developed as a way
of integrating storage into networking according to
classical end-to-end principles [12], so that all of the
above properties are addressed in a cohesive and ef-
fective way.

At the base of Logistical Networking is the Inter-
net Backplane Protocol (IBP) [11]. IBP is server dae-
mon software and a client library that allows storage
owners to insert their storage into the network, and al-
lows clients to allocate and use this storage. The unit
of storage is a time-limited, append-only byte-array.
With IBP, byte-array allocation is like a networkmal-
loc() call — clients may request an allocation from a
specific IBP storage server (ordepot), and if success-
ful, are returned trios of cryptographically secure text
strings (calledcapabilities) for reading, writing and
management. Capabilities may be used byany client
in the network, and may be passed freely from client
to client, much like a URL.

IBP does its job as a low-level storage service. It
abstracts away many details of the underlying physi-
cal storage layers: block sizes, storage media, control
software, etc. However, it also exposes many details
of the underlying storage, such as network location,
network transience and the ability to fail, so that these



may be abstracted more effectively by higher-level
software. A suite of such software, collectively la-
beled the Logistical Runtime System (LoRS) has been
built on top of IBP, providing very powerful function-
alities that have been employed for peer-to-peer video
storage and delivery [1], distributed software deploy-
ment [4] distributed generation of scientific visualiza-
tion [7], and distributed text mining [10].

In this paper, we detail an extension to IBP, called
Content-addressable IBP (IBPCA), in which the han-
dles to IBP byte-arrays contain hashes of the byte-
arrays’ contents. We discuss the rationale behind
it, the important design decisions, and some perfor-
mance benchmarks. The goal of the paper is to ar-
gue that a content-addressable storage substrate such
as IBPCA can be useful as a low-level storage ser-
vice, providing additional functionality (as compared
to IBP) with performance that is only slightly de-
graded, and in some cases drastically improved.

2 IBPCA Rationale

The rationale behind the design of IBP has been well
documented [3, 11]. Time-limited byte-arrays give
storage owners a degree of autonomy and provide
a clean failure model. The append-only nature of
byte arrays eases synchronization problems, obviat-
ing the need for problematic distributed data struc-
tures such as mutexes and locks. The text capabili-
ties allow clients to pass handles to data among them-
selves without registering with a central authority,
thus easing scalability.

Adding content-addressability to IBP makes sense
for several reasons. First, IBP does not ensure that
the data returned to a client is correct. It is up to
the client to perform this check in an end-to-end man-
ner [3]. The LoRS tools perform these checks explic-
itly by allowing clients to store MD5 checksums with
the metadata (called anexNode) that aggregates IBP
byte arrays into distributed files. This is wasteful of
space, since both the IBP capability and its checksum
must be stored in the exNode. With IBPCA, the capa-
bility itself contains the checksum, allowing the client
to perform correctness checks on the data without re-
quiring extra metadata.

Continuing in this vein, a standard strategy for

performing fault-tolerance in IBP is to replicate data
among multiple depots [2]. This requires the exN-
ode to store a different capability for each replica.
With IBPCA, the exNode can store the checksum for
a piece of data, the locations of the depots that hold
each replica, andno capabilities. Again, this helps
keep exNodes small.

Finally, and perhaps most importantly, IBPCA
clients can make use of the fact that they know
whether a depot contains a piece of data. Specifi-
cally, when a client attempts to write a piece of data
that already exists in the depot, the write returns in-
stantly. This should be a great performance improve-
ment. Moreover, a client may check to see if a depot
holds a piece of data by constructing the appropriate
read capability and attempting to read it. This can
help the client discover which depots from a certain
collection actually hold desired data, and can help the
client decide whether more copies of the data should
be stored in the collection.

There are two potential downsides to IBPCA. First,
managing checksums will cause overhead compared
to standard IBP. However, since many uses of IBP
manage checksums anyway, this may not actually be
a big cost. Second, the ability to probe IBP servers
for content may be a negative with respect to issues
such as copyright violation and distribution of illegal
material. However, as with IBP, clients may choose to
encrypt data before storing. Therefore, judicious use
of IBPCA can certainly relieve the burden of these
problems on the storage owners. Moreover, they may
aid in the discovery of clients who breach copyright
violation.

3 Design Decisions

There are two main design decisions with IBPCA.
First is the client API, which has some subtleties,
especially concerning allocation and storage of data.
Second is the software architecture. We describe each
below:
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3.1 IBPCA API

The IBPCA API is best presented in reference to the
IBP API, which is summarized in Figure 1.1 IBP
clients allocate byte arrays withibp allocate(), which
returns three text capabilities of the form:

ibp://hostname:port/key/WRM

The capabilities are for reading, writing, and manage-
ment, and are used for theibp load(), ibp store(),
andibp manage()subroutines, respectively. Thekey
is generated randomly by the IBP server, and is dif-
ferent for each of the three capabilities. All IBP
operations may fail for various reasons (e.g. time-
limit expiration, server failure) and all support time-
outs to tolerate network failures. As stated in the In-
troduction, IBP has been carefully designed to pro-
vide a scalable, fault-tolerant storage substrate for
distributed, peer-to-peer and grid computing systems,
and has been very successful in several applications.
More detail on IBP’s design and philosophy may be
found in papers by Beck [3] and Plank [11].

Subroutine Function
ibp allocate Allocates a byte array.
ibp load Reads data from a byte array.
ibp store Appends data to a byte array.
ibp manage Refreshes time limits, extends size, etc.

Figure 1: IBP API, briefly summarized.

The IBPCA API looks very similar to the IBP
API, but has some subtle differences in functional-
ity. For each of the IBP calls in Figure 1, there is
an analogous IBPCA call. Additionally, there is an
ibpca store block() call. Whereas IBP employs three
types of capabilities (read, write and manage), IBPCA
employs only two types (read and write), which have
the following format:

ibpca://hostname:port/R/MD5-checksum
ibpca://hostname:port/W/key

Capabilities in IBPCA are smaller than in IBP – 305
bytes as opposed to 1024 bytes.

1The complete IBP API is available fromhttp://loci.
cs.utk.edu. The complete IBPCA API is available in [6].

Ibpca allocate() allocates space for a byte-array,
and returns a write capability to the client. Clients
may then append to this byte-array by calling
ibpca store() on this write capability. Each of these
calls returns a new read capability containing the
MD5 checksum of the entire byte-array’s contents.
This has to happen since theibpca store() call mod-
ifies the byte-array’s contents, and therefore its MD5
checksum. Clients may then callibpca load() on
the read capabilities to read their contents. Finally,
ibpca store block() is a call that allocates and stores
a block of data in one step. It simply returns the read
capability of the stored block; no write capability is
needed because the data’s size is already known, and
the data will not be modified in the future. The failure
semantics of IBPCA are the same as IBP, including
time-outs in all calls to tolerate network failures.

To reiterate the major differences between IBP and
IBPCA, they are reflected in the different uses of the
capabilities. IBP returns read, write, and management
capabilities when a new byte-array is allocated. In
IBPCA, the write capability is returned after alloca-
tion, but since the MD5-checksum part of the read
capability is computed from the contents of the data
being stored, a read capability cannot be returned un-
til after some data has been stored. In addition, the
contents of the byte-array change after each append,
so a new read capability must be generated after each
append. All read capabilities that correspond to in-
cremental stores in a given byte-array continue to be
valid for the duration of the byte-array. This feature
is possible because the byte-arrays are constrained to
be append-only.

Instead of using management capabilities as in IBP,
IBPCA clients use read or write capabilities to man-
age byte-arrays. Providing a single management ca-
pability is insufficient because the byte-array can have
several different read capabilities, all associated with
different sizes, and the size associated with a given
read capability cannot be increased because the read
capability would then require an updated MD5 check-
sum. To deal with these complications, IBPCA re-
quires a write capability for extending the duration
or size of an allocated byte-array, and allows either
a read or a write capability to be used for probing in-
formation about a byte-array.
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3.2 Software Architecture

As a prototype implementation for content-
addressability, we chose to implement the IBPCA
functionality in a separate server, co-located with
an unaltered IBP server. The IBP server manages
the IBP depots exclusively, while the IBPCA server
handles the bookkeeping details of conversions
between IBP and IBPCA capabilities and acts as an
intermediary for most communications between the
client and the IBP server. The decision to design the
IBPCA server as a separate process was made mostly
for ease of implementation, but the disjunction of
the two servers also provides some flexibility to their
interface since one content-addressable server can
potentially service multiple IBP servers.

IBPCA Server

IBP ServerIBPCA Client

Capability Directory

 Storage

Figure 2: Basic IBPCA Architecture

The three communicating parties in the IBPCA ar-
chitecture are the IBPCA server, the IBPCA client,
and the IBP server. A diagram of the basic IBPCA
architecture is shown in Figure 2. In general, the
IBPCA client connects to the IBPCA server, which
in turn connects the IBP server to process the IBPCA
client’s request. However, to reduce redundant data
transfer over the network, the IBPCA client part of
the API software connects directly to the IBP server
whenever data must be transferred to or from an IBP
depot. The IBPCA server regulates these data trans-
fers since it maintains the directory of mappings of
IBPCA to IBP capabilities.

To present a more detailed picture of the way the
servers communicate, Figure 3 outlines the timeline
of events in anibpca store block() call. First, the
IBPCA client calculates the MD5 checksum of the
data, and then connects to the IBPCA server with an

IBPCA Client

IBPCA Server

IBP Server

3 CapabilitiesIBP_allocate

IBPCA Client

IBPCA Server

IBP Server

IBP_store

IBPCA Client

IBPCA Server

IBP Server

IBP_CA_store_block

IBPCA Client

IBPCA Server

IBP Server

IBP_capability

IBPCA Client

IBPCA Server

IBP Server

"storage completed
successfully"

IBPCA Client

IBPCA Server

IBP Server

IBPCA read capability

1 2

3 4

5 6

Figure 3: Communication path of
ibpca store block().

ibpca store block() call. If the IBPCA server deter-
mines that the data is already on the server, it no-
tifies the client, which returns immediately with the
read capability. Otherwise, the IBPCA server makes
an ibp allocate() call to the IBP server and receives
the three IBP capabilities if theibp allocate() call is
successful. Third, the IBPCA server sends the IBP
write capability to the client so the client can store the
data with anibp store() call. The client notifies the
IBPCA server of the success of theibp store() call,
and if it was successful, the IBPCA server updates its
capability directories and sends the client an IBPCA
read capability for future access of the byte-array.

Ibpca store() and ibpca load() both involve data
transfer between the client and the IBP server. The
interaction between the client and the servers in these
two calls is very similar to the second half of the
ibpca store block() communication path. First the
client connects to the IBPCA server, and then the
IBPCA server sends back the appropriate IBP ca-
pability so the client can connect to the IBP server
to carry out the data transfer.Ibpca allocate() and
ibpca manage()do not involve data transfer into an
IBP depot, so all communication to the IBP server is
handled through the IBPCA server.

Compared to IBP, IBPCA creates additional over-
head in memory requirements, computation, and the
latency of data transfer. Since the IBPCA and IBP
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servers operate separately, the IBPCA server has no
access to the internal IBP structures, and some infor-
mation like size and duration of a byte-array must be
recorded twice. In addition, the IBPCA server must
store the IBP capabilities in order to map them to
IBPCA capabilities. Since the IBP capabilities are rel-
atively large, they account for the most of the memory
overhead incurred by the IBPCA server. The com-
putational overhead of IBPCA consists of calculating
the MD5 checksums and processing client requests.
The overhead of extra communication over the net-
work between the IBPCA server and client typically
outweighs the computational overhead.

4 Performance

To assess performance, we performed tests of the ba-
sic operations and their equivalents in IBP using one
client located in Knoxville, TN, and two servers –
a local one in Knoxville, and a remote one in San
Diego, CA. For the local tests, the server ran on
a dual-processor 450 MHz UltraSPARC-II machine
with 2 Gbytes RAM and the client ran on a Sun Blade
100 workstation with one 500-MHz UltraSPARC-
IIe processor and 512-Mbytes RAM. Both machines
were part of the Computer Science Department’s lo-
cal network (switched 100 megabit Ethernet) at the
University of Tennessee. For the remote tests, the
server ran on an AMD Athlon XP 2100+ 1733 MHz
processor and 512-Mbytes RAM, located at the com-
puter science department at the University of Califor-
nia, San Diego. The client ran on the same machine
that was used for the local testing, and thus the com-
munication between the two was over the commodity
Internet.

All tests were performed on undedicated machines
and networks. Therefore, all results presented are the
average of over ten runs per data point. For each test,
we employed three different byte-array sizes – 1 MB,
3 MB, and 20 MB. To present the data in a coherent
way for these three sizes, the figures below (with the
exception of Figure 4) display bandwidth in MB/sec
rather than elapsed time.

Most of the IBPCA functions directly call their
IBP counterparts, making their performance depen-
dent on the performance of IBP. But since the over-

head introduced by IBPCA is small, some of the test
results show IBPCA slightly outperforming IBP. This
discrepancy is most likely accounted for by variable
outside network traffic during the testing, although it
can also be related to the fact that communications
between the IBPCA client and server are slightly dif-
ferent from communications between the IBP client
and server, and communication between the IBP and
IBPCA servers is fast since they are both on the same
machine, while communication between clients and
servers may be rather slow.

Local Remote

Client Location

0.00

0.05

0.10

T
im

e 
(s

)

IBP
IBPCA

Figure 4: Performance ofibp allocate() and
ibpca allocate() from local and remote clients.

Figure 4 shows thatibp allocate() performs bet-
ter over the local network, but the performance of the
two functions over the remote network is very similar.
Only one set of bars is displayed, because the perfor-
mance of these allocation calls does not depend on the
size of byte-array being allocated.
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Figure 5: Performance of ibp store() and
ibpca store() from local and remote clients.

Figure 5 compares the performance ofibp store()
and ibpca store(). In each case,ibpca store()’s
performance is noticeably worse thanibp store()’s.
This is due to several factors, including the ex-
tra client/server interactions, and the fact that
ibpca store() must calculate the MD5 checksum of
the data. Since these operations are roughly constant
time, as compared to the transfer of the data from
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client to server, IBPCA’s performance relative to IBP
is much better in the remote scenario (under 10% per-
formance penalty), and improves as the size of the
data increases.
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Figure 6: Performance ofibp store()/ibp allocate()
and ibpca store block() from local and remote
clients.

Figure 6 shows the performance of
ibp store block(). Since no analogous IBP function
exists, the performance is compared to the IBP
calls of ibp allocate() followed immediately by
ibp store(). Like ibpca store(), the additional over-
head is constant, so the difference in performance
between the two functions decreases as the size of the
data increases. Moreover, the performance of IBPCA
compared to IBP is worse in the local area than in the
remote scenario.
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Figure 7: Performance ofibpca store block() with
duplicate files from local and remote clients.

IBPCA has the feature that if a client makes an
ibpca store block() call with data that is already
stored at the server, the MD5 hash allows the server
to recognize the duplicated data and return instantly
with the read capability. Figure 7 measures this ef-
fect, showing the performance ofibpca store block()
when a duplicate byte-array is sent to the server. Ob-
viously, the benefits of detecting duplicate files in-
crease dramatically as the size of the data increases,
and are more dramatic in the wide area than in the

local area.
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Figure 8: Performance of ibp load() and
ibpca load() from local and remote clients.

Figure 8 shows the results of theibp load() and
ibpca load() tests. As would be expected, IBP and
IBPCA perform almost identically for these tests.

5 Conclusion

In this paper we detail the architecture and perfor-
mance implications of IBPCA. IBPCA extends IBP
by embedding content-addressable hashes of data into
the capabilities that are returned to the client.

Content addressable storage is desirable for a num-
ber of reasons. Content-addressable hashes provide a
check that data returned to a client after storage is cor-
rect. Content-addressable capabilities are also smaller
than traditional IBP capabilities and unless multiple
appends are made, there are fewer capabilities overall
to be dealt with. Not only do the content addressable
capabilities allow the server to detect duplicate files,
but they also allow the client to determine whether a
file is already stored on a depot.

IBPCA offers a significant improvement in per-
formance when the storage of duplicate files is re-
quested throughibpca store block(). In all other
cases IBPCA introduces a fixed overhead that de-
creases as the size of the data involved increases. This
relationship suits IBP well since IBP’s benefits are
geared towards larger data. Moreover, since the LoRS
tools already optionally incorporate MD5 hashes, the
cost of built in content-addressability at the level of
IBP can be offset by the removal of this option at the
LoRS level.

We are currently extending this work in two di-
rections. First, the IBP implementation team is em-
bedding IBPCA functionality into the public release
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of IBP. This will improve performance, since there
will be no process boundary between the IBPCA and
IBP servers. Second, we are collaborating with re-
searchers from Intel Research Pittsburgh so that they
can employ IBPCA as a page-storage service for their
Internet Suspend/Resume project, which allows users
to move their operating environment seamlessly from
one location to another [9,14].
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