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Abstract: Combinatorial methods are studied in an effort to gauge their potential utility in the analysis 
of differential gene expression data.  Patient and gene relationships are modeled using edge-
weighted graphs.  Two somewhat orthogonal algorithms are devised and implemented.  One 
is based on finding optimal cliques within general graphs, the other on isolating near-optimal 
dominating sets within bipartite graphs.  A main goal is to develop methodologies for training 
algorithms such as these on patient populations with known disease profiles, so that they can 
then be employed to classify and predict the likelihood of disease in patient populations 
whose profiles are not known in advance.  These novel strategies are in marked contrast with 
Bayesian and other well-known techniques.  Encouraging results are reported. 
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1. INTRODUCTION 

A fundamental problem in cancer treatment is early and reliable detection.  Identifica-
tion of a set of genes whose expression levels serve as an accurate discriminator among 
normal and cancerous tissue samples would not only represent significant progress to-
wards developing more reliable cancer diagnosis protocols, but might also identify novel 
therapeutic targets.  With this motivation in mind, we investigate the hypothesis that only 
a modest number of genes may suffice for this task.  We seek to develop algorithms and 
software for this purpose, and introduce a graph theoretical method of differential gene 
expression analysis.  The goals of this method are to identify a set of genes useful in dis-
criminating among tissue samples, and to use these genes in disease prediction and 
screening. 

One of the important features of our algorithms is the computation of discrimination 
scores for each gene represented in an input microarray.  These scores estimate a gene's 
relative ability to distinguish among sample tissue classes.  We then select the highest-
scoring genes, and use them to calculate a pairwise similarity metric between patients’ 
tissue sample expression profiles.  Genes that fail to discriminate among a defined per-
centage of the samples are eliminated using a dominating set algorithm as a high pass fil-
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ter.  With this information, we construct a complete weighted graph, in which the vertices 
represent the tissue samples and the edges are weighted by the similarity metric between 
sample vertices.  A user-defined threshold is next used to transform the complete 
weighted graph into an incomplete unweighted graph.  The combination of these tools 
produces some very encouraging predictive results. 

In the sequel, we describe the datasets we have chosen to study, the algorithms we 
have devised, and the results we have obtained.  We also draw some conclusions from 
this effort. 

2. DATA EMPLOYED 

We use the Harvard [5], Michigan [4], and Stanford [10] datasets in this study.  We do 
not include the Ontario dataset due to a lack of overlap in annotated genes with the other 
datasets.  Since the log-expression image plots for Samples L54, L88, L89 and L90 in the 
Michigan dataset show large, round dark spots at the center of the arrays [13] indicative 
of poor data quality, they are removed from the dataset.  This leaves us with 92 samples 
from the Michigan dataset.  Because the Harvard and Michigan datasets were generated 
by different institutes using different Affymetrix array types (HG_U95A and HUGeneFL, 
respectively), the distributions of the two datasets may not be comparable.  Thus, we 
choose to normalize the two datasets separately.  The log-scale quantifications of the 
gene expression levels for each probe set are obtained by robust multi-array average 
(RMA) [15] using Bioconductor. 

Since we intend to train and test our algorithms on different datasets, we need a map-
ping schema among the different datasets.  However, the three datasets come from differ-
ent array platforms using different gene identifiers; hence, direct mapping is not possible.  
We choose to use LocusLink IDs (LL_IDs) for gene mapping, because the NCBI Locus-
Link Database is both relatively reliable and stable.  For the Harvard and Michigan data-
sets, we map each probe set ID to its corresponding LL_ID using array annotation files 
from Affymetrix.  For the Stanford dataset, we map each UNIGENE ID to its correspond-
ing LL_ID using our local database, GeneKeyDB.  To construct a gene expression sum-
mary for each LL_ID, we average the values within each sample across the original gene 
identifiers that map to a common LL_ID.  The final datasets used in this study include: 
the Harvard dataset, which has expression profiles for 8509 unique genes among 254 
samples; the Michigan dataset, which has expression profiles for 4985 unique genes 
among 92 samples; and the Stanford dataset, which has expression profiles for 8829 
unique genes among 73 samples. 

3. A CLIQUE-BASED STRATEGY 

3.1 The Clique Problem 

Clique is a well-known NP-complete problem, and is typically formulated as in [11]: 
   Input: A graph G=(V,E) and a positive integer k ≤ |V|. 
   Question: Is there a subset V’ ⊆ V for which |V’| ≥ k and such that every pair of ver-
tices in V’ is joined by an edge in E.  
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Clique is rapidly becoming recognized for its relevance in bioinformatics.  In our own 
work, for example, we use clique in the following ways.  In [2], we devise and apply fast 
parallel algorithms for clique to extremely large microarray datasets in an effort to help 
identify putatively co-regulated genes in murine neural regulatory networks.  In another 
application [3], we employ high performance implementations of clique in the study of 
cis-regulatory elements to discover putative motifs. 

3.2 Scoring Method 

Our goal in training is to develop graph-theoretic tools to help distinguish among 
sample groups (such as normal and adenocarcinoma).  Ideally, we hope to be able to con-
struct an unweighted graph in which edges connect mainly members of the same group.  
At that point, clique analysis would be an attractive approach for testing our methods 
against additional data. 

In order to pinpoint a modest number of genes out of thousands from the original data-
set, our first step in training is to determine which genes appear to discriminate best 
among sample types.  To accomplish this, a discrimination score is calculated for each 
gene.  Only the best genes (those with the highest scores) are retained for subsequent 
steps.  Since the distributions of the expression values of these genes would be expected 
to be bimodal with respect to two distinct sample classes, the differences between class 
medians give us a general measure of the difference of expression between two classes.  
Subtracting the sum of the standard deviations of a gene within each group allows us to 
eliminate, or at least diminish, the importance of any gene whose expression levels vary 
excessively. 

The data is obtained as in Section 2 as an n x m matrix, A, of expression values.  Rows 
represent test samples, and columns denote genes.  Our algorithm, as applied to discrimi-
nation between two sample groups, can be described in pidgin ALGOL as follows: 

 
procedure gene-score-and-select  
for j=1 to m 
 normalize expression values in column j to the range [0, 1] 
 compute median expression value (vj) and standard deviation 

(σj) on group 1 sample data for gene j 
 repeat computation on group 2 sample data for gene j 
 set score(gene j) = |vj(group 1) – vj(group 2)| – |σj(group 1) + 

σj(group 2)| 
delete genes with scores not exceeding some lower limit 
return remaining genes and their scores  
 

When training on the Michigan dataset in order to learn to distinguish between normal 
(group 1) and adenocarcinoma (group 2) samples and using a lower limit of zero, this 
procedure delivers a collection of 105 genes for further evaluation.  

An assignment of inter-sample weights can help demonstrate the degree to which 
these genes and their respective scores delineate normal samples from adenocarcinoma.  
Here, the weight between samples i and j represents the degree of similarity in their re-
spective expression profiles.  We compute this weight as a sum over all genes selected in 
the previous step, because it is these genes that seem to have the greatest potential to 
serve as good discriminators.  Accordingly, we set weight(i,j) to: 
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score(genek )∑ • (1− expression_value ik− expression_value jk )  

As is shown in Figure 1, higher-weighted sample pairs tend to be homogenous.  That 
is, either both tissue samples are normal or both are adenocarcinoma.  Conversely, lower-
weighted pairs tend to be heterogenous, where one sample is normal and the other is ade-
nocarcinoma.  While this seems to confirm our gene scoring and selection procedure, 
other scoring approaches appear to be viable as well.  Therefore, we investigated several 
other alternatives before settling on this approach. 
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Figure 1. Weights between sample pairs using 105 genes from the Michigan dataset 

Two of these alternative approaches are worthy of note in the computation of gene 
discrimination scores.  One is the elimination of outliers before computing the scores, 
which is motivated by the fact that outliers might affect both the median and the standard 
deviation.  To test this, we modified our approach by adding a screening phase, in which 
we first compute the medians and the standard deviations for each gene within each 
group, then check the expression values corresponding to that gene, discarding those at 
least three standard deviations away from the group median.  We subsequently re-
compute all medians and standard deviations using only the retained values.  We describe 
this modified algorithm in pidgin ALGOL:  

 
procedure gene-score-and-select2  
for j=1 to m 
 normalize expression values in column j to the range [0, 1] 
 compute median expression value (vj) and standard deviation 

(σj) on group 1 sample data for gene j 
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 repeat computation on group 2 sample data for gene j 
 for i=1 to n 
    if sample i belongs to group 1  
        if its expression value (vij) satisfies |vij – vj(group 1)| ≥ 

3σj(group 1), delete vij
    if sample i belongs to group 2 
        if its expression value (vij) satisfies |vij – vj(group 2| ≥ 
   3σj(group 2), delete vij
 recompute median expression value (vj) and standard deviation 

(σj) on group 1 sample data for gene j 
 repeat computation on group 2 sample data for gene j 
 set score(gene j) = |vj(group 1) – vj(group 2)| – |σj(group 1) + 
  σj(group 2)| 
delete genes with scores not exceeding some lower limit 
return remaining genes and their scores 
 
This modification does not appear to alter our original results appreciably, as illus-

trated in Figure 2. 
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Figure 2. Weights between sample pairs after eliminating outliers using 105 genes from the Michigan data-
set 

The other noteworthy gene-scoring approach involves changing our original scoring 
function to a variant of the t-test function, a standard statistical measurement of popula-
tion similarity.  This test is realized using division as formulated in pidgin ALGOL: 
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procedure gene-score-and-select3  
for j=1 to m 
  normalize expression values in column j to the range [0, 1] 
 compute median expression value (vj) and standard deviation 

(σj) on group 1 sample data for gene j 
 repeat computation on group 2 sample data for gene j 
 set score(gene j) = |vj(group 1) – vj(group 2)| / |σj(group 1) +   

 σj(group 2)| 
delete genes with scores not exceeding some lower limit 
return remaining genes and their scores  
 
As before, the results using the modified scoring function do not appear to improve 

upon our original results (Figure 3).  We also experimented with Pearson’s Correlation 
Coefficients and Spearman’s Rank Correlation Coefficients, two popular methods of 
weighting.  Neither of these methods were helpful.  In fact, neither even revealed the bi-
modal distribution we observed using our weight function. 
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Figure 3. Weights between sample pairs using division-based scoring and 105 genes from the Michigan 
dataset 

In addition to confirming the validity of our approach, Figure 1 also suggests an initial 
threshold weight below which we delete edges in a subsequent step (to be described 
shortly).  Call this threshold T.  For example, based on the figure, we choose as a some-
what informed but still rather arbitrary starting value T=7.6.  We use our restricted set of 
genes to build an edge-weighted graph.  In this graph, samples are represented by vertices 
and the weight of an edge between a pair of samples is set using the simple summation 
formula already described.  Any edge whose weight is less than T is removed.  The re-
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sulting unweighted graph is then searched for all maximal cliques.  Our aim is to train our 
codes so that we can find appropriately-sized cliques to cover both all groups, while 
minimizing cliques that overlap these groups.  This requires iteration, as detailed in the 
pidgin ALGOL algorithm: 

 
procedure clique-analysis  
initialize edge-weighted graph of order n  
 for i=1 to n 
  for j = 1 to n 
   set the weight of each edge  
for a user-specified number of iterations do 
 use T to delete edges with low weight 
 find in resulting undirected graph all maximal cliques, C 
 analyze C to refine the choice of T 
return T 
 
Because we know which samples are normal and which are adenocarcinoma in the 

Michigan dataset, we are able to iterate our method until we have a reasonable set of cov-
ering cliques.  The optimal threshold seems to be centered at around T=8.1.  We are not 
completely satisfied, however, with the lingering presence of overlapping cliques.  Addi-
tional experimentation with gene cutoff scores seems to indicate that the presence of 
genes with low scores is problematic.  But neither raising the cutoff score nor additional 
modification of the threshold is of much use.  What seems missing in our estimates of 
gene discrimination is a way to determine which genes impact the greatest number of 
samples.  For this, we turn to another graph metric, dominating set. 

4. REFINEMENT VIA DOMINATING SET 

4.1 The Dominating Set Problem 

Dominating Set, another well-known NP-complete problem, can be stated as follows. 
   Input: A graph G=(V,E) and a positive integer k ≤ |V|. 
   Question: Is there a subset V’ ⊆ V for which |V’| ≤ k and every vertex v∈ V - V’ is 
joined to a vertex in V’ by an edge in E.  

Using the theory of fixed-parameter tractablility (FPT) [8], dominating set may be 
even more difficult than clique.  This is because clique is W[1]-complete and can be 
solved using graph complementation and vertex cover.  Practical, efficient kernelization 
techniques are known for vertex cover [1].  The same, however, may not hold for domi-
nating set.  In fact the dominating set version we address here is nonplanar red/blue 
dominating set, which is W[2]-complete.  Although its complement problem is FPT, 
there are currently no practical kernelization techniques known for it.  Thus, we will only 
approximate solutions to dominating set. 
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4.2 Scoring Method 

We first assume a normal distribution of the expression values of each gene, and esti-
mate for it the mean and standard deviation.  We do this separately for each of the sample 
groups.  Then, based on the estimated normal distribution, we calculate the p-values for 
the original individual expression values.  It is perhaps easiest to formulate our approach 
by constructing a bipartite graph.  In this graph, one set of vertices represents the genes, 
and the opposing set represents the samples.  We place an edge between a gene and a 
sample if and only if the p-value of the expression value corresponding to that gene-
sample combination is greater than 0.05.  Following statistical convention, we consider a 
p-value below this cutoff to indicate an outlier.  

In this setting, we want to identify the genes that dominate (or nearly dominate) all the 
samples.  Therefore, we winnow out from consideration any gene vertex not adjacent to 
at least 90% of the sample vertices.  For example, in the Michigan dataset, a gene is 
eliminated if it is connected to fewer than 74 of the adenocarcinoma samples or fewer 
than nine of the normal samples.  The choice of 90% is arbitrary; it was selected only af-
ter extensive testing. 

Next, in an effort to remove any remaining genes with a low possibility of discriminat-
ing between the two groups, we calculate the p-values for tests of equal means using both 
the Wilcoxon and t-test methods.  We use both since the t-test assumes a normal distribu-
tion, while the Wilcoxon test does not.  Only genes for which both p-values are less than 
0.05 are retained. 

For those genes that remain, we generate scores based on the previously calculated p-
values from the Wilcoxon tests.  We then filter out genes using an adjusted p-value cutoff 
by means of the Bonferroni method.  Specifically, we choose a significance level of α = 
0.01 and only keep genes with a p-value less than α/N, where N is the total number of 
genes we begin with at this step.  Since a smaller p-value indicates a greater probability 
that the groups’ expression values are different for a given gene, we use -log10(p-value) 
for the gene score. 

 
procedure dominating-set-winnow 
initialize edge-weighted bipartite graph of order n+m  
 for i=1 to m   
   for j = 1 to n   
    determine the p-value (weight) of each edge(i,j) 
set threshold to 0.05 and eliminate edges of low weight 
delete genes that dominate < 90% of cancer samples 
delete genes that dominate < 90% of normal samples 
n = n - |deleted genes| 
for i=1 to n   
 generate p-value of equal mean using Wilcoxon and t-test 
delete genes with p-value greater than 0.05 for either test 
n = n - |deleted genes| 
delete genes with p-value greater than or equal to 0.01/n 
n = n - |deleted genes| 
for i=1 to n 
    set gene score to -log10(p-value) 
return remaining genes and their scores 
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Finally, and most importantly, we compute the intersection of the genes identified by 
the clique-based approach described in the last section with the genes chosen by the 
dominating set method as described in this section.  We are left with a set of genes that 
have passed both the clique and the dominating set tests.  We find that this refinement of 
our gene lists gives us improved results in the testing phase of our experiments. 

5. RESULTS 

Having completed the training phase, we proceed to testing on a new dataset under the 
assumption that we will not know sample classification in advance.  We evaluate our ap-
proach with the following three experiments.  First, we trained on the Michigan dataset as 
explained in section 3 in order to learn to distinguish between normal and adenocarci-
noma samples.  We proceed to test our ability to classify samples on the Harvard dataset.  
Second, we reverse this process, applying our training algorithms to the Harvard dataset 
to distinguish between cancerous and normal samples.  We test our method on the Michi-
gan dataset.  Third, we train on the Harvard dataset to learn to separate adenocarcinoma 
from squamous samples, testing on the Stanford dataset.  

5.1 Experiment One 

Clique-based training on the Michigan dataset identifies 105 genes that distinguish be-
tween adenocarcinoma and normal samples.  Our dominating- set-based refinement re-
duces this to 84 genes, 78 of which are available in the Harvard data.  Functional 
classification of the selected 84 genes was performed using the web-based functional pro-
filing tool Gene Ontology Tree Machine (GOTM) [20].  The results are shown in Figure 
4. 
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Figure 4. 84 genes (Michigan data) categorized under gene ontology.  Black bars represent observed gene 
numbers.  White bars represent expected gene numbers in the categories.  The graph is derived from the 

fourth annotation level under biological process. 

 
Figure 5 shows the distribution of the edge-weight scores generated using these genes 

on the normal and adenocarcinoma samples from the Harvard dataset.  If our method is to 
be predictive, we expect to see something of a bimodal distribution, although peak height 
is dependent on the relative populations of the two groups.  This is because weights be-
tween members of the same group are expected to be high, while weights between mem-
bers of different groups are expected to be low.  Such a distribution is in fact what we 
observe in Figure 5. 

We exploit this property when carrying out threshold selection.  We choose an initial 
threshold slightly to the right of the median edge-weight value.  We then enumerate all 
maximal cliques in the unweighted graph, and check to see whether every sample is in at 
least one clique.  If not, we choose lower and lower threshold values until we have full 
coverage (that is, until every sample is in at least one clique).  If, on the other hand, our 
initial threshold gives us full coverage, we incrementally select higher and higher thresh-
olds until we generate an unweighted graph for which there is at least one sample that is  
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Figure 5. Weights between sample pairs using 78 genes (Harvard data) 

missing from every maximal clique.  At this point, we go back one step and use the high-
est threshold with full coverage.  Naturally, this is only one possible method for selecting 
the threshold; other methods may work equally well.  After a suitable threshold has been 
determined, we analyze the data by testing the supposition that all cliques of significant 
size are uniform in the sense that they contain samples from adenocarcinoma samples 
only or from normal samples only. 

When this iterative process is carried out on the Harvard dataset without the use of 
any previous knowledge pertaining to its sample classifications, we are effectively able to 
separate the subjects into adenocarcinoma cliques and normal cliques.  In fact, at our cho-
sen threshold of 7.9, only one sample out of the 207 combined adenocarcinoma and nor-
mal samples would be misclassified according to the Harvard dataset using this approach.  
This sample is 2001032848AA.CEL.  Because it was originally classified as adenocarci-
noma but appeared in multiple normal cliques and no adenocarcinoma cliques, we sus-
pect the original classification may be incorrect.  The histogram of the enumerated 
cliques is shown in Figure 6.  The largest mixed clique is of size six, and there are only 
five mixed cliques in total. 

Of course, we are able to check the quality of our results because the tissue samples 
represented in the Harvard study have been previously classified.  To use our methods in 
the absence of such information, one needs merely to examine the expression values of 
the highest-scoring genes directly to determine whether a clique represents a set of ade-
nocarcinoma or normal samples. 
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Figure 6. Clique frequency distribution from Harvard data set (adenocarcinoma and normal samples) using 
78 genes and a threshold of 7.9 

 

5.2 Experiment Two 

In this case, we initially identify 195 genes that differentiate cancerous and normal 
samples.  This is reduced to 180 (categorized by gene ontology in Figure 7) using our re-
finement technique, and 109 of these genes are available in the Michigan dataset. 
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Figure 7. 180 genes (Harvard data) categorized by gene ontology.  Black bars represent observed gene 
numbers.  White bars represent expected gene numbers in the categories. 

After following the process we have detailed, we select a threshold of 8.7, and enu-
merate maximal cliques on the resulting unweighted graph.  Our methods are able to sort 
the samples into cancerous and normal cliques almost flawlessly.  In fact, out of the 235 
cliques of size 3 or greater in the resulting graph, only one clique has both cancerous and 
normal samples, and this is very small (size 3).  The resultant frequency distribution of 
these cliques is depicted in Figure 8. 
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Figure 8. Clique distribution from Michigan data set using 109 genes and a threshold of 8.7 

5.3 Experiment Three 

Training on the Harvard dataset to discriminate between adenocarcinoma and 
squamous cell carcinoma initially gives us 37 genes.  After refinement, 35 are left (Figure 
9), 26 of which are found in the Stanford data set. 
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Figure 9. 35 genes (Harvard data) categorized under gene ontology.  Black bars represent observed gene 
numbers.  White bars represent expected gene numbers in the categories. 

In this case, the results given by our method are not as compelling as in the previous 
two experiments.  By using the largest clique containing each sample, we classify 41 out 
of 47 samples correctly according to the Stanford classifications.  Nevertheless, there are 
still too many mixed cliques.  This is not unexpected.  Our methods isolate a set of 35 
genes as a good discriminator.  However, with only 26 of these available in the test data-
set, their use provides at best a crude classification tool. 
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6. CONCLUSIONS 

There is no apparent consensus as to the best approach for mining microarray data.  
Popular methods in current use include Bayesian analysis [9,18], hierarchical clustering, 
and scale-free networks [17], to name just a few.  We believe that the novel methodology 
we have described here can be used to complement these techniques, and also be of inde-
pendent interest.  Deliverables accompanying this effort include the algorithmic frame-
work of our overall strategy, the software tools we have developed and implemented, and 
of course the resultant gene sets themselves. 

A key feature of our approach is the use of two distinct gene-scoring systems, each 
coupled with a different combinatorial algorithm.  One is based on finding optimal 
cliques within general graphs, the other on isolating near-optimal dominating sets within 
bipartite graphs.  Used in tandem, these algorithms appear to provide an effective means 
for identifying and ranking predictive genes whose expression levels serve as an accurate 
discriminator between adenocarcinoma and normal tissues.  We emphasize that the use of 
clique and dominating set together seems to produce better results than would be possible 
with either approach alone.   

The high fidelity with which the resulting cliques partition cancerous and normal 
samples, as illustrated in Figures 6 and 8, prompts us to posit that our methodology has 
the potential to become the basis for a highly reliable tool for cancer prediction.  No a 
priori knowledge of the number of classes contained in the dataset is required.  More-
over, it is known that tumor tissue samples are frequently a mixture of multiple types of 
cells, and that the exact ratio of this mixture is not necessarily consistent, even among 
samples from the same tumor.  Therefore, it is expected that tissue samples might have 
significant similarity to more than one class, such as adenocarcinoma and normal.  This 
is, in fact, what is observed.  Using our method, the classification of the sample is not 
limited to one class.  Nor is the classification based on the highest similarity score.  In-
stead, it is based on a significant degree of similarity to the greatest number of samples 
that also are significantly similar to each other.  In other words, classification is based on 
the largest (maximal) clique to which the sample belongs.  This should result in a higher 
degree of confidence in our classification.  

As a further proof of principle, several of the genes we have identified as discrimina-
tors in the Michigan data are known or suspected to play a role in oncogenesis.  Among 
these are: CYP4B1, a cytochrome P450 enzyme that has been implicated in both bladder 
and lung cancer in humans [6,14]; FHL1, shown to have cytotoxic effects on melanoma 
cell lines and to possibly play a role in cellular differentiation[19]; the p85 alpha subunit 
of phosphoinositide-3-kinase, which plays a role in human breast cancer [7,16]; and 
tetranectin, which has already been shown to have prognosticative value for survival rates 
at certain stages of ovarian cancer [12].  A list of all the genes we have identified is in the 
Appendix in tables 1 and 2. 

A number of opportunities for future research beckon.  For example, the formula we 
are currently using to assign edge weights relies only on the gene scoring algorithm of 
our clique-based strategy.  This can perhaps be refined by incorporating into it the gene 
scores computed during our dominating set analysis.  Another idea we believe holds 
promise relies on the use of clique intersection graphs.  These are computed as follows.  
Suppose we are given a filtered, unweighted sample similarity graph, G.  The vertices of 
its associated clique intersection graph are the maximal cliques in G.  Each pair of verti-
ces in the clique intersection graph is connected by an edge if and only if the intersection 
of the two respective cliques they represent is nonempty.  Thus, a clique intersection 
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graph may help to discern the overall structure of relationships contained within sample 
data.  Moreover, cliques within a clique intersection graph may serve to tighten the focus 
on discriminating factors and act as an aid in quantifying the salient characteristics of ar-
chetypical diseased or healthy tissues. 
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APPENDIX 

Table 1. Functional annotation of genes from the Harvard (H) and Michigan (M) datasets 
that our methods identify as discriminators among cancerous and normal samples.  Y 
means that the gene was identified.  N means that the gene was not identified, but was 
present in the dataset.  N/A means the gene was not available in the dataset. 
 
 

Identified Locus-
Link ID SYMBOL GENE_NAME 

H M 
21 ABCA3 ATP-binding cassette, sub-family A (ABC1), member 3 Y Y 

104 ADARB1 adenosine deaminase, RNA-specific, B1 (RED1 homolog rat) Y Y 
124 ADH1A alcohol dehydrogenase 1A (class I), alpha polypeptide Y Y 
125 ADH1B alcohol dehydrogenase IB (class I), beta polypeptide Y Y 
284 ANGPT1 angiopoietin 1 Y Y 
361 AQP4 aquaporin 4 Y Y 
687 BTEB1 basic transcription element binding protein 1 Y Y 
730 C7 complement component 7 Y Y 
1003 CDH5 cadherin 5, type 2, VE-cadherin (vascular epithelium) Y Y 
1043 CDW52 CDW52 antigen (CAMPATH-1 antigen) Y Y 
1359 CPA3 carboxypeptidase A3 (mast cell) Y Y 
1465 CSRP1 cysteine and glycine-rich protein 1 Y Y 
1675 DF D component of complement (adipsin) Y Y 
1910 EDNRB endothelin receptor type B Y Y 
2013 EMP2 epithelial membrane protein 2 Y Y 
2014 EMP3 epithelial membrane protein 3 Y Y 
2167 FABP4 fatty acid binding protein 4, adipocyte Y Y 
2273 FHL1 four and a half LIM domains 1 Y Y 
2294 FOXF1 forkhead box F1 Y Y 
2313 FLI1 Friend leukemia virus integration 1 Y Y 
2719 GPC3 glypican 3 Y Y 
2791 GNG11 guanine nucleotide binding protein (G protein), gamma 11 Y Y 
2869 GPRK5 G protein-coupled receptor kinase 5 Y Y 
2878 GPX3 glutathione peroxidase 3 (plasma) Y Y 
3043 HBB hemoglobin, beta Y Y 
3730 KAL1 Kallmann syndrome 1 sequence Y Y 
4005 LMO2 LIM domain only 2 (rhombotin-like 1) Y Y 
4360 MRC1 mannose receptor, C type 1 Y Y 
4638 MYLK myosin, light polypeptide kinase Y Y 
4688 NCF2 neutrophil cytosolic fact. 2 (65kDa, autosomal 2) Y Y 
5376 PMP22 peripheral myelin protein 22 Y Y 
5627 PROS1 protein S (alpha) Y Y 
6711 SPTBN1 spectrin, beta, non-erythrocytic 1 Y Y 
7010 TEK TEK tyrosine kinase, endothelial Y Y 
7048 TGFBR2 transforming growth factor, beta receptor II (70/80kDa) Y Y 
7049 TGFBR3 transforming growth factor, beta receptor III Y Y 
7123 TNA tetranectin (plasminogen binding protein) Y Y 
7450 VWF von Willebrand factor Y Y 
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Identified Locus-
Link ID SYMBOL GENE_NAME 

H M 
8404 SPARCL1 SPARC-like 1 (mast9, hevin) Y Y 
8516 ITGA8 integrin, alpha 8 Y Y 
8613 PPAP2B phosphatidic acid phosphatase type 2B Y Y 
8639 AOC3 amine oxidase, copper containing 3 Y Y 
9459 ARHGEF6 Rac/Cdc42 guanine nucleotide exchange factor (GEF) 6 Y Y 
9934 GPR105 G protein-coupled receptor 105 Y Y 

10398 MYL9 myosin, light polypeptide 9, regulatory Y Y 
10974 APM2 adipose specific 2 Y Y 
154 ADRB2 adrenergic, beta-2-, receptor, surface Y N 
195 AHNAK AHNAK nucleoprotein (desmoyokin) Y N 
358 AQP1 aquaporin 1 (channel-forming integral protein, 28kDa) Y N 
762 CA4 carbonic anhydrase IV Y N 
858 CAV2 caveolin 2 Y N 
947 CD34 CD34 antigen Y N 
1066 CES1 carboxylesterase 1 (monocyte/macrophage serine esterase 1) Y N 
2022 ENG endoglin (Osler-Rendu-Weber syndrome 1) Y N 
2078 ERG v-ets erythroblastosis virus E26 oncogene like (avian) Y N 
2192 FBLN1 fibulin 1 Y N 
2202 EFEMP1 EGF-containing fibulin-like extracellular matrix protein 1 Y N 
2219 FCN1 ficolin (collagen/fibrinogen domain containing) 1 Y N 
2597 GAPD glyceraldehyde-3-phosphate dehydrogenase Y N 
2615 GARP glycoprotein A repetitions predominant Y N 
2701 GJA4 gap junction protein, alpha 4, 37kDa (connexin 37) Y N 
2771 GNAI2 guanine nucleotide binding prot, alpha inhibit activity polypep 2 Y N 
2824 GPM6B glycoprotein M6B Y N 
3133 HLA-E major histocompatibility complex, class I, E Y N 
3340 NDST1 N-deacetylase/N-sulfotransferase (heparan glucosaminyl) 1 Y N 
3373 HYAL1 hyaluronoglucosaminidase 1 Y N 
3575 IL7R interleukin 7 receptor Y N 
3936 LCP1 lymphocyte cytosolic protein 1 (L-plastin) Y N 
4035 LRP1 low density lipoprotein-related protein 1 Y N 
4091 MADH6 MAD, mothers against decapentaplegic homolog 6 (Drosophila) Y N 
4239 MFAP4 microfibrillar-associated protein 4 Y N 
4286 MITF microphthalmia-associated transcription factor Y N 
4332 MNDA myeloid cell nuclear differentiation antigen Y N 
4502 MT2A metallothionein 2A Y N 
4628 MYH10 myosin, heavy polypeptide 10, non-muscle Y N 
4629 MYH11 myosin, heavy polypeptide 11, smooth muscle Y N 
4855 NOTCH4 Notch homolog 4 (Drosophila) Y N 
4881 NPR1 natriuretic peptide receptor A/guanylate cyclase A Y N 
4973 OLR1 oxidised low density lipoprotein (lectin-like) receptor 1 Y N 
5225 PGC progastricsin (pepsinogen C) Y N 
5730 PTGDS prostaglandin D2 synthase 21kDa (brain) Y N 
5787 PTPRB protein tyrosine phosphatase, receptor type, B Y N 
5797 PTPRM protein tyrosine phosphatase, receptor type, M Y N 
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Identified Locus-
Link ID SYMBOL GENE_NAME 

H M 
5831 PYCR1 pyrroline-5-carboxylate reductase 1 Y N 
6237 RRAS related RAS viral (r-ras) oncogene homolog Y N 
6403 SELP selectin P (granule membrane protein 140kDa, antigen CD62) Y N 
6556 SLC11A1 solute carrier fam. 11, memb. 1 Y N 
6709 SPTAN1 spectrin, alpha, non-erythrocytic 1 (alpha-fodrin) Y N 
6909 TBX2 T-box 2 Y N 
7122 CLDN5 claudin 5  Y N 
7133 TNFRSF1B tumor necrosis factor receptor superfamily, member 1B Y N 
7148 TNXB tenascin XB Y N 
7433 VIPR1 vasoactive intestinal peptide receptor 1 Y N 
7704 ZNF145 zinc finger protein 145 Y N 
8692 HYAL2 hyaluronoglucosaminidase 2 Y N 
9034 CCRL2 chemokine (C-C motif) receptor-like 2 Y N 
9124 PDLIM1 PDZ and LIM domain 1 (elfin) Y N 
9173 IL1RL1 interleukin 1 receptor-like 1 Y N 
9341 VAMP3 vesicle-associated membrane protein 3 (cellubrevin) Y N 
9413 X123 Friedreich ataxia region gene X123 Y N 
9638 FEZ1 fasciculation and elongation protein zeta 1 (zygin I) Y N 
9647 PPM1F protein phosphatase 1F (PP2C domain containing) Y N 
9748 SLK Ste20-related serine/threonine kinase Y N 

10129 13CDNA73 hypothetical protein CG003 Y N 
10609 SC65 nucleolar autoantigen sim to rat synaptonemal complex protein Y N 
10979 PLEKHC1 pleckstrin homology domain containing, fam. C  memb. 1 Y N 
23294 ANKS1 ankyrin repeat and SAM domain containing 1 Y N 
25802 LMOD1 leiomodin 1 (smooth muscle) Y N 
54861 SNRK SNF-1 related kinase Y N 
115 ADCY9 adenylate cyclase 9 Y N/A 
177 AGER advanced glycosylation end product-specific receptor Y N/A 
241 ALOX5AP arachidonate 5-lipoxygenase-activating protein Y N/A 
306 ANXA3 annexin A3 Y N/A 
409 ARRB2 arrestin, beta 2 Y N/A 
847 CAT catalase Y N/A 
2277 FIGF c-fos induced growth factor  Y N/A 
2532 FY Duffy blood group Y N/A 
3384 ICAM2 intercellular adhesion molecule 2 Y N/A 
4008 LMO7 LIM domain only 7 Y N/A 
4282 MIF macrophage migration inhibitory factor  Y N/A 
5175 PECAM1 platelet/endothelial cell adhesion molecule (CD31 antigen) Y N/A 
5348 FXYD1 FXYD domain containing ion transport regulator 1  Y N/A 
5420 PODXL podocalyxin-like Y N/A 
6279 S100A8 S100 calcium binding protein A8 (calgranulin A) Y N/A 
6440 SFTPC surfactant, pulmonary-associated protein C Y N/A 
6867 TACC1 transforming, acidic coiled-coil containing protein 1 Y N/A 
6943 TCF21 transcription factor 21 Y N/A 
7134 TNNC1 troponin C, slow Y N/A 
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Identified Locus-
Link ID SYMBOL GENE_NAME 

H M 
7356 SCGB1A1 secretoglobin, family 1A, member 1 (uteroglobin) Y N/A 
7466 WFS1 Wolfram syndrome 1 (wolframin) Y N/A 
8425 LTBP4 latent transforming growth factor beta binding protein 4 Y N/A 
8547 FCN3 ficolin (collagen/fibrinogen domain containing) 3 Y N/A 
8612 PPAP2C phosphatidic acid phosphatase type 2C Y N/A 
8630 RODH 3-hydroxysteroid epimerase Y N/A 
8685 MARCO macrophage receptor with collagenous structure Y N/A 
8727 CTNNAL1 catenin (cadherin-associated protein), alpha-like 1 Y N/A 
9056 SLC7A7 solute carrier fam. 7, memb. 7 Y N/A 
9079 LDB2 LIM domain binding 2 Y N/A 
9353 SLIT2 slit homolog 2 (Drosophila) Y N/A 
9411 PARG1 PTPL1-associated RhoGAP 1 Y N/A 
9452 ITM2A integral membrane protein 2A Y N/A 
9467 SH3BP5 SH3-domain binding protein 5 (BTK-associated) Y N/A 
9535 GMFG glia maturation factor, gamma Y N/A 
9732 DOCK4 DOCK4 Y N/A 

10266 RAMP2 receptor (calcitonin) activity modifying protein 2 Y N/A 
10268 RAMP3 receptor (calcitonin) activity modifying protein 3 Y N/A 
10351 ABCA8 ATP-binding cassette, sub-family A (ABC1), member 8 Y N/A 
10395 DLC1 deleted in liver cancer 1 Y N/A 
10516 FBLN5 fibulin 5 Y N/A 
10908 NTE neuropathy target esterase Y N/A 
11025 LILRB3 leukocyte immunoglobulin-like receptor, subfamily B, memb. 3 Y N/A 
11142 PKIG protein kinase (cAMP-dependent, catalytic) inhibitor gamma Y N/A 
11170 TU3A TU3A protein Y N/A 
11197 WIF1 WNT inhibitory factor 1 Y N/A 
11217 AKAP2 A kinase (PRKA) anchor protein 2 Y N/A 
11309 SLC21A9 solute carrier family 21 (organic anion transporter), member 9 Y N/A 
11326 Z39IG Ig superfamily protein Y N/A 
22885 KIAA0843 KIAA0843 protein Y N/A 
22939   Y N/A 
22998 KIAA1102 KIAA1102 protein Y N/A 
23037 PDZK3 PDZ domain containing 3 Y N/A 
23266 LPHN2 latrophilin 2 Y N/A 
23328 SASH1 SAM and SH3 domain containing 1 Y N/A 
23371 TENC1 tensin like C1 domain-containing phosphatase Y N/A 
23499 MACF1 microtubule-actin crosslinking factor 1 Y N/A 
23673 STX12 syntaxin 12 Y N/A 
23710 GABARAPL1 GABA(A) receptor-associated protein like 1 Y N/A 
25777 UNC84B unc-84 homolog B (C. elegans) Y N/A 
27074 LAMP3 lysosomal-associated membrane protein 3 Y N/A 
27253 PCDH17 protocadherin 17 Y N/A 
57188 KIAA1233 KIAA1233 protein Y N/A 
57493 KIAA1237 KIAA1237 protein Y N/A 
64116 BIGM103 BCG-induced gene in monocytes, clone 103 Y N/A 
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Identified Locus-
Link ID SYMBOL GENE_NAME 

H M 
79602 FLJ21432 hypothetical protein FLJ21432 Y N/A 
83604 BCMP1 brain cell membrane protein 1 Y N/A 
84724   Y N/A 
91851 NRLN1 likely ortholog of mouse neuralin 1 Y N/A 

115207 LOC115207 hypothetical protein BC013764 Y N/A 
126393 FLJ32389 hypothetical protein FLJ32389 Y N/A 
203317   Y N/A 

240 ALOX5 arachidonate 5-lipoxygenase N Y 
857 CAV1 caveolin 1, caveolae protein, 22kDa N Y 
894 CCND2 cyclin D2 N Y 
948 CD36 CD36 antigen (collagen type I recept, thrombospondin receptor) N Y 
976 CD97 CD97 antigen N Y 
1318 SLC31A2 solute carrier family 31 (copper transporters), member 2 N Y 
1346 COX7A1 cytochrome c oxidase subunit VIIa polypeptide 1 (muscle) N Y 
1410 CRYAB crystallin, alpha B N Y 
1580 CYP4B1 cytochrome P450, family 4, subfamily B, polypeptide 1 N Y 
1601 DAB2 disabled homolog 2, mitogen-responsive phosphoprotein N Y 
1808 DPYSL2 dihydropyrimidinase-like 2 N Y 
1901 EDG1 endothelial dif., sphingolipid G-protein-coupled receptor, 1 N Y 
2268 FGR Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog N Y 
2327 FMO2 flavin containing monooxygenase 2 N Y 
2823 GPM6A glycoprotein M6A N Y 
2995 GYPC glycophorin C (Gerbich blood group) N Y 
4192 MDK midkine (neurite growth-promoting factor 2) N Y 
5295 PIK3R1 phosphoinositide-3-kinase, regulatory subunit, polypeptide 1 N Y 
6275 S100A4 S100 calcium binding protein A4 (murine placental homolog) N Y 
6404 SELPLG selectin P ligand N Y 
6414 SEPP1 selenoprotein P, plasma, 1 N Y 
6595 SMARCA2 SWI/SNF rel., mat. assoc., actin dep. reg. of chromatin, sfm a2 N Y 
7262 TSSC3 tumor suppressing subtransferable candidate 3 N Y 
7264 TSTA3 tissue specific transplantation antigen P35B N Y 
8406 SRPX sushi-repeat-containing protein, X chromosome N Y 
9770 RASSF2 Ras association (RalGDS/AF-6) domain family 2 N Y 
9806 SPOCK2 sparc/osteonectin, cwcv and kazal-like doms proteoglycan 2 N Y 
9936 DCL-1 type I transmembrane C-type lectin receptor DCL-1 N Y 

10203 CALCRL calcitonin receptor-like N Y 
10216 PRG4 proteoglycan 4 N Y 
10806 SDCCAG8 serologically defined colon cancer antigen 8 N Y 
26578 OSTF1 osteoclast stimulating factor 1 N Y 

2 A2M alpha-2-macroglobulin N/A Y 
316 AOX1 aldehyde oxidase 1 N/A Y 
2171 FABP5 fatty acid binding protein 5 (psoriasis-associated) N/A Y 
5468 PPARG peroxisome proliferative activated receptor, gamma N/A Y 
6435 SFTPA1 surfactant, pulmonary-associated protein A1 N/A Y 

84099 ID2B striated muscle contraction regulatory protein N/A Y 
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Table 2. Functional annotation of 35 genes that our methods identify as discriminators 
among adenocarcinoma and squamous cell carcinoma 
 
 
Locus-
Link ID SYMBOL GENE_NAME 

10057 ABCC5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 
1173 AP2M1 adaptor-related protein complex 2, mu 1 subunit 
131 ADH7 alcohol dehydrogenase 7 (class IV), mu or sigma polypeptide 
1365 CLDN3 claudin 3 
1475 CSTA cystatin A (stefin A) 
1606 DGKA diacylglycerol kinase, alpha 80kDa 
1830 DSG3 desmoglein 3 (pemphigus vulgaris antigen) 
1854 DUT dUTP pyrophosphatase 

22824 APG-1 heat shock protein (hsp110 family) 
23250 ATP11A ATPase, Class VI, type 11A 
23299 BICD2 coiled-coil protein BICD2 
23650 TRIM29 tripartite motif-containing 29 
244 ANXA8 annexin A8 
2817 GPC1 glypican 1 
2956 MSH6 mutS homolog 6 (E. coli) 
3655 ITGA6 integrin, alpha 6 
3852 KRT5 keratin 5  
3853 KRT6A keratin 6A 
3872 KRT17 keratin 17 
4171 MCM2 MCM2 minichromosome maintenance deficient 2, mitotin (S. cerevisiae) 
4680 CEACAM6 carcinoembryonic antigen-related cell adhesion molecule 6  
483 ATP1B3 ATPase, Na+/K+ transporting, beta 3 polypeptide 
5111 PCNA proliferating cell nuclear antigen 
5268 SERPINB5 serine (or cysteine) proteinase inhibitor, clade B (ovalbumin), member 5 

54107 POLE3 polymerase (DNA directed), epsilon 3 (p17 subunit) 
5905 RANGAP1 Ran GTPase activating protein 1 
5984 RFC4 replication factor C (activator 1) 4, 37kDa 
6273 S100A2 S100 calcium binding protein A2 
6657 SOX2 SRY (sex determining region Y)-box 2 
7080 TITF1 thyroid transcription factor 1 
8323 FZD6 frizzled homolog 6 (Drosophila) 
86 BAF53A BAF53 

8714 ABCC3 ATP-binding cassette, sub-family C (CFTR/MRP), member 3 
8893 EIF2B5 eukaryotic translation initiation factor 2B, subunit 5 epsilon, 82kDa 
9982 HBP17 heparin-binding growth factor binding protein 
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