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eM. D. VoseFebruary 1, 20041 OverviewThe edit distan
e is a means of measuring the 
ost of transforming one stringinto another by way of insert, delete and 
hange operators. The theoreti
aland 
omputational underpinnings of edit distan
e are dis
ussed in a formalmathemati
al framework.2 PreliminariesLet � be a �nite nonempty set of symbols. The set of all �nite strings withelements from � (in
luding the empty string) is ��. Strings are naturallyfun
tions; the string s = s0s1 : : : sk is identi�ed with the set of ordered pairs(i.e., fun
tion) s = f(0; s0); (1; s1); : : : (k; sk)gThe domain and range of fun
tion f , denoted by Df and Rf respe
tively,are de�ned by Df = fx : 9y : (x; y) 2 fgRf = fy : 9x : (x; y) 2 fgThe notation f : A �! Basserts that f is a fun
tion whose domain is a subset of A and whose rangeis a subset of B. The set B is referred to as the 
o-domain, the set A isreferred to as the given-domain. If Df = A, then f is 
alled a fun
tion fromA to B. If Df 6= A, then f is 
alled a partial fun
tion from A to B; forexample, every string s 2 �� is a partial fun
tion s : N �! �, where N isthe set of nonnegative integers. 1



The length jAj of string A refers to the 
ardinality of (the set of orderedpairs) A. In parti
ular, the empty string ; has length j;j = 0.The dis
ussion above explains how any given string s is a fun
tion, whi
h inturn is a partial fun
tion|
all it �(s)|from N to �. Given string s = ab
,for example, �(s) = f(0; a); (1; b); (2; 
)g is the naturally asso
iated partialfun
tion. Consider reversing this pro
ess: letf = f(i0; s0); (i1; s1); : : : (ik; sk)gbe a partial fun
tion from N to �, where i0 < i1 < � � � < ik 
omprise thedomain of f . It is naturally a string, namely s0s1 : : : sk; let 	(f) denote thisstring. Passing from this string to a fun
tion in the natural way yields�(	(f)) = f(0; s0); (1; s1); : : : (k; sk)gwhi
h is not ne
essarily the same partial fun
tion f as was began with. Thepartial fun
tion �(	(f)) is 
alled the normal form of f . A partial fun
tionf : N �! � for whi
h f = �(	(f)) is said to be normalized. The followingproperties are easily veri�ed1. 	(�(s)) = s, for every string s 2 ��.2. �(	(f)) = f , for every normalized partial fun
tion f : N �! �.In parti
ular, �(s) is normalized for every s 2 ��, and the fun
tions �and 	 formally des
ribe how strings and normalized partial fun
tions 
anbe thought of inter
hangeably. This paper, however, generalizes the 
on
eptof string from normalized partial fun
tions to partial fun
tions; any partialfun
tion f : N �! � will hen
eforth be 
alled a string, and 	(f) will be
alled its normal representation.As previously observed, from the normal representation of string f it is onlythe normal form of f whi
h ne
essarily may be re
overed. For instan
e, thenormal representation of string f = f(3; b); (1; a); (117; 
)g is ab
, and givenab
 it is only the normal form �(ab
) = f(1; b); (0; a); (2; 
)g of f whi
h maybe re
overed.An edit operation is either a 
hange, insert, or delete operation, and thesethree types of operations are mutually ex
lusive. Let E be the set of all editoperations. Elements of E map strings (i.e., partial fun
tions from N to �)to strings. Change operators are denoted by m!
 b where m 2 N and b 2 �,and are de�ned bym!
 b (f) = (f n f(m; f(m))g) [ f(m; b)g if m 2 Df2



Insert operators are denoted by m!i b where m 2 N and b 2 �, and arede�ned by m!i b (f) = f [ f(m; b)g if m =2 DfDelete operators are denoted by m!d where m 2 N, and are de�ned bym!d (f) = f n f(m; f(m))g if m 2 DfNote that edit operations are not de�ned for every string; for example,m!d (f) is unde�ned whenever m =2 Df . Thus elements of E are partialfun
tions from the set of all strings to the set of all strings. When de�ned,the result of applying an edit operation to a string f is di�erent from fex
ept in the 
ase m!
 b (f) where (m; b) 2 f . In this 
ase the edit operation(applied to f) is said to be trivial.Let S be the set of all �nite sequen
es of edit operations. Elements of Shave the form e1e2 : : : en where ei 2 E and n 2 N (if n = 0, the sequen
e isempty). Elements of S are 
alled edit sequen
es and may be interpreted asmapping strings to strings:e1e2 : : : en(f) = e1(: : : en�1(en(f)) : : :)If " 2 S is the empty sequen
e, then "(f) = f for all strings f . Notethat be
ause elements of E are partial fun
tions, so too are edit sequen
es;e1e2 : : : en(f) is not ne
essarily de�ned.Lemma 1 For every string f , there exists an edit sequen
e s su
h thats(f) = ;Proof: If f = ;, then let s = ". Otherwise, let Df = fi0; : : : ; ing. Note thati0!d : : : in!d (f) = ;.�Lemma 2 For every string f , there exists an edit sequen
e s su
h thats(;) = fProof: If f = ;, then let s = ". Otherwise, let Df = fi0; : : : ; ing. Note thati0!i f(i0) : : : in!i f(in) (;) = f .�Theorem 3 For all strings f and g, there exists an edit sequen
e s su
hthat s(f) = g. 3



Proof: Appealing to Lemmas 1 and 2, let s1 and s2 be edit sequen
es su
hthat s2(f) = ; and s1(;) = g. Now let s = s1s2 (i.e., s is the 
on
atenationof s1 and s2). It follows that s(f) = s1(s2(f)) = g.�Ea
h type of edit operation has an asso
iated 
ost. Let 
i > 0 be the 
ostof an insert operation, 
d > 0 be the 
ost of an delete operation, and 

 > 0be the 
ost of a nontrivial 
hange operation; trivial edit operations havezero 
ost. Stri
tly speaking, a 
hange operator does not have a 
ost; it'sargument is required in order to determine whether it is trivial, in whi
h
ase it has zero 
ost. Thus 
ost is asso
iated with the pair operator andargument, rather than asso
iated with operator alone.To enable speaking of the 
ost of an edit sequen
e (whi
h may 
ontain apotentially trivial 
hange operator) we say that s 2 S takes f to g provideds(f) = g. Now the 
ost 
(s; f) of an edit sequen
e s taking f to g may beindu
tively de�ned as follows
("; f) = 0
(m!d ; f) = 
d
(m!i b; f) = 
i
(m!
 b; f) = 0 if f = m!
 b (f), and 

 otherwise
(e0 : : : en; f) = 
(e0; e1 : : : en(f)) + 
(e1 : : : en; f)When f 
an be inferred from 
ontext, 
(s; f) is abbreviated by 
(s). More-over, to assert that s is an edit sequen
e taking f to g is to establish a
ontext in whi
h 
(s; f) may be abbreviated by 
(s).Theorem 4 Let s be an edit sequen
e taking f to h, and let s0 be an editsequen
e taking h to g. The 
on
atenation s00 = s0s takes f to g, and
(s00) = 
(s0) + 
(s)Proof: Let s0 = e0 : : : ek, and let s = ek+1 : : : en. Then s00 = e0 : : : en anda

ording to the re
ursive de�nition for the 
ost of an edit sequen
e,
(s00; f) = nXj=0 
(ej ; ej+1 : : : en(f))= kXj=0 
(ej ; ej+1 : : : en(f)) + nXj=k+1
(ej ; ej+1 : : : en(f))= kXj=0 
(ej ; ej+1 : : : ek(s(f))) + 
(s; f)= 
(s0; h) + 
(s; f) 4



�Theorem 5 Let s be an edit sequen
e taking f to g. If 
i = 
d, then thereexists an edit sequen
e s0 taking g to f su
h that 
(s) = 
(s0). Moreover, s0may be 
hosen to have the same length as s.Proof: Indu
t on the length of s. Base 
ase: If s = " then f = s(f) = g.Let s0 = " and observe that 
(s) = 
(s0) = 0.Indu
tive step: let s = e0 : : : ek, and let h = e1 : : : ek(f). Sin
e s(f) = g, itfollows that e0(h) = g. By the indu
tive hypothesis, there exists e00 : : : e0k�1taking h to f su
h that 
(e00 : : : e0k�1) = 
(e1 : : : ek). The proof is 
ompletedby showing there exists e0k taking g to h su
h that 
(e0k) = 
(e0). This wouldsuÆ
e be
ause then s0(g) = e00 : : : e0k�1(e0k(g))= e00 : : : e0k�1(h)= fand by theorem 4, 
(s0) = 
(e00 : : : e0k�1; h) + 
(e0k; g)= 
(e1 : : : ek; f) + 
(e0; h)= 
(s)There are three 
ases to 
onsider, based on the type of edit operation e0 is.Case 1: e0 is m!
 g(m) (re
all that e0(h) = g; if e0 is a 
hange operatorthen g and h agree everywhere ex
ept possibly at m). Let e0k be m!
 h(m).Note that if e0 is trivial, then g = h and e0k is therefore trivial. If e0 isnontrivial, then h(m) 6= g(m) and e0k is therefore nontrivial. In either 
ase,
(e0k) = 
(e0).Case 2: e1 is m!i g(m) (if e0 is an insert operator, then g is the disjointunion h [ f(m; g(m))g). Let e0n be m!d . Sin
e 
i = 
d, 
(e0k) = 
(e0).Case 3: e1 is m!d (if e0 is a delete operator, then h is the disjoint uniong [ f(m;h(m))g). Let e0n be the edit operation m!i h(m). Sin
e 
i = 
d,
(e0k) = 
(e0).�Edit distan
e is a fun
tion Æ whi
h maps two strings to a nonnegative real,and is de�ned byÆ(f; g) = minf
(s) j s is an edit sequen
e taking f to gg5



Given strings f and g, the distan
e from f to g is de�ned as Æ(f; g). Thisdistan
e exists, by theorem 3. That this de�nition is reasonable will now beestablished.Lemma 6 The distan
e between f and g is nonnegative, and is zero if andonly if f = g.Proof: Distan
e is nonnegative be
ause edit sequen
es have nonnegative
ost. If f = g then Æ(f; g) = 0 sin
e "(f) = g and 
(") = 0. Conversely, lets = e0 : : : ek be an edit sequen
e taking f to g having zero 
ost. It followsthat every edit operator in s must be trivial, sin
e otherwise the sum
(s) = kXj=0 
(ej ; ej+1 : : : ek(f))would be positive.�Lemma 7 The triangle inequality holds,Æ(f; g) � Æ(f; h) + Æ(h; g)Proof: Let Æ(f; h) = 
(s) and Æ(h; g) = 
(s0), where s(f) = h and s0(h) = g.Note that the 
on
atenation s00 = s0s takes f to g, hen
e Æ(f; g) � 
(s00).This 
ompletes the proof, sin
e by theorem 4, 
(s00) = 
(s0) + 
(s).�Lemma 8 If 
i = 
d, then distan
e is symmetri
,Æ(f; g) = Æ(g; f)Proof: It will be shown that Æ(f; g) � Æ(g; h). That would 
omplete theproof, sin
e two appli
ations of the inequality yieldÆ(f; g) � Æ(g; f) � Æ(f; g)Let Æ(f; g) = 
(s), where s takes f to g. By theorem 5, there exists s0 takingg to f su
h that 
(s0) = 
(s). Hen
e, Æ(g; f) � 
(s0) = 
(s).�Theorem 9 Edit distan
e is a metri
 if and only if 
i = 
d.Proof: To show the edit distan
e is a metri
, it must be established that6



1. Æ(f; g) � 02. Æ(f; g) = 0 () f = g3. Æ(f; h) � Æ(f; g) + Æ(g; h).4. Æ(f; g) = Æ(g; f).Appealing to the previous lemmas shows the above properties hold when
i = 
d (in fa
t, only symmetry requires 
i = 
d).Conversely, suppose property 4 holds. Let f = ; and g = f(0; a)g. If s isan edit sequen
e taking f to g, then s must 
ontain an insert edit operation(otherwise js(f)j � jf j < jgj). Sin
e g = 0!i a (f), the distan
e from fto g is 
i. If s0 is an edit sequen
e taking g to f , then s0 must 
ontain adelete edit operation (otherwise js0(g)j � jgj > jf j). Sin
e f = 0!d (g), thedistan
e from g to f is 
d. Thus 
i = Æ(f; g) = Æ(g; f) = 
d.�3 Tra
esA tra
e is an ordered triple (p; f; g) where f , g are strings and p is anin
reasing (i.e., i < j =) p(i) < p(j)) partial fun
tion p : Df �! Dg. Tra
e(p; f; g) is referred to as a tra
e from f to g.The 
ost of tra
e t = (p; f; g) is de�ned as
(t) = jDf nDpj 
d + jDgnRpj 
i + X(i;j)2p 
(i!
 g(j); f)Let ~f denote the normal representation 	(f) of string f . De�ne an equiva-len
e relation � on the set of strings by f � g if and only if ~f = ~g. Let [f ℄denote the equivalen
e 
lass of f .Lemma 10 Strings f and g are equivalent if and only if there exists anin
reasing onto fun
tion ' : Df ! Dg su
h that f = g Æ '.Proof: Let f = f(i0; f0); : : : (ik; fk)g and g = f(j0; g0); : : : (jl; gl)g, wherei0 < � � � < ik and j0 < � � � < jl. Suppose ' exists. Sin
e ' is in
reasing, itis a one-to-one and onto order-preserving map from Df to Dg. Hen
e k = land '(ih) = jh. Therefore,fh = f(ih) = g Æ '(ih) = g(jh) = gh7



Conversely, suppose f � g. Then k = l and fh = gh for 0 � h � k. Let'(ih) = jh, and note that ' : Df ! Dg is in
reasing and onto. Moreover,g Æ '(ih) = g(jh) = gh = fh = f(ih)�Note that the fun
tion ' in lemma 10 is a one-to-one and onto order-preserving fun
tion sin
e an in
reasing fun
tion preserves order and mustbe one-to-one.Theorem 11 Let t be a tra
e from f to g. There exists u 2 [f ℄, v 2 [g℄,and an edit sequen
e s taking u to v, su
h that 
(s) = 
(t).Proof: Let t = (p; f; g). Let f be the string f(i0; f0); : : : (ik; fk)g wherei0 < � � � < ik, and let g be the string f(j0; g0); : : : (jl; gl)g where j0 < � � � < jl.Let n be an integer greater than ik + jl, and let u beu = k[h=0f(ih + n(1 + h); fh)gNote that u is equivalent to f . For the purposes of this proof, let themaximum of an empty 
olle
tion of integers to be 0, and let v be the disjointunion v = [h: ih2Dpf(ih + n(1 + h); g(p(ih)))g [[h: jh2DgnRpf(jh +maxfim + n(1 +m) j p(im) < jhg; gh)gThe union above whi
h is indexed by h : ih 2 Dp (
all it the �rst union)involves mutually disjoint sets be
ause ih+n(1+h) is an in
reasing fun
tionof h. Similarly, the union above whi
h is indexed by h : jh 2 Dg nRp (
all itthe se
ond union) involves mutually disjoint sets. The �rst union is disjointfrom the se
ond union be
ause otherwise there exist h and h0 su
h thatih + n(1 + h) = jh0 +maxfim + n(1 +m) j p(im) < jh0g (1)Redu
ing modulo n givesih = � jh0 if ; = fm j p(im) < jh0gjh0 + imaxfm j p(im)<jh0g otherwise (2)In the �rst 
ase above (; = fm j p(im) < jh0g), equation 1 simpli�es toih + n(1 + h) = jh0 whi
h 
ontradi
ts ih = jh0 . Assume therefore that the8



se
ond 
ase of equation 2 holds. Substituting for ih (as given by equation2) into equation 1 and 
an
eling jh0 yieldsimaxfm j p(im)<jh0g + n(1 + h) = maxfim + n(1 +m) j p(im) < jh0g) n(1 + h) = nmaxf1 +m j p(im) < jh0g) h = maxfm j p(im) < jh0gSubstituting for h (as given above) into equation 2 givesimaxfm j p(im)<jh0g = jh0 + imaxfm j p(im)<jh0g) jh0 = 0) ; = fm j p(im) < jh0g
ontradi
ting the assumption that the se
ond 
ase of equation 2 holds. Notethat v has been shown to be a fun
tion, sin
e no two elements (of v) havethe same �rst 
omponent.By 
onstru
tion, v = g Æ ' where ' : Dv ! Dg is de�ned as'(ih + n(h+ 1)) = p(ih) for ih 2 Dp'(jh +maxfim + n(1 +m) j p(im) < jhg) = jh for jh 2 Dg n RpSin
e p is in
reasing, it is a one-to-one and onto order-preserving fun
tionfrom Dp to Rp. Moreover,Dg = Rp [ (Dg n Rp) = p(Dp) [ (Dg n Rp)Hen
e ' is onto. By lemma 10, v � g provided ' is an in
reasing fun
tion.As has already been observed, ih+n(1+h) and p(ih) are in
reasing fun
tionsof h. Thus ' is in
reasing when restri
ted to the setA = fih + n(1 + h) j ih 2 DpgSimilarly, ' is in
reasing when restri
ted toB = fjh +maxfim + n(1 +m) j p(im) < jhg j jh 2 Dg nRpgLet a 2 A and b 2 B. To establish that ' is in
reasing, it remains to showa < b =) '(a) < '(b)b < a =) '(b) < '(a)Case 1: a = ih + n(1 + h) < jh0 + maxfim + n(1 +m) j p(im) < jh0g = b.The desired 
on
lusion is p(ih) < jh0 . Note that a < b is 
ontradi
tedby ; = fm j p(im) < jh0g (sin
e b then simpli�es to jh0). Therefore letiM + n(1 +M) = maxfim + n(1 +m) j p(im) < jh0g. If p(ih) � jh0 , then9



h > M = maxfm j p(im) < jh0g. In parti
ular, h � M + 1. This yields the
ontradi
tiona = ih + n(1 + h) > iM + n(1 +M + 1) > jh0 + iM + n(1 +M) = bCase 2: b = jh0 +maxfim + n(1 +m) j p(im) < jh0g < ih + n(1 + h) = a.The desired 
on
lusion is jh0 < p(ih). If this were not so, then jh0 > p(ih)(equality is impossible; jh0 2 DgnRp). Thus h �M = maxfm j p(im) < jh0g.This yields the 
ontradi
tiona = ih + n(1 + h) � iM + n(1 +M) � jh0 + iM + n(1 +M) = bNext an edit sequen
e s taking u to v will be 
onstru
ted. LetE = fb!d j b 2 DunAgC = fa!
 v(a) j a 2 AgI = fb!i v(b) j b 2 BgLet s0 be the sequen
e of elements in E, let s00 be the sequen
e of elements inC, and let s000 be the sequen
e of elements in I. De�ne s as s000s00s0. Note thats0(u) is de�ned and is simply the restri
tion of u to A. Therefore, s00s0(u)is de�ned and is simply the restri
tion of v to A. Sin
e A [B = Dv and Aand B are disjoint, s000s00s0(u) is de�ned and is v.The proof is 
ompleted by showing that 
(s) = 
(t). By theorem 4 and thede�nition of the 
ost of an edit sequen
e,
(s) = 
(s000; s00s0(u)) + 
(s00; s0(u)) + 
(s0; u)= jIj 
i + 
(s00; s0(u)) + jEj 
dNote thatjEj = jDun Aj = jDuj � jAj = jDuj � jDpj = jDf j � jDpj = jDf nDpjjIj = jBj = jDgnRpjIt follows that 
(s) = 
(t) provided
(s00; s0(u)) = X(i;j)2p 
(i!
 g(j); f) (3)Both sides of equation 3 
ontain jCj = jAj = jDpj terms, but some 
ould bezero be
ause 
hange operators may be trivial. The right hand side 
an berewritten as Xih2Dp 
(ih!
 g(p(ih)); f)10



A term (
orresponding to ih 2 Dp) is trivial exa
tly when g(p(ih)) = fh.Sin
e v(a) = g Æ '(a), the left hand side of equation 3 
an be rewritten asXih2Dp 
(ih + n(1 + h)!
 g(p(ih)); s0(u))A term (
orresponding to ih 2 Dp) is trivial exa
tly wheng(p(ih)) = s0(u)(ih + n(1 + h)) = u(ih + n(1 + h)) = fh�Let t = (p; f; g) and t0 = (p0; g; h) be two tra
es. Their 
omposition t0 Æ tis the tra
e (p0 Æ p; f; h) from f to h where the 
omposition p0 Æ p of partialfun
tions is de�ned asp0 Æ p = f(i; k) j 9j : (i; j) 2 p and (j; k) 2 p0gNote that the 
omposition t0 Æ t is de�ned only when the third 
omponentof t is equal to the se
ond 
omponent of t0. In this 
ase they are said to be
omposeable.Lemma 12 Given 
omposeable tra
es t and t0, 
(t0 Æ t) � 
(t) + 
(t0).Proof: Let t = (p; f; g) and t0 = (p0; g; h). Note thatjDf nDpj+ jDgnDp0 j � jDf j � jDpj+ jRpnDp0 j= jDf j � (jRpj � jRpnDp0 j)= jDf j � jRp \Dp0 j= jDf nDp0ÆpjjDgn Rpj+ jDhnRp0 j � jDp0 n Rpj+ jDhj � jRp0 j= jDhj � (jDp0 j � jDp0 n Rpj)= jDhj � jDp0 \Rpj= jDhj � jDp0Æpj= jDhj � jRp0Æpj= jDhnRp0ÆpjTherefore
(t) + 
(t0) = (jDf nDpj+ jDgnDp0 j) 
d + (jDgn Rpj+ jDhn Rp0 j) 
i+ X(i;j)2p 
(i!
 g(j); f) + X(j;k)2p0 
(j!
 h(k); g)� jDf nDp0Æpj 
d + jDhnRp0Æpj 
i+ X(i;j)2p 
(i!
 g(j); f) + X(j;k)2p0 
(j!
 h(k); g)11



The proof is 
ompleted by showingX(i;k)2p0Æp 
(i!
 h(k); f) � X(i;j)2p
(i!
 g(j); f) + X(j;k)2p0 
(j!
 h(k); g)In the expression above, an edit operation 
orresponding to (i; j) 2 p istrivial exa
tly when f(i) = g(j), and an edit operation 
orresponding to(j; k) 2 p0 is trivial exa
tly when g(j) = h(k). When both are trivial,f(i) = g(j) = h(k) and the edit operation 
orresponding to (i; k) 2 p0 Æ p istrivial. Consequently, to ea
h nonzero term (i.e., nontrivial edit operation)in the �rst summation, there is a 
orresponding nonzero term in the se
ondor third summation.�Theorem 13 Let s be an edit sequen
e taking f to g. There exists a tra
et taking f to g su
h that 
(t) � 
(s).Proof: Indu
t on the length of s. Base 
ase: s = ". Note that Df = Dg sin
eg = s(f) = f . Let id : Df ! Dg be the identity fun
tion. Let t = (id; f; g)and note that Df = Did and Rid = Dg. Therefore
(t) = X(i;j)2id 
(i!
 f(j); f)Every term in this sum is zero, sin
e (i; j) 2 id =) i = j =) f(i) = f(j).Indu
tive step: Let s = e0 : : : ek, and let h = e1 : : : ek(f). By the indu
tivehypothesis, there exists a tra
e t0 taking f to h su
h that 
(t0) � 
(e1 : : : ek).Sin
e s(f) = g, it follows that e0 takes h to g. The proof is 
ompleted byexhibiting a tra
e t00 taking h to g su
h that 
(t00) = 
(e0). Then t = t00 Æ t0takes f to g and by lemmas 12 and 4,
(t) � 
(t00) + 
(t0) � 
(e0) + 
(e1 : : : ek) = 
(s)There are three 
ases to 
onsider, depending on the type of e0.Case 1: e0 = m!
 g(m). Note that Dh = Dg sin
e m!
 g(m) (h) = g. Letid : Dh ! Dg be the identity fun
tion. Let t00 = (id; h; g) and note (as inthe base 
ase) that 
(t00) = Xi2Dh 
(i!
 g(i); h)Every term in this sum is zero, ex
ept possibly for 
(m!
 g(m); h), sin
ei 6= m =) g(i) = h(i). 12



Case 2: e0 = m!i g(m). Note that Dg = fmg [Dh sin
e m!i g(m) (h) = g.Let id : Dh ! Dg be the identity fun
tion. Let t00 = (id; h; g) and note thatDg n Rid = fmg. Therefore
(t00) = 
i + Xi2Dh 
(i!
 g(i); h)Every term in the summation over Dh is zero, sin
e i 2 Dh =) g(i) = h(i).Case 3: e0 = m!d . Note that Dh = fmg [ Dg sin
e m!d (h) = g. Letid�1 : Dg ! Dh be the identity fun
tion (observe that id is a partial fun
tionfrom Dh to Dg). Let t00 = (id; h; g) and note that DhnDid = fmg. Therefore
(t00) = 
d + Xi2Dg 
(i!
 g(i); h)Every term in the summation over Dh is zero, sin
e i 2 Dg =) g(i) = h(i).�An edit sequen
e s is said to take [f ℄ to [g℄ if there exists u 2 [f ℄ and v 2 [g℄su
h that s(u) = v. A tra
e t is said to take [f ℄ to [g℄ if its se
ond 
omponentis equivalent to f and its third 
omponent is equivalent to g.To refer to the 
ost of an edit sequen
e s taking [f ℄ to [g℄ is to refer to
(s; [f ℄; [g℄) = minf
(s; u) j u 2 [f ℄; s(u) 2 [g℄gAn edit sequen
e s is 
alled a minimal 
ost edit sequen
e taking [f ℄ to [g℄if it takes [f ℄ to [g℄ and among all su
h edit sequen
es its 
ost (as given bythe expression above) is minimal.Theorem 14 If s is a minimal 
ost edit sequen
e taking [f ℄ to [g℄, and t isa minimal 
ost tra
e taking [f ℄ to [g℄, then 
(s; [f ℄; [g℄) = 
(t).Proof: By assumption, there exist u 2 [f ℄ and v 2 [g℄ su
h that s(u) = v.Moreover, 
(s; u) is minimal in the sense that it 
annot de
rease by 
hangings or u subje
t to the 
ontstraints that u 2 [f ℄ and s(u) 2 [g℄. By theorem 13,there exists a tra
e t0 from u to v su
h that 
(t0) � 
(s; u). By theorem 11,there exists an edit sequen
e s0 taking [u℄ = [f ℄ to [v℄ = [g℄ with 
ost nogreater than 
(t0). That 
ost must in fa
t be 
(s; u), sin
e otherwise theminimality of 
(s; u) would be 
ontradi
ted. Therefore 
(t0) = 
(s; u). Theproof is 
ompleted by showing 
(t0) � 
(t) (
(t) = 
(t0) = 
(s; u) wouldthen follow by minimality of 
(t)).Let t = (t1; t2; t3). By theorem 11, there exists an edit sequen
e s00 taking[t2℄ = [f ℄ to [t3℄ = [g℄ with 
ost no greater than 
(t). Its 
ost 
ontradi
ts13



the minimality of 
(s; u) if 
(t) < 
(t0).�Extend the 
on
ept of edit distan
e to equivalen
e 
lasses byÆ([f ℄; [g℄) = minfÆ(u; v) j u 2 [f ℄; v 2 [g℄gSin
e Æ(u; v) is the minimum with respe
t to s of 
(s; u) subje
t to s(u) = v,it follows that Æ([f ℄; [g℄) is the 
ost of a minimal 
ost edit sequen
e taking[f ℄ to [g℄. By theorem 14, that 
oin
ides with the 
ost of a minimal 
osttra
e taking [f ℄ to [g℄.Lemma 15 Let t = (t1; t2; t3) be a tra
e, and let t0 be a tra
e taking [t2℄ to[t3℄. There exists a partial fun
tion t�1 : Dt2 ! Dt3 su
h that t� = (t�1; t2; t3)is a tra
e and 
(t�) = 
(t0).Proof: Let t0 = (t01; t02; t03). Sin
e t02 � t2 and t03 � t3, by lemma 10 thereexist one-to-one and onto order-preserving fun
tions '2 : Dt2 ! Dt02 and'3 : Dt03 ! Dt3 su
h that t2 = t02 Æ '2 and t03 = t3 Æ '3. Let t�1 = '3 Æ t01 Æ '2,and note that t�1 is an in
reasing partial fun
tion from Dt2 to Dt3 . Hen
et� = (t�1; t2; t3) is a tra
e. Be
ause '2 and '3 are isomorphisms,jDt2 nDt�1 j = jDt2 j � jD'3Æt01Æ'2 j = jDt02 j � jDt01 j = jDt02 nDt01 jjDt3 nRt�1 j = jDt3 j � jR'3Æt01Æ'2 j = jDt03 j � jRt01 j = jDt03 n Rt01 jIt follows that 
(t�) = 
(t0) provided the following equality holdsX(u;v)2'3Æ t01Æ'2 
(u!
 t3(v); t2) = X(i;j)2 t01 
(i!
 t03(j); t02)Repla
ing t3 with t03 Æ '�13 , repla
ing t2 with t02 Æ '2 and making the 
hangeof variables i = '2(u), v = '3(j) puts the left hand side of the equality intothe form X(i;j)2t01 
('�12 (i)!
 t03 Æ '�13 ('3(j)); t02 Æ '2)A term 
orresponding to (i; j) (in the left hand side of the equality) istherefore zero exa
tly whent03(j) = t02 Æ '2 ('�12 (i)) = t02(i)A term 
orresponding to (i; j) in the right hand side of the equality is zeroexa
tly when t03(j) = t02(i)� 14



Theorem 16 Edit distan
e is a metri
 on equivalen
e 
lasses of � if andonly if 
i = 
d. Moreover, the following are equal1. Æ([f ℄; [g℄)2. The 
ost of a minimal 
ost edit sequen
e taking [f ℄ to [g℄.3. The 
ost of a minimal 
ost tra
e taking [f ℄ to [g℄.4. minf
((p; f; g)) j p : Df ! Dg is an in
reasing partial fun
tiongProof: The equality of the �rst three quantities listed was already noted inthe dis
ussion pre
eding lemma 15. Note that (p; f; g) (where p : Df ! Dgis an in
reasing partial fun
tion) is a tra
e taking [f ℄ to [g℄. Hen
e the fourthquantity listed is at least Æ([f ℄; [g℄). Let t0 be a minimal 
ost tra
e taking [f ℄to [g℄. By lemma 15, there exists an in
reasing partial fun
tion p : Df ! Dgsu
h that 
((p; f; g)) = 
(t0). Therefore all four quantities listed above areequal.Assume edit distan
e is a metri
 on equivalen
e 
lasses of �. Then it issymmetri
. The same argument as given in the proof of theorem 9 showsÆ([;℄; [f(0; a)g℄) = Æ([f(0; a)g℄; [;℄) =) 
i = 
dAssume 
i = 
d. Sin
e Æ(f; g) is nonnegative, so too is Æ([f ℄; [g℄). Sin
eÆ(f; g) is symmetri
, so too is Æ([f ℄; [g℄). If Æ([f ℄; [g℄) = 0, then there existu 2 [f ℄ and v 2 [g℄ su
h that Æ(u; v) = 0. Hen
e u = v and [f ℄ = [g℄.Moreover, Æ([f ℄; [f ℄) � Æ(f; f) = 0. It remains to establish the triangleinequality.By what has already been established, let t = (p; f; h) be a tra
e su
hthat Æ([f ℄; [h℄) = 
(t). Similarly, let t0 = (p0; h; g) be a tra
e su
h thatÆ([h℄; [g℄) = 
(t0). Note that t0 Æ t is a tra
e taking [f ℄ to [g℄. By lemma 12,Æ([f ℄; [g℄) � 
(t0 Æ t) � 
(t) + 
(t0) = Æ([f ℄; [h℄) + Æ([h℄; [g℄)�Tra
e t is said to be minimal if 
(t) = Æ([t2℄; [t3℄). Note that it makes senseto speak of a minimal tra
e from f to g; that refers to a tra
e (p; f; g) forwhi
h 
((p; f; g)) = Æ([f ℄; [g℄). A

ording to theorem 16, su
h a tra
e exists.Tra
es t = (t1; t2; t3) and t0 = (t01; t02; t03) are said to be 
ompatible providedthat Dt2 \Dt02 = ; = Dt3 \Dt03 , and for all (i; j) 2 t1 and all (i0; j0) 2 t01i < i0 =) j < j0 and i0 < i =) j0 < j15



If t and t0 are 
ompatible, then t� t0 is de�ned ast� t0 = (t1 [ t01; t2 [ t02; t3 [ t03)If t and t0 are not 
ompatible, then t� t0 is unde�ned.Lemma 17 If t�t0 is de�ned, then it is is a tra
e and 
(t�t0) = 
(t)+
(t0).Proof: Let t = (t1; t2; t3) and t = (t01; t02; t03) be 
ompatible tra
es. Then; = Dt2 \Dt02 = Dt3 \Dt03 . Sin
e t2 and t02 have disjoint domains, t2 [ t02 isa fun
tion and Dt2[t02 = Dt2 [Dt02Likewise, t3 [ t03 is a fun
tion andDt3[t03 = Dt3 [Dt03Likewise, t1[ t01 is a fun
tion whi
h is partitioned by t1 and t01. Hen
e t1[ t01is a partial fun
tion from Dt2[t02 to Dt3[t03 . Moreover, t1 [ t01 is in
reasingsin
e for all (i; j) 2 t1 and all (i0; j0) 2 t01i < i0 =) j < j0 and i0 < i =) j0 < jIf (i; j) and (i0; j0) are both in either t1 or t01, the above impli
ations holdbe
ause t1 and t01 are in
reasing. Therefore, t � t0 is a tra
e. Note that,be
ause of the disjoint unions involved,jDt2[t02 nDt1[t01 j = jDt2 j+ jDt02 j � jDt1 j � jDt01 j= jDt2 j � jDt1 j+ jDt02 j � jDt01 j= jDt2 nDt1 j+ jDt02 nDt01 jjDt3[t03 n Rt1[t01 j = jDt3 j+ jDt03 j � jRt1 j � jRt01 j= jDt3 j � jRt1 j+ jDt03 j � jRt01 j= jDt3 n Rt1 j+ jDt03 n Rt01 jX(i;j)2 t1[t01
(i!
 (t3 [ t03)(j); t2 [ t02) = X(i;j)2 t1
(i!
 t3(j); t2) +X(i0;j0)2 t01
(i0!
 t03(j0); t02)Therefore, 
(t� t0) = 
(t) + 
(t0).�Tra
e t = (t1; t2; t3) is said to pre
ede tra
e t0 = (t01; t02; t03), denoted t � t0,provided maxfi j i 2 Dt2g < minfi j i 2 Dt02gmaxfi j i 2 Dt3g < minfi j i 2 Dt03g16



where max ; = �1 and min ; = +1.Theorem 18 If t = (t1; t2; t3) � t0 = (t01; t02; t03), then t � t0 is a tra
e. Ift� t0 is minimal, then so are t and t0.Proof: By lemma 17, t � t0 is a tra
e provided t and t0 are 
ompatible.Sin
e t pre
edes t0, it follows that Dt2 \ Dt02 = ; = Dt3 \ Dt03 . Moreover,if (i; j) 2 t1 and (i0; j0) 2 t01, then i < i0 and j < j0. Hen
e t and t0 are
ompatible. Note that the 
ompatibility of tra
es t and t0 is not in
uen
edby either t1 or t01, be
ause the 
ompatibility follows from t � t0 whi
h isde�ned independent of t1 and t01 (whether t pre
eeds t0 depends only onDt2 ;Dt3 ;Dt02 ;Dt03). Therefore (by lemma 17)
(t� t0) = 
(t) + 
(t0)and this equality remains valid when t1 and t01 are treated as parametersand are allowed to 
hange. Suppose t � t0 is minimal. Then the left handside of the equality is Æ([t2 [ t02℄; [t3[ t03℄). By thereom 16, it 
annot de
reaseby 
hanging t1[ t01. However, if either t or t0 were not minimal, then (bythereom 16) the right hand side of the equality 
ould de
rease by 
hangingt1 or t01.�Lemma 19 Let t = (t1; t2; t3) be a tra
e. Let t2 = f(i0; f0); : : : ; (ik; fk)gwhere i0 < � � � < ik, and let t3 = f(j0; g0); : : : ; (jl; gl)g where j0 < � � � < jl.If t2 and t3 are nonempty, then t 
an be expressed as t = t00 � t0 where oneof the following 
ases hold.1. t0 = (f(ik; jl)g; f(ik ; fk)g; f(jl ; gl)g)2. t0 = (;; f(ik ; fk)g; ;)3. t0 = (;; ;; f(jl ; gl)g)Moreover, if t is minimal, then so is t00.Proof: Let t0 = (t01; t02; t03). The three 
ases 
orrespond to a 
ase de
ompo-sition based on t1. The �rst 
ase is (ik; jl) 2 t1, whi
h 
an be des
ribedby saying both ik 2 Dt1 and jl 2 Rt1 . The se
ond 
ase is ik =2 Dt1 andjl 2 Rt1 . The third 
ase is jl =2 Rt1 . In ea
h 
ase t00 = (t001; t002 ; t003) must (bythe de�nition of �) be de�ned byt001 = t1n t01t002 = t2n t02t003 = t3n t0317



In every 
ase, t0 is 
learly a tra
e. Moreover, t00�t0 is a tra
e (via theorem 18),assuming that t00 is a tra
e, sin
e t00 � t0.In 
ase 1, t001 is a partial fun
tion fromDt2nfikg = Dt2nt02 to Dt3nfjlg = Dt3nt03 .Thus t00 is a tra
e.In 
ase 2, t001 = t1 is a partial fun
tion from Dt2nfikg = Dt2nt02 to Dt3 , be
auseik =2 Dt1 . Thus t00 is a tra
e.In 
ase 3, t001 = t1 is a partial fun
tion from Dt2 to Dt3nfjlg = Dt3nt03 , be
ausejl =2 Rt1 . Thus t00 is a tra
e.If t is minimal, then by theorem 18 so is t00.�4 The Normal Distan
e MatrixDe�ne the distan
e between normal representations �f and �g asd( �f; �g) = Æ([f ℄; [g℄)Note that distan
e is well-de�ned sin
e �f = �h() [f ℄ = [h℄. By theorem 16,distan
e is a metri
 on normal representations if and only if 
i = 
d.Let s = e0 : : : ek be an edit sequen
e taking u to v. Normal representation�u is regarded as being transformed to �v through the following sequen
e ~s ofnormal representations~s = 	(u)	(ek(u))	(ek�1ek(u)) : : :	(e0 : : : ek(u))Ea
h step in the sequen
e (from one element to the next) 
orresponds to oneof three types of operations on normal representations. Let �w = w0 : : : wn.If ei is a delete operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n�1where there exists 0 � l � n su
h thatw0j = � wj if j < lwj+1 if j > lIn other words, the l th element of �w has been removed. If ei = m!
 b is a
hange operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n18



where there exists 0 � l � n su
h thatw0j = � wj if j 6= lb if j = lIn other words, the l th element of �w has been 
hanged; this is 
alled a trivial
hange when b = wl. If ei =m!i b is an insert operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n+1where there exists 0 � l � n+ 1 su
h thatw0j = 8<: wj if j < lb if j = lwj�1 if j > lIn other words, b has been inserted into �w at position l.To streamline exposition, refer to the three types of operations (on normalrepresentations des
ribed above) as delete, 
hange, and insert operations.Let them have respe
tive 
osts 
d, 

, and 
i, ex
ept that the 
ost of atrivial 
hange is zero. To distinguish these operators (whi
h a
t on normalrepresentations) from previously dis
ussed operators, they are 
alled normaloperators. The sum of the 
osts of the normal operators 
orresponding tothe steps (from one element to the next) in the sequen
e ~s is therefore 
(s).Given any sequen
e r of normal representationsr = �h0�h1 : : : �hnsu
h that �hi+1 is the result of some normal operator oi applied to �hi, de�neits 
ost 
(r) as the sum (over 0 � i < n) of the 
osts of the operators oi.Su
h a sequen
e is referred to as a normal sequen
e, and is des
ribed asbeing from �h0 to �hn. By the dis
ussion above, if s = e0 : : : ek is an editsequen
e taking u to v, then the sequen
e~s = 	(u)	(ek(u)) : : :	(e0 : : : ek(u))is a normal sequen
e taking �u to �v. Moreover, 
(~s) = 
(s).A minimum normal sequen
e from �f to �g is a minimal 
ost normal sequen
efrom �f to �g. De�ne m( �f; �g) as the 
ost of a minimum normal sequen
e from�f to �g. Hen
e m( �f; �g) � 
(~s) = 
(s) where s is a minimal 
ost edit sequen
etaking [f ℄ to [g℄. It follows (via theorem 16) thatm( �f; �g) � d( �f; �g)There may be question as to whether m( �f; �g) = d( �f; �g), be
ause it has notyet been established that every normal sequen
e r 
an be expressed as ~s forsome edit sequen
e s. The following lemma shows that to be the 
ase, andtherefore m( �f; �g) and d( �f; �g) 
oin
ide.19



Lemma 20 Given nonempty normal sequen
e r, there exists u and v andan edit sequen
e s taking u to v su
h that r = ~s.Proof: To fa
ilitate indu
tion on the length of r, a stronger result will beproved; in addition, u may be 
hosen su
h that the distan
e between 
on-se
utive elements of Du is arbitrarily large.Base 
ase: r = �h where h = f(i0; f0); : : : (il; fl)g. Let n 2 Z+ be arbitrary,and let u = f(i0n; f0); : : : (iln; fl)g. Let s = " so that ~s = �u = �h = r.Moreover, the distan
e between 
onse
utive elements of Du is at least n.Indu
tive step: r = �h0 : : : �hk where �h0 = a0 : : : aq. Let o be the normaloperator taking �h0 to �h1, and let p be the lo
ation at whi
h a 
hange,insertion, or deletion takes pla
e in �h0. Let n 2 Z+ be arbitrary, andlet s be an edit sequen
e taking h1 to hk su
h that ~s = �h1 : : : �hk. Leth1 = f(i0; f0); : : : (il; fl)g where i0 < � � � < il and the distan
e between
onse
utive elements of Dh1 is greater than 2n. The proof is 
ompleted byshowing there exists an edit operation e taking u to h1 where u may be
hosen su
h that �u = �h0 and the distan
e between 
onse
utive elements ofDu is at least n. The required edit sequen
e is then se. There are three
ases to 
onsider, depending on the type of o.Case 1: o is a 
hange operator. Then �h0 = �h1 ex
ept perhaps at positionp. Let u = ip!
 ap (h1) and let e = ip!
 fp. Then �u = �h0 and e(u) = h1 asrequired. Moreover, the distan
e between 
onse
utive elements of Du = Dh1is at least n.Case 2: o is an insert operator. Then the element inserted by o is fp and�h0 = f0 : : : fp�1fp+1 : : : fq. Let u = ip!d (h1) and let e = ip!i fp. Then �u =�h0 and e(u) = h1 as required. Moreover, the distan
e between 
onse
utiveelements of Du = Dh1n fipg is at least n.Case 3: o is a delete operator. Then �h1 = a0 : : : ap�1ap+1 : : : aq. Let i beb(ip�1 + ip)=2
. Let u = i!i ap (h1) and let e = i!d . Then �u = �h0 ande(u) = h1 as required. Moreover, the distan
e between 
onse
utive elementsof Du = Dh1 [ fipg is at least n.�Theorem 21 Distan
e d( �f; �g) de�ned as the 
ost of a minimal tra
e takingf to g is a metri
 on normal representations if and only if 
i = 
d. Moreover,d( �f; �g) is equal to the 
ost of a minimal normal sequen
e from �f to �g.Proof: Theorem 16 established the 
laims regarding distan
e being a metri
.Lemma 20 and the dis
ussion pre
eeding it 
omplete the proof.� 20



Given string f = f(i0; f0); : : : ; (ik; fk)g where i0 < � � � < ik, de�ne �j(f) for0 < j � jf j to be the normal representation of f(i0; f0); : : : ; (ij�1; fj�1)g,�j(f) = f0 : : : fj�1Let �0(f) be the empty sequen
e ". Note that if f � h then �j(f) = �j(h), sof may as well be normalized. Moreover, �jf j(f) is the normal representationof f .Given strings f and g, their normal distan
e matrix is the 1 + jf j � 1 + jgjmatrix D with i; j entry (for 0 � i � jf j and 0 � j � jgj)Di;j = d(�i(f); �j(g))In parti
ular, Djf j;jgj is the distan
e between the normal representations off and g.The notation [expression℄ is used in the following theorem to simplify expo-sition. It is de�ned as[expression℄ = � 1 if expression is true0 otherwiseTheorem 22 Let f and g be nonempty normalized strings. For 0 < u � jf jand 0 < v � jgj, their normal distan
e matrix D satis�esD0;0 = 0D0;v = v 
iDu;0 = u 
dDu;v = minf

[f(u� 1) 6= g(v � 1)℄ +Du�1;v�1; 
d +Du�1;v; 
i +Du;v�1gProof: Let �f = f0 : : : fk and �g = g0 : : : gl. Using normal operators on normalrepresentations (whi
h is justi�ed by theorem 21), it is 
lear thatD0;0 = d("; ") = 0D0;v = d("; g0 : : : gv�1) = v 
iDu;0 = d(f0 : : : fu�1; ") = u 
dNote that Du;v = d(f0 : : : fu�1; g0 : : : gv�1) = 
(t) where t = (t1; t2; t3) is aminimal tra
e taking �(f0 : : : fu�1) to �(g0 : : : gv�1). Appealing to lemmas17 and 19, Du;v = 
(t00) + 
(t0) where t = t00 � t0 and one of the following
ases holds.Case 1: If t0 = (f(iu�1; jv�1)g; f(iu�1; fu�1)g; f(jv�1 ; gv�1)g), then
(t0) = 
(iu�1!
 gv�1; f(iu�1; fu�1)g) = 

[fu�1 6= gv�1℄21



Moreover, t00 is a minimal tra
e taking �(f0 : : : fu�2) to �(g0 : : : gv�2). Thus
(t00) = Du�1;v�1.Case 2: If t0 = (;; f(iu�1; fu�1)g; ;), then 
(t0) = 
d and t00 is a minimaltra
e taking �(f0 : : : fu�2) to �(g0 : : : gv�1). Thus 
(t00) = Du�1;v.Case 3: If t0 = (;; ;; f(jv�1 ; gv�1)g), then 
(t0) = 
i and t00 is a minimaltra
e taking �(f0 : : : fu�1) to �(g0 : : : gv�2). Thus 
(t00) = Du;v�1.It follows that Du;v is equal to some element of the setf

[f(u� 1) 6= g(v � 1)℄ +Du�1;v�1; 
d +Du�1;v; 
i +Du;v�1gIf ea
h element in this set is the 
ost of some sequen
e of normal operatorstaking f0 : : : fu�1 to g0 : : : gv�1, then the proof is 
omplete by the minimalityof Du;v.The �rst element in the set is the 
ost of 
hanging fu�1 to gv�1 by a normal
hange operator followed by the 
ost of ~s where s is a minimal 
ost editsequen
e from [�(f0 : : : fu�2)℄ to [�(g0 : : : gv�2)℄.The se
ond element in the set is the 
ost of deleting fu�1 by a normal deleteoperator followed by the 
ost of ~s where s is a minimal 
ost edit sequen
efrom [�(f0 : : : fu�2)℄ to [�(g0 : : : gv�1)℄.The third element in the set is the 
ost of ~s where s is a minimal 
ostedit sequen
e from [�(f0 : : : fu�1)℄ to [�(g0 : : : gv�2)℄ followed by the 
ost ofinserting gv�1 by a normal insert operator.�
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