A Formal Analysis of Edit Distance

M. D. Vose

February 1, 2004

1 Overview

The edit distance is a means of measuring the cost of transforming one string
into another by way of insert, delete and change operators. The theoretical
and computational underpinnings of edit distance are discussed in a formal
mathematical framework.

2 Preliminaries

Let X be a finite nonempty set of symbols. The set of all finite strings with
elements from ¥ (including the empty string) is X*. Strings are naturally
functions; the string s = sps7 . .. s is identified with the set of ordered pairs
(i.e., function)

s ={(0,s0),(1,s1),...(k,sk)}

The domain and range of function f, denoted by D; and R; respectively,
are defined by

Dp={z: Jy.(z,y) € f}
Ry={y: 3z.(z,y) € f}

The notation
f:A—B

asserts that f is a function whose domain is a subset of A and whose range
is a subset of B. The set B is referred to as the co-domain, the set A is
referred to as the given-domain. If Dy = A, then f is called a function from
A to B. If Dy # A, then f is called a partial function from A to B; for
example, every string s € X* is a partial function s : N — ¥, where N is
the set of nonnegative integers.

The length |A| of string A refers to the cardinality of (the set of ordered
pairs) A. In particular, the empty string () has length || = 0.

The discussion above explains how any given string s is a function, which in
turn is a partial function—call it ®(s)—from N to X. Given string s = abc,
for example, ®(s) = {(0,a),(1,b),(2,¢)} is the naturally associated partial
function. Consider reversing this process: let

f= {(’io, 50)’ (ilv 51)7 s (ika Sk)}

be a partial function from N to X%, where 49 < 43 < --- < 4 comprise the
domain of f. It is naturally a string, namely s¢s1 ... sg; let ¥(f) denote this
string. Passing from this string to a function in the natural way yields

Q)(\Il(f)) = {(07 50)7 (17 Sl)a s (ku Sk)}

which is not necessarily the same partial function f as was began with. The
partial function ®(¥(f)) is called the normal form of f. A partial function
f N — ¥ for which f = ®(¥(f)) is said to be normalized. The following
properties are easily verified

1. ¥(®(s)) = s, for every string s € X*.

2. ®(¥(f)) = f, for every normalized partial function f : N — ¥.

In particular, ®(s) is normalized for every s € ¥* and the functions ®
and ¥ formally describe how strings and normalized partial functions can
be thought of interchangeably. This paper, however, generalizes the concept
of string from normalized partial functions to partial functions; any partial
function f : N — X will henceforth be called a string, and V(f) will be
called its normal representation.

As previously observed, from the normal representation of string f it is only
the normal form of f which necessarily may be recovered. For instance, the
normal representation of string f = {(3,b),(1,a),(117,¢)} is abc, and given
abc it is only the normal form ®(abc) = {(1,b), (0,a), (2,¢)} of f which may
be recovered.

An edit operation is either a change, insert, or delete operation, and these
three types of operations are mutually exclusive. Let £ be the set of all edit
operations. Elements of £ map strings (i.e., partial functions from N to X)
to strings. Change operators are denoted by m— b wherem € Nand b € ¥,

and are defined by

m=b(f) = (F\{(m, f(m))}) U{(m.b)} ifm e Dy

Insert operators are denoted by m—z)b where m € N and b € Y, and are
defined by
m—b(f) = FU{m.b)} ifm ¢ Dy

Delete operators are denoted by m— where m € N, and are defined by

m—(f) = f\{(m, f(m))} if m e Dy

Note that edit operations are not defined for every string; for example,
m— (f) is undefined whenever m ¢ D;. Thus elements of £ are partial

functions from the set of all strings to the set of all strings. When defined,
the result of applying an edit operation to a string f is different from f
except in the case m — b (f) where (m,b) € f. In this case the edit operation

(applied to f) is said to be trivial.

Let S be the set of all finite sequences of edit operations. Elements of S
have the form ejesy...e, where ¢; € £ and n € N (if n = 0, the sequence is
empty). Elements of S are called edit sequences and may be interpreted as
mapping strings to strings:

ereg...en(f) =er(...en—1(en(f))...)

If ¢ € S is the empty sequence, then e(f) = f for all strings f. Note
that because elements of £ are partial functions, so too are edit sequences;
erez...en(f) is not necessarily defined.

Lemma 1 For every string f, there exists an edit sequence s such that
s(f) =0

Proof: If f =0, then let s = . Otherwise, let Dy = {ip,...,i,}. Note that
O

Lemma 2 For every string f, there exists an edit sequence s such that
s(0) = f

Proof: If f = (), then let s = e. Otherwise, let Dy = {ip,...,i,}. Note that
Il

Theorem 3 For all strings f and g, there exists an edit sequence s such
that s(f) =g.

Proof: Appealing to Lemmas 1 and 2, let s; and s9 be edit sequences such
that so(f) = 0 and s;(0) = g. Now let s = 5159 (i.e., s is the concatenation
of s1 and s9). It follows that s(f) = s1(s2(f)) = g.

U

Each type of edit operation has an associated cost. Let y; > 0 be the cost
of an insert operation, 4 > 0 be the cost of an delete operation, and . > 0
be the cost of a nontrivial change operation; trivial edit operations have
zero cost. Strictly speaking, a change operator does not have a cost; it’s
argument is required in order to determine whether it is trivial, in which
case it has zero cost. Thus cost is associated with the pair operator and
argument, rather than associated with operator alone.

To enable speaking of the cost of an edit sequence (which may contain a
potentially trivial change operator) we say that s € S takes f to g provided
s(f) = g. Now the cost y(s, f) of an edit sequence s taking f to g may be
inductively defined as follows

Ve f) = 0
Ym—,f) = 7
Ym—=bf) = 7
7(m7>b,f) = 0if f= m7>b(f), and . otherwise

v(eo...en, f) = (eo,e1-..en(f)) +(er-..en, f)

When f can be inferred from context, (s, f) is abbreviated by 7(s). More-
over, to assert that s is an edit sequence taking f to g is to establish a
context in which (s, f) may be abbreviated by y(s).

Theorem 4 Let s be an edit sequence taking f to h, and let s’ be an edit
sequence taking h to g. The concatenation s" = s's takes f to g, and

Y(s") =(s") +v(s)

Proof: Let ' = ep...ex, and let s = egyq...€,. Then s” = ey...e, and
according to the recursive definition for the cost of an edit sequence,

7(3”7f) = Z’Y(ejaej-l-l"'en(f))
=0
k n
= Y o eeiienl))+ Y e e enlf))
Jj=0 J=k+1

k
= Z’Y(ej, ejt1---ex(s(f))) + (s, f)
j=0

= (s, h) +7(s, f)

g

Theorem 5 Let s be an edit sequence taking f to g. If v; = 4, then there
exists an edit sequence s' taking g to f such that v(s) = y(s'). Moreover, s'
may be chosen to have the same length as s.

Proof: Induct on the length of s. Base case: If s = ¢ then f = s(f) = g.
Let s’ = ¢ and observe that y(s) = y(s') = 0.

Inductive step: let s = eg...e, and let h = ey ...ex(f). Since s(f) =g, it
follows that eg(h) = g. By the inductive hypothesis, there exists e ... €}
taking h to f such that y(ej...e;_;) =(e1...ex). The proof is completed
by showing there exists €], taking g to h such that y(ej,) = y(ep). This would
suffice because then

s'(9) = €. ep_1(er(9)
= ey...e._1(h)
= f

and by theorem 4,

/

v(s") = ey €1, h) + (el 9)
= ~(er...ex, f)+v(eo, h)
= v(s)

There are three cases to consider, based on the type of edit operation ey is.

Case 1: ey is m— g(m) (recall that eg(h) = g; if ey is a change operator
then g and h agree everywhere except possibly at m). Let €} be m— h(m).

Note that if ey is trivial, then g = h and e} is therefore trivial. If eg is
nontrivial, then h(m) # g(m) and e}, is therefore nontrivial. In either case,

(ek) = 7(eo).
Case 2: ey is m—g(m) (if ey is an insert operator, then g is the disjoint

union h U {(m,g(m))}). Let e/, be m—. Since v; = 74, v(€)) = v(eo).
Case 3: e is m—» (if eg is a delete operator, then A is the disjoint union

g U {(m,h(m))}). Let e/, be the edit operation m7>h(m) Since y; = g,

v(e}) = 7(eo).
0

Edit distance is a function § which maps two strings to a nonnegative real,
and is defined by

0(f,g) = min{~y(s) | s is an edit sequence taking f to g}

Given strings f and g, the distance from f to g is defined as 0(f,g). This
distance exists, by theorem 3. That this definition is reasonable will now be
established.

Lemma 6 The distance between f and g is nonnegative, and is zero if and
only if f =g.

Proof: Distance is nonnegative because edit sequences have nonnegative
cost. If f = g then 6(f,g) = 0 since ¢(f) = g and y(¢) = 0. Conversely, let
s = ep...er be an edit sequence taking f to g having zero cost. It follows
that every edit operator in s must be trivial, since otherwise the sum

k

¥(s) =D lej e er(f))

=0

would be positive.
O

Lemma 7 The triangle inequality holds,

0(f,9) < 6(f,h) +6(h,g)

Proof: Let 6(f,h) =y(s) and §(h,g) = y(s'), where s(f) = h and s'(h) =
Note that the concatenation s” = s's takes f to g, hence §(f,g) < (s
This completes the proof, since by theorem 4, y(s") = v(s") + v(s).

O

g.
II)‘

Lemma 8 If v; = 4, then distance is symmetric,

5(fag) = 5(gvf)

Proof: It will be shown that 0(f,g) > d(g,h). That would complete the
proof, since two applications of the inequality yield

6(f,9) = d(g,f) > 6(f,9)

Let 6(f,g) = v(s), where s takes f to g. By theorem 5, there exists s’ taking

g to f such that y(s") = vy(s). Hence, d(g, f) < v(s") = v(s).
U

Theorem 9 Edit distance is a metric if and only if v; = 4.

Proof: To show the edit distance is a metric, it must be established that

1. 6(f,9) 20

2. 6(f,9) =0 < [=

3. 0(f,h) <4(f,9) +6(g,h)
4. 6(f,9) =d(g, f)-

Appealing to the previous lemmas shows the above properties hold when
vi = 74 (in fact, only symmetry requires v; = vq4).

Conversely, suppose property 4 holds. Let f = () and g = {(0,a)}. If s is
an edit sequence taking f to g, then s must contain an insert edit operation
(otherwise |s(f)| < |f] < |g|). Since ¢ = 0—a(f), the distance from f
to g is ;. If s’ is an edit sequence taking g to f, then s’ must contain a
delete edit operation (otherwise |s'(g)| > |g| > |f]). Since f = 0— (9), the
distance from g to f is v4. Thus v; = 6(f,9) = (g, f) = V4

O

3 Traces

A trace is an ordered triple (p, f,g) where f, g are strings and p is an
increasing (i.e., i < j = p(i) < p(j)) partial function p : Dy — D,. Trace
(p, f,g) is referred to as a trace from f to g.

The cost of trace t = (p, f,g) is defined as

¥(t) = |Dg\ Dylva + D\ Rolvi + D v(i—=g0j), f)
(i.5)ep

Let f denote the normal representation U(f) of string f. Define an equiva-
lence relation = on the set of strings by f = ¢ if and only if f = §. Let [f]
denote the equivalence class of f.

Lemma 10 Strings f and g are equivalent if and only if there exists an
increasing onto function ¢ : Dy — Dy such that f = go .

Proof: Let f = {(i0, fo),--. (ik, fk)} and g = {(jo,90),--- (Ji,91)}, where
19 < -+ < i and jp < --- < j;. Suppose @ exists. Since ¢ is increasing, it
is a one-to-one and onto order-preserving map from Dy to D,. Hence k =1
and ¢(ip) = jp. Therefore,

fn = fin) = goplin) = g(jn) = gn

Conversely, suppose f = ¢g. Then k = [and fr, = g, for 0 < h < k. Let
¢(in) = jn, and note that ¢ : Dy — D, is increasing and onto. Moreover,

gow(in) = g(jn) = gn = fn = f(in)
O

Note that the function ¢ in lemma 10 is a one-to-one and onto order-
preserving function since an increasing function preserves order and must
be one-to-one.

Theorem 11 Let t be a trace from f to g. There exists u € [f], v € [g],
and an edit sequence s taking u to v, such that y(s) = y(t).

Proof: Let t = (p, f,g). Let f be the string {(io, fo),-.- (i, fx)} where
ig < -+ < i, and let g be the string {(jo, g0),- - - (j1,9;1)} where jo < --- < j;.
Let n be an integer greater than i + j;, and let u be

k
u=|J{(in +n(d+h),fu)}

h=0

Note that u is equivalent to f. For the purposes of this proof, let the
maximum of an empty collection of integers to be 0, and let v be the disjoint
union

v o= |J {Gn+n@+n),9m6))} U

h:ineD,

U {Gn +max{inm +n(1+m) | plim) < jn} gn)}
h:jn€Dg\Rp

The union above which is indexed by h : i, € D, (call it the first union)
involves mutually disjoint sets because iy, +mn(1+h) is an increasing function
of h. Similarly, the union above which is indexed by h : j, € Dy \ R, (call it
the second union) involves mutually disjoint sets. The first union is disjoint
from the second union because otherwise there exist h and h’ such that

in +n(l+h) = jp + max{i, +n(l +m) | p(in) < jn} (1)
Reducing modulo n gives

ip = . . ' ' L . ()
In' F tmax{m | plim)<j,} Otherwise

In the first case above () = {m | p(im) < ju}), equation 1 simplifies to
ip, +n(l + h) = jp which contradicts 7, = js. Assume therefore that the

second case of equation 2 holds. Substituting for i), (as given by equation
2) into equation 1 and canceling jp yields

fmax{m | p(im)<jy} T 71+ h) =max{ipn +n(l+m) | p(in) < jn}
= n(l+h) =nmax{l+m | p(in) < jn}
= h=max{m | p(in) < jn}

Substituting for 4 (as given above) into equation 2 gives

bmax{m | plim)<jp} = Jh' T tmax{m | plim)<jp}
= Juw =0
= 0={m|p(im) <jn}

contradicting the assumption that the second case of equation 2 holds. Note
that v has been shown to be a function, since no two elements (of v) have
the same first component.

By construction, v = g o ¢ where ¢ : D, — D, is defined as

o(ip +n(h+1)) = plip) fori, € D,
©(n + max{ip, +n(l +m) | plim) <jn}) = Jjn forjn € Dy\ R,

Since p is increasing, it is a one-to-one and onto order-preserving function
from D, to R,. Moreover,

Dy = Ry U (Dg\Rp) = P(Dp) U (Dg\Rp)

Hence ¢ is onto. By lemma 10, v = ¢ provided ¢ is an increasing function.
As has already been observed, i, +n(1+h) and p(ip) are increasing functions
of h. Thus ¢ is increasing when restricted to the set

A={ip +n(l+h) | i € Dy}
Similarly, ¢ is increasing when restricted to
B = {jn +max{iy +n(l+m) | plin) <jn} | jn € Dg\ Rp}
Let @ € A and b € B. To establish that ¢ is increasing, it remains to show

a<b= p(a) < p(b)
b<a= p(b) < p(a)

Case 1: a = ip +n(l +h) < jp + max{iy,, + n(1 +m) | p(in) < jup} =0
The desired conclusion is p(in) < jp. Note that a < b is contradicted
by 0 = {m | p(im) < ju} (since b then simplifies to ji). Therefore let
irvy +n(l + M) = max{i,, + n(l +m) | p(in) < juw}t. U p(in) > jpr, then

h > M = max{m | p(im) < jp}. In particular, h > M + 1. This yields the
contradiction

a = ip+nl+h) > iy+n(l+M+1) > ju+iy+nl+M) =b

Case 2: b = jpy + max{ip + n(1 +m) | p(im) < jw} < in +n(l+h) = a.
The desired conclusion is ji < p(ip). If this were not so, then ju > p(ip)
(equality is impossible; j,r € Dg\Ry). Thus h < M = max{m | p(im) < jn }
This yields the contradiction

a =ip+n(l+h) <iy+n(l+M) < jp+iy+n(l+M) =0b
Next an edit sequence s taking u to v will be constructed. Let

E = {b— |be D,\ A}
C = {a—>v(a)|acA}
I {b—v(b) | b€ B}

Let s’ be the sequence of elements in E, let s” be the sequence of elements in

C, and let s’ be the sequence of elements in I. Define s as s"'s"s’. Note that

s'(u) is defined and is simply the restriction of u to A. Therefore, s”s'(u)

is defined and is simply the restriction of v to A. Since AUB = D, and A

and B are disjoint, s”'s"s'(u) is defined and is v.

The proof is completed by showing that y(s) = y(¢). By theorem 4 and the
definition of the cost of an edit sequence,

v(s) = (", 5" (W) + (5", 8 (w) + (s,)
= |7 +(s", s'(w) + |E|a
Note that
|E] = [Du\ A] = |Dy| = |A] = [Du] = [Dy| = [Dy| = |Dp| = |Df\ Dy
[I| = [B| = |Dy\ Ry
It follows that y(s) = () provided
Y(s" s w) = D Ai—g(), f) (3)
(i.5)€p

Both sides of equation 3 contain |C| = |A| = |D,| terms, but some could be
zero because change operators may be trivial. The right hand side can be
rewritten as

> A= gp(in), f)

€Dy

10

A term (corresponding to i, € D)) is trivial exactly when g(p(ip)) = fh.
Since v(a) = g o ¢(a), the left hand side of equation 3 can be rewritten as

> Alin+ (1 + k)= g(p(in)), s' ()
€Dy
A term (corresponding to i, € D)) is trivial exactly when
g9(p(in)) = $'(w)(in +n(l+h)) = win+n(l+h) = fi
U

Let t = (p, f,g) and t' = (p',g,h) be two traces. Their composition t' ot
is the trace (p' o p, f,h) from f to h where the composition p’ o p of partial
functions is defined as

p,Op:{(i, k) | Hj'(iv]) € pand (]ak) Ep,}

Note that the composition ' o ¢ is defined only when the third component
of t is equal to the second component of #. In this case they are said to be
composeable.

Lemma 12 Given composeable traces t and t', y(t' ot) < y(t) +y(t').

Proof: Let t = (p, f,g) and t' = (p’, g, h). Note that

|Df\Dp|+|Dg\Dp’| > |Df|_|Dp|+|Rp\Dp’|
= [Dyl = (IBp| = |Bp\ Dp])
— |Df|_|Rmep’|
= |Df\ Dpopl

[Dg\ RBp| + |Dp\ Ry| = |Dy\ Byl + |Dp| — |Ry|
= |Dnl = (IDy| = |Dy \ Rp))
= |Dul =Dy N Ryl

= |Dn| = Doyl
= |Dp| - |Rp’0p|
= |Dh\Rp’0p|
Therefore
’Y(t)+’Y(t,) = (|Df\Dp|+|Dy\Dp’|)’)’d + (|D9\Rp|+|Dh\Rp’|)’)’i
+ > Ai=gl), H+ Y A= h(k)9)
(ij)€p (4,k)ep’

2 |Df\Dp’0p|’Yd + |Dh\Rp’0p|”Yi
+ D i=gl), H+ Y A= h(k)9)

(i.j)ep (4,k)ep’

11

The proof is completed by showing

Yo Aliohk),) < Y Ai=g6).)+ D, Wih(k),9)

(i,k)Ep’op (i,5)€p (4,k)€p’

In the expression above, an edit operation corresponding to (i,7) € p is
trivial exactly when f(i) = g¢(j), and an edit operation corresponding to
(4, k) € p' is trivial exactly when g(j) = h(k). When both are trivial,
f(@) = g(5) = h(k) and the edit operation corresponding to (i,k) € p' o p is
trivial. Consequently, to each nonzero term (i.e., nontrivial edit operation)
in the first summation, there is a corresponding nonzero term in the second
or third summation.

g

Theorem 13 Let s be an edit sequence taking f to g. There exists a trace
t taking f to g such that vy(t) < y(s).

Proof: Induct on the length of s. Base case: s = ¢. Note that Dy = D, since
g=s(f)=f. Letid : Dy — Dy be the identity function. Let ¢t = (id, f, g)
and note that Dy = D;q and R;q = Dg4. Therefore

y(6) = Y i fG), f)
(i,9)€id
Every term in this sum is zero, since (i,7) € id =i = 7 = f(i) = f(j)-
Inductive step: Let s = eg...ek, and let h = ey...ex(f). By the inductive
hypothesis, there exists a trace ¢’ taking f to h such that y(t') < y(e1...ex).
Since s(f) = g, it follows that ey takes h to g. The proof is completed by

exhibiting a trace t” taking h to g such that (") = y(ep). Then t =¢" ot
takes f to g and by lemmas 12 and 4,

Y(t) < y({t") +y() < vleo) +vler...ex) = v(s)
There are three cases to consider, depending on the type of ep.

Case 1: eg = m— g(m). Note that D, = Dy since m— g(m) (h) = g. Let
id : D, — Dy be the identity function. Let t” = (id, h,g) and note (as in
the base case) that

Y(#") = Y (i g(i),)

ieDy,
Every term in this sum is zero, except possibly for y(m — g(m),h), since
i #=m = g(i) = h(i).

12

Case 2: eg = m— g(m). Note that Dy = {m} U Dy, since m— g(m) (h) = g.
Let id : Dy, — D, be the identity function. Let ¢ = (id, h, g) and note that
Dy \ Riq = {m}. Therefore

V) =i+ Y (i g(i),h)
€Dy,

Every term in the summation over Dy, is zero, since i € Dy = ¢(i) = h(7).

Case 3: ¢g = m—. Note that D) = {m} U D, since m— (h) = g. Let

id™1 Dy — Dy, be the identity function (observe that id is a partial function
from Dy, to D). Let t" = (id, h, g) and note that D\ D;q = {m}. Therefore

V") =ya+ Y Y(i—g(i),h)
i€D,

Every term in the summation over Dy, is zero, since i € Dy, = g(i) = h(i).
|

An edit sequence s is said to take [f] to [g] if there exists u € [f] and v € [g]
such that s(u) = v. A trace t is said to take [f] to [¢] if its second component
is equivalent to f and its third component is equivalent to g.

To refer to the cost of an edit sequence s taking [f] to [g] is to refer to

(s, [f1,19]) = min{y(s,u) [w € [f], s(u) € [g]}

An edit sequence s is called a minimal cost edit sequence taking [f] to [g]
if it takes [f] to [¢] and among all such edit sequences its cost (as given by
the expression above) is minimal.

Theorem 14 If s is a minimal cost edit sequence taking [f] to [g], and t is
a minimal cost trace taking [f] to [g], then (s, [f],[g]) = v(t).

Proof: By assumption, there exist u € [f] and v € [g] such that s(u) = v.
Moreover, (s, u) is minimal in the sense that it cannot decrease by changing
s or u subject to the contstraints that u € [f] and s(u) € [g]. By theorem 13,
there exists a trace ¢’ from u to v such that y(t') < (s, u). By theorem 11,
there exists an edit sequence s’ taking [u] = [f] to [v] = [g] with cost no
greater than y(¢'). That cost must in fact be y(s,u), since otherwise the
minimality of y(s,u) would be contradicted. Therefore y(t') = y(s,u). The
proof is completed by showing (') < v(t) (v(t) = y(¢') = v(s,u) would
then follow by minimality of (¢)).

Let t = (t1,t2,t3). By theorem 11, there exists an edit sequence s” taking
[te] = [f] to [ts] = [g] with cost no greater than ~y(¢). Its cost contradicts

13

the minimality of y(s,u) if y(t) < ().
|

Extend the concept of edit distance to equivalence classes by

o([f1; [g]) = min{d(u, v) | u € [f], v € [g]}

Since 0(u,v) is the minimum with respect to s of y(s,u) subject to s(u) = v,
it follows that §([f],[g]) is the cost of a minimal cost edit sequence taking
[f] to [g]. By theorem 14, that coincides with the cost of a minimal cost
trace taking [f] to [g].

Lemma 15 Let t = (t1,t2,t3) be a trace, and let t' be a trace taking [t2] to
[ts]. There exists a partial function t§ : Dy, — Dy, such that t* = (t], 12, t3)
is a trace and y(t*) = y(t').

Proof: Let ¢ = (t},t),t;). Since t§, = to and t§ = ¢3, by lemma 10 there
exist one-to-one and onto order-preserving functions 9 : Dy, — Dy, and
@3 : Dy — Dy, such that to = t, 0 py and t§ = t3 0 3. Let t] = @3 o t] 0 @,
and note that ¢] is an increasing partial function from Dy, to D;,. Hence
t* = (t],12,t3) is a trace. Because 2 and g3 are isomorphisms,

|Dt2\th = |Dt2| - |an30t’lon,02|
|Di\ Riz| = |Dig| — |Rypyor,

= |Dt(2|_|Dt’1| = |th2\Dt’l|

opp2| = |Dt€3|_|Rt'1| = |Dtg\Rt,1|

It follows that y(¢*) = y(t') provided the following equality holds

Yo Alumts(v),te) = Y i t5(), 1)

(u,v) € p3ot)opy (i.9)et

Replacing t3 with t§ o ¢3!, replacing ¢, with t} o 2 and making the change
of variables i = @y(u), v = @3(j) puts the left hand side of the equality into
the form

D ez (6) =t 005 (@3(3), th © 02)
(i.5)€ty

A term corresponding to (i,7) (in the left hand side of the equality) is
therefore zero exactly when

th(j) = th 0 w2 (93 ' (i) = th(3)

A term corresponding to (7, j) in the right hand side of the equality is zero
exactly when

t3(j) = t5(7)
O

14

Theorem 16 Edit distance is a metric on equivalence classes of = if and
only if v; = vq. Moreover, the following are equal

1. 6([f1, [g])

The cost of a minimal cost edit sequence taking [f] to [g].

The cost of a minimal cost trace taking [f] to [g].

min{y((p, f,9)) | p: Dy — Dy is an increasing partial function}

Proof: The equality of the first three quantities listed was already noted in
the discussion preceding lemma 15. Note that (p, f,g) (where p: Dy — D,
is an increasing partial function) is a trace taking [f] to [g]. Hence the fourth
quantity listed is at least d([f],[g]). Let ¢’ be a minimal cost trace taking [f]
to [g]. By lemma 15, there exists an increasing partial function p : Dy — D,
such that y((p, f,g)) = v(t'). Therefore all four quantities listed above are
equal.

Assume edit distance is a metric on equivalence classes of =. Then it is
symmetric. The same argument as given in the proof of theorem 9 shows

([0, [{(0,a)}]) = 6([{(0,a)}], [0)) == i = 4

Assume 7y; = 4. Since §(f,g) is nonnegative, so too is J([f],[g]). Since
d(f,g) is symmetric, so too is 6([f],[g]). If 6([f],[g]) = O, then there exist
u € [f] and v € [g] such that d(u,v) = 0. Hence v = v and [f] = [g].
Moreover, §([f],[f]) < 6(f,f) = 0. It remains to establish the triangle
inequality.

By what has already been established, let ¢ = (p, f,h) be a trace such
that d([f],[h]) = ~(¢). Similarly, let ¢ = (p',h,g) be a trace such that
d([h], [g]) = v(t'). Note that ¢’ ot is a trace taking [f] to [¢]. By lemma 12,

O([f1,[g]) <t ot) < (t) +(t) = o([f]. [1]) + o([A], [9])
O

Trace t is said to be minimal if y(t) = 0([t2], [t3]). Note that it makes sense
to speak of a minimal trace from f to g; that refers to a trace (p, f,g) for
which v((p, f,9)) = 6([f],[g])- According to theorem 16, such a trace exists.

Traces t = (t1,12,t3) and ' = (#],t},t5) are said to be compatible provided
that Dy, N Dy =0 = Dy N Dy, and for all (7, 7) € 1 and all (', j') € 4

i<i=j<j and i <i=j <j

15

If t and ¢’ are compatible, then t @ t' is defined as
t@t = (t Uth, ta Uth, t3ULh)

If t and ' are not compatible, then ¢ @ t' is undefined.

Lemma 17 Ift®t’ is defined, then it is is a trace and y(t®t') = v(t)+y(t').

Proof: Let ¢t = (t1,t2,t3) and t = (¢),t),t5) be compatible traces. Then
0 = Dy, N Dy, = Dy, N Dy, Since ty and #, have disjoint domains, 2 Ut is
a function and

Dy, 1, = Dy, U Dy
Likewise, t3 U t} is a function and

Dtgutg =Dy, U Dtg

Likewise, t; Ut} is a function which is partitioned by ¢; and #|. Hence t; Ut)
is a partial function from Dy, to Dy, 1,- Moreover, ¢ U t} is increasing
since for all (4,7) € t; and all (¢/,5") € #]
i<i=j<j and i <i=j <j

If (7,7) and (i, ;') are both in either ¢; or ¢}, the above implications hold
because t; and t}] are increasing. Therefore, ¢t @ t' is a trace. Note that,
because of the disjoint unions involved,

Dy, \ Diyor,| = [Diy| + [Dy,| = | Dy | — [Dy |
Dty | = [Diy [+ [Dy,| = [Dy |
= [Di,\ Dy | + |Dt’2\ Dt’1|

[Diguu\ Biyug |l = [Dis| + Dy | — |Rey | — [Ry, |
= [Di| = [Ri, |+ [Dyy| — | Ry |
= [Di\ By, + | Dy \ Ry, |

Yo Wi (tUty)G) Uty = D (i ts(i) b)) +
(4,5)€ t1Ut] (i,5)et1

Yo (=85, 1)
(4"t
Therefore, y(t ® t') = () + y(t').
O
Trace t = (t1,t2,t3) is said to precede trace t' = (t},15,14), denoted t < ¢/,
provided

max{s | ¢ € Dy,} < min{s | i€ Dy}
max{t | i € Dy} < min{s | i€ Dy}

16

where max () = —oo and min) = +oo.

Theorem 18 If t = (t1,t2,t3) < t' = (t],t5,15), then t ® t' is a trace. If
t®t' is minimal, then so are t and t'.

Proof: By lemma 17, ¢t ® t' is a trace provided ¢ and ¢ are compatible.
Since t precedes t', it follows that Dy, N Dy, = 0 = Dy, N Dy, Moreover,
if (4,7) € t; and (i',5') € ¢}, then i < ' and j < j/. Hence ¢t and t' are
compatible. Note that the compatibility of traces ¢ and #' is not influenced
by either ¢, or ¢}, because the compatibility follows from ¢ < ¢ which is
defined independent of ¢; and ¢| (whether ¢ preceeds ' depends only on
Dy,, Diy, Dy, Dy,). Therefore (by lemma 17)

Yt @t) =y(t) + ()

and this equality remains valid when ¢; and t| are treated as parameters
and are allowed to change. Suppose t @ t' is minimal. Then the left hand
side of the equality is 0([t2 Ut5], [t3 Ut4]). By thereom 16, it cannot decrease
by changing ¢; U t|. However, if either ¢ or ¢ were not minimal, then (by
thereom 16) the right hand side of the equality could decrease by changing
t1 or t}.

O

Lemma 19 Let t = (t1,t2,t3) be a trace. Let to = {(io, fo),.--, (ig, fx)}
where iy < -+ < ig, and let t3 = {(Jo,90),---, (1, q1)} where jo < --- < jj.
If to and t3 are nonempty, then t can be expressed as t = t" @ t' where one
of the following cases hold.

1.t = ({ (ks 30) }s { ks fi) 5 { (G, 91))
2.t = (0,{(ix, fx) },0)
3.t = (wvwv{(jlagl)})

Moreover, if t is minimal, then so is t".

Proof: Let ¢ = (¢},t},t4). The three cases correspond to a case decompo-
sition based on t;. The first case is (ix,j;) € t1, which can be described
by saying both i, € Dy, and j; € Ry,. The second case is iy ¢ Dy, and
Ji € Ry,. The third case is j; ¢ Ry,. In each case ¢ = (t{,t5,t}) must (by
the definition of @) be defined by

o= t\t
ty = t2\1
ty = t3\1t3

17

In every case, t' is clearly a trace. Moreover, t"®t' is a trace (via theorem 18),
assuming that ¢” is a trace, since ¢’ < t'.

In case 1, ¢ is a partial function from Dy, \{ix} = Dy, g t0 Di\{ji} = Dy,
Thus ¢" is a trace.

In case 2, ¢ = t; is a partial function from Dy, \{ix} = Dy, s, to Dy, because
i ¢ Dy,. Thus t” is a trace.

In case 3, t] = t1 is a partial function from Dy, to Dy,\{ji} = Dy, s, because
Ji & Ry, . Thus t" is a trace.

If ¢ is minimal, then by theorem 18 so is t”.
U

4 The Normal Distance Matrix

Define the distance between normal representations f and g as

d(f,g) = a([f],lg])

Note that distance is well-defined since f = h <= [f] = [h]. By theorem 16,
distance is a metric on normal representations if and only if v; = 4.

Let s = ep...e, be an edit sequence taking u to v. Normal representation
u is regarded as being transformed to v through the following sequence s of
normal representations

§=U(u)V(er(u))V(ek_1ex(u)) ... U(ep...ex(u))

Each step in the sequence (from one element to the next) corresponds to one
of three types of operations on normal representations. Let w = wy ... w,,.
If e; is a delete operation, then

wo - .- wy = Ulei(w)) =wy ... wl

where there exists 0 <[< n such that

Wi i<l
J Wj41 ifj>l

In other words, the [th element of w has been removed. If ¢; = m—b is a

change operation, then

wo ... wy = V(e (w)) = wp .. .ow),

18

where there exists 0 <[< n such that

! {wj ifj#1

YiT b ifj=1

In other words, the [th element of w has been changed; this is called a trivial
change when b = w;. If e; = m— b is an insert operation, then

wo ... wp, > Ule(w)) = wp ... w,,
where there exists 0 <[<n 4+ 1 such that
w if 5 <1
w; =14 b ifg=1
Wji—1 ifj >0

In other words, b has been inserted into w at position /.

To streamline exposition, refer to the three types of operations (on normal
representations described above) as delete, change, and insert operations.
Let them have respective costs 4, 7., and 7;, except that the cost of a
trivial change is zero. To distinguish these operators (which act on normal
representations) from previously discussed operators, they are called normal
operators. The sum of the costs of the normal operators corresponding to
the steps (from one element to the next) in the sequence 5 is therefore 7(s).

Given any sequence r of normal representations
r = ho hl ce hn

such that h;yq is the result of some normal operator o; applied to h;, define
its cost y(r) as the sum (over 0 < 4 < n) of the costs of the operators o;.
Such a sequence is referred to as a normal sequence, and is described as
being from hy to h,. By the discussion above, if s = ey...¢e; is an edit
sequence taking u to v, then the sequence

§S=U(u)V(eg(u))... ¥(eg...ex(u))
is a normal sequence taking u to v. Moreover, v(5) = 7y(s).
A minimum normal sequence from f to g is a minimal cost normal sequence
from f to g. Define m(f,g) as the cost of a minimum normal sequence from

f to g. Hence m(f,g) < v(3) = (s) where s is a minimal cost edit sequence
taking [f] to [g]. It follows (via theorem 16) that

m(f,g) <d(f,9)

There may be question as to whether m(f,§) = d(f,), because it has not
yet been established that every normal sequence r can be expressed as § for
some edit sequence s. The following lemma shows that to be the case, and
therefore m(f,g) and d(f,g) coincide.

19

Lemma 20 Given nonempty normal sequence r, there exists u and v and
an edit sequence s taking u to v such that r = 3.

Proof: To facilitate induction on the length of r, a stronger result will be
proved; in addition, u may be chosen such that the distance between con-
secutive elements of D, is arbitrarily large.

Base case: © = h where h = {(io, fo),... (i, f)}. Let n € Z* be arbitrary,
and let v = {(iom, fo),... (4n, fi)}. Let s = ¢ so that § = u = h = r.
Moreover, the distance between consecutive elements of D, is at least n.

Inductive step: r = hg...h; where hg = ag...aq. Let o be the normal
operator taking hg to hi, and let p be the location at which a change,
insertion, or deletion takes place in hg. Let n € Z% be arbitrary, and
let s be an edit sequence taking hi to hj such that § = hy...h,. Let
hi = {(i0, fo),... (i1, fi)} where iy < --- < 4; and the distance between
consecutive elements of Dy, is greater than 2n. The proof is completed by
showing there exists an edit operation e taking u to h; where u may be
chosen such that @ = hy and the distance between consecutive elements of
D, is at least n. The required edit sequence is then se. There are three
cases to consider, depending on the type of o.

Case 1: o is a change operator. Then hy = h; except perhaps at position
p- Let u =ip—a, (h1) and let e = ip—> fp- Then u = ho and e(u) = h; as
required. Moreover, the distance between consecutive elements of D,, = Dy,
is at least n.

Case 2: o is an insert operator. Then the element inserted by o is f, and
fLO =fo-- fo—1fpt1--. fq- Let u= ip— (h1) and let e = ip— fp- Then u =
ho and e(u) = hy as required. Moreover, the distance between consecutive
elements of D, = Dy, \ {i,} is at least n.

Case 3: o is a delete operator. Then hi =ag... Ap—1Gpy1 - - - Gg. ngt 1 be
(Gp—1 +14p)/2]. Let u = i—ap(hi) and let e = i—. Then u = ho and
e(u) = hy as required. Moreover, the distance between consecutive elements
of Dy, = Dy, U {ip} is at least n.

O

Theorem 21 Distance d(f,g) defined as the cost of a minimal trace taking
[to g is a metric on normal representations if and only if v; = v4. Moreover,
d(f,g) is equal to the cost of a minimal normal sequence from f to g.

Proof: Theorem 16 established the claims regarding distance being a metric.
Lemma 20 and the discussion preceeding it complete the proof.
d

20

Given string f = {(é0, fo), .-, (ik, fx)} where ig < --- < iy, define o;(f) for
0 < j < |f] to be the normal representation of {(io, fo),..., (¢j—1, fj—1)},

oj(f) = fo.. fi

Let 0p(f) be the empty sequence . Note that if f = h then o;(f) = o;(h), so
f may as well be normalized. Moreover, o|7/(f) is the normal representation
of f.

Given strings f and g, their normal distance matriz is the 1 4+ |f| x 1 + |g|
matrix D with 4, j entry (for 0 < ¢ < |f| and 0 < j <|g|)

D;; = d(oi(f),0(9))

In particular, D)y |4 is the distance between the normal representations of
f and g.

The notation [ezpression] is used in the following theorem to simplify expo-
sition. It is defined as

1 if expression is true

[expression] = { 0 otherwise

Theorem 22 Let f and g be nonempty normalized strings. For 0 < u < |f|
and 0 < v <|g|, their normal distance matriz D satisfies

Doy = 0
Dy, = v
Du,O = U%q

Du,v = mln{’)’c[f(u - 1) 7é g('U - 1)] + Dufl,uflufyd + Dufl,ua'Yi + Du,ufl}

Proof: Let f = fo... fr and § = gg ... ¢;. Using normal operators on normal
representations (which is justified by theorem 21), it is clear that

D0,0 = d(€,€) =0
DO,U = d(E, go--. g'ufl) = U7
Du,O = d(fU---fuflaE) = Uuvdq

Note that Dy, = d(fo... fu—1,90---gv—1) = 7(t) where t = (t1,t2,%3) is a
minimal trace taking ®(fo... fu—1) to ®(go...gy,—1). Appealing to lemmas
17 and 19, Dy, = y(t") + v(t') where ¢t = ¢" @ ¢’ and one of the following
cases holds.

Case 1: If t/ = ({(iu—lajv—l)}a {(iu—lafu—l)}v {(j’l]—lagv—l)})a then

V() = Yliu-1 = go—1,{(tu=1, fu-1)}) = Yelfu-1 # gv-1]

21

Moreover, t” is a minimal trace taking ®(fq ... fu—2) to ®(gg ... gy—2). Thus
Y(t") = Dy-1,0-1

Case 2: If t' = (0, {(iy—1, fu—1)},0), then y(¢') = 74 and ¢” is a minimal
trace taking ®(fo... fu—2) to ®(go...gy—1). Thus y(t") = Dy_1,.

Case 3: If t' = (0,0,{(jy-1,9v-1)}), then ¥(t') = 7; and ¢ is a minimal
trace taking ®(fo... fu—1) to ®(go...gy—2). Thus y(t") = Dy 1.

It follows that D, , is equal to some element of the set

{velflu=1) #g(v = 1)] + Dy—i1,9—1,7d + Du—1,05%i + Dyp—1}

If each element in this set is the cost of some sequence of normal operators
taking fo... fu—1t0 go...gv—1, then the proof is complete by the minimality
of Dy .

The first element in the set is the cost of changing f,_1 to g,—1 by a normal
change operator followed by the cost of 5 where s is a minimal cost edit

sequence from [®(fo ... fu—2)] to [®(go - .- gv—2)]-

The second element in the set is the cost of deleting f, 1 by a normal delete
operator followed by the cost of § where s is a minimal cost edit sequence

from [(I)(f[] . fufg)] to [(I)(g[) . gvfl)].

The third element in the set is the cost of § where s is a minimal cost
edit sequence from [®(fo... fu—1)] to [P(go ... gy—2)] followed by the cost of
inserting g,—1 by a normal insert operator.

g

22

