
A Formal Analysis of Edit DistaneM. D. VoseFebruary 1, 20041 OverviewThe edit distane is a means of measuring the ost of transforming one stringinto another by way of insert, delete and hange operators. The theoretialand omputational underpinnings of edit distane are disussed in a formalmathematial framework.2 PreliminariesLet � be a �nite nonempty set of symbols. The set of all �nite strings withelements from � (inluding the empty string) is ��. Strings are naturallyfuntions; the string s = s0s1 : : : sk is identi�ed with the set of ordered pairs(i.e., funtion) s = f(0; s0); (1; s1); : : : (k; sk)gThe domain and range of funtion f , denoted by Df and Rf respetively,are de�ned by Df = fx : 9y : (x; y) 2 fgRf = fy : 9x : (x; y) 2 fgThe notation f : A �! Basserts that f is a funtion whose domain is a subset of A and whose rangeis a subset of B. The set B is referred to as the o-domain, the set A isreferred to as the given-domain. If Df = A, then f is alled a funtion fromA to B. If Df 6= A, then f is alled a partial funtion from A to B; forexample, every string s 2 �� is a partial funtion s : N �! �, where N isthe set of nonnegative integers. 1



The length jAj of string A refers to the ardinality of (the set of orderedpairs) A. In partiular, the empty string ; has length j;j = 0.The disussion above explains how any given string s is a funtion, whih inturn is a partial funtion|all it �(s)|from N to �. Given string s = ab,for example, �(s) = f(0; a); (1; b); (2; )g is the naturally assoiated partialfuntion. Consider reversing this proess: letf = f(i0; s0); (i1; s1); : : : (ik; sk)gbe a partial funtion from N to �, where i0 < i1 < � � � < ik omprise thedomain of f . It is naturally a string, namely s0s1 : : : sk; let 	(f) denote thisstring. Passing from this string to a funtion in the natural way yields�(	(f)) = f(0; s0); (1; s1); : : : (k; sk)gwhih is not neessarily the same partial funtion f as was began with. Thepartial funtion �(	(f)) is alled the normal form of f . A partial funtionf : N �! � for whih f = �(	(f)) is said to be normalized. The followingproperties are easily veri�ed1. 	(�(s)) = s, for every string s 2 ��.2. �(	(f)) = f , for every normalized partial funtion f : N �! �.In partiular, �(s) is normalized for every s 2 ��, and the funtions �and 	 formally desribe how strings and normalized partial funtions anbe thought of interhangeably. This paper, however, generalizes the oneptof string from normalized partial funtions to partial funtions; any partialfuntion f : N �! � will heneforth be alled a string, and 	(f) will bealled its normal representation.As previously observed, from the normal representation of string f it is onlythe normal form of f whih neessarily may be reovered. For instane, thenormal representation of string f = f(3; b); (1; a); (117; )g is ab, and givenab it is only the normal form �(ab) = f(1; b); (0; a); (2; )g of f whih maybe reovered.An edit operation is either a hange, insert, or delete operation, and thesethree types of operations are mutually exlusive. Let E be the set of all editoperations. Elements of E map strings (i.e., partial funtions from N to �)to strings. Change operators are denoted by m! b where m 2 N and b 2 �,and are de�ned bym! b (f) = (f n f(m; f(m))g) [ f(m; b)g if m 2 Df2



Insert operators are denoted by m!i b where m 2 N and b 2 �, and arede�ned by m!i b (f) = f [ f(m; b)g if m =2 DfDelete operators are denoted by m!d where m 2 N, and are de�ned bym!d (f) = f n f(m; f(m))g if m 2 DfNote that edit operations are not de�ned for every string; for example,m!d (f) is unde�ned whenever m =2 Df . Thus elements of E are partialfuntions from the set of all strings to the set of all strings. When de�ned,the result of applying an edit operation to a string f is di�erent from fexept in the ase m! b (f) where (m; b) 2 f . In this ase the edit operation(applied to f) is said to be trivial.Let S be the set of all �nite sequenes of edit operations. Elements of Shave the form e1e2 : : : en where ei 2 E and n 2 N (if n = 0, the sequene isempty). Elements of S are alled edit sequenes and may be interpreted asmapping strings to strings:e1e2 : : : en(f) = e1(: : : en�1(en(f)) : : :)If " 2 S is the empty sequene, then "(f) = f for all strings f . Notethat beause elements of E are partial funtions, so too are edit sequenes;e1e2 : : : en(f) is not neessarily de�ned.Lemma 1 For every string f , there exists an edit sequene s suh thats(f) = ;Proof: If f = ;, then let s = ". Otherwise, let Df = fi0; : : : ; ing. Note thati0!d : : : in!d (f) = ;.�Lemma 2 For every string f , there exists an edit sequene s suh thats(;) = fProof: If f = ;, then let s = ". Otherwise, let Df = fi0; : : : ; ing. Note thati0!i f(i0) : : : in!i f(in) (;) = f .�Theorem 3 For all strings f and g, there exists an edit sequene s suhthat s(f) = g. 3



Proof: Appealing to Lemmas 1 and 2, let s1 and s2 be edit sequenes suhthat s2(f) = ; and s1(;) = g. Now let s = s1s2 (i.e., s is the onatenationof s1 and s2). It follows that s(f) = s1(s2(f)) = g.�Eah type of edit operation has an assoiated ost. Let i > 0 be the ostof an insert operation, d > 0 be the ost of an delete operation, and  > 0be the ost of a nontrivial hange operation; trivial edit operations havezero ost. Stritly speaking, a hange operator does not have a ost; it'sargument is required in order to determine whether it is trivial, in whihase it has zero ost. Thus ost is assoiated with the pair operator andargument, rather than assoiated with operator alone.To enable speaking of the ost of an edit sequene (whih may ontain apotentially trivial hange operator) we say that s 2 S takes f to g provideds(f) = g. Now the ost (s; f) of an edit sequene s taking f to g may beindutively de�ned as follows("; f) = 0(m!d ; f) = d(m!i b; f) = i(m! b; f) = 0 if f = m! b (f), and  otherwise(e0 : : : en; f) = (e0; e1 : : : en(f)) + (e1 : : : en; f)When f an be inferred from ontext, (s; f) is abbreviated by (s). More-over, to assert that s is an edit sequene taking f to g is to establish aontext in whih (s; f) may be abbreviated by (s).Theorem 4 Let s be an edit sequene taking f to h, and let s0 be an editsequene taking h to g. The onatenation s00 = s0s takes f to g, and(s00) = (s0) + (s)Proof: Let s0 = e0 : : : ek, and let s = ek+1 : : : en. Then s00 = e0 : : : en andaording to the reursive de�nition for the ost of an edit sequene,(s00; f) = nXj=0 (ej ; ej+1 : : : en(f))= kXj=0 (ej ; ej+1 : : : en(f)) + nXj=k+1(ej ; ej+1 : : : en(f))= kXj=0 (ej ; ej+1 : : : ek(s(f))) + (s; f)= (s0; h) + (s; f) 4



�Theorem 5 Let s be an edit sequene taking f to g. If i = d, then thereexists an edit sequene s0 taking g to f suh that (s) = (s0). Moreover, s0may be hosen to have the same length as s.Proof: Indut on the length of s. Base ase: If s = " then f = s(f) = g.Let s0 = " and observe that (s) = (s0) = 0.Indutive step: let s = e0 : : : ek, and let h = e1 : : : ek(f). Sine s(f) = g, itfollows that e0(h) = g. By the indutive hypothesis, there exists e00 : : : e0k�1taking h to f suh that (e00 : : : e0k�1) = (e1 : : : ek). The proof is ompletedby showing there exists e0k taking g to h suh that (e0k) = (e0). This wouldsuÆe beause then s0(g) = e00 : : : e0k�1(e0k(g))= e00 : : : e0k�1(h)= fand by theorem 4, (s0) = (e00 : : : e0k�1; h) + (e0k; g)= (e1 : : : ek; f) + (e0; h)= (s)There are three ases to onsider, based on the type of edit operation e0 is.Case 1: e0 is m! g(m) (reall that e0(h) = g; if e0 is a hange operatorthen g and h agree everywhere exept possibly at m). Let e0k be m! h(m).Note that if e0 is trivial, then g = h and e0k is therefore trivial. If e0 isnontrivial, then h(m) 6= g(m) and e0k is therefore nontrivial. In either ase,(e0k) = (e0).Case 2: e1 is m!i g(m) (if e0 is an insert operator, then g is the disjointunion h [ f(m; g(m))g). Let e0n be m!d . Sine i = d, (e0k) = (e0).Case 3: e1 is m!d (if e0 is a delete operator, then h is the disjoint uniong [ f(m;h(m))g). Let e0n be the edit operation m!i h(m). Sine i = d,(e0k) = (e0).�Edit distane is a funtion Æ whih maps two strings to a nonnegative real,and is de�ned byÆ(f; g) = minf(s) j s is an edit sequene taking f to gg5



Given strings f and g, the distane from f to g is de�ned as Æ(f; g). Thisdistane exists, by theorem 3. That this de�nition is reasonable will now beestablished.Lemma 6 The distane between f and g is nonnegative, and is zero if andonly if f = g.Proof: Distane is nonnegative beause edit sequenes have nonnegativeost. If f = g then Æ(f; g) = 0 sine "(f) = g and (") = 0. Conversely, lets = e0 : : : ek be an edit sequene taking f to g having zero ost. It followsthat every edit operator in s must be trivial, sine otherwise the sum(s) = kXj=0 (ej ; ej+1 : : : ek(f))would be positive.�Lemma 7 The triangle inequality holds,Æ(f; g) � Æ(f; h) + Æ(h; g)Proof: Let Æ(f; h) = (s) and Æ(h; g) = (s0), where s(f) = h and s0(h) = g.Note that the onatenation s00 = s0s takes f to g, hene Æ(f; g) � (s00).This ompletes the proof, sine by theorem 4, (s00) = (s0) + (s).�Lemma 8 If i = d, then distane is symmetri,Æ(f; g) = Æ(g; f)Proof: It will be shown that Æ(f; g) � Æ(g; h). That would omplete theproof, sine two appliations of the inequality yieldÆ(f; g) � Æ(g; f) � Æ(f; g)Let Æ(f; g) = (s), where s takes f to g. By theorem 5, there exists s0 takingg to f suh that (s0) = (s). Hene, Æ(g; f) � (s0) = (s).�Theorem 9 Edit distane is a metri if and only if i = d.Proof: To show the edit distane is a metri, it must be established that6



1. Æ(f; g) � 02. Æ(f; g) = 0 () f = g3. Æ(f; h) � Æ(f; g) + Æ(g; h).4. Æ(f; g) = Æ(g; f).Appealing to the previous lemmas shows the above properties hold wheni = d (in fat, only symmetry requires i = d).Conversely, suppose property 4 holds. Let f = ; and g = f(0; a)g. If s isan edit sequene taking f to g, then s must ontain an insert edit operation(otherwise js(f)j � jf j < jgj). Sine g = 0!i a (f), the distane from fto g is i. If s0 is an edit sequene taking g to f , then s0 must ontain adelete edit operation (otherwise js0(g)j � jgj > jf j). Sine f = 0!d (g), thedistane from g to f is d. Thus i = Æ(f; g) = Æ(g; f) = d.�3 TraesA trae is an ordered triple (p; f; g) where f , g are strings and p is aninreasing (i.e., i < j =) p(i) < p(j)) partial funtion p : Df �! Dg. Trae(p; f; g) is referred to as a trae from f to g.The ost of trae t = (p; f; g) is de�ned as(t) = jDf nDpj d + jDgnRpj i + X(i;j)2p (i! g(j); f)Let ~f denote the normal representation 	(f) of string f . De�ne an equiva-lene relation � on the set of strings by f � g if and only if ~f = ~g. Let [f ℄denote the equivalene lass of f .Lemma 10 Strings f and g are equivalent if and only if there exists aninreasing onto funtion ' : Df ! Dg suh that f = g Æ '.Proof: Let f = f(i0; f0); : : : (ik; fk)g and g = f(j0; g0); : : : (jl; gl)g, wherei0 < � � � < ik and j0 < � � � < jl. Suppose ' exists. Sine ' is inreasing, itis a one-to-one and onto order-preserving map from Df to Dg. Hene k = land '(ih) = jh. Therefore,fh = f(ih) = g Æ '(ih) = g(jh) = gh7



Conversely, suppose f � g. Then k = l and fh = gh for 0 � h � k. Let'(ih) = jh, and note that ' : Df ! Dg is inreasing and onto. Moreover,g Æ '(ih) = g(jh) = gh = fh = f(ih)�Note that the funtion ' in lemma 10 is a one-to-one and onto order-preserving funtion sine an inreasing funtion preserves order and mustbe one-to-one.Theorem 11 Let t be a trae from f to g. There exists u 2 [f ℄, v 2 [g℄,and an edit sequene s taking u to v, suh that (s) = (t).Proof: Let t = (p; f; g). Let f be the string f(i0; f0); : : : (ik; fk)g wherei0 < � � � < ik, and let g be the string f(j0; g0); : : : (jl; gl)g where j0 < � � � < jl.Let n be an integer greater than ik + jl, and let u beu = k[h=0f(ih + n(1 + h); fh)gNote that u is equivalent to f . For the purposes of this proof, let themaximum of an empty olletion of integers to be 0, and let v be the disjointunion v = [h: ih2Dpf(ih + n(1 + h); g(p(ih)))g [[h: jh2DgnRpf(jh +maxfim + n(1 +m) j p(im) < jhg; gh)gThe union above whih is indexed by h : ih 2 Dp (all it the �rst union)involves mutually disjoint sets beause ih+n(1+h) is an inreasing funtionof h. Similarly, the union above whih is indexed by h : jh 2 Dg nRp (all itthe seond union) involves mutually disjoint sets. The �rst union is disjointfrom the seond union beause otherwise there exist h and h0 suh thatih + n(1 + h) = jh0 +maxfim + n(1 +m) j p(im) < jh0g (1)Reduing modulo n givesih = � jh0 if ; = fm j p(im) < jh0gjh0 + imaxfm j p(im)<jh0g otherwise (2)In the �rst ase above (; = fm j p(im) < jh0g), equation 1 simpli�es toih + n(1 + h) = jh0 whih ontradits ih = jh0 . Assume therefore that the8



seond ase of equation 2 holds. Substituting for ih (as given by equation2) into equation 1 and aneling jh0 yieldsimaxfm j p(im)<jh0g + n(1 + h) = maxfim + n(1 +m) j p(im) < jh0g) n(1 + h) = nmaxf1 +m j p(im) < jh0g) h = maxfm j p(im) < jh0gSubstituting for h (as given above) into equation 2 givesimaxfm j p(im)<jh0g = jh0 + imaxfm j p(im)<jh0g) jh0 = 0) ; = fm j p(im) < jh0gontraditing the assumption that the seond ase of equation 2 holds. Notethat v has been shown to be a funtion, sine no two elements (of v) havethe same �rst omponent.By onstrution, v = g Æ ' where ' : Dv ! Dg is de�ned as'(ih + n(h+ 1)) = p(ih) for ih 2 Dp'(jh +maxfim + n(1 +m) j p(im) < jhg) = jh for jh 2 Dg n RpSine p is inreasing, it is a one-to-one and onto order-preserving funtionfrom Dp to Rp. Moreover,Dg = Rp [ (Dg n Rp) = p(Dp) [ (Dg n Rp)Hene ' is onto. By lemma 10, v � g provided ' is an inreasing funtion.As has already been observed, ih+n(1+h) and p(ih) are inreasing funtionsof h. Thus ' is inreasing when restrited to the setA = fih + n(1 + h) j ih 2 DpgSimilarly, ' is inreasing when restrited toB = fjh +maxfim + n(1 +m) j p(im) < jhg j jh 2 Dg nRpgLet a 2 A and b 2 B. To establish that ' is inreasing, it remains to showa < b =) '(a) < '(b)b < a =) '(b) < '(a)Case 1: a = ih + n(1 + h) < jh0 + maxfim + n(1 +m) j p(im) < jh0g = b.The desired onlusion is p(ih) < jh0 . Note that a < b is ontraditedby ; = fm j p(im) < jh0g (sine b then simpli�es to jh0). Therefore letiM + n(1 +M) = maxfim + n(1 +m) j p(im) < jh0g. If p(ih) � jh0 , then9



h > M = maxfm j p(im) < jh0g. In partiular, h � M + 1. This yields theontraditiona = ih + n(1 + h) > iM + n(1 +M + 1) > jh0 + iM + n(1 +M) = bCase 2: b = jh0 +maxfim + n(1 +m) j p(im) < jh0g < ih + n(1 + h) = a.The desired onlusion is jh0 < p(ih). If this were not so, then jh0 > p(ih)(equality is impossible; jh0 2 DgnRp). Thus h �M = maxfm j p(im) < jh0g.This yields the ontraditiona = ih + n(1 + h) � iM + n(1 +M) � jh0 + iM + n(1 +M) = bNext an edit sequene s taking u to v will be onstruted. LetE = fb!d j b 2 DunAgC = fa! v(a) j a 2 AgI = fb!i v(b) j b 2 BgLet s0 be the sequene of elements in E, let s00 be the sequene of elements inC, and let s000 be the sequene of elements in I. De�ne s as s000s00s0. Note thats0(u) is de�ned and is simply the restrition of u to A. Therefore, s00s0(u)is de�ned and is simply the restrition of v to A. Sine A [B = Dv and Aand B are disjoint, s000s00s0(u) is de�ned and is v.The proof is ompleted by showing that (s) = (t). By theorem 4 and thede�nition of the ost of an edit sequene,(s) = (s000; s00s0(u)) + (s00; s0(u)) + (s0; u)= jIj i + (s00; s0(u)) + jEj dNote thatjEj = jDun Aj = jDuj � jAj = jDuj � jDpj = jDf j � jDpj = jDf nDpjjIj = jBj = jDgnRpjIt follows that (s) = (t) provided(s00; s0(u)) = X(i;j)2p (i! g(j); f) (3)Both sides of equation 3 ontain jCj = jAj = jDpj terms, but some ould bezero beause hange operators may be trivial. The right hand side an berewritten as Xih2Dp (ih! g(p(ih)); f)10



A term (orresponding to ih 2 Dp) is trivial exatly when g(p(ih)) = fh.Sine v(a) = g Æ '(a), the left hand side of equation 3 an be rewritten asXih2Dp (ih + n(1 + h)! g(p(ih)); s0(u))A term (orresponding to ih 2 Dp) is trivial exatly wheng(p(ih)) = s0(u)(ih + n(1 + h)) = u(ih + n(1 + h)) = fh�Let t = (p; f; g) and t0 = (p0; g; h) be two traes. Their omposition t0 Æ tis the trae (p0 Æ p; f; h) from f to h where the omposition p0 Æ p of partialfuntions is de�ned asp0 Æ p = f(i; k) j 9j : (i; j) 2 p and (j; k) 2 p0gNote that the omposition t0 Æ t is de�ned only when the third omponentof t is equal to the seond omponent of t0. In this ase they are said to beomposeable.Lemma 12 Given omposeable traes t and t0, (t0 Æ t) � (t) + (t0).Proof: Let t = (p; f; g) and t0 = (p0; g; h). Note thatjDf nDpj+ jDgnDp0 j � jDf j � jDpj+ jRpnDp0 j= jDf j � (jRpj � jRpnDp0 j)= jDf j � jRp \Dp0 j= jDf nDp0ÆpjjDgn Rpj+ jDhnRp0 j � jDp0 n Rpj+ jDhj � jRp0 j= jDhj � (jDp0 j � jDp0 n Rpj)= jDhj � jDp0 \Rpj= jDhj � jDp0Æpj= jDhj � jRp0Æpj= jDhnRp0ÆpjTherefore(t) + (t0) = (jDf nDpj+ jDgnDp0 j) d + (jDgn Rpj+ jDhn Rp0 j) i+ X(i;j)2p (i! g(j); f) + X(j;k)2p0 (j! h(k); g)� jDf nDp0Æpj d + jDhnRp0Æpj i+ X(i;j)2p (i! g(j); f) + X(j;k)2p0 (j! h(k); g)11



The proof is ompleted by showingX(i;k)2p0Æp (i! h(k); f) � X(i;j)2p(i! g(j); f) + X(j;k)2p0 (j! h(k); g)In the expression above, an edit operation orresponding to (i; j) 2 p istrivial exatly when f(i) = g(j), and an edit operation orresponding to(j; k) 2 p0 is trivial exatly when g(j) = h(k). When both are trivial,f(i) = g(j) = h(k) and the edit operation orresponding to (i; k) 2 p0 Æ p istrivial. Consequently, to eah nonzero term (i.e., nontrivial edit operation)in the �rst summation, there is a orresponding nonzero term in the seondor third summation.�Theorem 13 Let s be an edit sequene taking f to g. There exists a traet taking f to g suh that (t) � (s).Proof: Indut on the length of s. Base ase: s = ". Note that Df = Dg sineg = s(f) = f . Let id : Df ! Dg be the identity funtion. Let t = (id; f; g)and note that Df = Did and Rid = Dg. Therefore(t) = X(i;j)2id (i! f(j); f)Every term in this sum is zero, sine (i; j) 2 id =) i = j =) f(i) = f(j).Indutive step: Let s = e0 : : : ek, and let h = e1 : : : ek(f). By the indutivehypothesis, there exists a trae t0 taking f to h suh that (t0) � (e1 : : : ek).Sine s(f) = g, it follows that e0 takes h to g. The proof is ompleted byexhibiting a trae t00 taking h to g suh that (t00) = (e0). Then t = t00 Æ t0takes f to g and by lemmas 12 and 4,(t) � (t00) + (t0) � (e0) + (e1 : : : ek) = (s)There are three ases to onsider, depending on the type of e0.Case 1: e0 = m! g(m). Note that Dh = Dg sine m! g(m) (h) = g. Letid : Dh ! Dg be the identity funtion. Let t00 = (id; h; g) and note (as inthe base ase) that (t00) = Xi2Dh (i! g(i); h)Every term in this sum is zero, exept possibly for (m! g(m); h), sinei 6= m =) g(i) = h(i). 12



Case 2: e0 = m!i g(m). Note that Dg = fmg [Dh sine m!i g(m) (h) = g.Let id : Dh ! Dg be the identity funtion. Let t00 = (id; h; g) and note thatDg n Rid = fmg. Therefore(t00) = i + Xi2Dh (i! g(i); h)Every term in the summation over Dh is zero, sine i 2 Dh =) g(i) = h(i).Case 3: e0 = m!d . Note that Dh = fmg [ Dg sine m!d (h) = g. Letid�1 : Dg ! Dh be the identity funtion (observe that id is a partial funtionfrom Dh to Dg). Let t00 = (id; h; g) and note that DhnDid = fmg. Therefore(t00) = d + Xi2Dg (i! g(i); h)Every term in the summation over Dh is zero, sine i 2 Dg =) g(i) = h(i).�An edit sequene s is said to take [f ℄ to [g℄ if there exists u 2 [f ℄ and v 2 [g℄suh that s(u) = v. A trae t is said to take [f ℄ to [g℄ if its seond omponentis equivalent to f and its third omponent is equivalent to g.To refer to the ost of an edit sequene s taking [f ℄ to [g℄ is to refer to(s; [f ℄; [g℄) = minf(s; u) j u 2 [f ℄; s(u) 2 [g℄gAn edit sequene s is alled a minimal ost edit sequene taking [f ℄ to [g℄if it takes [f ℄ to [g℄ and among all suh edit sequenes its ost (as given bythe expression above) is minimal.Theorem 14 If s is a minimal ost edit sequene taking [f ℄ to [g℄, and t isa minimal ost trae taking [f ℄ to [g℄, then (s; [f ℄; [g℄) = (t).Proof: By assumption, there exist u 2 [f ℄ and v 2 [g℄ suh that s(u) = v.Moreover, (s; u) is minimal in the sense that it annot derease by hangings or u subjet to the ontstraints that u 2 [f ℄ and s(u) 2 [g℄. By theorem 13,there exists a trae t0 from u to v suh that (t0) � (s; u). By theorem 11,there exists an edit sequene s0 taking [u℄ = [f ℄ to [v℄ = [g℄ with ost nogreater than (t0). That ost must in fat be (s; u), sine otherwise theminimality of (s; u) would be ontradited. Therefore (t0) = (s; u). Theproof is ompleted by showing (t0) � (t) ((t) = (t0) = (s; u) wouldthen follow by minimality of (t)).Let t = (t1; t2; t3). By theorem 11, there exists an edit sequene s00 taking[t2℄ = [f ℄ to [t3℄ = [g℄ with ost no greater than (t). Its ost ontradits13



the minimality of (s; u) if (t) < (t0).�Extend the onept of edit distane to equivalene lasses byÆ([f ℄; [g℄) = minfÆ(u; v) j u 2 [f ℄; v 2 [g℄gSine Æ(u; v) is the minimum with respet to s of (s; u) subjet to s(u) = v,it follows that Æ([f ℄; [g℄) is the ost of a minimal ost edit sequene taking[f ℄ to [g℄. By theorem 14, that oinides with the ost of a minimal osttrae taking [f ℄ to [g℄.Lemma 15 Let t = (t1; t2; t3) be a trae, and let t0 be a trae taking [t2℄ to[t3℄. There exists a partial funtion t�1 : Dt2 ! Dt3 suh that t� = (t�1; t2; t3)is a trae and (t�) = (t0).Proof: Let t0 = (t01; t02; t03). Sine t02 � t2 and t03 � t3, by lemma 10 thereexist one-to-one and onto order-preserving funtions '2 : Dt2 ! Dt02 and'3 : Dt03 ! Dt3 suh that t2 = t02 Æ '2 and t03 = t3 Æ '3. Let t�1 = '3 Æ t01 Æ '2,and note that t�1 is an inreasing partial funtion from Dt2 to Dt3 . Henet� = (t�1; t2; t3) is a trae. Beause '2 and '3 are isomorphisms,jDt2 nDt�1 j = jDt2 j � jD'3Æt01Æ'2 j = jDt02 j � jDt01 j = jDt02 nDt01 jjDt3 nRt�1 j = jDt3 j � jR'3Æt01Æ'2 j = jDt03 j � jRt01 j = jDt03 n Rt01 jIt follows that (t�) = (t0) provided the following equality holdsX(u;v)2'3Æ t01Æ'2 (u! t3(v); t2) = X(i;j)2 t01 (i! t03(j); t02)Replaing t3 with t03 Æ '�13 , replaing t2 with t02 Æ '2 and making the hangeof variables i = '2(u), v = '3(j) puts the left hand side of the equality intothe form X(i;j)2t01 ('�12 (i)! t03 Æ '�13 ('3(j)); t02 Æ '2)A term orresponding to (i; j) (in the left hand side of the equality) istherefore zero exatly whent03(j) = t02 Æ '2 ('�12 (i)) = t02(i)A term orresponding to (i; j) in the right hand side of the equality is zeroexatly when t03(j) = t02(i)� 14



Theorem 16 Edit distane is a metri on equivalene lasses of � if andonly if i = d. Moreover, the following are equal1. Æ([f ℄; [g℄)2. The ost of a minimal ost edit sequene taking [f ℄ to [g℄.3. The ost of a minimal ost trae taking [f ℄ to [g℄.4. minf((p; f; g)) j p : Df ! Dg is an inreasing partial funtiongProof: The equality of the �rst three quantities listed was already noted inthe disussion preeding lemma 15. Note that (p; f; g) (where p : Df ! Dgis an inreasing partial funtion) is a trae taking [f ℄ to [g℄. Hene the fourthquantity listed is at least Æ([f ℄; [g℄). Let t0 be a minimal ost trae taking [f ℄to [g℄. By lemma 15, there exists an inreasing partial funtion p : Df ! Dgsuh that ((p; f; g)) = (t0). Therefore all four quantities listed above areequal.Assume edit distane is a metri on equivalene lasses of �. Then it issymmetri. The same argument as given in the proof of theorem 9 showsÆ([;℄; [f(0; a)g℄) = Æ([f(0; a)g℄; [;℄) =) i = dAssume i = d. Sine Æ(f; g) is nonnegative, so too is Æ([f ℄; [g℄). SineÆ(f; g) is symmetri, so too is Æ([f ℄; [g℄). If Æ([f ℄; [g℄) = 0, then there existu 2 [f ℄ and v 2 [g℄ suh that Æ(u; v) = 0. Hene u = v and [f ℄ = [g℄.Moreover, Æ([f ℄; [f ℄) � Æ(f; f) = 0. It remains to establish the triangleinequality.By what has already been established, let t = (p; f; h) be a trae suhthat Æ([f ℄; [h℄) = (t). Similarly, let t0 = (p0; h; g) be a trae suh thatÆ([h℄; [g℄) = (t0). Note that t0 Æ t is a trae taking [f ℄ to [g℄. By lemma 12,Æ([f ℄; [g℄) � (t0 Æ t) � (t) + (t0) = Æ([f ℄; [h℄) + Æ([h℄; [g℄)�Trae t is said to be minimal if (t) = Æ([t2℄; [t3℄). Note that it makes senseto speak of a minimal trae from f to g; that refers to a trae (p; f; g) forwhih ((p; f; g)) = Æ([f ℄; [g℄). Aording to theorem 16, suh a trae exists.Traes t = (t1; t2; t3) and t0 = (t01; t02; t03) are said to be ompatible providedthat Dt2 \Dt02 = ; = Dt3 \Dt03 , and for all (i; j) 2 t1 and all (i0; j0) 2 t01i < i0 =) j < j0 and i0 < i =) j0 < j15



If t and t0 are ompatible, then t� t0 is de�ned ast� t0 = (t1 [ t01; t2 [ t02; t3 [ t03)If t and t0 are not ompatible, then t� t0 is unde�ned.Lemma 17 If t�t0 is de�ned, then it is is a trae and (t�t0) = (t)+(t0).Proof: Let t = (t1; t2; t3) and t = (t01; t02; t03) be ompatible traes. Then; = Dt2 \Dt02 = Dt3 \Dt03 . Sine t2 and t02 have disjoint domains, t2 [ t02 isa funtion and Dt2[t02 = Dt2 [Dt02Likewise, t3 [ t03 is a funtion andDt3[t03 = Dt3 [Dt03Likewise, t1[ t01 is a funtion whih is partitioned by t1 and t01. Hene t1[ t01is a partial funtion from Dt2[t02 to Dt3[t03 . Moreover, t1 [ t01 is inreasingsine for all (i; j) 2 t1 and all (i0; j0) 2 t01i < i0 =) j < j0 and i0 < i =) j0 < jIf (i; j) and (i0; j0) are both in either t1 or t01, the above impliations holdbeause t1 and t01 are inreasing. Therefore, t � t0 is a trae. Note that,beause of the disjoint unions involved,jDt2[t02 nDt1[t01 j = jDt2 j+ jDt02 j � jDt1 j � jDt01 j= jDt2 j � jDt1 j+ jDt02 j � jDt01 j= jDt2 nDt1 j+ jDt02 nDt01 jjDt3[t03 n Rt1[t01 j = jDt3 j+ jDt03 j � jRt1 j � jRt01 j= jDt3 j � jRt1 j+ jDt03 j � jRt01 j= jDt3 n Rt1 j+ jDt03 n Rt01 jX(i;j)2 t1[t01(i! (t3 [ t03)(j); t2 [ t02) = X(i;j)2 t1(i! t3(j); t2) +X(i0;j0)2 t01(i0! t03(j0); t02)Therefore, (t� t0) = (t) + (t0).�Trae t = (t1; t2; t3) is said to preede trae t0 = (t01; t02; t03), denoted t � t0,provided maxfi j i 2 Dt2g < minfi j i 2 Dt02gmaxfi j i 2 Dt3g < minfi j i 2 Dt03g16



where max ; = �1 and min ; = +1.Theorem 18 If t = (t1; t2; t3) � t0 = (t01; t02; t03), then t � t0 is a trae. Ift� t0 is minimal, then so are t and t0.Proof: By lemma 17, t � t0 is a trae provided t and t0 are ompatible.Sine t preedes t0, it follows that Dt2 \ Dt02 = ; = Dt3 \ Dt03 . Moreover,if (i; j) 2 t1 and (i0; j0) 2 t01, then i < i0 and j < j0. Hene t and t0 areompatible. Note that the ompatibility of traes t and t0 is not inuenedby either t1 or t01, beause the ompatibility follows from t � t0 whih isde�ned independent of t1 and t01 (whether t preeeds t0 depends only onDt2 ;Dt3 ;Dt02 ;Dt03). Therefore (by lemma 17)(t� t0) = (t) + (t0)and this equality remains valid when t1 and t01 are treated as parametersand are allowed to hange. Suppose t � t0 is minimal. Then the left handside of the equality is Æ([t2 [ t02℄; [t3[ t03℄). By thereom 16, it annot dereaseby hanging t1[ t01. However, if either t or t0 were not minimal, then (bythereom 16) the right hand side of the equality ould derease by hangingt1 or t01.�Lemma 19 Let t = (t1; t2; t3) be a trae. Let t2 = f(i0; f0); : : : ; (ik; fk)gwhere i0 < � � � < ik, and let t3 = f(j0; g0); : : : ; (jl; gl)g where j0 < � � � < jl.If t2 and t3 are nonempty, then t an be expressed as t = t00 � t0 where oneof the following ases hold.1. t0 = (f(ik; jl)g; f(ik ; fk)g; f(jl ; gl)g)2. t0 = (;; f(ik ; fk)g; ;)3. t0 = (;; ;; f(jl ; gl)g)Moreover, if t is minimal, then so is t00.Proof: Let t0 = (t01; t02; t03). The three ases orrespond to a ase deompo-sition based on t1. The �rst ase is (ik; jl) 2 t1, whih an be desribedby saying both ik 2 Dt1 and jl 2 Rt1 . The seond ase is ik =2 Dt1 andjl 2 Rt1 . The third ase is jl =2 Rt1 . In eah ase t00 = (t001; t002 ; t003) must (bythe de�nition of �) be de�ned byt001 = t1n t01t002 = t2n t02t003 = t3n t0317



In every ase, t0 is learly a trae. Moreover, t00�t0 is a trae (via theorem 18),assuming that t00 is a trae, sine t00 � t0.In ase 1, t001 is a partial funtion fromDt2nfikg = Dt2nt02 to Dt3nfjlg = Dt3nt03 .Thus t00 is a trae.In ase 2, t001 = t1 is a partial funtion from Dt2nfikg = Dt2nt02 to Dt3 , beauseik =2 Dt1 . Thus t00 is a trae.In ase 3, t001 = t1 is a partial funtion from Dt2 to Dt3nfjlg = Dt3nt03 , beausejl =2 Rt1 . Thus t00 is a trae.If t is minimal, then by theorem 18 so is t00.�4 The Normal Distane MatrixDe�ne the distane between normal representations �f and �g asd( �f; �g) = Æ([f ℄; [g℄)Note that distane is well-de�ned sine �f = �h() [f ℄ = [h℄. By theorem 16,distane is a metri on normal representations if and only if i = d.Let s = e0 : : : ek be an edit sequene taking u to v. Normal representation�u is regarded as being transformed to �v through the following sequene ~s ofnormal representations~s = 	(u)	(ek(u))	(ek�1ek(u)) : : :	(e0 : : : ek(u))Eah step in the sequene (from one element to the next) orresponds to oneof three types of operations on normal representations. Let �w = w0 : : : wn.If ei is a delete operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n�1where there exists 0 � l � n suh thatw0j = � wj if j < lwj+1 if j > lIn other words, the l th element of �w has been removed. If ei = m! b is ahange operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n18



where there exists 0 � l � n suh thatw0j = � wj if j 6= lb if j = lIn other words, the l th element of �w has been hanged; this is alled a trivialhange when b = wl. If ei =m!i b is an insert operation, thenw0 : : : wn 7! 	(ei(w)) = w00 : : : w0n+1where there exists 0 � l � n+ 1 suh thatw0j = 8<: wj if j < lb if j = lwj�1 if j > lIn other words, b has been inserted into �w at position l.To streamline exposition, refer to the three types of operations (on normalrepresentations desribed above) as delete, hange, and insert operations.Let them have respetive osts d, , and i, exept that the ost of atrivial hange is zero. To distinguish these operators (whih at on normalrepresentations) from previously disussed operators, they are alled normaloperators. The sum of the osts of the normal operators orresponding tothe steps (from one element to the next) in the sequene ~s is therefore (s).Given any sequene r of normal representationsr = �h0�h1 : : : �hnsuh that �hi+1 is the result of some normal operator oi applied to �hi, de�neits ost (r) as the sum (over 0 � i < n) of the osts of the operators oi.Suh a sequene is referred to as a normal sequene, and is desribed asbeing from �h0 to �hn. By the disussion above, if s = e0 : : : ek is an editsequene taking u to v, then the sequene~s = 	(u)	(ek(u)) : : :	(e0 : : : ek(u))is a normal sequene taking �u to �v. Moreover, (~s) = (s).A minimum normal sequene from �f to �g is a minimal ost normal sequenefrom �f to �g. De�ne m( �f; �g) as the ost of a minimum normal sequene from�f to �g. Hene m( �f; �g) � (~s) = (s) where s is a minimal ost edit sequenetaking [f ℄ to [g℄. It follows (via theorem 16) thatm( �f; �g) � d( �f; �g)There may be question as to whether m( �f; �g) = d( �f; �g), beause it has notyet been established that every normal sequene r an be expressed as ~s forsome edit sequene s. The following lemma shows that to be the ase, andtherefore m( �f; �g) and d( �f; �g) oinide.19



Lemma 20 Given nonempty normal sequene r, there exists u and v andan edit sequene s taking u to v suh that r = ~s.Proof: To failitate indution on the length of r, a stronger result will beproved; in addition, u may be hosen suh that the distane between on-seutive elements of Du is arbitrarily large.Base ase: r = �h where h = f(i0; f0); : : : (il; fl)g. Let n 2 Z+ be arbitrary,and let u = f(i0n; f0); : : : (iln; fl)g. Let s = " so that ~s = �u = �h = r.Moreover, the distane between onseutive elements of Du is at least n.Indutive step: r = �h0 : : : �hk where �h0 = a0 : : : aq. Let o be the normaloperator taking �h0 to �h1, and let p be the loation at whih a hange,insertion, or deletion takes plae in �h0. Let n 2 Z+ be arbitrary, andlet s be an edit sequene taking h1 to hk suh that ~s = �h1 : : : �hk. Leth1 = f(i0; f0); : : : (il; fl)g where i0 < � � � < il and the distane betweenonseutive elements of Dh1 is greater than 2n. The proof is ompleted byshowing there exists an edit operation e taking u to h1 where u may behosen suh that �u = �h0 and the distane between onseutive elements ofDu is at least n. The required edit sequene is then se. There are threeases to onsider, depending on the type of o.Case 1: o is a hange operator. Then �h0 = �h1 exept perhaps at positionp. Let u = ip! ap (h1) and let e = ip! fp. Then �u = �h0 and e(u) = h1 asrequired. Moreover, the distane between onseutive elements of Du = Dh1is at least n.Case 2: o is an insert operator. Then the element inserted by o is fp and�h0 = f0 : : : fp�1fp+1 : : : fq. Let u = ip!d (h1) and let e = ip!i fp. Then �u =�h0 and e(u) = h1 as required. Moreover, the distane between onseutiveelements of Du = Dh1n fipg is at least n.Case 3: o is a delete operator. Then �h1 = a0 : : : ap�1ap+1 : : : aq. Let i beb(ip�1 + ip)=2. Let u = i!i ap (h1) and let e = i!d . Then �u = �h0 ande(u) = h1 as required. Moreover, the distane between onseutive elementsof Du = Dh1 [ fipg is at least n.�Theorem 21 Distane d( �f; �g) de�ned as the ost of a minimal trae takingf to g is a metri on normal representations if and only if i = d. Moreover,d( �f; �g) is equal to the ost of a minimal normal sequene from �f to �g.Proof: Theorem 16 established the laims regarding distane being a metri.Lemma 20 and the disussion preeeding it omplete the proof.� 20



Given string f = f(i0; f0); : : : ; (ik; fk)g where i0 < � � � < ik, de�ne �j(f) for0 < j � jf j to be the normal representation of f(i0; f0); : : : ; (ij�1; fj�1)g,�j(f) = f0 : : : fj�1Let �0(f) be the empty sequene ". Note that if f � h then �j(f) = �j(h), sof may as well be normalized. Moreover, �jf j(f) is the normal representationof f .Given strings f and g, their normal distane matrix is the 1 + jf j � 1 + jgjmatrix D with i; j entry (for 0 � i � jf j and 0 � j � jgj)Di;j = d(�i(f); �j(g))In partiular, Djf j;jgj is the distane between the normal representations off and g.The notation [expression℄ is used in the following theorem to simplify expo-sition. It is de�ned as[expression℄ = � 1 if expression is true0 otherwiseTheorem 22 Let f and g be nonempty normalized strings. For 0 < u � jf jand 0 < v � jgj, their normal distane matrix D satis�esD0;0 = 0D0;v = v iDu;0 = u dDu;v = minf[f(u� 1) 6= g(v � 1)℄ +Du�1;v�1; d +Du�1;v; i +Du;v�1gProof: Let �f = f0 : : : fk and �g = g0 : : : gl. Using normal operators on normalrepresentations (whih is justi�ed by theorem 21), it is lear thatD0;0 = d("; ") = 0D0;v = d("; g0 : : : gv�1) = v iDu;0 = d(f0 : : : fu�1; ") = u dNote that Du;v = d(f0 : : : fu�1; g0 : : : gv�1) = (t) where t = (t1; t2; t3) is aminimal trae taking �(f0 : : : fu�1) to �(g0 : : : gv�1). Appealing to lemmas17 and 19, Du;v = (t00) + (t0) where t = t00 � t0 and one of the followingases holds.Case 1: If t0 = (f(iu�1; jv�1)g; f(iu�1; fu�1)g; f(jv�1 ; gv�1)g), then(t0) = (iu�1! gv�1; f(iu�1; fu�1)g) = [fu�1 6= gv�1℄21



Moreover, t00 is a minimal trae taking �(f0 : : : fu�2) to �(g0 : : : gv�2). Thus(t00) = Du�1;v�1.Case 2: If t0 = (;; f(iu�1; fu�1)g; ;), then (t0) = d and t00 is a minimaltrae taking �(f0 : : : fu�2) to �(g0 : : : gv�1). Thus (t00) = Du�1;v.Case 3: If t0 = (;; ;; f(jv�1 ; gv�1)g), then (t0) = i and t00 is a minimaltrae taking �(f0 : : : fu�1) to �(g0 : : : gv�2). Thus (t00) = Du;v�1.It follows that Du;v is equal to some element of the setf[f(u� 1) 6= g(v � 1)℄ +Du�1;v�1; d +Du�1;v; i +Du;v�1gIf eah element in this set is the ost of some sequene of normal operatorstaking f0 : : : fu�1 to g0 : : : gv�1, then the proof is omplete by the minimalityof Du;v.The �rst element in the set is the ost of hanging fu�1 to gv�1 by a normalhange operator followed by the ost of ~s where s is a minimal ost editsequene from [�(f0 : : : fu�2)℄ to [�(g0 : : : gv�2)℄.The seond element in the set is the ost of deleting fu�1 by a normal deleteoperator followed by the ost of ~s where s is a minimal ost edit sequenefrom [�(f0 : : : fu�2)℄ to [�(g0 : : : gv�1)℄.The third element in the set is the ost of ~s where s is a minimal ostedit sequene from [�(f0 : : : fu�1)℄ to [�(g0 : : : gv�2)℄ followed by the ost ofinserting gv�1 by a normal insert operator.�
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