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ABSTRACT 
The conventional view within the Internet community is 
that IP is the appropriate basis for interoperability in the 
network stack. However, recent developments in IP 
networking and in approaches to the link layer have led to 
the proposal and/or adoption of various mechanisms that 
create and then bridge non-interoperable network domains. 
In this paper we explore one avenue of attack on this 
architectural problem, using the End-to-End Principle as a 
guide to help locate the point within the network stack 
where the required degree of interoperability can be found. 
Our conclusion is that the appropriate location of 
interoperability is in a buffer management layer located 
between the link and network layers, which we call the 
transit layer. Our position is that a transit layer protocol 
that abstracts the particular characteristics of different 
intermediate node resources (in the dimensions of data 
transfer, storage and processing) while being more general 
and sitting below the network layer in the stack, would 
exhibit greater deployment scalability and provide a 
broader foundation for network interoperability than IP. 

1. INTRODUCTION 
David Clark’s seminal characterization of the 

Internet’s goals and its underlying architecture make it 
clear that interoperability was the key to its mission [7].  
The Internet addresses the challenge of creating an 
“…effective technique for the multiplexed utilization of 
existing interconnected networks…” by deploying a 
common service (viz. “… a packet switched 
communication facility …which implement[s] a store and 
forward packet forwarding algorithm”) through which all 
the networks that it encompasses can transfer data 
interoperably. IP datagram service thus provides the 
interoperability that embodies the Internet’s “top level” 
goal. 

Given this goal, the more deployable the common 
service is, the more valuable it will be. Deployment 
scalability is our term for the relationship between an 
increase in the “size” of a network or distributed system’s 
deployment, as measured by some set of quantifiable 
dimensions, and the concomitant changes in the size or 
degree of some other set of attributes considered important 
to the system’s success, such performance, reliability, and 
operating cost.  Clearly the scalability of the Internet, in 
this sense, has been remarkable. It has grown dramatically 
in many of the dimensions along which the deployment 
size might be measured, including the number of 
intermediate nodes deployed, the number and size of 

different networks subsumed, the number of organizational 
borders crossed, the extent of geographical distances 
spanned, the number and diversity of services supported. 
At the same time, despite this incredible growth in every 
direction, its performance, reliability and many other 
valued properties have been either preserved or improved 
over time. 

In spite of, and partly because of, this success, the 
network community has arrived at a crossroads at which a 
number of competing forces are converging [8].  On the 
one hand, the Internet is faced with the demand to support 
a much wider class of applications and services than it was 
designed for. At the same time, the explosive 
improvements in fundamental technologies require that 
these new applications and services be implemented under 
dramatically different conditions. This has led to a situation 
in which the ability of IP, or any single network layer 
service, to provide a basis for universal interoperability is 
in doubt.  

We believe that defining a common service, based on 
the broadest possible level of commonality, is a 
prerequisite for enabling a community to create a shared 
information infrastructure that can effectively meet a broad 
diversity of its needs and aspirations.  If it is realistic to 
believe that this task can be successfully undertaken once 
again, we feel it is too important not to try.  In this paper 
we explore one avenue of attack on this architectural 
problem, using the End-to-End principle as a guide to help 
locate the point within network stack where the required 
degree of interoperability can be found. 
2. E2E AND SCALABILITY 

The End-to-End (E2E) Principle was developed as a 
methodology for understanding the impact of assigning 
functionality to the layers of a communication stack in the 
delivery of data from one network endpoint (the sender) to 
another (the receiver) [13].  Over the years since these 
ideas were first introduced and the name was applied to 
them, they have engendered no small amount of 
controversy.  There are many different formulations of 
them, for example, some ranging quite far from the 
networking domain.  Some have seen E2E as normative 
principles telling network architects what they may and 
may not do; others have seen them as a set of arguments to 
help designers understand networks better.  But there is no 
doubt that E2E arguments have guided the development of 
the Internet and served to make it the world’s most scalable 
computer networking system. 

Like its originators [13], we see the use of the E2E 
Principle in networking as equivalent to a more general 
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class of layering arguments that arise in the design of 
computer systems of all kinds.  The multiplicity of 
interpretations stems from the fact that a specific case is 
being considered, rather than the general principle (hence 
the appropriateness of the appellation “E2E arguments”).   
Our formulation of this principle, which we continue to call 
E2E for the sake of familiarity, is as follows: 

The E2E Principle: When designing a service that 
is implemented using a shared infrastructure, there 
is an inherent tradeoff between the service’s 
scalability on that infrastructure, and both i) its 
specialization to a particular class of applications, 
and ii) the value or scarcity of the resource 
consumed to provide it. 
In our view, there are three primitive services that 

network intermediate nodes, as key elements of the shared 
infrastructure, can make available as resources to enable 
the creation of network services: 
1. transferring data between neighboring nodes 
2. storing data, and  
3. applying transformational operations to data   
From this perspective, these fundamental services are all at 
an architectural level that is between link layer and network 
layer on the traditional network stack, since they are 
required in order to implement end-to-end IP datagram 
delivery service.  

Given our formulation of the E2E Principle, which 
treats it as a hypothesis about fundamental limits of 
scalability in the face of service specialization, and cost 
and/or scarcity, it is easy to see why attempts to make other 
use of the local storage or processing services on the 
intermediate node have typically been interpreted as prima 
facie “violations of E2E” which would diminish the 
scalability of the network. Any creation of visible data state 
within the network, for example, have been viewed this 
way because of the belief that storage services must be 
“reliable” or “perpetual” in order to be valuable to users.  
In that case the E2E Principle tells us that the need for 
reliability would result in a commensurate lack of 
scalability in the resulting network, since reliability is 
expensive and allocation in perpetuity requires constant 
replacement.  Or again, transforming data at intermediate 
nodes is usually viewed as a violation of E2E. The idea is 
that processing requires security, scheduling, code 
portability and other expensive and specializing services 
that, according to the principle, will result in a system with 
little scalability.  

For example, over the years various attempts have 
been made to avoid or mitigate the discipline imposed by 
E2E requirements.  With the explosive Internet boom of 
the late 1990s, the idea arose that IP infrastructure would 
now remain fixed, but overlay infrastructure would grow 
up on top of it to allow the creation of additional services.   

This had the advantage of letting the designer of overlay 
services off the hook regarding the scalability of their 
service, since they were designing a service only for some 
community of users, not for the entire network.  The 
communities were usually the sites of a single enterprise or 
the paying customers of some specific online business.  
While this has led to some very valuable enterprise, 
intranet and overlay solutions, it has not added to the 
ability of the public infrastructure to respond to the needs 
of public events, and to meet the unexpected needs of 
commercial customers who have not arranged for overlay 
infrastructure to be deployed on their behalf. 

Another situation in which one might adopt an 
approach that E2E predicts is less scalable occurs when 
one is working in an environment where some of the 
approaches that would enhance scalability are simply 
impractical.  For example, the developers of Interplanetary 
Networking (IPN) found that the delays inherent in end-to-
end signaling on a planetary scale made end-to-end data 
integrity checking and retransmission of data impractical, 
and so they were forced to adopt a rigorous system of hop-
by-hop reliability based on database technology which they 
call “custody transfer” in analogy to post office procedures 
[5].  In this case, it was seen as necessary to forfeit 
scalability in order to implement the application at all. 

With such experiments at cheating E2E, various 
attempts to wring profitability from non-scalable services, 
and cases where architects were forced to turn away from 
it, those who believed E2E was a fundamental tradeoff 
were left with no way to expand scalable networking to 
encompass new classes of resources.  While some have 
believed that this showed that it was time to “go beyond” 
E2E in order to make further progress, we argue that a 
more careful application of the E2E to problem of service 
creation at the intermediate node can yield much better 
results. 
3. LOCATING A LAYER FOR A COMMON 
SERVICE 

In his seminal 1988 paper “The Design Philosophy of 
the DARPA Internet Protocols,” D. D. Clark, after 
identifying the Internet’s top level goal of providing a 
foundation for network interoperability, identified seven 
“second level” goals for creating an effective Internet 
architecture [7]. The top three (in order of importance) are 
as follows: 
1. “Internet communication must continue despite loss of 

networks or gateways.” 
2. “The Internet must support multiple types of 

communications service.” 
3. “The Internet Architecture must accommodate a 

variety of networks.” 
There is rough agreement that during the first decade 

and a half or so of its existence, the original design of the 
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Internet Protocols satisfied all three of these requirements 
to a remarkable degree. But while all the evidence is that 
the design of IP, in particular the insistence on weak 
semantics, continues to be successful in achieving the goal 
of survivability, the situation with respect to the second and 
third objectives is a matter of widespread debate. To the 
extent that the design of IP is still well adapted to the 
application demands at the transport layer above it (goal 2), 
and to the technological demands of the network 
technologies available at the link layer beneath it, (goal 3) 
we would expect that the community would still choose the 
benefits of interoperability in spite of pressures to make 
requirements that cannot be accommodated while 
preserving IP as the common network layer protocol. 
However, there is significant evidence that, as the Internet 
continues to expand, the build up of pressures from both 
directions at once is having the opposite effect.   

In the case of goal 2, there are a variety of 
communication services required by application 
communities that are not well supported by IP. As a result, 
there has been a succession of movements to create non-
interoperable alternatives [2, 14, 15], a proliferation of 
conflicts in various areas over which a number of mutually 
exclusive design choices should be taken [8], and the 
creation of application specific overlays. 

In the case of goal 3, there are a variety of link layer 
technologies that violate the assumptions required to 
implement IP at the network layer: that an immediate end-
to-end forwarding path exists between endpoints, that the 
maximum round trip time is not excessive and that the end-
to-end packet drop probability is small [10]; or that the 
underlying physical transport is packet rather than circuit 
based, as in some forms of optical networking.  Some in 
the community see this effect as so inescapable that they 
have proposed simply abandoning the goal of a common 
service and replacing it with a common system of metadata 
to describe and control the inherent heterogeneity emerging 
at network layer [9]. 

Thus, IP is gradually loosing its effectiveness in the 
role of the common service, both in terms of its ability to 
support new types of application services and its ability to 
integrate new types of networks. The gradual balkanization 
that this is producing exposes the limits of IP’s deployment 
scalability. Now suppose we wanted a network that could 
scale beyond these limits, and that we believe such a 
network is possible.  How would we design a new common 
service in order to achieve it?  . 

The obvious place to turn for guidance is the E2E 
Principle. As we have remarked above, our interpretation 
of the E2E Principle tells us that a network service that is 
sufficiently generic and which does not consume resources 
that are too valuable or scarce will exhibit be scalable. The 
problems emerging in the ability of IP to serve as the 
unifying protocol shows that either 

• It is not generic enough, or 

• It is consuming resources that are too scarce or too 
valuable 

We rule out the latter for IP, as well as for other 
solutions discussed, which adhere strongly to the principle 
of specifying semantics for network services provided at 
the intermediate node which limit the maximum 
consumption on behalf of each independent service 
request. The example under discussion here is best effort 
reliability and limited MTU in IP datagram service. Other 
examples we will discuss include the Internet Backplane 
Protocol  and Ephemeral State Management (sec. 6.1.1 and 
6.1.2).  

If we look at what applications want that IP doesn’t 
give them, chief among them are storage and processing of 
data in transit, i.e. at intermediate nodes. On the other 
hand, these services, unlike IP datagram delivery, are 
inherently local to the intermediate node, rather than being 
defined across a homogeneous network layer.  Thus, they 
are more analogous to the link layer, which connects 
adjacent nodes.  Thus, we propose to generalize the view 
of layer 2 to include local storage and processing services. 
We call to this more general layer, which includes link, 
storage and processing as coequal elements, the local layer 
(Figure 1). 

 
Figure 1: Location of the transit layer in the network stack 

The local layer exhibits the same extreme heterogeneity as 
the link layer in each of its three elements or dimensions. 
The “paths” which storage operations use are as different 
as fast access RAM and super high density magnetic or 
new nano-scale physical media.   The processing “paths” 
are complex operations implemented on devices as 
dissimilar as microprocessors or FPGAs. The key point to 
notice, however, is that all of the operations of the local 
layer can be modeled as providing services of various 
kinds to arrays of bytes of data stored in transit at the 
intermediate node.   
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For this reason, a network protocol capable of 
expressing a broad class of operations on byte arrays 
located at the intermediate node can abstract a more 
general class of lower layer services than IP does.  By 
choosing to model operations that are either local to the 
intermediate node or restricted to operating on nodes 
connected by adjacent links, the protocol can avoid 
implementing routing or wide area algorithms of any kind.  
Because network layer protocols, such as IP, can in fact be 
implemented on top of it, we would situate the new 
protocol between the local and network layers in the 
current network stack.  Since a protocol at this layer would 
provide an abstraction of services for data that is in transit 
at the intermediate node, we propose to call it the transit 
layer (see Figure 1). 

Our position is that a transit layer protocol that 
abstracts the particular characteristics of different 
technologies at the local layer, while being more general 
and sitting below the network layer in the stack, would 
exhibit greater deployment scalability and provide a 
broader foundation for network interoperability than IP. 
4. NETWORK TRANSPARENCY 
CONSIDERED HARMFUL 

One of the important ideas in the architecture of the 
Internet is the notion of network transparency.  If we 
consider, as the original designers of the Internet did, that 
the function of a communication network is to pass data 
unchanged between endpoints, then it is natural to compare 
the network to a transparent window, through which an 
image passes unchanged.  Of course this is far from the 
truth of the Internet, or any other network that is switched 
above the physical layer.  The network is full of complex 
mechanisms that are required to implement the high level 
function of transport of data unchanged.  In the terms of 
information hiding, the transparent network is an opaque 
mechanism, a somewhat unfortunate discord in imagery. 

While this might seem to be merely a rhetorical 
problem, when we consider a generalized network that can 
transform data as well as transport it unchanged, the 
rhetoric of transparency as an unconditional virtue can get 
in the way.  A network that completely encapsulates the 
richness of its resources at the local layer cannot use those 
resources to build new functionality at the network level.  
If we focus instead on the idea that the network should 
appropriately abstract the resources of the local layer in 
their diversity, while still exposing the buffer management 
mechanisms of the transit layer in order to allow the 
construction of new network layer services, we have a 
model that can accommodate both abstraction and 
adaptability. 

Thus, on this analysis, network transparency is one 
solution to the more general problem of abstracting away 
from the link layer, but it oversimplifies by leaving out the 
storage and processing components of the local layer.  The 

problem is then to define a layer which exposes those 
components in a manner that is sufficiently general and yet 
yields to practical implementation. 
5. DEFINING THE TRANSIT LAYER  

In describing transit layer services, we need a basic 
unit of data on which operations can be performed.  At the 
link layer the fundamental unit is the packet and the 
fundamental service is the delivery of packets between 
adjacent nodes. At the IP network layer, the unit is the 
datagram, and the fundamental service is the delivery of 
datagrams between network endpoints.   

We can model a packet or datagram formally as a 3-
tuple <t, a, P> consisting of :  

• a payload (array of byte values) P = v0, v1, …   
• a network location specified by a link or 

network address a, respectively 
•  at a global time t 

The basic operation defined on a datagram (packet) 
<t,a P> by the link (network) layer is transfer: 

Transfer.  Data is copied from one network 
address to another, yielding a new buffer  
<t+ε, a’,P> where ε is a function of the static and 
dynamic network topology. 

Because the transit layer models services provided at 
the intermediate nodes, we extend our model of the basic 
unith of data to a 4-tuple <t,a,b,P>, which we call a byte 
array, and which includes a local buffer name b within the 
node.  The buffer is a physical storage resource, which can 
hold a payload value unchanged with some degree of 
inherent reliability over time.  In our model of the transit 
layer, buffers are also the starting and ending points that 
for operations on those payloads. 

We categorize operations on these buffers three 
fundamental buffer operations types: 
1. Transfer.  Data is copied from one network address to 

another, yielding a new byte array <t+ε, a’,b’,P>, 
where ε is a function of the static and dynamic 
network topology. 

2. Storage.  Data is stored until a later time, t’, yielding a 
new byte array  <t’,a,b,P> 

3. Processing.  One (or more) byte array(s) on a single 
node serve as inputs and/or outputs to an operation, 
yielding one (or more) byte array(s) with a new value 
<t+ε,a,b,P’> where ε is a function of the operation and 
the data. 
We apologize to the reader for this highly abstract and 

unsatisfying characterization of transit layer operations as 
arbitrary transformations of byte array attributes, without 
specific examples.  The possible interpretations cover a 
wide range. A byte array could be a single word of memory 
or a small vector, a transfer could be a wireless packet hop 
and processing could be a single ALU operation per word; 
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or, at the other extreme, a byte array could be a gigabyte 
sized region of disk, a transfer could be an optically 
switched transfer at Tbps rates, and processing could be a 
visualization kernel massively parallelized on a shared 
memory multiprocessor.  While the framework seeks to 
reach toward such extremes, the reader can think of 
examples of moderate operations as primitive but time-
sliced virtual machine instructions for implementing active 
routing, distributed computation, and data centric 
applications, such as those described in the Active 
Networking and Grid literature [11, 12]. 

The interpretation of transfer, storage and processing 
as operations that act on byte arrays in the temporal, spatial 
and value dimensions is illustrated in Figure 2. While there 
is no logical reason why there should not be other 
categories of operation which, for instance, combine 
storage and transformation, current technology primarily 
supports these three basic types. Other important categories 
of operation support services such as synchronization, and 
again those can be combined with the three fundamental 
categories listed here.  These other operations have been 
omitted from the current discussion for the sake of clarity 
and brevity.  

While there is no logical reason why there should not 
be other categories of operation which, for instance, 
combine storage and transformation, current technology 
primarily supports these three basic types. Other important 
categories of operation support services such as 
synchronization, and again those can be combined with the 
three fundamental categories listed here.  These other 

operations have been omitted from the current discussion 
for the sake of clarity and brevity. 

 We consider every byte array to have a neighborhood 
in time, space and value, consisting of other buffers to 
which it can be transformed in a single transit layer 
operation.  It is important to note that the transit layer 
neighborhood is not assumed to be fixed over time or even 
stable for long periods.  As with link layer instability in the 
Internet, extreme instability at the transit layer may 
interfere with the correct functioning of some network 
layer routing protocols. However, the intent is to model a 
dynamic environment in which neighborhoods change over 
time, and where end-to-end paths through these 
neighborhoods may exist only by taking advantage of 
spatial, temporal and transformational dimensions.   

 
 

 
Figure 2: Transit layer connectivity in the transfer, storage, 
and processing dimensions. 

If the spatial dimension of the transit layer 
neighborhood is defined by link layer adjacency, then the 
temporal dimension is defined by the storage technology 
that implements the buffer itself.  A RAM buffer is not 
likely to maintain a value for as long as a buffer 
implemented on disk.  Storage provisioning is thus 
analogous to temporal connectivity. 

Finally, the transformational dimension of the transit 
layer neighborhood is defined by the processing 
capabilities of the intermediate node on which the buffer is 
stored, as well perhaps as the connectivity between the 
storage resource in which it resides and that processing 
resource.  For instance, a RAM buffer may have access to 
fine grained  operations, while a large buffer held on tape 
may not have any processing connectivity at all.  

 Processing connectivity is likely to be the most 
irregular because of the complexity of high performance 
computing devices and the irregularity of the operations 
they implement compared to data storage and transfer.  
Settling on a universal set of operations, like the problem 
of agreeing on a single processor or virtual machine model, 
set of operating system primitives, or any other API may be 
difficult or impossible, depending on the area of 
application. 

It is our position that there should be a subset of 
functionality sufficient to implement a range of network 
layer services that can be decided through community 
decision-making processes such as the IETF.  Experiences 
with related community defined programming interfaces 
such as Linux and Java have provided a lot of experience 
with the creation of common computing interfaces, and the 
transit layer is in many ways simpler because processing is 
so orthogonal to network and transfer functions.  High 
level APIs will be programmed on top of the transit layer, 
not built inside it. 

However, given the fact that some application 
communities will inevitably require features that cannot be 
standardized, we anticipate the emergence of service 
discovery and negotiation protocols at the network layer to 
enable the use of transit layer nodes with an interoperable 
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core that nonetheless do not implement identical sets of 
operations.  Because of lesser but still significant diversity 
in storage services and increasing diversity in transfer 
services, the same may also become true for those 
dimensions of the local layer. 

Another important feature of any layer of the network 
is that it defines a mechanism for the sharing of resources 
between the participants.  In the case of the transit layer, 
the participants in the protocol are either on local host or 
are adjacent at the link layer, and so can the provisioning of 
resources can be quite finely modulated to the nature of the 
link layer connectivity.  When the link layer defines a 
private or highly trusting community, the transit layer can 
provide free access to significant levels of resources in all 
dimensions. 

This is especially important when we generalize the 
local layer to storage and processing resources because, 
although it is possible to create wide area communities that 
share such resources freely, it is more common to find a 
need to impose controls such as user authentication, quotas 
and billing, which can put significant barriers in the way of 
communication and collaboration.  Locating the sharing of 
such resources at the transit layer allows the controls 
necessary for wider sharing to be located at the network 
layer and specialized to the nature of network layer 
services. 
6. RELATED APPROACHES TO 
ENRICHED RESOURCE NETWORKING 

The design approach that we propose in this paper 
spans the application of modern computer system 
architecture and engineering principles to data transfer, 
storage and processing resources on scales ranging from 
micro to macro, but we have begged important questions, 
such as how to deal with synchronization.  The conceptual 
tools we rely on are taken not only from networking, but 
also from among the most influential systems of the past 
several decades in areas including operating systems, 
virtual machines, pipelined and parallel processor 
scheduling, fault tolerant and high performance storage and 
computing.  In lieu of a comprehensive section covering 
related work, we present some recent projects from which 
we have drawn ideas, which have taken similar or 
alternative design paths.  References to other projects are 
spread throughout the paper as appropriate. 

The development of a detailed proposal for a transit 
layer protocol is also beyond the scope of this paper.  
Instead, we highlight those aspects of recent research 
projects which either implement some of the requirements 
we have defined for a transit layer protocol or point out 
ways in which they have chosen alternative paths.  We do 
not present any of these as specific proposals for a transit 
layer protocol.  

We discuss two categories of approaches to the 
creation of services at intermediate nodes: those which 

expose all data state created at the intermediate node to 
direct inspection and manipulation by higher layers, and 
those which create state which is encapsulated, i.e. it is 
accessible only to the service implementation.  In addition, 
we briefly discuss peer-to-peer approaches that directly 
create new network services at the end-points. 
6.1 Exposed Approaches 
6.1.1 Logistical Networking 
The research team led by Beck and Plank at the University 
of Tennessee’s Logistical Computing and Internetworking 
(LoCI) Laboratory has for more than five years been 
developing the Internet Backplane Protocol (IBP), an 
overlay implementation of functionality closely related to 
that required of the transit layer [3, 4].   

The fundamental categories of operations implemented 
by the Internet Backplane Protocol are:  

• allocate a persistent storage buffer on an 
intermediate node (either the local node or one 
that is adjacent at the link layer); storing data to, 
loading data from, and managing the control state 
of such buffers 

• transfering data between buffers, and 
• processing data stored in some set of buffers 

under the control of a specific predefined 
operation  

The definitions of the transit layer operations in Section 5 are 
taken from the semantics of the core categories of IBP 
fucntionality, but stripped of much of the complexity required by 
the specifics of storage resources management  and the specific 
difficulties of an overlay implementation (as discussed below). 

Of these three categories of IBP functionality, a 
significant amount of the complexity of IBP is focused on 
the first category, due to the creation of persistent state 
visible to the user and the need to manage it in a manner 
that protects users from one another (a large, randomized 
namespace of capabilities) and that allows the intermediate 
node not to overtax its storage resources (best effort 
leases).  Data transfer and processing are completely 
stateless, manifesting their effects solely by modifying the 
values stored in their storage buffer arguments.   

The protection of the depot’s data transfer and 
processing resources is enabled by the enforcement of 
MTUs for transfer, and maximum units of computational 
work for processing.  In a transit-layer implementation, it is 
worth noting that to the extent that the access of local layer 
services by network services is more trusted than the access 
of host resources by IBP end-users, the problem of 
enforcing resource sharing, which has been a difficult one 
in Logistical Networking, may be more tractable. 

The transit level intermediate node, or depot, is 
implemented at the application level. It is accessed using a 
TCP-based client/server protocol that leverages a variety of 
data transport mechanisms between nodes.  The IBP depot 
is the core infrastructure for the LoCI project. As would be 
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expected, additional E2E services (e.g.  aggregation, fault 
tolerance, compression, replication, and optimization of 
data transfer performance) are implemented in libraries that 
execute at network end points.  

Because the control of processing resources within the 
IBP depot is still immature, more autonomous services 
(e.g. resource discovery, routing, and active data 
management including error recovery) are currently 
implemented self-contained processes that run on end 
systems. However, any transit layer protocol must have, as 
a primary design requirement, the ability to overcome the 
latencies imposed when local operations are initiated by the 
network layer. We believe that IBP is uniquely well suited 
to address this challenge. 
6.1.2 Ephemeral State Processing 

Calvert, Griffioen and Wen [6] have developed 
Ephemeral State Processing as a mechanism to maintain 
persistent state at IP routers and perform operations on it. 
As with Logistical Networking, they followed the design 
principles of IP to create an architecture that conforms to 
the end-to-end principles: storage allocations are limited in 
size and duration, instructions are restricted to a limited set 
installed on the router, and both functions are best effort. 
However the scale of their ephemeral state is orders of 
magnitude smaller than the storage supported by Logistical 
Networking: storage allocations are limited to single 64 bit 
words stored for 10 seconds; primitive operations 
analogous to individual machine instructions act on one or 
two stored words. While this greatly reduces the problem 
of scalability, it also restricts the applicability of their 
approach to very simple services 
6.2 Encapsulated Approaches 
6.2.1 Active Networking, 

Active Networking has focused on the creation of 
services at the intermediate node by the specification of a 
node operating system, which is a service layer that is 
encapsulated within the intermediate node itself.  With 
such a node OS in place, code implementing a new service 
at the network layer can then be injected into the active 
intermediate node and executed there, creating and 
accessing local state. The key difference between the 
Active Networking approach and what we describe as the 
transit layer is that the latter exposes the entire stored data 
state of the intermediate node for management by higher 
layers of the stack, and may not choose to allow the 
indefinite allocation of a storage or processing resources 
by the higher layers.   

Our approach, which combines exposed state and 
weak semantics, can place a much greater burden on the 
implementation of the network service to manage the state 
of multiple intermediate nodes in providing any service to 
endpoints.   While some of these elements are present in 
certain Active Networking projects, maximizing their 

impact as design criteria is central to the E2E philosophy 
that motivates and informs the design of the transit layer. 
6.2.2 Remote Procedure Call and Job Execution 

Various Distributed Computing systems implement 
remote procedure call mechanisms or job execution, and 
the processing component of the transit layer bears some 
resemblance to those mechanisms.  Remote procedure call 
usually bundles the movement of data from a client to a 
computational server, the invocation of a (usually 
heavyweight) service, and the return of results.  Job 
execution may allow inputs to be prestaged and results to 
reside at the server.  The bundling of data movement with 
processing, the transfer of arbitrarily complex programs to 
the execution platform and the encapsulation of state 
management within an extended execution all create highly 
complex system behaviors that sometimes have little 
survivability.  The important point to make is that 
execution of a call (job) to completion is a form of 
indefinite allocation of storage and potentially unbounded 
allocation processing resources for the purposes of state 
management, unless possible the nature of the call (job) is 
appropriately circumscribed in its use of such resources.  
The use of specialized state management systems such as 
checkpointing can enhance survivability at the expense of 
generality.  The experience of the Distributed Computing 
community with the deployment of these systems does not 
recommend this approach as a model for massively 
scalable infrastructure on the level of the Internet.  Of 
course, it was never intended to be so. 
6.2.3 Network Attached Storage 

The area of Network Attached Storage (NAS) started 
from an approach focused around server appliances based 
on the Network File System, but has evolved toward 
storage devices that are more specially adapted for direct 
attachment of disk resources to the network.  Although 
protocols such as iSCSI and FCIP have allowed abstraction 
away from some physical device characteristics, the lack of 
adequate protection between users makes it more 
appropriate to think of them as technologies at the local 
layer (perhaps combining transfer and storage components) 
rather than at the transit layer, in spite their overlay 
implementation on top of TCP.  However, more storage 
protocols with more sophisticated allocation models, such 
as T10 [1], and hybrid storage/processing technologies, 
such as intelligent disks, continue to move NAS in the 
direction of transit layer functionality. 
6.3 Peer-to-Peer 

In the past several years, a number of peer-to-peer 
services have developed that implement application 
services using the storage, processing and data transfer 
resources of a community of network endpoints.  Because 
of the lack of control that the members of such 
communities exercise over the other members, participants 
in the protocols must of necessity make very weak 
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assumptions about the behavior of their “peer.” They must 
allow for the fact that they may be broken, may perform 
poorly or inconsistently, may lie about their identity, or 
may act in a malicious manner, perhaps disabling or 
stealing the resources of other members of the larger 
network community. 

The necessarily weak assumptions of peer-to-peer 
protocols are an approximate model to the transit layer of a 
scalable network. Protocols devised to implement complex 
processing in peer-to-peer networks may therefore have 
applicability in the transit layer.  But the transit layer 
should not be as dangerous a place as the peer-to-peer 
environment, since access to it by end users can be 
controlled through a combination of link layer connectivity 
and controls implemented at the network layer.  Thus, even 
algorithms that perform well only in relatively restricted 
peer-to-peer environments may find applicability in more 
public transit layer networking domains. 
7. CONCLUSION 

In this paper, we have revisited interoperability as the 
basis for the creation and maintenance of shared 
information technology infrastructure.   We have briefly 
examined the current problems facing the deployment of 
new application services and the incorporation of new 
network technologies in an environment where 
interoperability is based on the use of IP as the common 
protocol.  Using the End-to-End Principle as our guide, we 
have reached the conclusion that a more general protocol, 
modeling storage and processing resources on the 
intermediate nodes, as well as a greater variety of link layer 
transports, could support a greater diversity of services at 
the network layer. Thus, interoperability based on the 
adoption of a common protocol at a transit layer, created 
between the link and network layers of the current stack, 
could be expected to include communities that are now 
attracted to network layers that are incompatible with the 
IP standard. It could also be expect to enable the utilization 
of link layer technologies that are not well suited to the 
transport of IP datagrams. 

However, our architectural argument may seem to 
have skirted some important issues, chief among them the 
problem of performance.  E2E arguments usually allow for 
cases when application performance requirements have to 
be explicitly taken into account in making architectural 
choices.  Even scalability may have to be sacrificed when 
performance requirements are paramount. While our 
proposed transit layer model provides an abstraction of the 
local resources of the intermediate node that can integrate 
diverse low level technologies and enable the creation of 
diverse network layer services, there is a very real question 
as to whether any such model can hope to perform at the 
incredible levels achieved by today’s core Internet routers. 
In principle, routers could be built on virtual machines that 
transfer data in large segments as well as succinct 
datagrams. But when high performance video streams at 

aggregate bandwidths of terabits per second need to reach 
their destinations with minimal jitter, predictability seems 
to demand some degree of specialization in the forwarding 
of datagrams at the network layer. 

Does this mean that our analysis is naïve when viewed 
from a realistic economic and engineering perspective?  
The answer may depend on the ultimate economic and 
societal importance of new applications and activities that 
need the flexibility that the transit layer would enable, 
compared to the current importance of applications that are 
very sensitive to latency incurred at the forwarding node.  
It may also depend on the ability of network engineers, 
faced with the challenges of building switches that can 
accommodate such a wide disparity of data packetization 
policies, to optimize and pipeline the regular cases that 
neither need complex services, nor can afford to take 
unnecessary detours through the higher levels of the stack. 

 Ultimately, there may be important communication 
domains where the transit and network layers are collapsed 
for reasons of performance. Indeed, today’s Internet can be 
viewed as one such region.  However, in future such 
regions may exist as non-interoperable domains within a 
more generalized network that is able to serve an extremely 
diverse community of interests. While engineering 
advances may deliver performance levels once thought to 
be unattainable for a scalable network, some desirable 
applications may remain out of reach as part of the price to 
be paid for more universal interoperability.  It’s a familiar 
story, and we believe the time may have come to play it out 
again on an exciting new stage. 
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