NetBuild: Automated Installation and Use of Network-Accessible
Software Libraries T

Keith Moore, Jack Dongarra, Shirley Moore

Innovative Computing Laboratory, University of Tennessee

Eric Grosse

Computing Sciences Research Center, Bell Labs

ABSTRACT

NetBuild is a suite of tools designed to aid users in making use of computational
software libraries that are stored on the network, without needing to have those libraries
preinstalled on each user’s computer. Instead, the NetBuild client determines which
libraries are not installed, identifies suitable versions of those libraries that are accessible
from the network, downloads those libraries, and links them into the user’s program.

This report describes the current status of the NetBuild project, recent progress, and
future plans.

1. Introduction and Overview

1.1 Problem Description

NetBuild’s goal is to make it easier for people to use high-performance computational software
libraries by ridding them of the need to install and maintain current libraries on each computing platform
that they use. NetBuild attempts to achieve this by determining which libraries needed to compile or link a
program are not installed locally, downloading the missing libraries, and supplying appropriate arguments
to the compiler or linker to cause those libraries to be linked in with the user’s program.

We hope that this approach will result in less burden on users because they need only install the Net-
Build client rather than each of the libraries they want to use. NetBuild can match against fine-grained
attributes of a user’s computing platform making it possible to choose the most efficient version of a library
available for the platform without the user needing to explicitly configure and build that library. NetBuild
can also serve as a means to keep libraries up-to-date, as it will always use the most recent version of a par-
ticular library that it knows about. Finally it is believed that NetBuild can correctly configure and install
libraries more reliably than individual users. In effect, NetBuild leverages expertise of its library maintain-
ers to benefit a potentially much larger number of users.

1.2 How NetBuild Works

The user invokes NetBuild’s services via the ““nb” program. This program is used to run the com-
piler, or “make”, or compilation script, or any other command that would be used to compile the user’s
program. So for instance, instead of typing

77 program.f —-l1lapack -Iblas

the user types

T This material is based on work supported by the National Science Foundation under Grant No. 0130499.
Any opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the National Science Foundation.

nb 77 program.f —-1lapack —-Iblas
Or instead of typing

make program
the user types

nb make program

nb then runs the supplied command in an altered environment, which has its PATH variable modified to
have a directory prepended to it. That directory contains “shims” which have the same names as the com-
pilers and linkers which nb needs to intercept.

Whenever one of those compilers or linkers is invoked — either directly from nb, by make, or by
some other compilation tool, the shim is run instead of the real compiler. The shim then parses the com-
piler’s arguments looking for names of libraries that need to be linked in. If those libraries are not installed
on the system, the shim then downloads them, verifies their signatures, and extracts them into an empty
directory. Finally the real compiler or linker is run with a modified argument list that causes the newly-
downloaded libraries to be linked in along with the user’s program and any native libraries that are used.

1.3 NetBuild Toolset and Structure
This figure illustrates most of the components of the NetBuild system and the relationships between

those components:
annotated source code

nc invokes local compilers, object
as well as a script that library
annotates object files to

include metadata needed nc-checkin uses gpg -
by netbuild to sign packages
signed package

(object library
compiler + metadata)

!

| netbuild-checkin |

signed (per-library)
package netbuild.index

web server

server

user
source
code

local downloaded selection
libraries libraries metadata

user executable

1.3.1nc

There are two ways to construct libraries for use with nb — one in which metadata for the libraries are
manually supplied by a human expert, and another in which some or all of the metadata are automatically
derived when the library is built. nc is the program that is invoked to build a library while automatically
supplying the metadata.

Whoever is building the library uses the normal compile command prefixed by “nc”. For example, if
the compile command is make, the user would type nc make. nc intercepts calls to compilers and other
tools that are used to compile libraries. It determines what target platform the code is being compiled for
and which features of the target platform will be required for the code to run. In some cases it can also
determine for what platform variant(s) the code is being optimized. nc then annotates the compiled object
files with metadata that can be used in selection of an appropriate library for the user’s platform.

The nc command is actually a small shell script that prepends a directory to the user’s search PATH
variable and then calls the command that the user specified. The directory that was added to the PATH con-
tains aliases for compilers that are installed on the system. Each alias is linked to a program called nc-shim
which does most of the work.

nc-shim parses the command line arguments of the compiler in order to determine the names of the
object files which a successful compile will produce, and also some of the the characteristics of those object
files. For instance, on gcc on an 1A32 platform the option —msse tells gcc to optimize for a processor with
the SSE extension. Other options that nc-shim needs to know about include those that change the procedure
calling mechanism, or the sizes or alignment of data types, used by the generated code. These options need
to be reflected in the metadata with which the resulting code is annotated. In order to anticipate the com-
piler’s actions nc-shim needs to know a fair amount of detail about the compilers installed on a system.

Unless nc-shim thinks it is invoking a cross-compiler, nc-shim also consults native system facilities
to obtain metadata for inclusion in the resulting object files. For instance, the operating system, version, and
CPU family of the compile platform can be determined from the uname system call.

Once nc-shim has determined what metadata to bundle with the object file, it calls the native com-
piler to produce the object file, then invokes a separate program (nc-annotate-object) to add metadata to the
object file. The implementation of nc-annotate-object varies slightly from one system to another, but in gen-
eral it first produces a separate object file that contains the metadata as text, and then uses the linker to cre-
ate a single object file which contains the contents of both the compiled code and the metadata. That result-
ing object file is renamed to replace the object file that contained compiled code. Within the resulting
object file, the metadata is encoded in such a way as to enable it to be extracted from the object file by other
tools.

1.3.2 nc-checkin

The purpose of nc-checkin is to accept libraries that consist of object files produced using nc, pack-
age them up in a form that can be downloaded by nb, and install them on a server where they can be
accessed by nb.

nc-checkin starts by extracting the metadata that are included in the object files produced by nc. This
metadata from individual object files are unified to produce a single set of metadata that describes the entire
object file. These metadata are then stored in a text file named “metadata”. The MDS5 hash function [MD5]
is then applied to produce hashes for both the metadata file and the library file; these are stored in a file
named md5sums. The mdSsums file is signed using GNU privacy guard (an encryption and digital signa-
ture program) [GPG]. The resulting signature is stored in a file named md5sums.gpg, and the public key of
the signer is extracted into pubkey.gpg. The tar program is then used to create a file containing the library,
metadata, md5sums, md5sums.gpg, and pubkey.gpg. The result is compressed using gzip to create a pack-
age file.

The package file is then transmitted to the NetBuild server using ssh. An MDS5 fingerprint of the
package file is transmitted along with the package file to serve as an integrity check.

A similar program is used to check in libraries that were not produced by nc, but which have manu-
ally-generated metadata.

1.3.3 netbuild-checkin

The netbuild-checkin program resides on the server which makes NetBuild libraries available to Net-
Build clients such as nb. It receives a new package from nc-checkin, sanity checks it, stores the package in
alocation where it can be accessed by a NetBuild client, and updates the metadata that is used by the client
to select from among the variants of that package available for that target platform.

netbuild-checkin isinvoked via ssh. It is passed the package as standard input, and the filename of the
package and the MD5 hash of the package on the command-line. It sanity checks its filename argument (so
that netbuild-checkin can’t be used to modify files in other portions of the file system), creates any neces-
sary directories, and stores the package in a temporary file. The MD5 hash of the temporary file is then
compared with the MD5 hash supplied on the command-line. An different hash value indicates that the
library was corrupted in transit, in which case the file is removed. Otherwise the file becomes part of the
network-accessible collection.

Each library is stored in a directory (relative to the root of the NetBuild package collection) named
package-name/platform-name, where package-name is something like ““lapack’” or *‘blas’ and platform-
name is of the form cpu-opsys. (For example: ia32-linux, sparc-solaris, powerpc-aix) A file in that direc-
tory named netbuild.index serves as a list of implementations of a particular library. It is built by extracting
the metadata from each of the libraries in the directory every time alibrary is added to or removed from the
directory.

1.34 nb

The nb program is the primary NetBuild *‘client program™. It is the user interface that causes pro-
grams to be linked with NetBuild's libraries instead of, or in addition to, the libraries installed on the user’s
system. Instead of typing make or whatever command would normally be used to compile a program that
used mathematical software libraries, the user merely types nb make. This causes ‘“make’ or whatever
command to be run in an environment in which linker calls are intercepted by nb. When nb intercepts such
acall, any libraries that are not installed locally are downloaded from the network and automatically linked
into the user program. When multiple versions of alibrary are available for the target platform, nb attempts
to select the most optimal version available. Also, nb uses digital signatures to ensure that downloaded
libraries are not corrupted in transit and that they are not modified by miscreants.

The nb program does two things, depending on how it was invoked:

1 If invoked as nb, it prepends a *‘ shim directory” to the user’s path and interprets the rest of the com-
mand-line as a command to be run with the modified path.

2. Otherwise, it assumes it is intercepting a call to a compiler or linker. It parses the command-line
options to determine whether an executable file is being produced and whether any libraries are to be
linked in. For any libraries that are needed, nb determines whether they are installed locally. If not, nb
consults the Netlib repository [Netlib] to determine whether there are downloadable libraries avail-
able. If so, nb consults the list of available libraries to determine the best version available for the tar-
get platform, selects that one, downloads it, sanity checks it (e.g. for tar pathnames that contain the
root directory or ’.."), verifies its signature, and if it's valid, calls the linker with appropriate options
to cause that library to be linked into the executable.

nb’s parser for compiler command linesis driven by configuration files which allow it to support new
compilers without recompiling.

nb uses GNU Privacy Guard (GPG) to verify signatures on library packages. It maintains its own
GPG keyring (separate from the user’s normal GPG keyring) to determine whether to trust a package's sig-
nature. At setup time nb is configured to trust any package whose signature has been signed by netbuild-
master @netlib.org. In this way the NetBuild maintainers can delegate authority to sign code to a small
number of trustworthy individuals, without compromising the netbuild-master key. However a user can
change the trust settings by using GPG to manipulate the trust parameters on nb’s keyring.

NetBuild does not currently have a way to revoke signatures. However libraries deemed suspect or
untrustworthy can be removed from the list of libraries made available to nb, and this list is checked each
timenbisrun.

A library with a valid signature and signed by a trusted key is intended to signify three things:
. “This library has not been corrupted in transmission.”

. “NetBuild developers and library maintainers do not have reason to believe that this library poses a
security risk to your computing environment or data”, and

. “To the best of the knowledge of the NetBuild developers and library maintainers, this library pro-
duces correct output when given well-formed input, according to the specifications for the library.”

On the other hand, the signature does not indicate any warranty on the part of NetBuild developers
or library maintainers that the library will produce correct output given well-formed input, nor that the
library is free from security risks to users’ computing environments or data. While we believe that having
signed libraries does ameliorate some of the security risks associated with using downloaded code, it
clearly does not eliminate all security risks.

nb’s library selection currently works as follows: it scans the current list of candidate libraries, elimi-
nating those that are ineligible. Currently ’ineligible’ means that the library was compiled for a different
CPU type or operating system, or that the OS version on which the library was compiled is more recent
than the OS version of the target platform, or that the library has a target.constraint expression that is
incompatible with the target platform. Of the remaining candidates the one with the highest valued
library.precedence expression is chosen. If there is more than one of these, the candidate with the recent OS
version is chosen. (There is a special comparison function for OS version numbers which treats each facet
of the version number as an integer. So 3.0 is greater than 2.10, 2.10 is greater than 2.1, 2.10.1 is greater
than 2.10. On some platforms it is necessary for nc to alter the syntax of the version number supplied by the
operating system so that such comparisons will work.)

2. Recent Changes: New Features, Problems Solved, L essons L earned

2.1 Changestonb

. The name of the NetBuild client program was changed from “netbuild” to “nb” as it was confusing
to have the same name for the client program and the project.

. Support for constraint expressions and precedence expressions. nb now selects from a set of libraries
based on constraints and precedence expressions. Constraint expressions dictate whether a particular
library is eligible to be used on a particular target platform. For example, the following expression
matches an AMD Athlon with an L2 cache size of 256K or greater and an L1 cache size of 64K or
greater

cpu.ia32.vendor==""AuthenticAMD" && cpu.ia32.model>=4 &&
cpu.ia32.12.dcache.size>=256*1024 && cpu.ia32.11_dcache.size>=64*1024

Precedence expressions define an ordering among the set of eligible libraries according to estimated
performance. Most precedence expressions are simple integers; however the same expression evalua-
tor used for constraint expressions is also used for precedence expressions, making complex prece-
dence relationships possible.

. Support for fine-grained selection criteria on 1A32. On 1A32 platforms constraint and precedence
expressions can reference fine-grained characteristics of the target platform - including any parame-
ter available through the CPUID instruction. [IA32]

. A nb installation may now be shared between all users on a system. Each user is required to run nb
—setup before using nb for the first time. This creates the necessary per-user directories and copies
default configuration files into those directories. Previous versions of nb had locations of configura-
tion files determined at compile time, which caused problems when multiple users tried to share GPG
trust parameters or cached libraries.

. nb can now support packages that use threads and multiple CPUs (on Linux, NetBSD, and MacOS
X)

2.2 Changesto the Package For mat

. The package format now supports GPG-signed libraries. By default, any package that is signed by
the netbuild-master key, or which is signed by a key that is trusted by netbuild-master, will be trusted.
Users can change this to trust whomever they choose.

. Support for post-install shell scripts has also been added. Such a script, if present, is executed once
the package has been downloaded, verified, and extracted. This provides a great deal of flexibility.
For instance, since redistribution of Goto BLAS [GotoBLAS] files is discouraged by that library’s
author, the NetBuild Goto BLAS package uses the post-install script to download the actual libraries
from the official web site, and to verify those libraries against predetermined MD5 hashes for
integrity checking.

. Packages can now explicitly specify args to pass to the linker, rather than nb assuming that link argu-
ment is derived from the package name. This allows nb to provide a more uniform interface between
packages. For instance, both the ATLAS and the Goto BLAS packages require multiple libraries to
be linked. Also, on some systems the NetBuild BLAS package might recognize the existence of a
vendor-supplied BLAS library with a different name, and use this if it is present. So for example on
a Sparc Solaris system the user might type —Iblas but a NetBuild BLAS package could recognize
the presence of an equivalent vendor-supplied ““sunperf” library using the constraint expression
have_ file(Vopt/SUNWspro/lib/libsunperf._.so). If this package were selected it
would cause the linker to use the local vendor-supplied BLAS library using the argument
—xlic_lib=sunperf.

2.3 Changesto Package Building Tools

. We have developed tools and methodology for building library packages for each of multiple plat-
form variants from the same source (without modifying the source for each variant). Currently the
build tools accept alist of platform variant descriptions along with instructions for taking a pristine
copy of the library source code and configuring and/or modifying that code so that when compiled it
will produce alibrary that is suitable for a particular platform variant.

. We have developed tools for maintenance of the NetBuild package server, which support library
checkin and replacement, and automatic maintenance of index files (both machine and human-read-
able).

2.4 Changesto Libraries

More libraries are now supported, including ARPACK [ARPACK], BLAS [BLASL..BLASY], EIS
PACK [EISPACK], LAPACK [LAPACK], LINPACK [LINPACK], NetCDF [NetCDF], and SuperLU
[SuperLU].

NetBuild's BLAS package on IA32 Linux platforms is an attempt to supply the ““best of breed” ver-
sion of BLAS for each platform variant. A total of thirteen different libraries are currently used. Since the
Goto implementations of BLAS seem to be the fastest on the platforms for which these are available, Net-
Build uses the Goto BLAS if there is an implementation that matches the target platform. An ATLAS
BLAS [ATLASY] is used for the Linux Athlon processor as there is no Goto BLAS for this processor.
(Additional ATLAS-based BLAS implementations could be supplied for other platforms if we had an
example of that platform on which to compile the library.) Other |A32 processors use a GEMM-based
BLAS [GEMMBLAS]; there are different versions of this which are compiled for different versions of the
IA32 instruction set.

3. Issues

3.1 Difficulty of Supporting Fine-grained Target Attributes

In order to achieve near-peak performance with some compute-intensive libraries it is necessary to
select alibrary according to fine-grained attributes of the target platform such as the sizes of various caches,
which can vary considerably from one processor to another of the same type. A library that is selected on
the basis of incomplete target information can be several times slower than one which is optimal for the

target platform.

On 1A32 platforms the (unprivileged) CPUID instruction provides a great deal of detail about the pre-
cise model of the processor, set of features supported, cache sizes, etc. On most other platforms less infor-
mation is available, and such information as is available usually requires the ability to execute privileged
instructions.

Possible workarounds include:

. On some platforms detailed information is available but only in a format which is specific to the
operating system and which may not generalize to use of the same processor on other operating sys-
tems.

. Mapping of limited information (e.g. CPU serial number) which is available via operating system
services, onto more detailed information about processor characteristics.

. Empirical determination of some processor characteristics at link time, or when nb isinstalled.
. Link-time performance measurement of each of several alternative libraries.

. Use of user-supplied configuration information, as users may know the characteristics of their com-
puting platforms via means unaccessible to the nb program.

3.2 Difficulties With Maintaining L arge Collections of Libraries

In order for NetBuild to be viable it must be able to provide access to most of the libraries that are
needed by its user community. This further implies that, at least initially, NetBuild's devel opers must pro-
vide alarge collection of libraries that are pre-compiled for the target platforms that are supported.

Thisisdifficult for several reasons:

. Some libraries need to be built for a large number of platform variants. For libraries that empirically
determine compilation parameters to maximize performance (e.g. ATLAYS) it is necessary to build
each variant library on the specific target platform for which it isintended. Thisin turn requires that
the library be built separately on each of several dlightly different compilation platforms. While there
is no intention to provide optimal implementations of libraries for truly obsolete hardware, there is
still considerable variation among the hardware that in widespread use and which provides adequate
performance for computationally intensive tasks.

. Some libraries have sophisticated Makefile builders or compilation programs which automatically
select specific optimizations and compiler flags. Many of these Makefile builders or compilation
programs assume that the library is being built on the exact platform on which it will be used. If the
library is somewhat dated, or if it is being ported to a platform or platform variant not originally sup-
ported by the author, these optimizations and flags may be anachronistic or inappropriate for a partic-
ular target platform. In these cases it is necessary to ater the compilation program to support new
target platforms and platform variants, and to test the resulting libraries for correct operation and
robustness. It is also desirable that any changes be made in a way that doesn’t alter the source code
of the library itself (so that a single code base may be used to support al NetBuild platforms and
platform variants) but this makes such testing and debugging more time-consuming.

. Some libraries (e.g. SuperLU) require hand-tuning of various compiled-in parameters in order to pro-
vide good performance. A library which is hand-tuned for one platform variant may not perform
acceptably on a different variant of the same platform.

. Even if one variant library will work satisfactorily on several platforms, it can be difficult to predict
exactly which variant will work best on a particular platform without testing each variant on that plat-
form, and even then the performance can vary a bit according to the actual conditions in which the
library is used.

. Compiler bugs may cause a library compiled for one platform variant to fail even though the same
compiler produces correct code for other platform variants. Compiler bugs have also been observed
that produce suboptimal code on some platform variants while producing acceptable code on others.
Multiple compilers, or multiple versions of a compiler, may therefore be needed to produce all of the
variant libraries required for a particular platform.

. Many libraries lack validation routines that would permit us to verify that they operate correctly.
When libraries do have validation routines it may still be necessary for a human domain expert to
examine their output before it can be determined that the library is operating correctly.

. Currently the nc-checkin routines require that each library be signed and checked in separately. This
is tedious as it is occasionally necessary to rebuild large numbers of libraries, for instance, to accom-
modate a new platform variant or a new operating system version.

3.3 Difficulties With Multiple mplementations of the Same Library

Some libraries (e.g. LAPACK, BLAS) have standardized APIs that are more-or-less shared across
different implementations. It is often desirable for NetBuild to be able to select between different imple-
mentations of the same library API. For example, in the case where a vendor’s BLAS outperforms a freely-
available one, but the vendor’s BLAS is not freely available, you want nb to use the vendor BLAS if it is
installed, otherwise to use a free one.

However there are nearly always some differences between the implementations. For instance, the
Goto BLAS (which is supplied in binary form only) also implements some routines from LAPACK, which
can potentially produce symbol conflicts if the library is linked with an object file that includes its own
implementation of one of those routines. Similarly, if a program was originally written and tested with one
BLAS, it might reference routines that are not present in a different BLAS.

3.4 Resolution of Conflicting Selection Criteria

The introduction of dependencies in NetBuild libraries will introduce the possibility that selection of
one library required to build a program will preclude selection of a different library that is also required to
build that program. The implication is that it will no longer be sufficient to select each library separately —
NetBuild must generate sets of libraries which are mutually consistent and then select the best of the avail-
able sets.

3.5 Licensing

Many software packages have licenses that impose (to NetBuild) arbitrary restrictions on use, or
require explicit consent to terms by users, even if monetary compensation is not required. Such licenses are
impediments to NetBuild’s goals of providing transparent access to those libraries.

One possible workaround is to allow users to examine each of several license agreements at the time
NetBuild is installed, or at other times (say, by visiting a web page), and to declare their assent (or objec-
tion) to some, none, or all of those agreements. NetBuild can then record that assent or objection (e.g.
“user XXX has consented to agreement with MD5 hash YYY”) and use this information as input to the
library selection process. This would permit NetBuild to use software whose licenses permit unfettered use
once conditions are agreed to, but would not permit NetBuild to support licenses imposing time, place, or
manner restrictions on use.

3.6 Incompatibilities Between Different Compilers on the Same Platform

In some cases different compilers on the same platform may produce libraries that cannot be used
with other compilers on that platform, or that may not be mixed with other libraries compiled with other
compilers, or that require different run-time support than libraries compiled with other compilers. In some
cases the same compiler called with different options (say, to change the sizes of fundamental data types or
the convention by which functions are called) can have the same effect. Sometimes the differences are sub-
tle, as in FORTRAN routines that only introduce such dependencies when they do formatted input or output
(because they call different run time libraries to implement formatted i/0). Similar issues result from mix-
ing routines written in multiple languages.

It is sometimes, but not always, feasible for NetBuild to determine at link time whether object files
and libraries are compatible. For instance, if object files and libraries are linked using a compiler, the name
of that compiler can provide a clue as to the API expected by object files that it generates. However if the
object files and libraries are linked by calling the linker, this clue is not available. Metadata can be embed-
ded in objects compiled using nb and libraries compiled using nc, and nb may be able to use this metadata

to determine whether or not libraries and objects are mutually compatible. However, it seems unrealistic to
expect that all objects and libraries be compiled using these tools. It also seems unrealistic to expect nb and
nc to reliably determine exactly what constraints are imposed. Should nc check to see whether a FOR-
TRAN routine uses formatted input/output if these are the only constraints on the ABI? If a C routine is
specifically written to be called from a particular FORTRAN compiler, with its function names and param-
eters arranged accordingly, how can nc automatically determine this without requiring changes to the
library source code?

3.7 User-defined Trust Parameters

By default nb trusts any library that is signed by the netbuild-master key or by a key that was certified
by the netbuild-master key. This essentially limits use of nb to libraries supplied by the NetBuild maintain-
ers. It isdesirableto allow usersto invest trust in other library sources. Thisis possible in the current ver-
sion of nb but it requires users to understand subtleties of GPG configuration. Creating a user interface to
trust parameters which is both easy to understand and has predictable behavior is a challenge.

4. Future Plans
Our intention is to release the NetBuild 1.0 client in March 2004. Before we do this we need to:
. Add metadata support for representing compiler dependencies and data-format dependencies,
. Add support for software licensing (at least for ** freeware” licenses),
. Rationalize metadata parameter names. Thisin turn will require rebuilding all libraries.

Theinitia client release may have only afew libraries that are supported on only afew platforms, but
we expect to be able to add many more libraries without changing the client code. Release of other tools,
including *‘nc” and checkin tools that would allow users to build their own libraries, will be delayed until
we have more experience with building libraries with those tools.

Future NetBuild releases will support the ability to compile libraries from source code if no suitable
pre-compiled libraries are available. Consideration is being given to allow the NetBuild client to support
other package formats (e.g. pacman, rpm). Fine-grained target attributes will be supported on as many plat-
forms as possible.

5. Conclusions

By far the most difficult and time-consuming aspect of NetBuild development has been creating and
maintaining a current and comprehensive set of libraries. Thisis surprising given that we are not attempt-
ing to fix bugs in the libraries themselves, but only to configure and compile libraries on alarge number of
target platforms. More work is needed to understand how to streamline this process. It is hoped that this
will result in improved tools for automatically (re)building libraries and managing the complexity associ-
ated with supporting multiple platforms.

In particular the approach taken by ““nc” has not been as effective as anticipated, because platform-
specific optimizations are often performed by conditional compilation or by generating code to fit the target
platform, rather than by merely specifying platform-specific compiler optimization. It is therefore neces-
sary to specify the metadata for many libraries by hand”. Work continues on tools to ease the generation
of libraries for multiple platform variants.

netbuild-master @netlib.org key fingerprint
The fingerprint for the netbuild-master @netlib.org GPG key is:
7313 ABD7 6CA2 3572 C231 A39B 54C9 E5BC 28EE ABDC

References

[ARPACK]
R. B. Lehoucq, D. C. Sorensen, and C. Yang. ARPACK Users Guide: Solution of Large-Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, 1998. (also available at

-10-

http://ww. caam ri ce. edu/ sof t war e/ ARPACK/ UG ug. htm)

[ATLAS]
R. Clint Whaley, A. Petitet, J. J. Dongarra. “Automated Empirical Optimization of Software and the
ATLAS Project”. Parallel Computing. 27 1-2, pp 3-35. (2001) (Also available as University of
Tennessee LAPACK Working Note #147, UT-CS-00-448, 2000.
http://ww. netlib.org/lapack/l awns/| awnl47. ps).

[BLAS1]
C. L. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. *““Basic Linear Algebra Subprograms for
FORTRAN usage”. ACM Trans. Math. Soft., 5 (1979), pp 308-323.

[BLAS?]
J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. “An extended set of FORTRAN Basic
Linear Algebra Subprograms” ACM Trans. Math. Soft. 14 (1988), pp 1-17.

[BLAS3]
J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson. “Algorithm 656: An extended set of
FORTRAN Basic Linear Algebra Subprograms”, ACM Trans. Math. Soft., 14 (1988), pp 18-32.

[BLAS4]
J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling. “A set of Level 3 Basic Linear Algebra
Subprograms”. ACM Trans. Math. Soft., 16 (1990), pp 1-17.

[BLAS5]
J. J. Dongarra, J. Du Croz, I. S. Duff, and S. Hammarling, “Algorithm 679: A set of Level 3 Basic
Linear Algebra Subprograms”, ACM Trans. Math. Soft., 16 (1990), pp 18-28.

[EISPACK1]
B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow, Y. lkebe, V. C. Klema, C. B. Moler. “Matrix
Eigensystem Routines — EISPACK Guide”. in G. Goos and J. Hartmanis, eds. Lecture Notes in
Computer Science 6. Springer-Verlag, 1976.

[EISPACK?2]
B. S. Garbow, J. M. Boyle, J. J. Dongarra, C. B. Moler. “Matrix Eigensystem Routines — EISPACK
Guide Extension” in G. Goos and J. Hartmanis, eds. Lecture Notes in Computer Science 51.
Springer-Verlag, 1977.

[GEMMBLAS]
B. Kagstrom, P. Ling, and C. Van Loan. “Level 3 BLAS tuned for single processors with caches”
High Performance Computing 11 North-Holland, 1991.

[GotoBLAS]
K. Goto and R. van de Geijn. “On Reducing TLB Misses in Matrix Multiplication”. FLAME
Working Note #9, The University of Texas at Austin, Department of Computer Sciences. Technical
Report TR-2002-55. Nov., 2002. (Also available at
http://ww. cs. ut exas. edu/ user s/ fl ame/ pubs/ FLAWNS. ps. gz)

[GPG]
J. M. Ashley. The GNU Privacy Handbook. 1999.
htt p: //ww. gnupg. or g/ gph/ en/ manual . ht m

[1A32]
Intel Corporation. 1A-32 Intel Architecture Software Developer’s Manual. 1, 2A, 2B, 2003.
http://devel oper.intel.com design/pentiumd/ manual s/ 25366513. pdf
http://devel oper.intel.com design/pentiumd/ manual s/ 25366613. pdf
http://devel oper.intel.com design/pentiumd/ manual s/ 25366713. pdf

[LAPACK]
E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, D. Sorensen. LAPACK Users' Guide, Third Edition. SIAM, 1999.

[LINPACK]
J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart. LINPACK Users' Guide. SIAM, 1979.

-11-

[MD5]
R. Rivest. “The MD5 Message-Digest Algorithm.” RFC 1321, April 1992.
ftp://ftp.rfc-editor.org/in-notes/rfcl321._txt

[NetCDF]
R. Rew, G. Davis, S. Emmerson, and H. Davies. “NetCDF User’s Guide for FORTRAN”. June
1997.
http://www._unidata.ucar .edu/packages/netcdf/guidef/
[Netlib]
Netlib software repository. http://www._netlib._org/
[SuperLU]
J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. Liu. “A Supernodal Approach to Sparse

Partial Pivoting”. SAM Journal on Matrix Analysis and Applications, (20) 3, pp 720-755. 1999.
http://http.cs.berkeley.edu/ xiaoye/simax95._ps.gz

