
ISSN 1360-1725

UMIST

LAPACK-Style Codes for Level 2 and 3

Pivoted Cholesky Factorizations

C. Lucas

Numerical Analysis Report No. 442

February 2004

Manchester Centre for Computational Mathematics
Numerical Analysis Reports

DEPARTMENTS OF MATHEMATICS

Reports available from:

Department of Mathematics

University of Manchester

Manchester M13 9PL

England

And over the World-Wide Web from URLs

http://www.ma.man.ac.uk/nareports
ftp://ftp.ma.man.ac.uk/pub/narep

LAPACK-Style Codes for Level 2 and 3

Pivoted Cholesky Factorizations

Craig Lucas∗

February 5, 2004

Abstract

Fortran 77 codes exist in LAPACK for computing the Cholesky factor-
ization of a symmetric positive definite matrix using Level 2 and 3 BLAS.
In LINPACK there is a Level 1 BLAS routine for computing the Cholesky
factorization with complete pivoting of a symmetric positive semi -definite
matrix. We present two new algorithms and Fortran 77 LAPACK-style
codes for computing this pivoted factorization: one using Level 2 BLAS
and one using Level 3 BLAS. We show that on modern machines the new
codes can be many times faster than the LINPACK code. Also, with a
new stopping criterion they provide more reliable rank detection and can
have a smaller normwise backward error.

1 Introduction

The Cholesky factorization of a symmetric positive definite matrix A ∈ R
n×n has

the form
A = LLT ,

where L ∈ R
n×n is a lower triangular matrix with positive diagonal elements.

If A is positive semi -definite, of rank r, there exists a Cholesky factorization
with complete pivoting ([6, Thm. 10.9], for example). That is, there exists a
permutation matrix P ∈ R

n×n such that

P T AP = LLT ,

∗Department of Mathematics, University of Manchester, M13 9PL, England.
(clucas@ma.man.ac.uk, http://www.ma.man.ac.uk/~clucas). This work was supported by
an Engineering and Physical Sciences Research Council Research Studentship.

1

where L is unique in the form

L =

[
L11 0
L12 0

]
,

with L11 ∈ R
r×r lower triangular with positive diagonal elements.

In LINPACK the routine xCHDC performs the Cholesky factorization with
complete pivoting, but it uses only Level 1 BLAS. For computational efficiency
we would like a routine that exploits the Level 2 or Level 3 BLAS.

In this paper we describe a Gaxpy Level 2 BLAS algorithm for the positive
definite case, and show how complete pivoting can be incorporated for the semi-
definite case. We describe the existing LAPACK Level 3 code and explain why
this code cannot be altered to include pivoting. We give an alternative Level 3
algorithm and show that this can be pivoted. The Level 3 code calls the Level 2
code for small n. Finally we give some numerical experiments.

2 A Level 2 Gaxpy Algorithm

Comparing the jth columns in A = LLT we have [3]

A(: , j) =

j∑

k=1

L(: , k)LT (k, j) =

j∑

k=1

L(j, k)L(: , k),

and therefore

L(j, j)L(: , j) = A(: , j) −

j−1∑

k=1

L(j, k)L(: , k)

Defining

v = A(: , j) −

j−1∑

k=1

L(j, k)L(: , k),

then if we know the first j − 1 columns of L then v is computable.
Now, L(1: j − 1, j) = 0 which implies v(1: j − 1) = 0 and comparing terms we

have that
L(j, j)2 = v(j),

so we have finally
L(j: n, j) = v(j: n)/

√
v(j),

which leads to the following gaxpy-based algorithm, which we express in a
MATLAB-like pseudo-code.

2

Algorithm 2.1 This algorithm computes the Cholesky factorization A = LLT

of a symmetric positive definite matrix A ∈ R
n×n, overwriting A with L.

Set L = lower triangular part of A

for j = 1: n

(∗) L(j, j) = L(j, j) − L(j, 1: j − 1)L(j, 1: j − 1)T

if L(j, j) ≤ 0

return % A is not positive definite

end

L(j, j) =
√

L(j, j)

% Update jth column

if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j) − L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end

if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)

end

end

The (Level 2 BLAS) LAPACK [1] subroutine xPOTF2 uses this algorithm.
It requires n3/3 floating point operations.

3 A Level 2 Pivoted Gaxpy Algorithm

We can introduce pivoting into Algorithm 2.1, for L = (`ij), by finding the largest
possible `jj at (∗), from the remaining n − j + 1 diagonal elements and using it
as the pivot. We find

q = min
{

p : L(p, p) − d(p) = max
j≤i≤n

{L(i, i) − d(i)}
}

, (3.1)

where d is a vector of dot products with

d(i) = L(i, 1: j − 1)L(i, 1: j − 1)T , i = j: n, (3.2)

and swap rows and columns q and j, putting the pivot `qq into the lead position.
This is complete pivoting.

For computational efficiency we can store the inner products in (3.2) and
update them on each iteration. This approach gives the following pivoted gaxpy
algorithm.

3

Algorithm 3.1 This algorithm computes the pivoted Cholesky factorization with

complete pivoting P T AP = LLT of a symmetric positive semi-definite matrix

A ∈ R
n×n, overwriting A with L. The nonzero elements of the permutation

matrix P are given by P (piv(k), k) = 1, k = 1: n.

Set L = lower triangular part of A

dots(1: n) = 0 % Store accumulated dot products

piv= 1: n

for j = 1: n

if j > 1

dots(i) =dots(i) + L(i, j − 1)2, i = j: n

end

q = min
{

p : L(p, p)−dots(p) = max
j≤i≤n

{L(i, i)− dots(i)}
}

(#) if stopping criterion is met

return % computed rank of A is j − 1

end

swap L(j, :) and L(q, :)

swap L(: , j) and L(: , q)

swap dots(j) and dots(q)

swap piv(j) and piv(q)

L(j, j) = L(j, j)−dots(j)

L(j, j) =
√

L(j, j)

% Update jth column

if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j) − L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end

if j < n

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)

end

end

The pivoting overhead is 3rn− 3/2r2 floating point operations and r2/2 com-
parisons, where r = rank(A).

The computed rank, r̂, of A is determined by a stopping criterion at (#)
in Algorithm 3.1. For a positive semi-definite matrix A, in exact arithmetic [3,
Thm. 4.2.6]

aii = 0 ⇒ A(i, :) = 0, A(: , i) = 0.

Then at the jth iteration if the pivot, which we’ll denote η
(j)
jj , is less than or equal

to some tolerance, tol, then

tol ≥ η
(j)
jj ≥ η

(j)
ii , i = j + 1: n,

4

and we set the trailing matrix L(j: n, j: n) = 0 and the computed rank is j − 1.
Three possible stopping criteria are discussed in [6, Sec. 10.3.2]. The first is

used in LINPACK’s xCHDC and the MATLAB function cholp in [4]. Here the
algorithm is stopped on the kth step if

η
(k)
ii ≤ 0, i = k: n. (3.3)

In practice r̂ > rank(A) due to rounding errors.
In [6] the other two criteria are shown to work more effectively. The first is

‖S̃k‖ ≤ ε‖A‖ or η
(k)
ii ≤ 0, i = k: n, (3.4)

where S̃k = A22 − AT
12A

−1
11 A12, with A11 ∈ R

k×k, is the Schur complement of A11

in A, while the second is
max
k≤i≤n

η
(k)
ii ≤ εη

(1)
11 , (3.5)

where in both cases ε = nu, and u is the unit roundoff. This is related to (3.4)

in that if A and S̃k are positive semi-definite then

η
(1)
11 = max

i,j
|aij| ≈ ‖A‖2, and, max

k≤i≤n
η

(k)
ii ≈ ‖S̃k‖2.

We have used the latter criterion, preferred for its lower computational cost. See
Appendix A for the double precision Fortran 77 code lev2pchol.f.

4 LAPACK’s Level 3 Algorithm

The (Level 3 BLAS) LAPACK subroutine xPOTRF computes the Cholesky fac-
torization of a block partitioned matrix. Starting with L(0) = A, the algorithm
computes the current block column of L using the previously computed blocks
and does not update the trailing matrix. We have at the kth step




L
(k−1)
11 L

(0)
12 L

(0)
13

L
(k−1)
21 L

(0)
22 L

(0)
23

L
(k−1)
31 L

(0)
32 L

(0)
33


 ,

where L
(k−1)
11 ∈ R

((k−1)nb)×((k−1)nb), for some block size nb, is lower triangular and
we wish to update the kth block column




L
(0)
12

L
(0)
22

L
(0)
32


 ,

making L
(k)
22 ∈ R

nb×nb lower triangular and L
(k)
12 zero. The kth step is as follows:

5

set L
(k)
12 = 0

L
(k)
22 = L

(0)
22 − L

(k−1)
21 L

(k−1)T

21

factorize L
(k)
22 = L̃L̃T

if this factorization fails

A is not positive definite

else

L
(k)
22 = L̃

L
(k)
32 = L

(0)
32 − L

(k−1)
31 L

(k−1)T

21

solve XL
(k)
22 = L

(k)
32 , for X

L
(k)
32 = X

end

In order to add pivoting to this algorithm we would need to decide all the piv-
ots for the kth block column, carry out the required permutations, and continue
with the step above.

The pivot for the first column can be found by computing all the possible
diagonal elements as (3.1). To repeat this to find the second pivot we need first
to update the vector of dot products, which can only be achieved by updating
the first column of the kth block. So we have performed a complete step of
Algorithm 3.1, before we find the second pivot. Thus in determining all the pivots
for the current block column we will have formed L

(k)
22 and L

(k)
32 by Algorithm 3.1.

We would like an algorithm with Level 3 operations that are independent of the
pivoting.

5 A Level 3 Pivoted Algorithm

We can write for the semi-definite matrix A(k) ∈ R
(n−knb×n−knb) and nb ∈ R [3]

A(k−1) =

[
A

(k−1)
11 A

(k−1)
12

AT (k−1)

12 A
(k−1)
22

]
=

[
L11 0
L21 In−nb

] [
Inb

0
0 A(k)

] [
L11 0
L21 In−nb

]T

,

where L11 ∈ R
nb×nb and L21 ∈ R

(n−nb)×nb form the first nb columns of the
Cholesky factor L of A(k−1) . Now to complete our factorization of A(k−1) we
need to factor the reduced matrix

A(k) = A
(k−1)
22 − L21L

T
21, (5.1)

which we can explicitly form, taking advantage of symmetry.
From this representation we can derive a block algorithm. We start with

A(0) = A and a block size nb. At the kth step we apply the equivalent of nb steps
of Algorithm 3.1 to A(k−1) to form nb columns of L. We then update the trailing

6

matrix A(k), which is of dimension n−k ∗nb, according to (5.1). This is a pivoted
algorithm, as Algorithm 3.1 acts on the whole trailing matrix.

At each step the Level 2 part of the algorithm requires (n − (k − 1)nb)n
2
b

floating point operations and the Level 3 update requires (n− k ∗ nb)
3/3 floating

point operations. The Level 3 fraction is approximately 1 − 3nb/2n.

Algorithm 5.1 This algorithm computes the pivoted Cholesky factorization with

complete pivoting P T AP = LLT of a symmetric positive semi-definite matrix

A ∈ R
n×n, overwriting A with L, using a Level 3 update and block size nb. The

nonzero elements of the permutation matrix P are given by P (piv(k), k) = 1,

k = 1: n.

Set L = lower triangular part of A

ε = nu

piv = 1: n

for k = 1: nb: n

jb = min(nb, n − k + 1) % Allow for last incomplete block

dots(k: n) = 0 % Store accumulated dot products

tol = n ∗ u ∗ max(diag(A)) % Tolerance in stopping criterion

for j = k: k + jb − 1

if j > k

dots(i) = dots(i) + L(i, j − 1)2, i = j: n

end

q = min
{

p : L(p, p) − dots(p) = max
j≤i≤n

{L(i, i) − dots(i)}
}

if L(q, q) ≤ tol

return % computed rank of A is j − 1

end

swap L(j, :) and L(q, :)

swap L(: , j) and L(: , q)

swap dots(j) and dots(q)

swap piv(j) and piv(q)

L(j, j) = L(j, j) − dots(j)

L(j, j) =
√

L(j, j)

% Update jth column

if 1 < j < n

L(j + 1: n, j) = L(j + 1: n, j)−

L(j + 1: n, 1: j − 1)L(j, 1: j − 1)T

end

if j < n

7

L(j + 1: n, j) = L(j + 1: n, j)/L(j, j)

end

end

if k + jb < n

% perform Level 3 update

L(j + 1: n, j + 1, n) = L(j + 1: n, j + 1, n)−

L(j + 1: n, 1: j)L(j + 1: n, 1: j)T

end

See Appendix B for the double precision Fortran 77 code lev3pchol.f.

6 Numerical Experiments

We tested and compared four Fortran subroutines:

• LINPACK’s DCHDC [2], which uses Level 1 BLAS and stopping criterion (3.3).

• LINPACK’s DCHDC, altered to use stopping criterion (3.5).

• An implementation of Algorithm 3.1, obtained by modifying LAPACK’s
DPOTF2, using stopping criterion (3.5): lev2pchol.f in Appendix A.

• An implementation of Algorithm 5.1, again using stopping criterion (3.5):
lev3pchol.f in Appendix B.

The tests were performed on a 1400MHz AMD Athlon running Red Hat Linux
version 6.2 with kernel 2.2.22 and a Sun 167MHz UltraSparc running Solaris
version 2.7. All test matrices were generated in MATLAB 6.5. The unit roundoff
u ≈ 1.1e-16.

We test the speed of computation, the normwise backward error and the rank
revealing properties of the routines. In all cases the results for the Linux machine
are given. The results on the Sun for backward error and rank detection were
indistinguishable from those on the Linux machine. The timings on the Sun were
much greater than, but in proportion to, those on the Linux machine.

We first compared the speed of the factorization of the LINPACK code and
our Level 2 and 3 routines for different sizes of A ∈ R

n×n. We generated random
symmetric positive semi-definite matrices of order n and rank 0.7n by computing

A =
0.7n∑

i=1

xxT , x = rand(n, 1),

where the MATLAB command rand(n,1) generates a random vector, with ele-
ments uniformly distributed on (0, 1), of length n. For each value of n the codes

8

1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

700

Dimension, n, of matrix

T
im

es
 (

se
cs

)

LINPACKs DCHDC
Our Level 2 Algorithm
Our Level 3 Algorithm

Figure 6.1: Comparison of speed for different n.

were run four times and the mean times are shown in Figure 6.1. The speed-ups
of the new codes over the LINPACK code are given in Table 6.1.

We achieve a good speed-up, with the Level 3 code as much as 8 times faster
than the LINPACK code.

Table 6.1: Speed-ups from LINPACK code.

n 1000 2000 3000 4000 5000 6000

LEV2PCHOL 2.05 2.21 2.35 2.29 2.33 2.32

LEV3PCHOL 5.30 6.03 6.90 7.52 7.78 8.05

We also compared the speed of the (unpivoted) LAPACK subroutines against
our Level 2 and Level 3 pivoted codes, using full rank matrices, to demonstrate
the pivoting overhead. Figure 6.2 shows the ratio of speed of the pivoted codes
to the unpivoted codes. These show that the pivoting overhead is negligible for
large n, recalling the pivoting overhead is 3rn − 3/2r2 floating point operations,

9

and the unpivoted factorization is of order n3. The use of the pivoted codes could
be warranted if there is any doubt over whether a matrix is positive definite..

1000 2000 3000 4000 5000 6000
1

1.05

1.1

1.15

Dimension, n, of matrix

P
iv

ot
ed

 c
od

e/
LA

P
A

C
K

Level 2 codes − LAPACK DPOTF2 vs LEV2PCHOL

1000 2000 3000 4000 5000 6000
1

1.2

1.4

1.6

1.8

Dimension, n, of matrix

P
iv

ot
ed

 c
od

e/
LA

P
A

C
K

Level 3 codes − LAPACK DPOTRF vs LEV3PCHOL

Figure 6.2: Comparison between LAPACK and pivoted codes.

We tested all four subroutines on a further set of random positive semi-definite
matrices, this time with pre-determined eigenvalues, similar to the tests in [5].
The matrices were generated by setting A = QΛQT where Q was a random
orthogonal matrix computed by the method of [9] using [7]. For matrices of rank
r we chose the nonzero eigenvalues in three ways:

• Case 1: λ1 = λ2 = · · · = λr−1 = 1, λr = α ≤ 1

• Case 2: λ1 = 1, λ2 = λ3 = · · · = λr = α ≤ 1

• Case 3: λi = αi−1, 1 ≤ i ≤ r, α ≤ 1

Here, α was chosen to vary κ2(A) = λ1/λr.
For each case we constructed a set of 100 matrices by using every combination

of:

n = {70, 100, 200, 500, 1000},

κ2(A) = {1, 1e+3, 1e+6, 1e+9, 1e+12},

r = {0.2n, 0.3n, 0.5n, 0.9n},

10

where r = rank(A). We computed the relative normwise backward error

‖A − P̂ L̂L̂T P̂ T‖2

‖A‖2

,

for the computed Cholesky factor L̂ and permutation matrix P̂ . We have, from [6,
Thm. 10.22], the following upper bound

‖A − P̂ L̂L̂T P̂ T‖2

‖A‖2

≤ 2rγr+1(‖W‖2 + 1)2 + O(u2), (6.1)

where

W = L̂−1
11 L̂12, L̂ =

[
L̂11 0
L̂12 0

]
, L̂11 ∈ R

r×r,

and from [6, Lemma 10.13],

‖W‖2 ≤

√
1

3
(n − r)(4r − 1), (6.2)

and so there is no guarantee of stability of the algorithm for large n and r.
There was little difference for the normwise backward errors between the

three cases and Table 6.2 shows minimum and maximum values for different n.
The codes with the new stopping criterion give smaller errors than the original
LINPACK code. The minimum and maximum values of ‖W‖ are also given, and
show that after r stages the algorithm will have produced a stable factorization.
In fact, for all the codes with our stopping criterion r̂ = r, and the so rank was
detected exactly. This was not the case for the unmodified DCHDC, and the error,
r̂ − r, is shown in Table 6.3.

We assume that the larger backward error for the original DCHDC is due to
the stopping criterion. As Table 6.3 shows, the routine is terminated after more
steps than our codes, adding more nonzero columns to L̂.

7 Checking for Indefiniteness

The algorithm does not attempt to check if the matrix is positive semi-definite.
For example, if we supplied

A =




1 0 0
0 0 1
0 1 0


 ,

then the algorithm would stop after one step, and give the rank to be 1, whereas
A is indefinite with eigenvalues of {1, 1,−1}. A check of the residual

‖A − P̂ L̂L̂T P̂ T‖,

11

Table 6.2: Comparison of normwise backward errors.

n 70 100 200 500 1000

‖W‖2 min 3.58 4.39 7.91 15.12 27.11

max 10.67 12.26 20.62 32.52 66.03

DCHDC min 1.654e-16 3.654e-16 6.651e- 16 5.504e-15 1.933e-14

max 3.172e-13 1.498e-13 1.031e-12 2.823e-12 4.737e-11

DCHDC min 1.707e-16 2.561e-16 4.737e-16 1.273e-15 2.687e-15

with (3.5) max 7.778e-15 9.014e-15 1.810e-14 7.746e-14 1.991e-13

LEV2PCHOL min 1.671e-16 2.526e-16 5.121e-16 1.240e-15 2.597e-15

max 4.633e-15 9.283e-15 1.458e-14 7.290e-14 1.983e-13

LEV3PCHOL min 1.671e-16 2.476e-16 5.121e-16 1.271e-15 2.600e-15

max 4.633e-15 9.283e-15 1.710e-14 8.247e-14 2.049e-13

Table 6.3: Errors in computed rank for DCHDC.

n 70 100 200 500 1000

min 0 0 1 4 4

max 10 12 16 16 19

bearing in mind (6.1) and (6.2), may allow confirmation that A is not close to
being positive semi-definite.

The user could also update the trailing matrix by (5.1) to give

Ãr+1 = A(r+1)(r + 1: n, r + 1: n) = A(r)(r + 1: n, r + 1: n) − L̂21L̂
T
21.

We know the diagonal elements are ‘small’ since the algorithm stopped after r̂
steps and consequently ‖Ãr+1‖ should be negligible, but if ‖Ãr+1‖ is large then

12

the original matrix could have been indefinite. However, if ‖W‖ is large then it
is more difficult to reach this conclusion, as there may have been significant error
growth during the factorization.

Of course, if there is serious doubt over semi-definiteness then a symmetric
indefinite factorization should be used. It is also worth noting that the stopping
criterion is based on A being positive semi-definite.

8 Concluding Remarks

We have presented two Fortran 77 codes for the Cholesky factorization with
complete pivoting of a positive semi-definite matrix: a Level 2 BLAS version and
a Level 3 BLAS version. Our tests show that our codes are much faster than the
existing LINPACK code on our test machines.

Furthermore, with a new stopping criterion the rank is revealed much more
reliably, and this leads to a smaller normwise backward error.

We propose that the double precision Fortran 77 codes lev2pchol.f and
lev3pchol.f, and their single precision and complex equivalents, be included in
LAPACK.

9 Acknowledgements

I thank Sven Hammarling of NAG Ltd., Oxford and Nick Higham of the Uni-
versity of Manchester for their invaluable comments and suggestions throughout
this work.

13

Appendices

The Level 3 code calls the Level 2 code when the block size is greater than n.
The block size is determined by the LAPACK function ILAENV. Note we pass the
function name DPOTRF, the existing Level 3 LAPACK routine for the full rank
Cholesky factorization, to return a suitable value.

The subroutine BLAS DMAX VAL is modified from the BLAS function IDAMAX

to return the largest algebraic value of a vector and the smallest index that
contains that value. The name and interface conform to the BLAS Technical
Forum Standard [8].

A lev2pchol.f

SUBROUTINE LEV2PCHOL(UPLO, N, A, LDA, PIV, RANK, TOL, WORK,

$ INFO)

*

* Modified to include pivoting for semidefinite matrices by

* Craig Lucas, University of Manchester. January, 2004

*

* Original LAPACK routine DPOTF2

* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,

* Courant Institute, Argonne National Lab, and Rice University

* February 29, 1992

*

* .. Scalar Arguments ..

DOUBLE PRECISION TOL

INTEGER INFO, LDA, N, RANK

CHARACTER UPLO

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), WORK(2*N)

INTEGER PIV(N)

* ..

*

* Purpose

* =======

*

* LEV2PCHOL computes the Cholesky factorization with complete

* pivoting of a real symmetric positive semi-definite matrix A.

*

* The factorization has the form

* P’ * A * P = U’ * U , if UPLO = ’U’,

* P’ * A * P = L * L’, if UPLO = ’L’,

* where U is an upper triangular matrix and L is lower triangular, and

14

* P is stored as vector PIV.

*

* This algorithm does not attempt to check that A is positive

* semi-definite. This version of the algorithm calls level 2 BLAS.

*

* Arguments

* =========

*

* UPLO (input) CHARACTER*1

* Specifies whether the upper or lower triangular part of the

* symmetric matrix A is stored.

* = ’U’: Upper triangular

* = ’L’: Lower triangular

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the symmetric matrix A. If UPLO = ’U’, the leading

* n by n upper triangular part of A contains the upper

* triangular part of the matrix A, and the strictly lower

* triangular part of A is not referenced. If UPLO = ’L’, the

* leading n by n lower triangular part of A contains the lower

* triangular part of the matrix A, and the strictly upper

* triangular part of A is not referenced.

*

* On exit, if INFO = 0, the factor U or L from the Cholesky

* factorization as above.

*

* PIV (output) INTEGER array, dimension (N)

* PIV is such that the nonzero entries are P(PIV(K), K) = 1.

*

* RANK (output) INTEGER

* The rank of A given by the number of steps the algorithm

* completed.

*

* TOL (input) DOUBLE PRECISION

* User defined tolerance. If TOL < 0, then N*U*MAX(A(k,k))

* will be used. The algorithm terminates at the (k-1)st step

* if the pivot <= TOL.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* WORK DOUBLE PRECISION array, dimension (2*N)

15

* Work space.

*

* INFO (output) INTEGER

* < 0: if INFO = -k, the k-th argument had an illegal value

* = 0 algorithm completed successfully.

*

* ===

*

* .. Parameters ..

DOUBLE PRECISION ONE, ZERO

PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

* ..

* .. Local Scalars ..

DOUBLE PRECISION AJJ, DSTOP, DTEMP, U

INTEGER ITEMP, J, P, PVT

LOGICAL UPPER

* ..

* .. External Functions ..

DOUBLE PRECISION DLAMCH

LOGICAL LSAME

EXTERNAL DLAMCH, LSAME

* ..

* .. External Subroutines ..

EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX, SQRT

* ..

*

* Test the input parameters

*

INFO = 0

UPPER = LSAME(UPLO, ’U’)

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, ’L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN

INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4

END IF

IF(INFO.NE.0) THEN

CALL XERBLA(’LEV2PCHOL’, -INFO)

RETURN

END IF

*

16

* Quick return if possible

*

IF(N.EQ.0)

$ RETURN

*

* Initialize PIV

*

DO 10 P = 1, N

PIV(P) = P

10 CONTINUE

*

* Get unit roundoff

*

U = DLAMCH(’E’)

*

* Compute stopping value

*

CALL BLAS_DMAX_VAL(N, A(1, 1), LDA+1, PVT, DTEMP)

AJJ = A(PVT, PVT)

IF(AJJ.EQ.ZERO) THEN

RANK = 0

GO TO 80

END IF

*

* Compute stopping value if not supplied

*

IF(TOL.LT.ZERO) THEN

DSTOP = N*U*AJJ

ELSE

DSTOP = TOL

END IF

*

* Set first half of WORK to zero, holds dot products

*

DO 20 P = 1, N

WORK(P) = 0

20 CONTINUE

*

IF(UPPER) THEN

*

* Compute the Cholesky factorization P’ * A * P = U’ * U

*

DO 40 J = 1, N

*

* Find pivot, test for exit, else swap rows and columns

17

* Update dot products, compute possible pivots which are

* stored in the second half of WORK

*

DO 30 P = J, N

*

IF(J.GT.1) THEN

WORK(P) = WORK(P) + A(J-1, P)**2

END IF

WORK(N+P) = A(P, P) - WORK(P)

*

30 CONTINUE

*

IF(J.GT.1) THEN

CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)

PVT = ITEMP + J - 1

AJJ = WORK(N+PVT)

IF(AJJ.LE.DSTOP) THEN

A(J, J) = AJJ

GO TO 70

END IF

END IF

*

IF(J.NE.PVT) THEN

*

* Pivot OK, so can now swap pivot rows and columns

*

A(PVT, PVT) = A(J, J)

CALL DSWAP(J-1, A(1, J), 1, A(1, PVT), 1)

CALL DSWAP(N-PVT, A(J, PVT+1), LDA, A(PVT, PVT+1),

$ LDA)

CALL DSWAP(PVT-J-1, A(J, J+1), LDA, A(J+1, PVT), 1)

*

* Swap dot products and PIV

*

DTEMP = WORK(J)

WORK(J) = WORK(PVT)

WORK(PVT) = DTEMP

ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)

PIV(J) = ITEMP

END IF

*

AJJ = SQRT(AJJ)

A(J, J) = AJJ

*

18

* Compute elements J+1:N of row J

*

IF(J.LT.N) THEN

CALL DGEMV(’Trans’, J-1, N-J, -ONE, A(1, J+1), LDA,

$ A(1, J), 1, ONE, A(J, J+1), LDA)

CALL DSCAL(N-J, ONE / AJJ, A(J, J+1), LDA)

END IF

*

40 CONTINUE

*

ELSE

*

* Compute the Cholesky factorization P’ * A * P = L * L’

*

DO 60 J = 1, N

*

* Find pivot, test for exit, else swap rows and columns

* Update dot products, compute possible pivots which are

* stored in the second half of WORK

*

DO 50 P = J, N

*

IF(J.GT.1) THEN

WORK(P) = WORK(P) + A(P, J-1)**2

END IF

WORK(N+P) = A(P, P) - WORK(P)

*

50 CONTINUE

*

IF(J.GT.1) THEN

CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP, DTEMP)

PVT = ITEMP + J - 1

AJJ = WORK(N+PVT)

IF(AJJ.LE.DSTOP) THEN

A(J, J) = AJJ

GO TO 70

END IF

END IF

*

IF(J.NE.PVT) THEN

*

* Pivot OK, so can now swap pivot rows and columns

*

A(PVT, PVT) = A(J, J)

CALL DSWAP(J-1, A(J, 1), LDA, A(PVT, 1), LDA)

19

CALL DSWAP(N-PVT, A(PVT+1, J), 1, A(PVT+1, PVT), 1)

CALL DSWAP(PVT-J-1, A(J+1, J), 1, A(PVT, J+1), LDA)

*

* Swap dot products and PIV

*

DTEMP = WORK(J)

WORK(J) = WORK(PVT)

WORK(PVT) = DTEMP

ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)

PIV(J) = ITEMP

END IF

*

AJJ = SQRT(AJJ)

A(J, J) = AJJ

*

* Compute elements J+1:N of column J

*

IF(J.LT.N) THEN

CALL DGEMV(’No tran’, N-J, J-1, -ONE, A(J+1, 1), LDA,

$ A(J, 1), LDA, ONE, A(J+1, J), 1)

CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)

END IF

*

60 CONTINUE

*

END IF

*

* Ran to completion, A has full rank

*

RANK = N

*

GO TO 80

70 CONTINUE

*

* Rank is number of steps completed

*

RANK = J - 1

*

80 CONTINUE

RETURN

*

* End of LEV2PCHOL

*

END

20

B lev3pchol.f

SUBROUTINE LEV3PCHOL(UPLO, N, A, LDA, PIV, RANK, TOL, WORK,

$ INFO)

*

* Craig Lucas, University of Manchester. January, 2004

* Some code taken from LAPACK routine DPOTF2

*

* .. Scalar Arguments ..

DOUBLE PRECISION TOL

INTEGER INFO, LDA, N, RANK

CHARACTER UPLO

* ..

* .. Array Arguments ..

DOUBLE PRECISION A(LDA, *), WORK(2*N)

INTEGER PIV(N)

* ..

*

* Purpose

* =======

*

* LEV3PCHOL computes the Cholesky factorization with complete

* pivoting of a real symmetric positive semi-definite matrix A.

*

* The factorization has the form

* P’ * A * P = U’ * U , if UPLO = ’U’,

* P’ * A * P = L * L’, if UPLO = ’L’,

* where U is an upper triangular matrix and L is lower triangular, and

* P is stored as vector PIV.

*

* This algorithm does not attempt to check that A is positive

* semi-definite. This version of the algorithm calls level 3 BLAS.

*

* Arguments

* =========

*

* UPLO (input) CHARACTER*1

* Specifies whether the upper or lower triangular part of the

* symmetric matrix A is stored.

* = ’U’: Upper triangular

* = ’L’: Lower triangular

*

* N (input) INTEGER

* The order of the matrix A. N >= 0.

*

21

* A (input/output) DOUBLE PRECISION array, dimension (LDA,N)

* On entry, the symmetric matrix A. If UPLO = ’U’, the leading

* n by n upper triangular part of A contains the upper

* triangular part of the matrix A, and the strictly lower

* triangular part of A is not referenced. If UPLO = ’L’, the

* leading n by n lower triangular part of A contains the lower

* triangular part of the matrix A, and the strictly upper

* triangular part of A is not referenced.

*

* On exit, if INFO = 0, the factor U or L from the Cholesky

* factorization as above.

*

* PIV (output) INTEGER array, dimension (N)

* PIV is such that the nonzero entries are P(PIV(K), K) = 1.

*

* RANK (output) INTEGER

* The rank of A given by the number of steps the algorithm

* completed.

*

* TOL (input) DOUBLE PRECISION

* User defined tolerance. If TOL < 0, then N*U*MAX(A(k,k))

* will be used. The algorithm terminates at the (k-1)st step

* if the pivot <= TOL.

*

* LDA (input) INTEGER

* The leading dimension of the array A. LDA >= max(1,N).

*

* WORK DOUBLE PRECISION array, dimension (2*N)

* Work space.

*

* INFO (output) INTEGER

* < 0: if INFO = -k, the k-th argument had an illegal value

* = 0 algorithm completed successfully.

*

* ===

*

* .. Parameters ..

DOUBLE PRECISION ONE, ZERO

PARAMETER (ONE = 1.0D+0, ZERO = 0.0D+0)

* ..

* .. Local Scalars ..

DOUBLE PRECISION AJJ, DSTOP, DTEMP, U

INTEGER ITEMP, J, JB, K, NB, P, PVT

LOGICAL UPPER

* ..

22

* .. External Functions ..

REAL DLAMCH

INTEGER ILAENV

LOGICAL LSAME

EXTERNAL DLAMCH, ILAENV, LSAME

* ..

* .. External Subroutines ..

EXTERNAL BLAS_DMAX_VAL, DGEMV, DSCAL, DSWAP, DSYRK,

$ LEV2PCHOL, XERBLA

* ..

* .. Intrinsic Functions ..

INTRINSIC MAX, MIN, SQRT

* ..

*

* Test the input parameters.

*

INFO = 0

UPPER = LSAME(UPLO, ’U’)

IF(.NOT.UPPER .AND. .NOT.LSAME(UPLO, ’L’)) THEN

INFO = -1

ELSE IF(N.LT.0) THEN

INFO = -2

ELSE IF(LDA.LT.MAX(1, N)) THEN

INFO = -4

END IF

IF(INFO.NE.0) THEN

CALL XERBLA(’LEV3PCHOL’, -INFO)

RETURN

END IF

*

* Quick return if possible

*

IF(N.EQ.0)

$ RETURN

*

* Get block size

*

NB = ILAENV(1, ’DPOTRF’, UPLO, N, -1, -1, -1)

IF(NB.LE.1 .OR. NB.GE.N) THEN

*

* Use unblocked code

*

CALL LEV2PCHOL(UPLO, N, A(1, 1), LDA, PIV, RANK, TOL, WORK,

$ INFO)

GO TO 110

23

*

ELSE

*

* Initialize PIV

*

DO 10 P = 1, N

PIV(P) = P

10 CONTINUE

*

* Get unit roundoff

*

U = DLAMCH(’E’)

*

* Compute stopping value

*

CALL BLAS_DMAX_VAL(N, A(1, 1), LDA+1, PVT, DTEMP)

AJJ = A(PVT, PVT)

IF(AJJ.EQ.ZERO) THEN

RANK = 0

GO TO 110

END IF

*

* Compute stopping value if not supplied

*

IF(TOL.LT.ZERO) THEN

DSTOP = N*U*AJJ

ELSE

DSTOP = TOL

END IF

*

*

IF(UPPER) THEN

*

* Compute the Cholesky factorization P’ * A * P = U’ * U

*

DO 50 K = 1, N, NB

*

* Account for last block not being NB wide

*

JB = MIN(NB, N-K+1)

*

* Set relevant part of first half of WORK to zero,

* holds dot products

*

DO 20 P = K, N

24

WORK(P) = 0

20 CONTINUE

*

DO 40 J = K, K + JB - 1

*

* Find pivot, test for exit, else swap rows and columns

* Update dot products, compute possible pivots which are

* stored in the second half of WORK

*

DO 30 P = J, N

*

IF(J.GT.K) THEN

WORK(P) = WORK(P) + A(J-1, P)**2

END IF

WORK(N+P) = A(P, P) - WORK(P)

*

30 CONTINUE

*

IF(J.GT.1) THEN

CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP,

$ DTEMP)

PVT = ITEMP + J - 1

AJJ = WORK(N+PVT)

IF(AJJ.LE.DSTOP) THEN

A(J, J) = AJJ

GO TO 100

END IF

END IF

*

IF(J.NE.PVT) THEN

*

* Pivot OK, so can now swap pivot rows and columns

*

A(PVT, PVT) = A(J, J)

CALL DSWAP(J-1, A(1, J), 1, A(1, PVT), 1)

CALL DSWAP(N-PVT, A(J, PVT+1), LDA,

$ A(PVT, PVT+1), LDA)

CALL DSWAP(PVT-J-1, A(J, J+1), LDA,

$ A(J+1, PVT), 1)

*

* Swap dot products and PIV

*

DTEMP = WORK(J)

WORK(J) = WORK(PVT)

WORK(PVT) = DTEMP

25

ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)

PIV(J) = ITEMP

END IF

*

AJJ = SQRT(AJJ)

A(J, J) = AJJ

*

* Compute elements J+1:N of row J.

*

IF(J.LT.N) THEN

CALL DGEMV(’Trans’, J-K, N-J, -ONE, A(K, J+1),

$ LDA, A(K, J), 1, ONE, A(J, J+1),

$ LDA)

CALL DSCAL(N-J, ONE / AJJ, A(J, J+1), LDA)

END IF

*

40 CONTINUE

*

* Update trailing matrix, J already incremented

*

IF(K+JB.LE.N) THEN

CALL DSYRK(’Upper’, ’Trans’, N-J+1, JB, -ONE,

$ A(J, K), LDA, ONE, A(J, J), LDA)

END IF

*

50 CONTINUE

*

ELSE

*

* Compute the Cholesky factorization P’ * A * P = L * L’

*

DO 90 K = 1, N, NB

*

* Account for last block not being NB wide

*

JB = MIN(NB, N-K+1)

*

* Set relevant part of first half of WORK to zero,

* holds dot products

*

DO 60 P = K, N

WORK(P) = 0

60 CONTINUE

*

26

DO 80 J = K, K + JB - 1

*

* Find pivot, test for exit, else swap rows and columns

* Update dot products, compute possible pivots which are

* stored in the second half of WORK

*

DO 70 P = J, N

*

IF(J.GT.K) THEN

WORK(P) = WORK(P) + A(P, J-1)**2

END IF

WORK(N+P) = A(P, P) - WORK(P)

*

70 CONTINUE

*

IF(J.GT.1) THEN

CALL BLAS_DMAX_VAL(N-J+1, WORK(N+J), 1, ITEMP,

$ DTEMP)

PVT = ITEMP + J - 1

AJJ = WORK(N+PVT)

IF(AJJ.LE.DSTOP) THEN

A(J, J) = AJJ

GO TO 100

END IF

END IF

*

IF(J.NE.PVT) THEN

*

* Pivot OK, so can now swap pivot rows and columns

*

A(PVT, PVT) = A(J, J)

CALL DSWAP(J-1, A(J, 1), LDA, A(PVT, 1), LDA)

CALL DSWAP(N-PVT, A(PVT+1, J), 1,

$ A(PVT+1, PVT), 1)

CALL DSWAP(PVT-J-1, A(J+1, J), 1, A(PVT, J+1),

$ LDA)

*

* Swap dot products and PIV

*

DTEMP = WORK(J)

WORK(J) = WORK(PVT)

WORK(PVT) = DTEMP

ITEMP = PIV(PVT)

PIV(PVT) = PIV(J)

PIV(J) = ITEMP

27

END IF

*

AJJ = SQRT(AJJ)

A(J, J) = AJJ

*

* Compute elements J+1:N of column J.

*

IF(J.LT.N) THEN

CALL DGEMV(’No tran’, N-J, J-K, -ONE, A(J+1, K),

$ LDA, A(J, K), LDA, ONE, A(J+1, J),

$ 1)

CALL DSCAL(N-J, ONE / AJJ, A(J+1, J), 1)

END IF

*

80 CONTINUE

*

* Update trailing matrix, J already incremented

*

IF(K+JB.LE.N) THEN

CALL DSYRK(’Lower’, ’No Trans’, N-J+1, JB, -ONE,

$ A(J, K), LDA, ONE, A(J, J), LDA)

END IF

*

90 CONTINUE

*

END IF

END IF

*

* Ran to completion, A has full rank

*

RANK = N

*

GO TO 110

100 CONTINUE

*

* Rank is the number of steps completed

*

RANK = J - 1

*

110 CONTINUE

RETURN

*

* End of LEV3PCHOL

*

END

28

C blas dmax val.f

SUBROUTINE BLAS_DMAX_VAL(N, X, INCX, K, R)

*

* BLAS_DMAX_VAL finds the largest component of x, r, and

* determines the smallest index, k, such that x(k) = r.

* Craig Lucas, University of Manchester. June, 2003

*

* Modified from the BLAS function IDAMAX:

* Jack dongarra, LINPACK, 3/11/78.

*

* .. Scalar Arguments ..

DOUBLE PRECISION R

INTEGER INCX, K, N

* ..

* .. Array Arguments ..

DOUBLE PRECISION X(*)

* ..

* .. Local Scalars ..

INTEGER I, IX

* ..

K = 0

IF(N.LT.1 .OR. INCX.LE.0)

$ RETURN

K = 1

IF(N.EQ.1)

$ RETURN

IF(INCX.EQ.1)

$ GO TO 30

*

* Code for increment not equal to 1

*

IX = 1

R = X(1)

IX = IX + INCX

DO 20 I = 2, N

IF(X(IX).LE.R)

$ GO TO 10

K = I

R = X(IX)

10 CONTINUE

IX = IX + INCX

20 CONTINUE

RETURN

*

29

* Code for increment equal to 1

*

30 CONTINUE

R = X(1)

DO 40 I = 2, N

IF(X(I).LE.R)

$ GO TO 40

K = I

R = X(I)

40 CONTINUE

RETURN

END

30

References

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du
Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen. LA-

PACK Users’ Guide. Third edition, SIAM, Philadelphia, 1999.

[2] J. J. Dongarra, C. B. Moler, J. R. Bunch, and G. W. Stewart. LINPACK

Users’ Guide. Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 1979. 320 pp. ISBN 0-89871-172-X.

[3] Gene H. Golub and Charles F. Van Loan. Matrix Computations. Johns Hop-
kins Studies in the Mathematical Sciences. Third edition, The Johns Hopkins
University Press, Baltimore, MD, USA, 1996. xxx + 698 pp. ISBN 0-8018-
5413-X, 0-8018-5414-8.

[4] Nicholas J. Higham. The Matrix Computation Toolbox. http://www.ma.

man.ac.uk/~higham/mctoolbox.

[5] Nicholas J. Higham. Analysis of the Cholesky decomposition of a semi-definite
matrix. In Reliable Numerical Computation, M. G. Cox and S. J. Hammarling,
editors, Oxford University Press, 1990, pages 161–185.

[6] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second
edition, Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 2002. xxx+680 pp. ISBN 0-89871-521-0.

[7] /matlab6.5/toolbox/matlab/elmat/private/qmult.m from the MATLAB
distibution.

[8] BLAS Technical Forum Standard. http://www.netlib.org/blas/blast-

forum/.

[9] G. W. Stewart. The efficient generation of random orthogonal matrices with
an application to condition estimators. SIAM Journal on Numerical Analysis,
17(3):403–409, 1980.

31

