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Abstract

We describe experiments with simple bacteria-like agents that, when dis-
tressed, will self-organize into compact colonies with a protective cyst enclos-
ing dormant bacteria; when favorable conditions return, the agents break out
of their spore-like clusters and resume normal behavior. The population can
be cycled between these two states any number of times. We define a sim-
ulated regulatory network governing this self-organizing behavior and explore
the effects of its parameters. In particular, self-organization is regulated by the
diffusion of three different chemicals, for aggregation, for differentiation of dor-
mant and cyst bacteria, and for synchronization of spore formation. Although
intended as an exploration of the principles of self-organization rather than as a
model of any particular organism, the mechanisms and behavior are suggestive
of quorum testing and biofilm formation by real bacteria.

∗This report may be used for any non-profit purpose provided that the source is credited.
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1 Introduction

An important problem is how bacteria and other simple organisms self-organize to
protect themselves from host defenses and other threats. We have taken this problem
as a test case to improve our understanding of how simple autonomous agents can
perform self-organized aggregation and differentiation of function in order to form
a spore-like defensive colony. Although we are not modeling any specific bacterial
species, the kinds of behaviors our agents exhibit are similar to the behavior of bacteria
in nature [2, 3, 4], and it is plausible that bacteria could be genetically engineered to
implement the behavior described in this report.

Specifically, our goal is to design (simulated) bacteria exhibiting the following
collective behavior:

1. behave normally, including random locomotion and reproduction, under favor-
able environmental conditions;

2. under adverse environmental conditions, to aggregate into dense colonies;

3. to differentiate in these colonies between outer “boundary” cells and inner “in-
terior” cells;

4. to have the interior cells enter a dormant state until favorable conditions return;

5. to have the boundary cells die after secreting a protective cyst material (e.g.
cellulose), thus forming a spore containing the interior cells;

6. upon return of favorable conditions, to have the dormant bacteria reanimate,
break out of the spore, and resume normal activity; and

7. to have the population able to go though this hibernation/reanimation cycle
any number of times.

The bacteria can be in several regulatory states depending on the local concentrations
of three signaling chemicals, which diffuse through the environment. Before presenting
the details of the regulatory network (Sec. 3), we make a few remarks on the use of
diffusion in self-organized systems. Readers uninterested in the mathematical analysis
may prefer to skip directly to Sec. 3 (p. 7).

2 Diffusion

2.1 Gaussian Smoothing

Diffusion is a valuable tool for controlling and coordinating self-organization; for
example, it can be used for massively-parallel unbiased search and communication.
The system described in this report makes use of the diffusion of three chemical
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compounds (called A, D, and S). To understand their application consider a simple
n-dimensional diffusion equation (with conduction coefficient c > 0):

∂Φ

∂t
= c∇2Φ, (1)

where for simplicity we assume an unbounded domain, lim‖r‖→∞ Φr(t) = 0. If the
initial condition is given by Φr(0) = ϕr, then it is easy to show that

Φr(t) = G2ct(r)⊗ ϕr, (2)

where “⊗” represents convolution and Gv is an n-dimensional Gaussian with variance
v:

Gv(r) = (2πv)−n/2 exp

(
−‖r‖

2

2v

)
.

Thus, as intuitively expected, diffusion causes Gaussian smoothing of the initial field
ϕ, with the standard deviation of the Gaussian kernel, after time t, given by:

σt =
√

2ct. (3)

2.2 Discrete and Continuous Diffusion Parameters

In the simulations described in this report, 2-dimensional diffusion is simulated on
a discrete grid in discrete time steps, and so it will be worthwhile to relate the
continuous parameters to the discrete. A typical discrete approximation of ∂Φ/∂t =
∇2Φ is given by

∆Φx,y

∆t
=

c

h2
(−4Φx,y + Φx+h,y + Φx−h,y + Φx,y+h + Φx,y−h) , (4)

where h is the grid spacing in both dimensions. However, in these simulations, dif-
fusion is modeled by equally distributing a fraction C of the field’s value in a patch
to the eight adjacent patches on each time step. That is, Φx,y is decreased by CΦx,y

and the eight neighbors Φx±h,y±h are increased by CΦx,y/8 each. This computation
implements the following discrete approximation to the diffusion equation:

Φ′
x,y = (1− C)Φx,y +

C

n

∑
r∈Nx,y

Φr, (5)

where Nx,y represents the set of coordinates of the n = 8 neighbors of patch (x, y).
Hence, it is computing the discrete approximation:

∆Φx,y = −CΦx,y +
C

n

∑
r∈Nx,y

Φr. (6)
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This may be compared to the ordinary discrete approximation, analogous to Eq. 4,
but based on n neighbors:

∆Φx,y =
c

h2

−nΦx,y +
∑

r∈Nx,y

Φr

∆t. (7)

Equating Eqs. 6 and 7 relates the parameters of the discrete and continuous diffusions:

C = cn∆t/h2. (8)

If for convenience we set h = 1 grid unit and ∆t = 1 time step (this is just a choice
of units), then:

C = cn. (9)

This is the basis for the continuous and discrete conduction coefficients shown in
Table 1 (below, p. 9, in which n = 8).

We may compute from Eq. 3 the standard deviation of the Gaussian smoothing
after one time step (∆t = 1) in terms of the discrete parameters:

σ∆t=1/h =
√

2C/n.

This shows the effective width of the averaging, in grid units, at each time step. For
h = 1 (grid units) and n = 8,

σ∆t=1 =
√

C/2 (10)

per time step. For example, if C = 0.5 (Table 1), σ∆t=1 ≈ 0.35, and if C = 0.75,
σ∆t=1 ≈ 0.43.

2.3 Diffusion as Spatially-Smoothed Time-Averaging

In the context of these experiments, signaling chemicals are assumed to obey a diffu-
sion equation such as this:

∂Φ

∂t
= c∇2Φ− dΦ + Ψ, (11)

where c is the diffusion or conduction coefficient, d is a degradation rate, and the
source field Ψx,y represents the rate of secretion by the bacteria at location (x, y).
If this rate is the same for the entire population Q, then the source field Ψ(t) is
proportional to the local population density field Q(t): Ψ(t) = sQ(t). As we have
seen, the diffusion term c∇2Φ causes spatial Gaussian smoothing with an increasing
standard deviation σt =

√
2ct. Within a region of relatively uniform density Q̄,

diffusion can be neglected, and Eq. 11 acts like

dΦ

dt
= −dΦ + sQ̄. (12)
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Of course, this has the point attractor Φ∗ = sQ̄/d, which defines the basic scale factor
s/d for the population density. For example if, as in Table 1, dA = 0.1 per time step
and sA = 10 quanta of A per time step, and there is an average of one bacterium
per patch (Q̄ = 1), then A∗ = 100 quanta. More generally, for the values in Table 1,
D∗ = 2000Q̄ quanta and A∗ = 100Q̄ quanta.

In summary, if Ψ = sQ, then Eq. 11 generates a field proportional to the popu-
lation density field Q, but smoothed by the Gaussian kernel. Although the Gaussian
kernel is spreading in time, the Φ field is also decaying in proportion to the degrada-
tion rate d. Thus the Φ field represents a moving average, exponentially decreasing
into the past, of the smoothed Ψ. That is, in the absence of the source field, it decays
Φ(t + ∆t) = e−d∆tΦ(t), and the time constant is

τΦ = 1/d. (13)

In the simulations, field degradation proceeds in discrete steps, Φ′ = fΦ, where f ≤ 1
is the degradation factor. To relate the discrete and continuous parameters, observe
that fΦ(t) = Φ(t + ∆t) = e−d∆tΦ(t), so

d = − ln f

∆t
. (14)

Setting ∆t = 1 time step gives
d = − ln f. (15)

To get the time constant in terms of simulation time steps, substitute Eq. 14 in Eq. 13:

T =
τ

∆t
=

d−1

∆t
= − 1

ln f
.

This gives us a way of assessing the recentness of the average reflected in Φ. For
example, for fA = 0.5 (Table 1), we have TA = 1.44 time steps.

When we include the source field in the discrete simulation, Φ(t+∆t) = fΦ(t)+sQ,
then,

Φ(t + k∆t) = fkΦ(t) +
1− fk

1− f
sQ.

The asymptotic value is

Φ(t) → sQ

1− f
.

Since the expansion of the Gaussian kernel is checked by field degradation, a useful
time-invariant measure of the spatial smoothing effected by Eq. 11 is the standard
deviation of the kernel after one time constant, which we call the smoothing radius ρ:

ρ = σ∆t=τΦ =
√

2cτΦ =
√

2c/d = 4
√
−C ln f. (16)

In many cases it is useful to know the effective area over which the Gaussian kernel
is averaging, and for this purpose we may use its variance, which is proportional to
the area. Hence we may define the smoothing area α:

α = v∆t=τΦ = 2c/d = −16C ln f. (17)
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2.4 Aggregation and Gaussian Sharpening

A typical model of the chemotactic cell aggregation resulting from following an in-
creasing gradient of Φ is the following population density equation [1, pp. 114–116]:

∂Q

∂t
= ∇ · [c(Q)∇Q]−∇ · [χ(r)Q∇Φ],

where c(Q) is a conduction coefficient dependent on the cell density (since movement
is impeded by cell clumping), and χ(r) reflects the desensitization of cells to Φ (r is
the fraction of active receptors). The first term represents random motion of the cells,
the second represents chemotaxis. Typical expressions for the variable coefficients are

c(Q) = µ1 + µ2
q4
th

q4
th + Q4

,

where qth is the population density at which clumping begins to occur, and

χ(r) = χ0
rm

Am + rm
,

for appropriate constants µ1, µ2, χ0, A, and m [1, pp. 114–115].
Here we will consider a simpler model of aggregation in order to explain the

operation of the simulation. Therefore we may take the velocity vector of the bacteria
to be proportional to the gradient of an aggregation signal chemical,

V = r∇Φ,

where r > 0. In fact, in our simulations, the bacteria orient to the gradient but move
at constant velocity, so V = r∇Φ/‖∇Φ‖ is a more accurate description. Further,
when ∇Φ ≈ 0 the velocity is random, so we should write V = rU/‖U‖ where
U = ∇Φ+ εu, where u is a random unit vector and ε is sufficiently small, but we will
ignore these details.

The number of bacteria leaving an h× h patch in time ∆t is approximately(
QVx +

∂(QVx)

∂x
h

)
h∆t−QVxh∆t +

(
QVy +

∂(QVy)

∂y
h

)
h∆t−QVyh∆t.

Therefore, the flux, or loss of population density per unit time, is given by the diver-
gence,

∂QVx

∂x
+

∂QVy

∂y
= ∇ ·QV.

Since this is the rate of flow of population density out of a differential patch, the
change of population density due to chemotaxis is

∂Q

∂t
= −∇ ·Q(r∇Φ) = −rs∇ ·Q∇Q, (18)
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if, as usual, Φ = sQ. We may expand Eq. 18 as follows:

∂Q

∂t
= −rs

(
Q∇2Q + ‖∇Q‖2

)
.

Neglecting for the moment the second term and the factor Q on the divergence,
consider the equation ∂Q/∂t = −rs∇2Q. By replacing t by −t, ∂Q/∂(−t) = rs∇2Q,
we can see that this is a reverse diffusion equation, and results in Gaussian sharpening
according to the equation

G2rs∆t(x, y)⊗Qx,y(t + ∆t) = Qx,y(t).

Multiplying by Q, as in ∂Q/∂t = −rsQ∇2Q, only amplifies this effect (since Qx,y ≥
0). Therefore, we can say that the effect of chemotaxis is sharpening of the original
population distribution. In this way structures (clusters) are created by amplifying
nonuniformities in an original, approximately homogeneous distribution.

3 Design of the Simulated Bacteria

Figure 1 depicts a regulatory network that implements the desired behavior. We will
explain this network region by region in the following sections to show how it produces
the intended self-organizing behavior. (The colors in the figure are correlated, to the
extent possible, to the colors used in the simulation screen images beginning in Sec.
4.)

3.1 Normal State

The top-center of the diagram represents a sensor for any ambient condition, which,
for concreteness, we have taken to be ambient temperature. It could be any condition
that changes effectively instantaneously (i.e., within one time step) throughout the
simulation space. If the temperature is greater than a critical value Tc then condi-
tions are favorable for the bacteria, and they are in their Normal state, indicated
by the brown network in the upper right corner, in which they wander randomly
and reproduce.1 The reproduction rate is determined by a parameter pR, which is a
bacterium’s probability of reproducing in each time step. (Default parameters of the
model are collected in Table 1.)

3.2 Distressed State

If the ambient temperature ever falls below Tc, then the bacteria enter the Distressed
state, represented by the red network in the upper-left of Fig. 1. A distressed bac-
terium will die after Td ± Vd (uniformly distributed) time units, unless it returns to

1In the Normal state they also “destroy cysts,” which is explained in Sec. 3.5 below.
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Figure 1: Regulatory network of simulated bacterium. See Sec. 3 for explanation.
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Table 1: Default Parameters

Parameter Default Value
Discrete Continuous

D diffusion CD = 0.5 cD = 0.0625
D degradation fD = 0.99 dD = 0.01
D secretion quanta KD = 20
D secretion probability pD = 0.2
Refractory period Tr = 5
Quorum threshold Qth = 90
Aggregation threshold Ath = 70
Hibernation signal threshold Sth = 300
A diffusion CA = 0.5 cA = 0.0625
A degradation fA = 0.90 dA = 0.1
A secretion quanta KA = 10
Boundary threshold Bth = 75
S diffusion CS = 0.75 cS = 0.09375
S degradation fS = 0.5 dS = 0.69
S secretion quanta KS = 100
Relay threshold Rth = 1
Initial population density pP = 0.1
Reproduction rate pR = 0.02
Mean distressed lifetime Td = 500
Distressed lifetime variability Vd = ±25
Simulation space Pmax = 45× 47

Dimensioned quantities are in units of time steps, grid spacing, and quanta of chemical
compounds, as appropriate.
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the Normal state or enters the Dormant state (Sec. 3.4). A distressed bacterium sig-
nals its state by secreting the D compound; in each time step it has a probability pD

of secreting KD units of the chemical (which is thus added to that already present).
After each such secretion it enters a refractory period for Tr time steps, during which
it cannot secrete D.

Distressed bacteria are sensitive to the D concentration in their immediate vicinity.
If it is less than Qth, the quorum threshold, then they continue to wander randomly.
However, if D > Qth, then they enter the Aggregation state, for there are enough
distressed bacteria in the vicinity to attempt to aggregate into “spores.”

3.3 Aggregation State

The basic aggregation network is shown in green in Fig. 1. The bacterium continues
to secrete D, but by suppressing the refractory period, it effectively increases the
rate of D production.2 Therefore the D field reflects the local population density of
aggregating bacteria, which attempt to follow the gradient ∇D toward larger concen-
trations of D (and thus higher population densities), provided the signal is sufficiently
strong. This causes the aggregating bacteria to clump together (see Sec. 2.4 above).

The gradient-following network is shown in dark blue on the left of the lower
half of Fig. 1. If D ≤ Ath, the aggregation threshold, then the bacterium orients
randomly because the signal is weak, but if D > Ath then the bacterium orients in
the direction of increasing concentration. In either case the bacterium attempts to
move forward. If it cannot do so, because it is in contact with another bacterium,3

it secretes KA quanta of the A signal chemical, which thus reflects the density of
clumped or aggregated bacteria.

The concentration of the A substance is used to determine whether bacteria will
become dormant (Interior state, A > Bth) or will sacrifice themselves by secreting
cyst material to protect the others (Boundary state, A ≤ Bth). (This discrimination
is not made until spore formation takes place, but in the simulations an aggregating or
clumped bacterium’s color indicates the local A concentration — purple for A > Bth,
green for A ≤ Bth — so that we can see how the bacteria are differentiating.)

3.4 Dormant State

If the local D concentration near a bacterium reaches the threshold Sth, then that
bacterium triggers the formation of a spore, a process we call hibernation; the network
subserving this function is shown in magenta on the lower right and bottom edges
of Fig. 1. When a bacterium detects D > Sth, it secretes KS quanta of the S signal

2The effective rate of D secretion increases from p̂DKD to (p̂D + pD)KD, where p̂D is defined by
Eq. 19 in Sec. 5.1 on p. 48.

3This might be implemented by having the bacteria sense a chemical that is expressed on the
surface of all bacteria, and cannot diffuse away.
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compound, and enters the Dormant state, in which it will remain until the ambient
temperature increases above Tc (see Sec. 3.5 below). S is a rapidly diffusing, quickly
degrading volatile compound, intended to cause the nearly synchronous hibernation of
the entire colony. (Occasionally it may propagate to an adjacent colony.) Whenever a
bacterium in the Aggregation state detects S > Rth (the relay threshold), it secretes
KS quanta of S, thus continuing the propagation of the hibernation signal.4 In
addition, if A > Bth, then this bacterium is an Interior cell, so it enters the Dormant
state (violet subnet). On the other hand, if A ≤ Bth, the bacterium is a Boundary
cell, so it secretes a quantity of protective cyst material and dies. In this way the
Boundary cells create a protective layer around the dormant Interior cells, and a spore
is formed.

3.5 Reanimation

Whenever the ambient temperature becomes favorable by increasing above Tc, the
surviving bacteria (in any state) return to the Normal state controlled by the brown
network in the upper-right corner of Fig. 1. Dormant bacteria will attempt random
locomotion, but they are confined by the protective cyst. However, as the diagram
indicates, in the Normal state bacteria will destroy cyst material (eating or dissolving
it) whenever they encounter it. Thus the bacteria will be able to break out of the
spore and return to their normal behavior, wandering and reproducing.

4 Typical Behavior

The best way to get an intuitive understanding of the self-organization process is to
watch several simulations. To capture some of the dynamics of a moving simulation,
this section presents a large number of screen images from a typical run, which is
perhaps the best that can be done in a static document. The simulation used the
default parameters shown in Table 1.5

4The function of the relay threshold is to prevent trace quantities of S from triggering premature
hibernation.

5The simulations were implemented in Java StarLogo 2.0 and run under both Mac OS/X Panther
and MS Windows 2000 Professional; the program is about 225 lines of StarLogo code.
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Figure 2: T = 0, initial population P0 = 190. Bacteria in the Normal state (indicated
by tan color) wander randomly and periodically reproduce. The population is initial-
ized randomly according to the initial population density parameter and the size of
the space, P0 ≈ pPPmax.
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Figure 3: T = 49. The population has increased to P = 539. At this point the
ambient temperature is decreased to less than the critical temperature Tc, creating
unfavorable conditions for the bacteria. Bacteria begin signaling distress by secreting
D chemical.
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Figure 4: T = 64, D field. Bacteria are signaling distress. The bacteria signaling at
a given time are shown in red. The background color indicates the strength of the D
field (darker is weaker). Some clumping of the bacteria is already apparent.
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Figure 5: T = 129, D field. Aggregation in upper center and right is apparent, which
is where the colonies will eventually form.
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Figure 6: T = 171, A field. Aggregating bacteria (D > Ath) are shown in green (until
A > Bth, see Fig. 10); the others (tan) are still wandering randomly. The background
color depicts the strength of the A field generated by aggregated (clumped) bacteria
(lighter color is stronger field).
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Figure 7: T = 204, A field. The size of the main colony has increased sufficiently
that some of the bacteria are in the Interior state (indicated by violet color), as a
consequence of A concentration passing the threshold Bth. The simulation space is a
torus (wraps around vertically and horizontally), so some of the A diffusing from the
large cluster can be seen on the bottom of the screen.
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Figure 8: T = 236, D field. Continued aggregation in two main colonies; additional
clustering is apparent to right of center.
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Figure 9: T = 302, A field. The largest colony has Interior cells, the smaller ones
do not. D concentration is nearing the hibernation threshold Sth indicated by the
lightest shade of the green background color. Recall that the simulation space is a
torus, so there are three clusters, not five.
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Figure 10: T = 343, S field. The D concentration near a bacterium in the largest
cluster has reached the hibernation threshold Sth. This has caused it to secrete KS

quanta of the volatile S compound (indicated by background shades of magenta;
lighter color is higher concentration). The bacterium that emitted the S signal has
gone into a dormant state (indicated by light blue color). Further, as each bacterium
in the Interior state (A > Bth) receives the S signal, it relays it by secreting KS

quanta of S, and then going into the dormant state. The outwardly propagating
wave of S is clearly visible as a lighter shade of magenta. Aggregating bacteria in
the Boundary state (A ≤ Bth, green) also relay the S signal, but after doing so, they
secrete protective cyst material (indicated in grey), and then die. (Note that the
middle-size colony has Interior cells by this time.)
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Figure 11: T = 347, S field. Continued spread of S signal. Note that bacteria
continue to signal distress (red) throughout aggregation, until they become dormant
or die.
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Figure 12: T = 351, S field. S chemical has largely dissipated, and formation of first
spore is complete. The protective layer is of moderate but irregular thickness.
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Figure 13: T = 365, A field (bacteria omitted). Since the largest colony is in the
dormant state, it is no longer secreting the A signal, and so we can see that the A
concentration has decreased in its vicinity.
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Figure 14: T = 462. The two smaller colonies have not reached the critical mass
necessary to form spores.
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Figure 15: T = 548, A field. The two smaller clusters are dying out. In this simulation
the lifetime of distressed bacteria was 500± 25 time steps, and since the population
was stressed at T = 50, we expect stressed bacteria to die during 525 < T < 575.

25



Figure 16: T = 572, A field. The smaller colonies have died (except 8 individuals);
only the spore remains. Final population Pf = 136, protected in the interior of the
spore.
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Figure 17: T = 805, P = 136. Surviving spore, protecting 136 dormant bacteria, just
before favorable conditions restored (temperature above Tc).
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Figure 18: T = 806. The temperature has been raised above the critical temperature
Tc, and, given these favorable conditions, the dormant bacteria have reanimated (tan
color). The bacteria have returned to their Normal state, which includes random lo-
comotion and reproduction, but also destroying the (grey) cysts when they encounter
them. In this way they begin to break out of their spore.
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Figure 19: T = 811, P = 148. Reanimated bacteria continue to break out of their
spore. Population has increased to 148.
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Figure 20: T = 826, P = 205. Bacteria have largely destroyed the cysts.
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Figure 21: T = 874, P = 538. The population has recovered to its level before it was
stressed. Although the bacteria wander randomly, their density remains higher in the
region of the spore.
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Figure 22: T = 911, P = 891, D field. To demonstrate that the system an be recycled
repeatedly between favorable and unfavorable conditions, the temperature has been
decreased below Tc again. Distressed bacteria are emitting D signal and already
beginning to clump, due to the high population density (P = 891).
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Figure 23: T = 930, A field. A cluster with Interior cells is already forming in the
vicinity of the old spore (since that is where there is the highest density of bacteria).
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Figure 24: T = 969, A field. The colony is beginning to become dormant (light blue).
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Figure 25: T = 970, S field. Spreading wave of S signal.
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Figure 26: T = 973, S field.
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Figure 27: T = 985, S field. The spore is complete. Hibernation does not spread
further than the aggregating cells (green); the tan cells are still wandering randomly.
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Figure 28: T = 1010, A field. A second colony is forming.
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Figure 29: T = 1054, S field. The new colony has Interior cells.
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Figure 30: T = 1155, S field. A third colony, adjoining the first, has formed and has
Interior cells. The secondary colonies are quite large, and very few bacteria are left
wandering.
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Figure 31: T = 1161, S field. The second colony begins to hibernate.
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Figure 32: T = 1173, S field. A second spore has formed.
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Figure 33: T = 1317, S field. A third spore has formed.
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Figure 34: T = 1337, A field. A fourth colony has sufficient density to have Interior
cells, but not yet the critical mass to hibernate.
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Figure 35: T = 1406, A field. Death of remaining, non-dormant bacteria (1384 <
T < 1436).
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Figure 36: T = 1434, P = 164. Three spores protect 164 dormant bacteria until
favorable conditions return.
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Table 2: Effects of Quorum Threshold (Qth)

Qth P0 Time of First Final
Spore Formation* Spores Pf

0 547 260 1 60
0 536 0 0

10 514 0 0
20 559 0 0
30 542 0 0
35 540 400 1 33
40 556 268 2 117
50 523 367 1 47
60 521 394 1 44
70 516 314 2 78
80 513 420 2 113
90 525 340 1 174
95 528 360 2 162

100 540 361 1 162
109 556 0 0
111 522 0 0
120 539 0 0
150 515 0 0

* Time of first spore formation is estimated by eye.

5 Effects of Parameters

5.1 Quorum Threshold (Qth)

Table 2 shows a series of experiments in which Qth was systematically varied. This
is just one series, and statistically valid conclusions would require many more runs,
since there is considerable variability between runs, but it does show the general effect
of Qth.

In order to estimate the time to first spore formation, in these experiments the
initial population density was set to pP = 0.25, so as to obtain an initial population
P0 > 500, and the reproduction rate was set to pR = 0; also the initial ambient
temperature was below Tc, so distressed behavior began immediately. Except for
these and Qth, all other parameters were default (Table 1).

For low values of Qth (30 and below), we generally see small clusters forming,
and extinction occurs because none of the clusters reach Sth within the lifetime of
distressed bacteria (Fig. 37A). However, exceptions occur (e.g., the first row of the
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(A) (B)

Figure 37: (A) Qth = 0, P0 = 536, T = 290, D field. With low quorum threshold,
bacteria typically aggregate prematurely and do not form clusters of sufficient size
to hibernate. The population was insufficiently aggregated and extinction occurred.
(B) Qth = 0, P0 = 547. In this case an irregular spore of 60 bacteria formed.

table, P0 = 547). Since at these low Qth values the bacteria aggregate immediately,
they tend to form irregularly-shaped spores when they do succeed in hibernating
(Fig. 37B).

With higher Qth values, we get fewer clusters, and the larger ones hibernate.
We also get larger, better formed spores (Fig. 38). Presumably this is because the
bacteria wander randomly for a longer period of time, and thus anneal better. Above
Qth = 100, extinction occurs, because the bacteria continue wandering with minimal
aggregation (Fig. 39).

For moderate values of Qth (35–80), we seem to get 1 or 2 spores, each of size
30–60. For larger Qth (but < 100), we get one large spore about three times this size.

We may estimate sD, the rate of D secretion for non-aggregating distressed bac-
teria as follows. In Sec. 3.2 we explained that in each time step a non-aggregating
distressed bacterium has a probability pD of emitting KD quanta of D and then be-
coming refractory for the next Tr timesteps. Therefore, in Tr + 1 time steps the
probability of emission is

pD + (1− pD)pD + · · ·+ (1− pD)TrpD = 1− (1− pD)Tr+1.

Therefore the average rate of emissions is

p̂D =
1− (1− pD)Tr+1

Tr + 1
. (19)
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Figure 38: (A) Qth = 90, P0 = 525. (B) Qth = 100, P0 = 540. Both figures show
well-formed spores resulting from high Qth values.

Figure 39: Qth = 111, T = 479, D field. The figure shows the population at the
beginning of extinction. At this high Qth value, the bacteria remain wandering (tan
color) and do not aggregate into clusters.
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Table 3: Effects of Distressed Population Density (qd)

Pd Distressed Pop. Time of First Final
Density (qd) Spore Formation* Spores Pf

209 0.10 0 0
243 0.11 0 0
312 0.15 0 0
409 0.19 311 1 135
413 0.20 325 1 136
464 0.22 396 3 118
470 0.22 0 0
524 0.25 260 2 186
527 0.25 0 0
529 0.25 300 1 104
613 0.29 325 2 129
638 0.30 260 4 131
860 0.41 217 6† 234

1081 0.51 214 9† 414
1265 0.60 158 8† 486

* Time of first spore formation is estimated by eye.
† Since spores are connected, this is a count of Interior regions.

For pD = 0.2, Tr = 5, and KD = 20 (Table 1), we expect p̂D = 0.123 emissions per
time step, and sD = 0.123KD = 2.46 quanta of D per time step. For a uniform
population density of Q0, the asymptotic D concentration is

D∗ =
1

1− CD

sDQ0 ≈ 61.5

quanta of D for CD = 0.99 and Q0 = 0.25. If Qth � D∗, it is unlikely the quorum
threshold will be reached, but it can occur in regions of locally high population
density, which will then, through positive feedback, push the entire population above
the quorum threshold.

The time to first hibernation appears to be independent of Qth, but in these
experiments was always after T = 260, generally after T = 340.

5.2 Distressed Population Density (qd)

Table 3 displays the results of a series of experiments investigating the effects of
the population density of distressed bacteria. They were obtained by initializing the
population randomly with a certain density pP, setting the reproduction rate to 0,
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Figure 40: (A) Pd = 860, qd = 0.41. Spores are close together and may be inter-
connected. (B) Pd = 1265, qd = 0.60, D field. Spores, including Interiors, are
interconnected and cannot be easily separated. Both figures illustrate relatively high
population densities.

and then initially stressing the population, so that the distressed population was
equal to the initial population (Pd = P0). Average distressed population density was
calculated as a fraction of the maximum population, qd = Pd/Pmax. The simulations
were then run until all bacteria were either dormant or dead. Except Qth = 60, other
parameters were default (Table 1).

As in the previous experiments, we did not make sufficient runs to draw statisti-
cally valid conclusions, but some informal observations can be made. For low pop-
ulation densities (say, qd ≤ 0.15) little or no aggregation takes place, and therefore
extinction eventually occurs. As we did in Sec. 5.1, we may calculate the asymptotic
D concentration for a uniformly distributed distressed population:

D∗ =
1

1− CD

sDQ0 ≈ 246qd

quanta of D for the default parameters. We expect no aggregation if this is much less
than the quorum threshold, 246qd � Qth, that is, qd � 0.24 (for Qth = 60). However,
this is pessimistic, since random fluctuations in the population density may exceed
the quorum threshold and allow aggregation to begin.

For moderate densities (0.15 < qd < 0.30) 1 to 3 spores usually form. In the
exceptional cases when extinction occurs (such as the Pd = 470, 527 runs in Table 3),
we observed 5 or 6 clusters forming; extinction occurred because none of them reached
critical mass for hibernation. Both have population densities near the critical value
Qth/246 ≈ 0.24.
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Figure 41: (A) Bth = 50, Pf = 364. The spores have little or no cyst covering. (At
lower Bth values there may be no cyst at all, but many more bacteria are dormant
— sometimes the entire initial population.) (B) Bth = 90, Pf = 12. Virtually all
the bacteria have formed cyst cells; very few are dormant in the interior. (In both of
these cases Qth = 60, but other parameters are as in Table 1.)

At relatively high densities (qd > 0.3), the population reaches critical mass quickly.
Since aggregation has not proceeded very far, the clusters are loose and intercon-
nected; therefore, when the first spore forms, the hibernation signal tends to spread
to all the other clusters, causing them to hibernate too. As a result, we may get a
large interconnected mass of cysts with multiple interior regions (Fig. 40). In these
cases (marked “†” in Table 3) we have counted Interior regions, since the spores are
not distinctly separated.

Although the surviving dormant population seems to be independent of initial
density for moderate values (0.20 ≤ qd ≤ 0.30), it is distinctly higher for large values
(qd ≥ 0.40).

In the following subsections we present some additional observations (not statis-
tically tested). (The aggregation threshold Ath didn’t seem to have much effect.)

5.3 Boundary Threshold (Bth)

The diameter of the interiors of spores varies inversely with Bth, and boundary thick-
ness seems to vary directly. This makes sense, since a lower Bth causes more A-values
to be classified as Interior, versus Boundary. There seems to be a tendency with low
Bth values to get more aggregating clusters with Interior regions, which makes sense,
since it is easier for an aggregator to be in the Interior state. See Fig. 41 for typical
spores resulting from small and large Bth values.
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Figure 42: (A) CD = 10. Eight spores. (B) CD = 90. One large, sprawling spore.
(In both of these cases Qth = 60, but other parameters are as in Table 1.)

5.4 D Diffusion Conduction Coefficient (CD)

Higher CD leads to larger spores, and thus a smaller number of spores; it also leads
to larger interiors, but seems to have little effect on boundary thickness. This makes
sense, since more rapid diffusion causes spatial averaging (Gaussian smoothing) over
a larger area (Sec. 2.1), and so the interaction lengths are increased. See Fig. 42 for
typical spores resulting from small and large CD values.

Eq. 17 (p. 5) shows that the area of the spores should vary directly with the ratio
of CD values, and Eq. 16 shows their diameters vary with the square root of this ratio.
Therefore we would expect the spores resulting from CD = 90 should be about three
times the diameter of those from CD = 10, and this appears to be the case in Fig. 42.

5.5 A Diffusion Conduction Coefficient (CA)

Higher CA seems to lead to smaller interiors and somewhat thicker boundaries. This
makes sense, since the variance of the Gaussian smoothing kernel is directly propor-
tional to the conduction coefficient (Sec. 2.1). A is secreted only by bacteria in a
clumped state, so the source field is exactly proportional to the clumped popula-
tion. With a higher CA there is more smoothing, and therefore the Interior region is
constricted. See Fig. 43 for typical colonies resulting from small and large CA values.

We observed interior diameters of 4 to 20 grid units; if these were real bacteria,
1–10 microns in size, then the interiors might average 60µ. Overall (including the
cysts), the simulated spores have diameters of 10–25 grid units, and so corresponding
real spores might average 85µ in diameter.
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Figure 43: (A) CA = 10, Pf = 313. Thin or incomplete protective cysts. (B)
CA = 90, Pf = 100. Thick protective cysts.

6 Conclusions

We have demonstrated one means by which simple, bacteria-like autonomous agents
can self-organize into protective, spore-like colonies when subjected to unfavorable
ambient conditions. The self-organization is governed by the independent diffusion
of three chemicals: (1) D, which is secreted by distressed bacteria and guides their
aggregation into clusters, (2) A, which is secreted by clumped bacteria and enables
their differentiation into dormant interior cells and protective cyst cells, and (3) S,
which by its rapid diffusion synchronizes the formation of the spore. When favor-
able conditions return, the dormant bacteria reanimate, escape from their spore, and
resume normal behavior; the population can cycle between the dormant and active
states any number of times. A series of experiments demonstrated that the effects
of the simulation parameters can be understood in terms of Gaussian smoothing,
effected by diffusion, and sharpening, effected by chemotaxis.
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