
Computing Sparse Redued-Rank Approximations toSparse MatriesMihael W. BerryShakhina A. PulatovaG. W. StewartABSTRACTIn many appliations| latent semanti indexing, for example| it is re-quired to obtain a redued rank approximation to a sparse matrix A. Unfor-tunately, the approximations based on traditional deompositions, like thesingular value and QR deompositions, are not in general sparse. Stewart[Numer. Math. 83 (1999) 313{323℄ has shown how to use a variant of the las-sial Gram{Shmidt algorithm, alled the quasi{Gram-Shmidt{algorithm,to obtain an approximation of the form A �= XTY T, where X and Y aresparse (they atually onsist of rows and olumns of A) and T is small. Inthis paper we treat the omputational details of the algorithm and desribea Matlab implementation.1. IntrodutionIn a number of appliations [2, 7, 13, 4℄ one is given a large matrix A and wishes to �nda redued-rank approximation to A. This approximation is invariably expressed in theform A �= XTY T (1.1)where X and Y are full-rank matries and T is nonsingular (T may be the identitymatrix). When A is m�n and T is of order k, this approximation requires (m+n+k)kwords to store, as opposed to mn for the full A. Moreover, the matrix-vetor produtAx require (m+n+k)k additions and multipliations to ompute, as opposed, again, tomn additions and multipliations for the full A. Clearly, if k is small, great savings areto be had by using the redued-rank approximation (1.1).A widely used redued-rank approximation is the trunated singular value deompo-sition, whih is known to be optimal in the sense that the Frobenius norm kA�XTY Tk1

2 Sparse Redued-Rank Approximationsis minimized. There are stable diret methods for its omputation; however, thesemethods ompute the full deomposition and are not suitable for very large matries.Fortunately, there are iterative methods that produe the approximation (1.1) withouthaving to ompute the full SVD. These methods require only the formation of matrix-vetor produts and do not alter A.An alternative is the pivoted QR deomposition, whih generally gives results ompa-rable to the SVD. For large A, the Gram{Shmidt algorithm an be adapted to omputethis deomposition. Again, A is not altered, and the priniple operations are matrix-vetor multipliations. This paper is onerned with elaborations of this approah toredued-rank approximations.When A is large and sparse the situation is not as simple. For A, the storage andoperation ounts given above beome proportional to the number of nonzero elementsin A. Sine the fators X, T and Y are generally not sparse, the storage and operationounts for the approximation remain the same. Thus as k inreases, we will reah apoint where it beomes neessary to abandon the fatored form. Note that we do nothave the ability to hoose k, sine the auray required of the approximation, whihdepends on k, is governed by the appliation.In this paper we are going to desribe two approximations based on the pivotedQR deomposition that produe approximations in whih X or both X and Y aresparse. The �rst approximation is alled sparse pivoted QR approximation (SPQR). Itis omputed by an algorithm, alled the quasi-Gram{Shmidt algorithm, that produesa fatorization in whih X onsists of a seletion of olumns of A. In the seondapproximation, alled the sparse olumn-row (SCR) approximation, X onsists of aseletion of the olumns of A and Y onsists of a seletion of the rows of A, so thatwhen A is sparse so are both X and Y .These methods were �rst desribed by Stewart in [10℄ and the quasi-Gram{Shmidtmethod has been analyzed in [12℄. The purpose of this paper is to give the omputa-tional details leading to the aompanying Matlab funtions. In the next setion we willintrodue the pivoted QR deomposition. In Setion 3 we will derive the quasi-Gram{Shmidt method and apply it to the omputation of the sparse pivoted QR approxima-tion. In Setion 4 we will show how to ompute the SCR approximation. We will alsoshow how it an be applied to an information retrieval proess known as latent semantiindexing. The implementation details for our algorithms are desribed in Setion 5. InSetion 6 we ompare the SPQR approximation with the singular value deomposition.Finally, in Setion 7 we disuss some sparsity issues that arise in produing implemen-tations in ompiled programming languages like C or Fortran. The Matlab programsare listed in appendies.

Sparse Redued-Rank Approximations 3Throughout this paper, k � k will denote the Frobenius norm de�ned bykAk2 =Xi;j a2ij ;and k � k2 the spetral norm de�ned bykAk2 = maxkxk=1 kAxk:2. The pivoted QR fatorizationAs above, let A be an m�n matrix, not neessarily sparse. A pivoted QR (PQR)fatorization has the form AP = QR; (2.1)where P is a permutation matrix, Q is orthonormal, and R is upper triangular. Theexat form depends on the the sizes of m and n. If m � n, then Q is m�n and R isn�n. If m < n, then Q is m�m and R is m�n. Although our algorithms apply to bothases, for ease of exposition we will assume that m � n in what follows.A rank k approximation to A an be obtained by partitioning the fatorization (2.1).Let B = AP and write (B(k)1 B(k)2) = (Q(k)1 Q(k)2) R(k)11 R(k)120 R(k)22 ! ; (2.2)where B(k)1 has k olumns. Then our approximation is~B(k) = Q(k)1 (R(k)11 R(k)12): (2.3)Note that B � ~B(k) = Q(k)2 (0 R(k)22):Sine Q(k)2 is orthonormal, the error in ~B(k) as an approximation to B iskB � ~B(k)k = kR(k)22 k: (2.4)We will not ompute the entire deomposition (2.2). Rather we will bring in olumnsof A one at a time and use eah to ompute an additional olumn of Q and row of R.Thus at the end of kth step of this algorithm we will have omputed the approximation(2.3).The proess of seleting olumns is alled olumn pivoting , or for short simply piv-oting. The order in whih the olumns are seleted determines the permutation P .

4 Sparse Redued-Rank ApproximationsEquation (2.4) suggests that at the beginning of the kth step we should hoose theolumn of A in suh a way as to make kR(k)22 k small. The lassial hoie is to bring inthe olumn of A that orresponds to the olumn of R(k�1)22 of largest norm. (For moreon this hoie see [5, 9℄.)Surprisingly, we an implement this strategy without omputing R(k�1)22 itself. Con-sider the partition (2.2), in whih the supersripts (k) are replaed by (k�1). Let bjand rj denote the jth olumns of B and R. Beause Q is orthonormal, we havekbjk = krjk: (2.5)Now for j � k partition rj = r(j)1r(j)2 !where r(j)1 has k�1-omponents. Thus r(j)1 is the jth olumn of R(k�1)12 , and r(j)2 is thejth olumn of R(k�1)22 . It then follows thatkr(j)2 k2 = kbjk2 � kr(j)1 k2 = kbjk2 � r21j � r22j � � � � � r2k�1;j: (2.6)Thus at eah stage we an ompute the squares of the norms of the olumns of R(k�1)22 .Moreover, the sum of these numbers is kR(k�1)22 k2, so that by (2.4) we get, almostfor free, the value of the norm of the error in our redued-rank approximation. Thisnumber an be used to determine when we have a satisfatorily aurate redued-rankapproximation.Unfortunately, the expression (2.6) has a dark side. If kr(j)2 k2 is small omparedkbjk2, there will be anellation in the omputation of kr(j)2 k2. In partiular, in IEEEdouble-preision arithmeti if kr(j)2 k2 � 10�16kbjk2 we an expet no auray in theomputed value. On taking square roots we �nd that we an use the formula (2.6) onlywhen kr(j)2 k > 10�8kbjk:This means that if all the olumns of A have norm one we annot reliably omputeredued-rank approximation that is more aurate than 10�8. However, this aurayis usually more than enough.3. The quasi-Gram{Shmidt methodIn this setion we will desribe the quasi-Gram{Shmidt method. We will begin with adesription of the lassial Gram{Shmidt method.

Sparse Redued-Rank Approximations 5Suppose we have a QR fatorizationB = QR (3.1)of B and wish to ompute a QR fatorization(B a) = (Q q)�R r0 ��of (B a). The seond olumn of this equality gives us the relationa = Qr + �q:Sine QTQ = I and QTq = 0, we have r = QTa: (3.2)Sine kqk = 1, we have � = ka�Qrk (3.3)and q = ��1(a�Qr): (3.4)Equations (3.2), (3.3), and (3.4) are e�etively an algorithm for extending our originalQR fatorization.Unfortunately, anellation in the formation of a�Qr an ause the omputed q tobe far from orthogonal to the olumns of Q. The ure for this problem is reorthogonal-ization, in whih the proess is repeated on a�Qr. Spei�ally, we have the followingalgorithm, in whih we use Matlab notation.1. r = Q'*a2. q = a - Q*r3. s = Q'*q4. r = r + s5. q = q - Q*s6. rho = norm(q)7. q = q/rho (3.5)Typially, this algorithm produes a q that is orthogonal to the olumns of Q to workingauray.11In extremely unlikely ases the algorithm may produe a zero q at step 2 or 5, in whih ase speialation must be taken. In pratie, most programs that use Gram{Shmidt orthogonalization ignore thisproblem.

6 Sparse Redued-Rank ApproximationsWe an use this algorithm to ompute a PQR fatorization of A simply by seletingolumns of A and updating the QR fatorization of B. To start the proess o�, one setsR(1)11 = � = kak, and Q(1)1 = ��1a, where a is the �rst olumn seleted from the olumnsof A. In this way we ompute the deompositionsB(k)1 = Q(k)1 R(k)11 ;where R(k)11 is k�k.A problem with this algorithm is that it only omputes the fator R(k)11 in (2.2).However it is easy to see that row k of R(k)12 is simply qTk Â, where qk is the kth olumnof Q(k)1 and Â onsists of the n�k olumns of A that are not in B(k)1 . If n is large, thisomputation may be the most expensive part of the algorithm. Note that even if we donot want the R(k)12 we must still form (and disard) the produt qTk Â in order to omputethe olumn norms of R(k)22 as desribed in the last setion.Returning now to the Gram{Shmidt algorithm, we note that even if A is sparse, Qis in general not sparse. If m is very large, we may be unable to store Q. To irumventthis problem, we observe that it follows from (3.1) thatQ = BR�1:Consequently, we an form the produt Q'*a in (3.5) by the following algorithm.1. d = a'*B2. r = (d/R)'Similarly we an form the produt Q*r by1. p = R\r2. q = B*pThis leads to the following quasi-Gram{Shmidt step (in whih we have put the odefor the lassial Gram-Shmidt step on the right).1. d = a'*B r = Q'*a2. r = (d/R)' q = a - Q*r3. p = R\r4. q = a - B*p5. d = q'*B s = Q'*q6. s = (d/R)'7. r = r + s r = r + s8. p = R\s q = q - Q*s9. q = q - B*s10. rho = norm(q) rho = norm(q)
(3.6)

Sparse Redued-Rank Approximations 7This ode omputes only r and rho|the quantities needed to update R. It does notompute q in the form q/rho, as does the lassial Gram{Shmidt algorithm. Instead,q is de�ned by the relationq = (B a)�R r0 ���1 = ��1(a�BR�1r); (3.7)and is so omputed in our algorithms.The quasi-Gram{Shmidt step an be applied suessively to olumns of A, as de-sribed above for the lassial Gram{Shmidt algorithm, to produe a pivoted, Q-lessPQR fatorization, whih we will all a semi-PQR (SPQR) fatorization. We willall the orresponding approximation (B(k)1 R(k)11 �1)(R(k)11 R(k)12) the SPQR approxima-tion. The algorithm not only dispenses with the storage for Q, but it replaes denseproduts involving Q with sparse produts involving olumns of A. The only stritlydense operations involve R11 and R12. But sine the order of (R11 R12) is k�n, ifm� n these operations aount for little of the total work.One again there is a dark side|there may be a progressive loss of orthogonalityin the matrix BR�1. However, an analysis of the quasi-Gram{Shmidt algorithm [12℄shows that the loss of orthogonality is proportional to the ondition number kRkkR�1kof R, whih is usually good enough.A nie feature of the SPQR approximation (and QR approximations in general) isthat having omputed an approximation of order k one has immediately the all theapproximations of order ` < k. Simply, work with the �rst ` olumns of B and rows ofR.4. Sparse olumn-row approximationsWhen m� n, the SPQR approximation is satisfatory. But when m and n are nearlyequal, the storage of R beomes a problem. We an irumvent this problem at the ostof performing another fatorization.Spei�ally, �rst apply the quasi-Gram{Shmidt algorithm to the olumns of A to geta representative set of olumns X of A and an upper triangular matrix R orrespondingto R11. Let the error in the orresponding redued-rank deomposition be �ol. Nowapply the same algorithm to AT to get a representative set Y T of rows and anotherupper triangular matrix S. Let the error be �row. We then seek a matrix T suh thatkA�XTY Tk2 = min :In [10℄ it is shown that the minimizer isT = R�1R�T(XTAY)S�1S�T:

8 Sparse Redued-Rank ApproximationsMoreover, kA�XTY Tk2 � �2ol + �2row: (4.1)We will all this approximation a sparse row-olumn approximation, or for shortan SRC approximation. Suh approximations are eonomial to use. For example, toompute y = XTY Tx we ompute r = Y Tx, s = Tr, and y = Xs. This requirestwo sparse matrix-vetor multipliations and one dense matrix-vetor multipliation inwhih the matrix is small.It may happen that X and Y do not have the same number of olumns, in whihase T will not be square. This auses no problems in matrix-vetor multipliations.Some are must be taken in omputing the matrix T . The rux of the matter is toform XTAY orretly. If, for example, m is large and we �rst alulate AY , we endup with a large, potentially full matrix. The ure for this problem is to partition Y byolumns, writing XTA(y1 y2 � � � yk) :We an then alulate XTAY olumn by olumn as follows.1. T = [℄;2. for j=1:k3. T = [T, X'*(A*Y(:,j)℄;4. endA variant of this deomposition may be useful in latent semanti indexing (LSI), adevie for retrieving douments from a query vetor of terms [1, 3, 2, 6℄. Briey, in (LSI)one starts with a term-doument matrix A whose (i; j)-element is the number of timesterm i ours in doument j. One then alulates the singular value approximationA = Uk�kV Tk : (4.2)In the parlane of LSI, the olumns of Uk are alled term vetors and olumns of V Tk arealled doument vetors. Given a query vetor q of terms, one omputes a orrespondingdoument vetor by the formula d = ��1k UTk q:and ompares it with the olumns of Vk to determine whih olumns are related to thethe query vetor q. For example, one might ompute the osines of the angles betweend and the olumns of Vk and hoose the olumns orresponding to the larger ones.We an rewrite the XTY T in the form of (4.2). Spei�ally,XTY T = (XR�1)(R�TXTAY S�1)(S�TY T) � PWQT:

Sparse Redued-Rank Approximations 9Now mathematially, P and Q are orthogonal. Consequently, if we ompute the singularvalue deomposition W =M�NT of W and setU = PM and V = QN;then U and V are orthonormal, andXTY T = U�V T: (4.3)We an use this deomposition as desribed above to perform LSI. Of ourse we do notexpliitly form U and V ; rather we keep and apply them in fatored form; i.e.,U = XR�1M and V = Y S�1N:It should be stressed that the relation between (4.3) and (4.2) is purely formal. It isan open question whether LSI performed using the former will share the good propertiesof ordinary LSI. Theorem 6.1 below enourages us to onjeture that it will.5. A Matlab implementationIn this setion we will desribe a Matlab funtion spqr to ompute SPQR approxima-tions. The basi algorithm is simple and the hief implementation problem is how topakage it. We begin by looking at the input parameters.The essential input is the matrix A and a tolerane tol to tell when to stop thefatorization. Although the algorithm always terminates after a �nite number of steps,if tol is too small, spqrmay be ommitted to performing an unaeptably large numberof operations. For this reason, a third parameter maxol puts an upper bound on thenumber of olumns of A to be used in the approximation. Of ourse, one an alwaysset maxol greater than or equal to n, it whih ase it has no e�et. The programterminates at the �rst step k for whih kR(k)22 k < tol. Consequently, if tol is zero, spqris fored to inlude maxol olumns of A.Thus the basi alling sequene for spqr isspqr(A, tol, maxol)Although A is presumed to be a Matlab sparse matrix, spqr also works when A is dense.We will now turn the output parameters.When spqr �nishes we need to know four things.1. The number olumns of A involved in the approximation.2. The matrix (R11 R12).

10 Sparse Redued-Rank Approximations3. The relation of the olumns of (R11 R12) to those of A.4. The error in the approximation.The �rst is returned in the output parameter nols. The seond in the output matrixR. The third and fourth items are onneted with the way spqr implements pivoting.The funtion begins with two arrays: olx, whih is initialized to 1:n and norms whihis initialized so that norms(j) is the norm of the jth olumn of A. At step k, spqrdetermines the �rst index j � k for whih norms(j) is maximal and swaps omponentsj and k of both olx and norms, along with the orresponding olumns of R. Theolumn A(:,olx(j)) is then used to advane the approximation. After the quasi-Gram{Shmidt orthogonalization has been omputed the elements of the kth row ofR(k)22 are omputed and used to downdate norms(k+1:n). The error in the urrentapproximation is also omputed and stored in norms(k).From this desription it follows that on returnB = A(:; olx);whih provides the relation between R and A. Moreover the error in the approximationis norms(nols). However, we get a little more. For j � nols, the arrays olx andR(1:j,:) ontain the SPQR approximation assoiated with A(:,olx(1:j)), and byonstrution its error is norms(j). Thus by setting tol to zero, we an trak the qualityof all the approximations from 1 to maxols.The funtion spqr has three optional input arguments used to �ne tune the deom-position. The �rst fullR has a default value of 1 (true). If it is present and 0 (false),then only R(nols)11 is omputed. This is useful when the primary onern is with thespae spanned by the olumns A(:,olx(1:nols)). The seond optional parameterpivot has the default value 1. If it is present and 0 pivoting is suppressed| i.e., the theolumns of A are proessed in their natural order. Finally, the optional parameter n(for ompute norms) has a default value of 1. If it is present and fullR | pivot | ris zero, then the omputation of norms is suppressed and on return norms = [℄.Thus the �nal alling sequene is[nols, R, olx, norms℄ = spqr(A, tol, maxol, fullR, pivot, n)in whih fullR, pivot, and n are optional. For a onise summary see the prologueto spqr.6. Comparison with the SVDIn this setion we shall make some timing omparisons between the quasi-QR and theSVD redued-rank approximations. SVD approximations are rightly regarded as the

Sparse Redued-Rank Approximations 11ones to beat. Gaps in the singular values reveal numerial rank with great reliability,and the redued rank-approximations it produes are optimal. However, it is expensiveto ompute. Moreover, there seems to be no easy way to inrease the the size of theapproximation step by step as we are able to do with QR approximations.Sine the SVD is so highly regarded, it is sometimes objeted that other approxima-tions may not reprodue the row and olumn spaes from the SVD to suÆient auray.This is partiularly important in appliations where we are not interested in the approx-imations themselves but in the subspaes they de�ne. We are now going to show thatif any redued-rank approximation is aurate then it ontains good approximations tothe singular vetors orresponding to large singular values.Theorem 6.1. Let A = XY T +E. Let X be the spae spanned by the olumns of Xand Y be spae spanned by the olumns of Y . Let � > 0 be a singular value of A withnormalized left and right singular vetors u and v, so that Av = �u and uTA = �vT.Then sin\(u;X); sin\(v;Y) � kEk2� : (6.1)Proof. We will establish the �rst inequality, the seond being established similarly. LetX? be an orthonormal basis for the orthogonal omplement of X . Then kXT?uk is thesine of the angle between u and X [11, x4.2.a℄. NowXT?Av = �XT?u;and XT?Av = XT?XY Tv +XT?Ev = XT?Ev;sine by onstrutionXT?X = 0. It then follows that �XT?u = XT?Ev, whene kXT?uk2 �kEk2=�, whih is just the �rst inequality in (6.1).This theorem says that if a redued-rank approximation is aurate, then its olumnspae must ontain aurate approximations to the left singular vetors orrespondingto singular values that are large ompared to kEk. An analogous statement is true ofthe row spae and the right singular vetors.Turning now to timing examples, we will use matries A of order n = 10;000 gener-ated by the Matlab funtion sprandn, whih produes a \random" sparse matrix witha given distribution of singular values. The �rst distribution we onsider is given by theMatlab statements = logspae(0, -6, n)Thus the ommon logarithms of the singular values are equally spaed between 0 and�6. For nr=10:5:40 we timed the all

12 Sparse Redued-Rank Approximations[nr, x, nr, rx, T, rsd℄ = ra(A, 1e-5, nr);whih will produe an approximation of rank nr. We also timed the Matlab funtion[U, S, V℄ = svds(A, nr);whih produes the wherewithal for an approximation of rank n.The results are summarized in the following table, in whih the time is reported inseonds. nr SPQR SVD10 2:6 42:415 3:0 35:720 3:4 52:625 3:7 57:330 4:1 70:535 4:4 91:440 4:8 120:0It is seen that the SVD times are worse by fators ranging from 16 for nr = 10 to25 for nr = 40. Regarding storage, the SVD requires (n +m)k oating-point words,whereas the SQR requires only k2 words.In the above example the singular values of the test matrix had no gaps, and on-sequently the redued-rank approximations are not very good|either for the SVD orthe SPQR approximations. In a di�erent experiment, we generated singular values bythe statementss = logspae(0, -4, n);s(20:n) = 1e-6*s(20:n);This plaes a multipliative gap of about 10�6 between the 19th and 20th singularvalues. For n = 19; 20 we timed the allspqr(A, 1.e-2, n, 1)and the above all to svds. The results weren SQR SVD19 1:8 4:420 1:8 323:6The improved performane for the SVD when n = 19 is explained by the fat thatsvds is being asked to �nd a singular subspae whose singular values are well separatedfrom the remaining singular values. Under suh irumstanes iterative methods forthe SVD onverge rapidly. The dismal performane of the SVD for n = 20 is harderto explain. The funtion svds is being asked to �nd the 20th singular value, whih is

Sparse Redued-Rank Approximations 13

0 100 200 300 400 500 600 700 800 900 1000
20

40

60

80

100

120

140

ncols

er
ro

r

SPQR

SVD

Figure 6.1: Error in SVD and SPQR approximation for CRANsmall ompared with A and is poorly separated from the other small singular values.Experiene has shown this to be a diÆult task. Be that as it may, the 20th singularvalue must be found to reveal the gap in the singular values.As a �nal, example we onsider a term-doument matrix from an LSI appliation{spei�ally the matrix CRAN generated from the Cran�eld olletion and available athttp://www.s.utk.edu/~lsi/. The matrix (or rather its transpose) is 4;612 by 1;398.Figure 6.1 graphs the error (Frobenius norm) in the SVD and SPQR approximationsfor nols ranging from 1{1000. The SVD approximation is better, as it must be, butthe SPQR approximation traks it niely.The SVD approximations were not atually omputed. Instead the norms of the SVDapproximation were omputed from the singular values of A, whih were omputed viathe statement;R = qr(A);sig = svd(full(R));The total time was about 4 minutes. By ontrast the time to ompute the entireSPQR approximation with 1000 olumns (and hene all the deompositions with fewerolumns) was about 2.5 minutes.We inluded this example, sine it was used by the authors of [14℄, who use it to

14 Sparse Redued-Rank Approximations1 2 3 41 a b2 3 d4 e5 f g6 hval : a d f e h b g (floating-point nnz)ol_start : 1 4 5 7 9 (integer n+1)rx : 1 3 5 2 4 6 1 5 (integer nnz)Figure 7.1: Compressed olumn representation of a 6�4 matrixdemonstrate the superiority of the SVD approximation and an approximation of theirsover the SPQR approximation. We have been unable to reprodue their results. Onepossible explanation is that the matrix must be generated from the douments andterms. There may be more than one way to do this, and we ould therefore be workingwith di�erent matries.7. Sparsity onsiderationsThe timings of the last setion show that the Matlab implementation of the SCR ap-proximation is onsiderably faster than omputing the SVD to obtain an equivalentapproximation. The ode is simple beause Matlab hides the implementation of thesparse matrix-vetor multipliations that are the at the heart of the algorithms. It istherefore natural to try to improve on the performane of the Matlab implementationby writing the algorithm|sparse operations and all| in a ompiled language like C orFortran. This setion is devoted to sparsity issues that must inform suh an attempt.For de�niteness we will onsider the problem of omputing a pivoted SPQR approx-imations for a matrix A of order n where n is large. We will assume that the number ofolumns n in the approximation is small ompared to n. Finally, we will assume thatA is represented in ompressed olumn (CC) form, whih we will now briey desribe.For de�niteness, we will assume 1-based indexing and use Matlab statements in theexamples.An example of CC representation is given in Figure 7.1. The nonzero values ofthe elements of the sparse matrix A are stored in olumn major order in an arrayval. The length of the array is nnz|the number of nonzero elements of A. An

Sparse Redued-Rank Approximations 15integer array rx of length nnz ontains the row indies of the orresponding elementsin val. Another integer array, ol_start, of length n+1 tells where the olumns startin val and rx. Spei�ally, the �rst element in olumn j is val[ol_start[j℄℄. Thevalue of ol_start[n+1℄ is set to nnz+1. This means that the length of olumn j isol_start[j+1℄-ol_start[j℄.Formation of the matrix-vetor produts Ax and xTA are easy in this representation.The following ode omputes y = Axy(1:n) = 0;for j=1:nfor ii = ol_start(j):ol_start(j+1)-1;i = rx(ii);y(i) = y(i) + val(ii)*x(j);endend (7.1)Similarly, we an ompute y = xTA as follows.for j=1:ny(j) = 0;for ii = ol_start(j):ol_start(j+1)-1;i = rx(ii);y(j) = y(j) + x(i)*val(ii);endend (7.2)Both algorithms require nnz additions and multipliations. Both traverse the array valin its natural order, whih makes for good ahe usage. The �rst traverses x in itsnatural order, but its referenes to y jump around; the reverse is true for the seondalgorithm.Now if we examine the quasi-Gram{Shmidt algorithm, we �nd we must performthe following operations involving the matrix A.1. Extrat the pivot olumn from A.2. Calulate matrix-vetor produts of the form x'*A(:,olx(1:k-1)).3. Calulate matrix-vetor produts of the form A(:,olx(:,1:k-1))*x.4. Calulate matrix-vetor produts of the form x'*A(:,olx(:,k+1:n)). (As wehave mentioned, when n is large, this alulation is the most expensive part of thealgorithm.)CC storage is ideal for performing all these operations. For example, to alulateA(:,olx(1:k-1))*x, we need only replae the outer for statement in (7.1) by

16 Sparse Redued-Rank Approximationsfor j=olx(1:k-1)Again, to ompute x'*A(:,olx(:,k+1:n))we hange the outer for statement in (7.2)with for j=olx(k+1:n)The algorithms no longer aess val sequentially, but aess within an individual olumnis onentrated in the ontiguous part of val where its elements lie. Thus the CCrepresentation goes hand-in-glove with the omputation of the SPQR approximation.The situation is di�erent when we must ompute the SPQR approximation of AT,as is required when we wish to ompute an SCR approximation. There are two majoralternatives. We an work with AT, or we an write a row-oriented version of spqr thatworks diretly with A.Regarding the �rst alternative, the SPARSKIT pakage by Saad [8℄ gives an algo-rithm for transposing a matrix in ondensed format in plae.2. The algorithm requiresan additional working integer array of size nnz and O(nnz) operations. A disadvantageis that the elements of eah olumn, though they remain ontiguous in val, no longerour in their natural order. This makes no di�erene for our algorithms for formingmatrix-vetor produts.The seond alternative is to write row-oriented version of spqr. The relevant oper-ations for this problem are the following. Here the array rowx orresponds to the arrayolx in the olumn-oriented algorithm.1. Extrat the pivot row from A.2. Calulate matrix-vetor produts of the form A(rowx(1:k-1),:)*x.3. Calulate matrix-vetor produts of the form x'*A(:,rowx(1:k-1)).4. Calulate matrix-vetor produts of the form A(rowx(k+1:n,:))*x.The natural way to implement the row-oriented algorithm is to transform A intoompressed row format. One again, SPARSKIT provides an algorithm. The advantageof this approah is that the translation from spqr to the row-oriented version is purelymehanial. The disadvantage is that the storage requirements are doubled.An alternative is to work with the CC format, perhaps augmented by additionalarrays. However, this reates diÆulties in implementing the row-oriented algorithm.Spei�ally, onsider the adaptation of (7.1) to ompute A(rowx(1:k-1),:)*x.2The algorithm assumes ondensed row format, but it an easily be adapted to CC format

Sparse Redued-Rank Approximations 17y(1:n) = 0;for j=1:nfor ii = ol_start(j):ol_start(j+1)-1;i = rx(ii);if i in rowx(1:k-1)y(i) = y(i) + val(ii)*x(j);endendend (7.3)
There are two problems with this algorithm|one easily solved, the other more diÆult.The �rst problem is that with eah iteration of the inner loop rowx(1:k-1) must besearhed to determine if it ontains i as an entry. The ure is to negate the indies ofrx orresponding to row i when row i is brought into the fatorization. Then we mayreplae the the onditional part of the inner loop withif rx(i) < 0y(-i) = y(-i) + val(ii)*x(j);endThe seond problem is that by our assumptions k � n. Now the loops in (7.3)traverse all the nnz elements in the matrix A. But we atually work with only those fewelements in the rows indexed by rowx(1:k-1). In other words, for most of the time, thebody of the double loop does nothing. The ure for this problem is to store a opy of thematrix A(rowx(1:k-1) in ompressed-row format. Beause k� n, the extra storage isinsigni�ant. Moreover, it is then easy to perform the operations x'*A(rowx(1:k-1),:)and A(rowx(1:k-1),:)*x. We hoose the ompressed row-form beause it is easy toadd additional rows to it as k inreases.Now onsider the produt A(rowx(k+1:n,:))*x. Assuming that we have negatedthe elements of rx orresponding to rows rowx(1:k), we an perform this multipliationby modifying the body of the loop (7.3) as follows.if rx(i) > 0y(i) = y(i) + val(ii)*x(j);endSine k� n, the body of the loop is performing useful work most of the time.Surprisingly, the problem of extrating the pivot row from a ompressed olumnform is also diÆult. For de�niteness, let the index of that row be ipvt. The followingalgorithm does the job.

18 Sparse Redued-Rank Approximations1 2 3 41 a b2 3 d4 e5 f g6 hval : a d f e h b g (floating-point nnz)ol_start : 1 4 5 7 9 (integer n)row_index : 1 3 5 2 4 6 1 5 (integer nnz)row_start : 1 3 4 5 6 8 9 (integer m+1)row_elp : 1 7 4 2 5 3 8 6 (integer nnz) (elp = element pointer)ol_index : 1 1 1 2 3 3 4 4 (integer nnz)Figure 7.2: Compressed-olumn representation of a 6�4 matrix with row linksfor j=1:nfor ii=ol_start(j):ol_start(j+1)-1if rx(ii) > ipvt, break, endif rx(ii) == ipvt% A(ipvt, j) = val(ii) is in row ipvt;break;endendendUnfortunately, if ipvt = n, we must traverse the entire matrix just to extrat the pivotrow. Thus the use of this algorithm has the potential to add O(nzz) work at eah stepof the algorithm.A solution is to augment the ompressed olumn format to allow aess to the rows.Figure 7.2 shows one suh sheme, whih we will all ompressed-olumn, linked-rowrepresentation (CCLR representation). With it we an aess the row ipvt as follows.for jjj = row_start(ipvt):row_start(ipvt+1)-1jj = row_elp(jjj);j = x(jj);% A(ipvt, j) = val(jj) is in row ipvtendThis ability to traverse rows allows one to implement the row-oriented algorithm in

Sparse Redued-Rank Approximations 19exatly the same manner as the olumn oriented algorithm. However, there are two dif-ferenes that may a�et eÆieny. First there are two levels of indiretion from jjj to jjto j. Seond, row traversals do not aess the elements of val sequentially. Thus it maystill pay to maintain a opy of A(rowx(1:k-1),:) and to ompute A(rowx(1:k-1),:)*xdiretly from the olumn oriented form.To sum up, if we assume that we have 4-byte integers and 8-byte oating-pointwords, then ompressed olumn storage requires 12 nnz + 4 n bytes of memory. Toompute the SPQR approximation of AT we have the following options.1. Transpose A in plae. Storage: 16 nnz+ 4 n (4 nnz of whih is temporary and anbe alloated as an automati variable). Additional work: O(nnz) for the initialtranspose.2. Copy A to ompressed row format. Storage: 24 nnz + 8 n. Additional work:O(nnz) for the onversion.3. Use CC representation, and opy A(:,olx(1:k-1)). Storage 12 nnz+ 4 n. Ad-ditional work: up to O(nnz) per step to extrat rows.4. Use CCLR representation, opy A(:,olx(1:k-1)), and use the row links onlyto extrat the pivot row. Storage: 20 nnz+ 8 n. Additional work O(1) per step.5. Use CCRL Storage: 20 nnz+ 8 n. Additional work: O(nnz) per step from extraoverhead in proessing rows.Items 1, 2, and 4 emerge as the strongest options, playing o� storage, work, andease of programming against eah other. Item 1 is attrative beause of its low storagerequirements and the fat that one does not have to ode a row-oriented version of spqr.Item 2 doubles the storage, but makes the oding of the row-oriented version trivial.Item 4 almost doubles the storage, and the opying ompliates the row-orient algorithm.But it is attrative when additional row operations involving A are antiipated.It should be stressed that the above analysis was done under a number of speialhypotheses|e.g., n � n. Change the hypotheses and the the results may hange.Moreover, the nature of the problem may make other storage shemes preferable. How-ever, the analysis illustrates the questions that should be asked by someone implement-ing the Matlab algorithms in a language where sparseness must be taken expliitly intoaount.A. The SPQR ode%SPQR omputes a pivoted semi-QR deomposition of an mxn matrix A.% It is espeially suited for omputing low-rank approximations

20 Sparse Redued-Rank Approximations% to a sparse matrix.%% BACKGROUND. A pivoted QR (PQR) deomposition of an mxn matrix A is a% fatorization of the form%% A*P = Q*R%% where P is a permutation matrix, Q is an orthonormal matrix, and R% is an upper triangular matrix. The permutation P is hosen so% that R(k,k)^2 >= norm(R(:,k:j),'fro')^2, (j=k:n). This tends to make% the initial olumns of AP well-onditioned and the trailing% prinipal submatrix of R small. In partiular, if we partition% the deomposition B = A*P = Q*R in the form%% [B1 B2℄ = [Q1 Q2℄*[R11 R12; (*)% 0 R22℄%% and R22 is small, then AP an be approximated by Q1*[R11 R12℄.% The Frobenius norm of the differene is NORM(R22, 'fro').%% A semi-PQR (SPQR) approximation onsists of P, R11 and R12.% Sine Q1 = B1*inv(R11) the ation of Q1 on a vetor an be alulated% by operations involving B1 and Q1. For example,%% Q1'*x = R'\(B'*x) (**)%% SPQR omputes a SPQR approximation using a quasi-Gram-Shmidt% algorithm that takes advantage of (**) (and its equivalents) to% avoid storing Q. This means that the algorithm's only operations% involving A are matrix-vetor produts. The only storage% requirements are for R11, R12 and a few work% vetors of lengths m and n. Thus SPQR is ideally suited for the% approximating sparse matries.%% THE FUNCTION SPQR. The statement%% [nols, R, olx, olnrm℄ = spqr(A, tol, maxols, fullR, pivot, n)%% returns%% nols : the number of olumns in B1 of (*).%%% R : The matrix [R11 R12℄ or R11 depending on fullR.%

Sparse Redued-Rank Approximations 21% olx(n) : The permutation P. Speifially, AP = A(:,olx)% and B1 = A(:,olx(1:nols)).%% norms(n) : If norms are to be omputed, norms ontains% the following information. For j<=nols,% norms(j) is the norm of R22 for the deomposition% (*), where R11 is jxj. For j>nols, norms(j)% is the norm of R22(:,j) in (*), where R11 is% nols x nols.% If norms are not omputed, norms=[℄.%% The input arguments are%% A : The matrix whose SPQR approximation is to be% omputed.%% tol : The redution stops when norm(R22,'fro) < tol.%% maxols : Stops the redution when nols = maxols.%% fullR : An optional argument with default value 1.% If fullR~=0, SPQR returns [R11 R12℄. Otherwise% it returns only R11.%% pivot : An optional argument with default value 1.% If pivot==0, pivoting is suppressed.%% n : An optional argument with default value 1.% If (fullR | pivot | n)==0 omputation of norms% is suppressed and on return norms=[℄.%% WARNING. The auray of the the approximation dereases as% norm(R22,'fro') dereases. As a rule of thumb, if the norms of% the olumns of A are approximately equal, tol should be greater% than 10^-8*norm(A,'fro').%% NOTES. The ombination of fullR = pivot = n = 0 gives% very fast fatorization of the first maxols olumns of A.% If maxols = n, this gives an unpivoted semi-QR fatorization% of A, whih an be use to solve least squares problems or% ompute projetions.%% If tol.leq.0, SPQR will stop only when nols is equal to olmax.%% When R12 is too large to store, a seond appliation of SPQR

22 Sparse Redued-Rank Approximations% gives the wherewithal to ompute a sparse C-R approximation of the% form%% A = XTY'%% where X onsists of olumns of A and Y' onsists of rows of% A. See SCRA.%% Author: Pete Stewart, May 20 2004%funtion [nols, R, olx, norms℄ = spqr(A, tol, maxols, fullR, pivot, n);% Determine the maximum number of olumns in the result.[m, n℄ = size(A);nols = min([m, n, maxols℄);% Set default values of the optional argumentsif nargin == 3fullR = 1;pivot = 1;n = 1;elseif nargin == 4pivot = 1;n = 1;elseif nargin == 5n = 1;elseerror('SPQR: Wrong number of input parameters.')end% Initialize arrays.n = fullR | pivot | nolx = 1:n;if nrkk = zeros(1,n);for j=1:nnorms(j) = norm(A(:,j));end

Sparse Redued-Rank Approximations 23elsenorms = [℄;endif fullRR = zeros(nols,n);elseR = zeros(nols,nols);end% Loop bringing olumns of A into the deomposition.for k=1:nolsif pivot% Determine the pivot olumn and swap it with olumn k.[maxnrm, jmax℄ = max(norms(k:n));jmax = jmax + k - 1;xk = olx(k);olx(k) = olx(jmax);olx(jmax) = xk;nk = norms(k);norms(k) = norms(jmax);norms(jmax) = nk;elsejmax = k;endif (fullR & k>1)R(1:k-1,jmax) = R(1:k-1,k);end% Get olumn k and inorporate it into the deomposition.a = A(:,olx(k));if k == 1% Speial ation for the first olumnR(1,1) = norm(a);q = full(a/R(1,1));

24 Sparse Redued-Rank Approximationselse% Perform a quasi-Gram-Shmidt step with reorthogonalization.b = full(a'*A(:,olx(1:k-1)));r = (b/R(1:k-1,1:k-1))'; = R(1:k-1,1:k-1)\r;q = a - A(:,olx(1:k-1))*;b = q'*A(:,olx(1:k-1));rr = (b/R(1:k-1,1:k-1))'; = R(1:k-1,1:k-1)\rr;q = q - A(:,olx(1:k-1))*;% Update R.r = r + rr;rho = norm(q);R(1:k-1,k) = r;R(k,k) = rho;% Compute the kth olumn of Q. = R(1:k-1,1:k-1)\r;q = (a - A(:,olx(1:k-1))*)/rho;end% Update norms and ompute norm(R22,'fro')if k+1<=nif n% Compute the k-th row of R. Note: For large matries% this step dominates the omputation.rrk(k+1:n) = q'*A(:,olx(k+1:n));if fullRR(k,k+1:n) = rrk(k+1:n);end% Downdate the olumn norms and ompute norm(R22,'fro').norms(k+1:n) = ...max([norms(k+1:n).^2 - rrk(k+1:n).^2; zeros(1,n-k)℄);

Sparse Redued-Rank Approximations 25norms(k) = sqrt(sum(norms(k+1:n)));norms(k+1:n) = sqrt(norms(k+1:n));% Chek the stopping riterion.if (norms(k) < tol) break; endendelsenorms(k) = 0;endend% Clean up.nols = k;if fullRR = R(1:nols,:);elseR = R(1:nols,1:nols);endB. The SCRA ode% SCRA produes a reduedls-rank approximation to a matrix. Speifially,%% [n, x, nr, rx, T, err℄ = ra(A, tol, maxnr)%% produes an approximation of the form%% A(:,x)*T*A(rx,:)%% where T is a n by nr matrix. The parameter err is a bound% on the auray of the approximation and is ontrlled by tol.% The parameter maxnr is an upper bound on n% and nr.%% SCRA uses SPQR to ompute SPQR fatorizations of A and A'.funtion [n, x, nr, rx, T, err℄ = ra(A, tol, maxr)[n, R, x, n℄ = spqr(A, tol, maxr, 0);[nr, S, rx, rn℄ = spqr(A', tol, maxr, 0);

26 Sparse Redued-Rank Approximationsx = x(1:n);rx = rx(1:nr);T = [℄;for i=1:nrT = [T, full(A(:,x)'*(A*A(rx(i),:)'))℄;endT = R\((R'\(T/S))/S');err = sqrt(n(n)^2 + rn(nr)^2);Referenes[1℄ M. Berry and M. Browne. Understanding Searh Engines: Mathematial Modelingand Text Retrieval. SIAM, Philadelphia, PA, 1999.[2℄ M. W. Berry, Z. Drma�, and E.R. Jessup. Matries, vetor spaes, and informationretrieval. SIAM Review, 41:335{362, 1999.[3℄ M. W. Berry, S. T. Dumais, and Gavin W. O'Brien. Using linear algebra forintelligent information retrieval. SIAM Review, 37:573{595, 1995.[4℄ M. W. Berry and D. I. Martin. Prinipal omponent analysis for informationretrieval. In Handbook of Parallel Computing and Statistis. Marel Dekker, NewYork, 2004. To appear.[5℄ �A. Bj�ork. Numerial Methods for Least Squares Problems. SIAM, Philadelphia,1996.[6℄ S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Indexing bylatent semanti analysis. Journal of the Amerian Soiety for Information Siene,41:391{407, 1990.[7℄ P. Jiang and M. W. Berry. Solving total least squares problems in informationretrieval. Linear Algebra and Its Appliations, 316:137{156, 2000.[8℄ Y. Saad. SPARSEKIT: A basi tool kit for sparse matrix omputations. Availableat www-users.s.umn.edu/~saad/software/SPARSKIT/sparskit.html, 1994.[9℄ G. W. Stewart. Matrix Algorithms I: Basi Deompositions. SIAM, Philadelphia,1998.

Sparse Redued-Rank Approximations 27[10℄ G. W. Stewart. Four algorithms for the the eÆient omputation of trunatedpivoted qr approximations to a sparse matrix. Numerishe Mathematik, 83:313{323, 1999.[11℄ G. W. Stewart. Matrix Algorithms II: Eigensystems. SIAM, Philadelphia, 2001.[12℄ G. W. Stewart. Error analysis of the quasi-Gram{Shmidt algorithm. TehnialReport CMSC TR-4572, Department of Computer Siene, University of Maryland,2004.[13℄ G. W. Stuart and M. W. Berry. A omprehensive whole genome baterial phylogenyusing orrelated peptide motifs de�ned in a high dimensional vetor spae. Journalof Bioinformatis and Computational Biology, 1:475{493, 2003.[14℄ Z. Zhang, H. Zha, and H. Simon. Low-rank approximations with sparse fatorsI: Basi algorithms and error analysis. SIAM Journal on Matrix Analysis andAppliations, 23:706{727, 2002.

