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Abstract

The challenge of efficiently retrieving files that
are broken into segments and replicated across
the wide-area is of prime importance to wide-
area, peer-to-peer, and Grid file systems. Two
differing algorithms addressing this challenge
have been proposed and evaluated. While both
have been successful in differing performance
scenarios, there has been no unifying work that
can view both algorithms under a single frame-
work. In this paper, we define such a framework,
where download algorithms are defined in terms
of four dimensions: the number of simultaneous
downloads, the degree of work replication, the
failover strategy, and the server selection algo-
rithm. We then explore the impact of varying pa-
rameters along each of these dimensions.

1 Introduction

In wide-area, peer-to-peer and Grid file sys-
tems [6–9,11,13,16–18], the storage servers that
hold data for users are widely distributed. To tol-
erate failures and to take advantage of proxim-

ity to a variety of clients, files on these systems
are typically broken into blocks, which are then
replicated across the wide area. As such, clients
are faced with an extremely complex problem
when they desire to access a file. Specifically:

Given a file that is partitioned into
blocks that are replicated through-
out a wide-area file system, how can
a client retrieve the file with the best
performance?

This problem was named the “Plank-Beck”
problem by Allen and Wolski [1], who denoted
it as one of the two representative data move-
ment problems for computational grids. In 2003,
two major studies of this problem were pub-
lished [1, 12], and each presented a different al-
gorithm:

� A greedy algorithm where a client simulta-
neously downloads blocks of the file from
random servers, and uses the progress of
the download to specify when a block’s
download should be retried. This is termed
Progress-Driven Redundancy [12].
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� An algorithm where the client serially
downloads blocks from the closest loca-
tion and uses adaptive timeouts to determine
when to retry a download. [1] In this paper,
we call this the Bandwidth-Prediction Strat-
egy.

In a wide-area experiment, Allen and Wolski
showed that the two algorithms performed simi-
larly in their best cases [1], but their performance
could differ significantly. Beyond that conclu-
sion, neither their work, nor the work in [12]
lends much insight into why the algorithms per-
form the way they do, how they relate to one an-
other in a more fundamental manner, and how
one can draw general conclusions about them.

In this paper, we attempt to unify this work,
providing a framework under which both algo-
rithms may be presented and compared. We
then explore the following four facets of the
framework and how their modification and inter-
operation impact performance.

1. The number of simultaneous downloads.

2. The degree of work replication.

3. The failover strategy.

4. The selection of server scheduling algo-
rithm.

We conclude that the two most important
dimensions of downloading algorithms are the
number of simultaneous downloads, and the
server selection algorithm. The others do impact
performance, but the extent of their impact de-
pends on the number of downloads and the server
selection algorithm.

2 Framework

In this section, a framework is built under
which Progress-Driven Redundancy and the

Bandwidth-Prediction Strategy can both reside.
The object of this exercise is not to prove ulti-
mately that one approach is better than the other,
but instead to observe the ways in which the two
algorithms are similar and different, and to ex-
plore the successful aspects of each algorithm.

Given a file that is partitioned into blocks that
are replicated throughout a file system, the chal-
lenge of retrieving it is composed of four basic
dimensions:

� The number of simultaneous downloads:
How many blocks should be retrieved in
parallel? The trade-off in this decision is
as follows: too few simultaneous downloads
may result in the incoming bandwidth not
matching that of the client, and in the la-
tency of downloads having too great an im-
pact; while too many simultaneous down-
loads may result in congestion, either in the
network or at the client. We quantify the
number of simultaneous downloads by the
variable

�
, as simultaneous downloads are

usually implemented with multiple threads.

� The degree of work replication: Overall,
what percentage of the work should be re-
dundant? We assume that blocks are re-
trieved in their entirety, or not at all. Thus,
when multiple retrievals of the same block
are begun, any data collected in addition to
one complete copy of the block from one
source is discarded. In our study, work
replication is parameterized by the vari-
able � , which is the maximum number of si-
multaneous downloads allowed for any one
block.

� The failover strategy: When do we de-
cide that a block must be retried? Aside
from a socket error, timeout expiration is
the simplest way to determine that a new
attempt to retrieve a block must be initi-
ated. However, if timeouts are the only
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means of detecting failure, then they must
be accurate if failures are to be handled effi-
ciently. While adaptive timeouts have been
shown to perform as well as optimally cho-
sen static timeouts [2, 15], their implemen-
tation is more complicated than the imple-
mentation of static timeouts.

An alternative to failure identification via
timeouts is the approach used in Progress-
Driven Redundancy, where the success of a
given retrieval attempt is evaluated in com-
parison to the progress of the rest of the file.
When the download of a block is deemed
to be progressing too slowly, additional at-
tempts are simultaneously made to retrieve
the block. The first attempt need not be ter-
minated when new attempts begin, and in
this way, all of the work of the first attempt
is not lost if it finishes shortly after the new
attempts begin. We quantify the notion of
download progress with the parameter � ,
which specifies how much progress needs
to be made with the file after a block’s first
download begins before that block requires
replication.

� The selection of server scheduling algo-
rithm: Which replica of a block should be
retrieved? When blocks of a file are dis-
tributed, especially over the wide area, the
servers where different copies of the same
block reside have different properties. Each
server possesses two traits by which it may
be characterized, speed and load. A server’s
speed is approximately bandwidth, or more
specifically, the time the server takes to de-
liver one MB. A server’s load is the number
of threads currently connected to the server
from our client application. We investigate
seven server scheduling algorithms, each of
which is described in section 3.3

3 Algorithms

Now that a framework is established for the com-
parison of wide-area download algorithms, the
Progress-Driven Redundancy and Bandwidth-
Prediction Strategy algorithms are presented in
sections 3.1 and 3.2, respectively. Following
that, several server scheduling algorithms are
outlined.

In order to understand the details of the follow-
ing algorithms, suppose the desired file is subdi-
vided into blocks, and the blocks are indexed by
their offset in the file. Suppose also that each of
the file’s blocks is replicated � times such that no
two copies of the same block reside in the same
place. The algorithms attempt to acquire blocks
by the order of their indices.

3.1 Progress-Driven Redundancy

As originally defined [12], with Progress-Driven
Redundancy, a progress number � and a redun-
dancy number � are selected at startup. Strictly
speaking, � cannot be greater than � . The num-
ber of threads, which determines the maximum
number of simultaneous downloads, is also cho-
sen.

Each block is given a download number ini-
tialized to zero. The download number of a block
is incremented whenever a thread attempts to re-
trieve one of the block’s copies. When a thread is
ready to select a new block to download, it first
checks to see if a block exists that has a down-
load number less than � , such that more than

� blocks with higher offsets in the file have al-
ready been retrieved. If such blocks exist, then
the thread chooses the block with the lowest off-
set that meets these requirements. If not, then
the thread selects the block with the lowest offset
whose download number is zero.

Since blocks near the end of the file can never
meet the progress requirement, once a thread
finds that no more blocks can be selected accord-
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ing to download number, � , and � ; it selects
the block with the lowest offset whose download
number is less than � . We call this a “swarm
finish”.

Relating back to the previously outlined
framework, the number of threads determines
the number of simultaneous downloads; the re-
dundancy number determines the degree of work
replication; and the progress number determines
the failover strategy. When initially presented,
the server scheduling assumed that the file was
fully replicated at every site, and threads were as-
signed to individual servers [12]. This was aug-
mented in [1] so that server selection was per-
formed randomly. In this work, we explore a va-
riety of server selection algorithms.

3.2 Bandwidth-Prediction Strategy

To proceed with the Bandwidth-Prediction Strat-
egy, we simply need a means to determine which
server is the closest, or the fastest. The original
authors assume that the Network Weather Ser-
vice [20] is implemented at each site, and em-
ploy that to determine server speed. Then, the
blocks are retrieved in order, one at a time, from
the fastest server. Timeouts, whose values are
determined by the NWS, are used as the failover
strategy. Thus, relating back to the previously
outlined framework,

�
is one, � is one, failover

is determined by timeouts, and server selection is
done with an external bandwidth predictor.

3.3 Server Scheduling

The original work on Progress-Driven Redun-
dancy did not address server scheduling. The
work of Allen and Wolski employed the Net-
work Weather Service for the Bandwidth Pre-
diction Algorithm, and random server selection
for Progress-Driven Redundancy. In this paper,
we explore a wider variety of server selection
algorithms. We assume either that there is a

bandwidth monitoring entity such as the Network
Weather Service, or that the client has access to
previous performance from the various servers,
and can augment that with performance metrics
gleaned from the download itself. With this as-
sumption, we outline seven server selection algo-
rithms:

1. The random strategy chooses a random
server.

2. The forecast algorithm uses monitoring and
forecasting to select the server that should
have the best performance.

3. The lightest-load algorithm assigns a cur-
rent load � to each server. This is equal to
the number of threads currently download-
ing from the server, and is monitored by the
client. With lightest-load, the server with
smallest value of � is selected. In the case
of ties, server speed is employed, and the
fastest server is selected.

4. The strict-load algorithm enforces tcp-
friendliness by disallowing multiple simul-
taneous connections to the same server. It
works just like lightest-load, except it al-
ways chooses servers where ����� . If there
are no unloaded servers, then no servers are
selected.

5. The remaining three algorithms use a com-
bination of load and speed to rank the
servers. Specifically, they select the server
with smallest values of ���	��
��������������� ,
where ���	��
 is the predicted time to down-
load one block of the file when there is no
contention. For ����� , we call this algo-
rithm fastest � .

6. fastest � minimizes ������
����� �!�"� .

7. fastest ��#%$ minimizes ������
������&('��)�"� .
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Dimension Range of Parameters
Simultaneous Downloads

����� ��� '����	��
�� ���	� ��
�� ' ��� '�
���� ��
Work Replication � ��� ��� '����	����
Failover Strategy � ��� ��� '����	��
�� ���	� ��
�� ' �	� '�
����(�� , static timeouts
Server Selection The seven selection strategies

Table 1: Ranges of parameters explored.

Region Num. Servers Num. Serv. Typically Up
University of Alabama (UAB) 7 6-7
University of California - Santa Barbara (UCSB) 6 4-5
Wisconsin (WISC) 4 2-3
United Kingdom (UK) 7 3-4

Table 2: Regions used in regional distribution

4 Experiment

During May and June 2004, we conducted a se-
ries of experiments in order to study the dy-
namics of the progress-driven redundancy algo-
rithm. The goal of the experiments was to de-
termine the impact of modifying parameters of
the four dimensions when downloading a 100
MB (megabyte) file distributed on the wide area.
Specifically, we tested all combinations of the
ranges of parameters detailed in Table 1. Note
that � cannot exceed

�
, and that if ��� � , then

blocks are only retried upon socket failure (host
unreachable or socket timeout). For speed de-
termination and prediction, we employed a static
list of observed speeds from each server. For
the forecast algorithm, this list was used as the
starting point, and subsequent block download
speeds were fed into the Network Weather Ser-
vice’s forecasting software, to yield a prediction
of the speed of the next download.

IBP [13] servers were used to store the blocks
of the file. IBP is a software package that makes
remote storage available as a sharable network
resource. IBP servers allow clients to allocate
space on specific servers (called “depots”) and

then manage the transfer of data to and from al-
locations. IBP servers use TCP sockets and can
operate on a wide variety of architectures. A list
of publicly available IBP servers and their cur-
rent status can be found on the LoCI website:
http://loci.cs.utk.edu. The client ma-
chine used for the experiments ran Linux Red-
Hat version 9, had an Intel (R) Celeron (R) 2.2
GHz processor, and was located at the Univer-
sity of Tennessee in Knoxville. The downloads
took place over the commodity Internet. The
tests were executed in a random order so that
trends due to local or unusual network activity
were minimized, and each data point presented
is the average of ten runs.

We tested two separate network files. Both are
100 MB files, broken into blocks of size 1 MB.
Each block is replicated at four different servers.
The two files differ in the nature of the replica-
tion. The first, which we call regional, has each
block replicated in four network regions. This is
typical of a piece of content that is being man-
aged so that it is cached in strategically chosen
regions. The regions for this file are detailed
in Table 2. Note, there are multiple servers in
each region, and since these are live servers in
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Figure 1: The best performance of threads, redundancy and progress
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Figure 2: The best performance of each server scheduling algorithm

the wide-area, they have varying availability, also
denoted in the table.

The second file is called hodgepodge, as its
blocks are stored at servers randomly distributed
throughout the globe. Specifically, fifty region-
ally distinct servers were chosen, and the blocks
of the file were striped across all fifty servers. A
list of the set of servers that the fifty were chosen
from for the hodgepodge distribution is included
in the Appendix along with a more precise de-
scription of the distribution. In both files, no two
copies of the same block resided in the same re-
gion, and no blocks were stored at the University
of Tennessee, where the client was located.

5 Results

We present the results first as broad trends for
each of the four dimensions presented. We then
explore more specific questions concerning the
interaction between the parameters and some of
the details of the downloads.

5.1 Broad Trends for Each Dimen-
sion

Figures 1 and 2 show the best performing down-
loads when parameters for each dimension are
fixed. For example, in the leftmost graph of Fig-
ure 1,

�
ranges from one to thirty, and for each
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Figure 3: Best performance of each server scheduling algorithm plotted over threads

value of
�

, the combination of � , � and schedul-
ing algorithm that yields the best average down-
load performance is plotted.

Two obvious results are clear from the figures.
First, the composition of the file affects both the
performance of downloading and the optimal set
of parameters. The regional file has an optimal
download speed of 82 Mbps (Megabits per sec-
ond), while the hodgepodge file achieves a lower
optimal speed of 66 Mbps. Second, the number
of simultaneous downloads has far more basic
impact on the performance of the algorithm than
the choice of � and � . However, it is not true that
bigger values of

�
necessarily translate into bet-

ter performance. Specifically, in the regional file,
the optimal performance comes when

� � � � ,
while in the hodgepodge, it occurs when

� ���(� .
We surmise that the performance is best when
the number of threads can utilize the capacity
of the network. Beyond that, contention and
thread context-switch overhead penalize the em-
ployment of more threads.

From figure 2, we conclude that the scheduling
algorithms that incorporate some kind of speed
prediction are the most successful. Observe the
poor performance of the random algorithm in
both types of file distributions. The strict-load
algorithm also has low overall performance for
both distributions. While in some applications it

may be necessary to adhere to limitations on the
number of connections made to the same server,
such limitations clearly hinder performance for
the following reasons: first, the client cannot take
advantage of multiple network paths from the
server, and second, in cases where a great dis-
parity exists between the performance of servers,
too few downloads are permitted from the faster
servers.

The forecast algorithm performs relatively
poorly as well. A likely explanation of this be-
havior is that its forecasts are too coarse-grained
for this application and as a result, the algorithm
cannot adapt quickly enough to the changing
environment. A finer grained forecaster would
probably have better performance, and it is possi-
ble that the coarse forecaster may have better per-
formance given a bigger file and thus more his-
tory for each server as the download progresses.

While there does not appear to be an optimal
scheduling algorithm per se, the three fastest �

algorithms as a whole outperform the others.

5.2 The Interaction of Server Selec-
tion and Threads

Figure 3 gives a more in-depth picture of the in-
teraction of the scheduling algorithms and the
number of threads. The best performance of each
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Figure 4: Breakdown of where blocks came from in the best performances of the fastest � , fastest � , and
strict-load algorithms with 10 threads (range of average download speeds in Mbps is listed in legend)

Figure 5: Breakdown of where blocks came from in the best performances of the fastest � , fastest � , and
strict-load algorithms with 30 threads (range of average download speeds in Mbps is listed in legend)

algorithm given the number of threads is plotted.
The overall trends in figure 2 still hold in most
cases. However, in the regional distribution, the
forecast algorithm experiences a marked degra-
dation as the number of threads increase. As
noted before, the forecast algorithm appears to
adapt too sluggishly to the changing environ-
ment. As the number of threads increases, the
degree to which each server’s performance varies
also increases, due to the fact that a wider range
of concurrent connections can be made to each
server.

5.3 Where do the blocks come from?

Figures 4 and 5 display a breakdown of where
blocks came from in some of the the best per-
forming instances of the fastest � , fastest � and
strict-load algorithms. The instances of the re-
gional distribution are broken down over the re-
gions, while the instances of the hodgepodge dis-
tribution are broken down over ranges of aver-
age download speeds. From earlier figures, the
strict-load algorithm performs poorly in com-
parison to the other algorithms. In both the
regional and the hodgepodge distributions, we
can see that the strict-load algorithm is forced
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Figure 6: The relationship of progress and redundancy with 10 threads over the regional distribution
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Figure 7: The relationship of progress and redundancy with 30 threads over the hodgepodge distribution

to retrieve larger percentages of its blocks from
slower servers. The reader may notice that the
average download speed from the UAB region
is faster for the strict-load algorithm than it is
for the fastest � and fastest � algorithms. This
is because the strict-load algorithm avoids con-
gestion of TCP streams. However, the fact that
the performance of the other algorithms is faster
shows the availability of more network capacity
from these sites than can be exploited by a single
TCP stream.

This behavior is also apparent in figure 5
where the blocks are split up according to down-
load speed. Notice that the fastest � algorithm

has a larger percentage of blocks in the '�� � � '�� �
Mbps range and a smaller percentage of blocks
in the ��� � � ��� � Mbps range than the fastest �
algorithm even though the fastest � algorithm al-
ways chooses the faster server regardless of that
server’s load.

5.4 The Interaction of � and �
The interaction of progress with redundancy is
shown in Figures 6 and 7. While better per-
formance does tend to lean slightly to higher
progress numbers in some cases, for the most
part, as long as � � ' , the performance does
not change significantly with progress. In both
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Figure 8: Number of failovers with 10 threads, R=2, over the regional distribution
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Figure 9: Number of failovers with 30 threads, R=2, over the hodgepodge distribution

distributions, the performance when � � � is
very close to the performance when � � '����
or � , when the fastest � and fastest � algorithms
are used. However, in the strict-load algorithm,
where optimal choices are not always permit-
ted, the ability to add redundant work to a block
proves to be advantageous.

5.5 When is Aggressive Failover use-
ful?

Given that it is sometimes advantageous to make
retries, how often is a failover necessary? Fig-
ures 8 and 9 show the number of failovers versus

the progress number when � � ' and there are
10 threads over the regional distribution and 30
threads over the hodgepodge distribution. The
total number of failovers is shown along with the
total number of useful failovers, that is, the num-
ber of times a retry was attempted and number
of times the retry completed before the original
attempt. Clearly, small progress numbers lead
to excessive numbers of failovers, while larger
progress numbers result in a higher percentage
of useful failovers. It is also clear that a higher
percentage of retries are useful to the strict-load
algorithm, which is constrained to choose slow
servers at times because of the restriction of per-
mitting only single TCP streams.
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6 Conclusion

Given a file that is distributed across a system,
how can we best leverage the properties of the
system to retrieve the file as quickly as possi-
ble? With regard for the two previously proposed
approaches to this problem, Progress-Driven Re-
dundancy and Bandwidth-Prediction, we have
explored the impact and interrelationships of the
following download parameters: the number of
simultaneous downloads, the degree of redun-
dancy, the failover strategy, and the server selec-
tion algorithm.

As an obvious result, we found that perfor-
mance tends to improve as the number of simul-
taneous downloads increases to a point, and that
the distribution of the file across the system im-
pacts the way the download parameters perform
and interact.

With respect to the Bandwidth-Prediction ap-
proach, some form of bandwidth prediction
greatly improves performance, and with re-
spect to Progress-Driven Redundancy, some
form of redundancy is very useful when poorly-
performing servers are selected for downloads.
Concerning performance prediction, in our tests,
exploiting knowledge from the client (concern-
ing the load from each server) is more beneficial
to performance than having an external predic-
tion engine try to react to the observed condi-
tions. However, as stated above, this may be an
artifact of the monitoring granularity, and more
fine-grained monitoring may lead to better per-
formance of predictive algorithms.

We anticipate that the results of this work
will be implemented in the Logistical Runtime
System [4], which already implements a vari-
ant of Progress-Driven Redundancy as the major
downloading algorithm for its file system built
upon faulty and time-limited storage servers, and
has seen extensive use as a Video delivery ser-
vice [3] and medical visualization back-end [10].

This work does have limitations. First, we did

not employ an external monitoring agent such as
the Network Weather Service. This is because we
did not have access to such as service on the bulk
of the machines in our testbed. With the avail-
ability of such a service, we anticipate an im-
provement in the fastest � algorithms; however,
we also anticipate that these algorithms should
still incorporate knowledge of server load.

Second, we did not test the performance from
multiple clients. However, we anticipate that the
results from the one client are indicative of per-
formance from generic clients, when the clients
are not co-located with the data.

Third, we did not assess the impact of timeout-
based strategies, which have been shown to be
important in some situations [1, 15]. Instead, we
have focused on algorithm progress and socket
timeout as the failover mechanism. We intend to
explore the impact of timeouts as a complemen-
tary failover mechanism in the future.

Finally, erasure codes have arisen as a viable
alternative to replication for both caching and
fault-tolerance in wide-area file systems [5, 14,
19, 21]. In future work, we intend to see how
these downloading algorithms apply to file sys-
tems based on erasure codes, what additional
considerations apply, and what the performance
impact is.
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Appendix

When a file is distributed with the hodgepodge
distribution, fifty regionally distinct servers are
chosen, and four copies of the file are striped

across all fifty servers. Two servers are consid-
ered to be regionally distinct if the last two el-
ements of their urls do not match. Of approx-
imately 300 IBP servers, the 133 listed below
were determined to be up fairly frequently dur-
ing May and June 2004, and of the 133 servers
in the list, between 59 and 75 regionally distinct
servers were typically up at a given moment. Due
to the instability of such a large set of globally
distributed servers, an additional two copies of
the file were striped across the fifty chosen for
experimentation. The download tool would tol-
erate failures as long as each block had at least
four available copies, and the tool would only use
four copies to complete a download.
The following set of IBP servers was used to gen-
erate a hodgepodge distribution of the file:
200.19.119.112

206.220.241.47

aladdin.planetlab.extranet.uni-passau.de

charcoal.cs.ucsb.edu

cisa.cs.ucsb.edu

csplanetlab3.kaist.ac.kr

disk2.lab.ac.uab.edu

disk3.lab.ac.uab.edu

disk5.lab.ac.uab.edu

disk6.lab.ac.uab.edu

disk7.lab.ac.uab.edu

disk8.lab.ac.uab.edu

dschinni.planetlab.extranet.uni-passau.de

dsi.i2.hawaii.edu

dsj2.uits.iupui.edu

i2tools.cookman.edu

ibp-rm.6net.garr.it

ibp.caspur.6net.garr.it

ibp.doshisha.ac.jp

ibp.ibcp.fr

ibp.unifi.6net.garr.it

ibp1.lab.ac.uab.edu

itchy.cs.uga.edu

kupl1.ittc.ku.edu

kupl2.ittc.ku.edu

lefthand.eecs.harvard.edu
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pl1.unm.edu

plab1.nec-labs.com

planet1.berkeley.intel-research.net

planet1.cs.huji.ac.il

planet1.cs.rochester.edu

planet1.cs.ucsb.edu

planet1.scs.cs.nyu.edu

planet2.berkeley.intel-research.net

planet2.cs.huji.ac.il

planet2.cs.rochester.edu

planet2.ecse.rpi.edu

planetlab-01.bu.edu

planetlab-1.it.uu.se

planetlab-1.scla.nodes.planet-lab.org

planetlab-2.cmcl.cs.cmu.edu

planetlab-2.cs.princeton.edu

planetlab-2.it.uu.se

planetlab-2.scla.nodes.planet-lab.org

planetlab-3.scla.nodes.planet-lab.org

planetlab02.cs.washington.edu

planetlab03.cs.washington.edu

planetlab1.arizona-gigapop.net

planetlab1.bgu.ac.il

planetlab1.cis.upenn.edu

planetlab1.cnds.jhu.edu

planetlab1.cs.arizona.edu

planetlab1.cs.cornell.edu

planetlab1.cs.northwestern.edu

planetlab1.cs.purdue.edu

planetlab1.cs.ucla.edu

planetlab1.cs.uiuc.edu

planetlab1.cs.unb.ca

planetlab1.cs.virginia.edu

planetlab1.cs.vu.nl

planetlab1.cs.wayne.edu

planetlab1.cse.nd.edu

planetlab1.csres.utexas.edu

planetlab1.diku.dk

planetlab1.eecs.umich.edu

planetlab1.enel.ucalgary.ca

planetlab1.flux.utah.edu

planetlab1.frankfurt.interxion.planet-lab.org

planetlab1.iis.sinica.edu.tw

planetlab1.it.uts.edu.au

planetlab1.koganei.wide.ad.jp

planetlab1.millennium.berkeley.edu

planetlab1.postel.org

planetlab1.ucsd.edu

planetlab1.xeno.cl.cam.ac.uk

planetlab10.millennium.berkeley.edu

planetlab11.millennium.berkeley.edu

planetlab2.bgu.ac.il

planetlab2.cnds.jhu.edu

planetlab2.cs.dartmouth.edu

planetlab2.cs.purdue.edu

planetlab2.cs.ubc.ca

planetlab2.cs.ucla.edu

planetlab2.cs.unb.ca

planetlab2.cs.uoregon.edu

planetlab2.cs.wayne.edu

planetlab2.csres.utexas.edu

planetlab2.dcs.bbk.ac.uk

planetlab2.di.unito.it

planetlab2.flux.utah.edu

planetlab2.inria.fr

planetlab2.it.uts.edu.au

planetlab2.millennium.berkeley.edu

planetlab2.postel.org

planetlab2.tamu.edu

planetlab2.ucsd.edu

planetlab3.cambridge.intel-research.net

planetlab3.cs.uoregon.edu

planetlab3.csres.utexas.edu

planetlab3.flux.utah.edu

planetlab3.millennium.berkeley.edu

planetlab3.ucsd.edu

planetlab3.xeno.cl.cam.ac.uk

planetlab4.millennium.berkeley.edu

planetlab6.millennium.berkeley.edu

planetlab6.nbgisp.com

planetlab7.millennium.berkeley.edu

planetlab7.nbgisp.com

planetlab8.idsl.nodes.planet-lab.org

planetlab8.millennium.berkeley.edu

planetlab9.millennium.berkeley.edu

planetslug1.cse.ucsc.edu
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planlab1.cs.caltech.edu

planlab2.cs.caltech.edu

pli1-crl-1.crl.hpl.hp.com

pli1-crl-2.crl.hpl.hp.com

pli1-pa-3.hpl.hp.com

pli2-pa-1.hpl.hp.com

pli2-pa-2.hpl.hp.com

portal.grid.csp.it

raven.cs.ucsb.edu

recall.snu.ac.kr

ricepl-2.cs.rice.edu

righthand.eecs.harvard.edu

scratchy.cs.uga.edu

silo.showcase.surfnet.nl

valnure.cs.ucsb.edu

video.ils.unc.edu

vn1.cs.wustl.edu

vrvs-ag.internet2.edu

vrvs3.internet2.edu

w20gva.inria.datatag.org

watson.ecs.baylor.edu
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